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A B S T R A C T   

Power law scaling models have been used to understand the complexity of systems as diverse as cities, neuro-
logical activity, and rainfall and lightning. In the scaling framework, power laws and standard linear regression 
methods are widely used to estimate model parameters with assumed normality and fixed variance. Generalized 
linear models (GLM) can accommodate a wider range of distributions where the chosen distribution must meet 
the assumptions of the data to prevent model bias. We present a widely applicable Bayesian generalized logistic 
regression (BGLR) framework to more flexibly model a continuous real response addressing skew and hetero-
scedasticity. The Generalized Logistic Distribution (GLD) was selected to flexibly model skewed continuous data. 
This resulted in a nonlinear posterior distribution which may not have an analytical solution which can be solved 
numerically with Markov Chain Monte Carlo (MCMC) methods. We compared the BGLR model to standard and 
Bayesian normal models having fixed and varying variance when fitting power laws to 759 days of COVID-19 
data. The BGLR yielded information beyond existing methods about the evolution of skew and skedasticity 
while revealing parameter bias of widely used methods. The BGLR flexibly modelled the complex characteristics 
necessary for an improved understanding of the propagation and dynamics of this infectious disease. The model 
is generally applicable and can be used as a template for modelling complexity with other distributions.   

1. Introduction 

Decades of research have explored the city effect on urban indicators. 
To encapsulate this relationship, a comprehensive generalization of 
allometric growth forming the foundations of urban scaling was pre-
sented [1]. This inspired further work in population [2–9] and density 
[10–13] scaling to model for a range of economic, health, crime, prop-
erty and age indicators. This literature typically applies power laws 
(PLs) and standard linear regression techniques to estimate model pa-
rameters. Power law models have also been widely applied to problems 
as diverse as neurology [14], atmospheric science [15], and financial 
markets [16]. It is typically assumed that residual variance is fixed and 
normally distributed (i.e. ε ∼ N

(
0, σ2)). Previous work has shown that 

PL exponent estimates can vary depending on whether fixed or varying 
variance is assumed [17]. This work indicated that better models were 
needed to clarify the existence of nonlinear scaling. Furthermore, in 
other studies of scale, daily residual distributions of COVID-19 cases and 

deaths exhibited contracting and expanding variance along with posi-
tive and negative skew [12]. Current PL models lack support for these 
skew features as they are constructed based on Gaussian assumptions. 
Normality and fixed variance assumptions are inherited in the scaling 
field and continuing to rely on standard linear regression techniques will 
incorporate bias into all reported scaling model parameters. There is a 
need for a generalization allowing for varying variance and skewed 
distributions. 

Standard linear regression models assume normally distributed, ho-
moscedastic, linear and independent residuals [18–20]. For many data 
sets, these assumptions are too restrictive leading to bias in estimated 
model parameters. Generalized linear modelling (GLM) [21] provides a 
more flexible approach allowing for non-normal distributions. This 
generalization of ordinary linear regression provides a unifying frame-
work for many commonly used statistical techniques. For instance, 
many of the statistical properties of the normal distribution are shared 
with a wider class of distributions known as the exponential family. A 
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distribution belongs to the exponential family if it can be written in 
canonical form. In canonical form, it provides mathematically conve-
nient canonical links that relate the mean of the response and the linear 
predictor. While using the canonical link is not mandatory, there are 
situations where the context might necessitate opting for a different link 
function [22]. 

The generalized logistic distribution (GLD) is suitable for modelling 
asymmetric continuous responses. The GLD is an extensively studied 
extension to the standard logistic distribution [23–25] and has a variety 
of forms [24,26–33]. The form considered here is the three-parameter 
(location, scale and shape) type I GLD [24,26–28]. It is currently un-
known whether the type I GLD belongs to the exponential family. 
Nevertheless, the type I GLD shape parameter allows for skewed re-
siduals allowing greater flexibility and, like the normal, it can support 
continuous data. The probability (PDF) and cumulative (CDF) density 
functions of the type I GLD are as follows: 

f (x; θ, σ, α) = α
σ

exp
{

− (x− θ)
σ

}

[

1 + exp
{

− (x− θ)
σ

}]α+1 (1)  

and 

F(x; θ, σ, α) = 1
[

1 + exp
{

− (x− θ)
σ

}]α (2)  

where θ, σ and α are the location, scale and shape parameters respec-
tively. θ ∈ ℝ, α > 0, σ > 0 and − ∞ < x < + ∞. The shape parameter α 
indicates the type of skewness. When α > 1, the distribution is positively 
skewed, when α = 1 the distribution is symmetrical and when α < 1 the 
distribution is negatively skewed. The following parameterisation 
f(x; θ, σ,α) = f(x;0,1, 1) reduces the PDF (Eq. (1)) and CDF (Eq. (2)) to 
the standard logistic distribution [23–25] such that Eq. (1) reduces to 
f(x;0,1, 1) = exp( − x){1 + exp( − x) }− 2. 

A proof ([28], sec. 3) has been published showing that maximum 
likelihood estimates (MLE) for the type I GLD do not exist. However, 
more recent work [27] claimed this result was due to unintended log-
arithm and summation errors. Order statistics have been extensively 
studied for α for the Type I GLD [25] and tables corresponding to the 
means, variances and covariances are available. Using these tables, the 
study derived the best linear unbiased estimators of the location and 
scale parameters assuming a known shape parameter and presented 
them in tabulated format. The type I GLD is readily accessible with 
sampling and fitting tools [34]. 

The GLD has been applied to a range of problems. For example, in a 
study of inflation rates, the GLD captured changes in mean, variance and 
skewness [35]. More recently, the GLD was used to study residuals 
following regression analysis with assumed normality of COVID-19 
cases and deaths over a 15-month period across England and Wales. 
The residual distributions were better characterized using the GLD 
density curve than the normal density curve illustrating the flexibility of 
the GLD [13]. However, since the GLD model was applied after regres-
sion methods (with assumed normality) due to a lack of a unified GLD- 
based framework, there is a need to introduce one. 

We present a Bayesian generalized logistic (GL) regression model 
able to treat heteroscedastic and skewed (both positive and negative) 
continuous data. First (Section 2), we present the statistical properties 
and graphical representations of the GLD. Second (Section 3), the 
Bayesian generalized logistic (GL) regression model is developed along 
with a complete framework using Markov chain Monte Carlo (MCMC) 
methods (Section 4). Third (Section 5), we compare the GL regression 
model to normal methods using PLs and data from the COVID-19 
pandemic. Finally, concluding remarks are given (Section 6) along 
with suggestions for further generalization and application. 

2. Properties of the type I generalized logistic distribution 

2.1. GLD maximum likelihood estimation 

A MLE for the generalized logistic has been derived [27]. Briefly, let 
X1,X2,…,Xn be independent random variables taken from the continuous 
GLDgiven by f(x; θ, σ,α). Henceforth, the PDF corresponding to the GLD 
will be referred to as GLD(x; θ, σ,α). Suppose that a sample of observa-
tions X1,X2,…,Xn is taking the values x1, x2,…,xn then the likelihood is L

(
θ,

σ,α|x1, x2,…,xn
)
= GLD

(
x1, x2,…,xn; θ, σ,α

)
= GLD(x1; θ, σ,α)× GLD(x2;

θ, σ, α)× …× GLD(xn; θ, σ, α) =
∏n

i=1
GLD(xi; θ, σ,α). The likelihood 

function for the GLD is given by: 

L = L
(
θ, σ,α|x1, x2,…,xn

)
=

∏n

i=1

α
σ

exp
{

− (xi − θ)
σ

}

[

1 + exp
{

− (xi − θ)
σ

}]α+1 (3) 

Thus, the corresponding GLD log-likelihood function log{L(θ, σ,
α|xi) } is given by: 

log(L)= log{L(θ,σ,α|xi)}

= nlog
(α

σ

)
−
∑n

i=1

(
xi − θ

σ

)

− (α+1)
∑n

i=1
log

[

1+exp
{
− (xi − θ)

σ

}]

(4) 

To obtain the MLE, replace (θ,σ,α) by its estimators (θ̂, σ̂ , α̂) and find 
values that jointly maximize the likelihood function. For example, it has 
been shown [27] that setting ∂log(L)

∂α =0 gives the following: 

α̂ =
n

∑n

i=1
log

[

1 + exp
{

− (xi − θ̂)
σ̂

}] (5)  

where it can be seen that α̂→∞ if θ̂→ − ∞ and that α̂→0 if σ̂→0. 
Generally, the MLEs (θ̂, σ̂, α̂) can be obtained if there exist θ̂ ∈ ℝ, σ̂ > 0 
and α̂ > 0 which simultaneously maximize the log likelihood function 
log(L(θ, σ, α|xi) ) given in Eq. (4). This can be done by applying numerical 
methods such as the Newton-Raphson procedure which have been 
shown to collapse if α̂ = ∞ and θ̂ = − ∞ or when α̂ = 0 and σ̂ = 0 [27]. 
If this happens then it indicates that the GLD is not valid for the data set 
being modelled. Collapse can indicate that other distributions such as 
the Gumbel or two-parameter reciprocal exponential are more appro-
priate [27]. 

2.2. Method of moments 

Estimators, (θ̂, σ̂ , α̂), can be derived for the parameters (θ, σ, α) that 
are asymptotically unbiased and consistent [28]. These estimators are 
functions of the first three sample moments corresponding to mean, 
variance and skew as follows: 

E(X) = θ + σ{ψ(α) − ψ(1) }

Var(X) = σ2{ψ′(1) + ψ′(α) }

Skew(X) =
ψ′′(α) − ψ′′(1)

{ψ′(α) + ψ′(1) }
3
2

(6)  

where ψ( • ) is the digamma function, and ψ′( • ) and ψ′′( • ) are its first 
and second derivatives, respectively. 

2.3. GLD graphical presentation 

Suitably parameterized, the GLD is a flexible and robust distribution 
for modelling continuous data. The GLD reduces to the standard logistic 
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distribution when θ = 0 and σ = α = 1 (Fig. 1(a)). Continuing with a 
fixed θ = 0 and α = 1 and changing σ retains a symmetrical shape. 
Increasing σ widens the span over X (Fig. 1(b)). The shape parameter 
indicates the skew of the distribution. If α < 1, the distribution is 
negatively skewed (Fig. 2(a)) and positive skew is indicated α > 1 (Fig. 2 
(b)). In each case (negative and positive skew) the tails of the distribu-
tion become heavier with increasing α. Varying (θ,σ,α) allows the GLD to 
characterize a range of different complex shapes (Fig. 3). 

The GLD does not collapse to a normal, however, based on simula-
tions we found it to be a good approximation (Fig. 4). The simulations 
consisted of 4 sets of 10,000 normally distributed random numbers with 
a mean μnormal = 0 and varying standard deviation (SD) (σnormal = 1,3,5,
7) corresponding to the normal distribution. The shape parameter α in 
the GLD was near 1 in all simulations indicating no skew. The GLD fits to 
low σ tended to have heavier tails and an elevated peak compared to 
fitting a normal density curve. Tails of the GLD and normal become more 
alike with increasing σ although the slightly elevated peak remains. 
Although the GLD does not exactly collapse to the normal distribution, 
the capacity to model both symmetrical and asymmetrical distributions 
is an advantageous feature allowing for skew. 

3. The GL regression model (GLR) 

Consider Y′
1,…,Y′

n an n sample of continuous data following a GLD 
with PDF and CDF in the form of Eqs. (1) and (2), respectively, such that 
Y′

i ∼ GLD(xi; θ, σ,α) for i = 1,…, n where θ is the location, σ is the scale 
and α is the shape parameters. We model the mean and variance using 
the following link functions: 

E
(
Y′

i

)
= g1(θ) = xT

i β = ηi

log
{

Var
(
Y′

i

) }
= g2(σ) = xT

i β′ = η′
i

(7)  

where g1( • ) and g2( • ) denote monotone, twice differentiable link 
functions, xi is the ith column of a design matrix of size p× n, where p is 
the number of explanatory variables, β is p × 1 vector of unknown mean 
regression coefficients and β′ is a p × 1 vector of unknown variance 
regression coefficients. The mean linear predictor denoted as ηi relates to 
the link function g1( • ) such that θi = g− 1

1 (ηi) = g− 1
1

(
xT

i β
)

and the vari-
ance linear predictor denoted as η′

i relates to the link function g2( • ) such 
that σi = g− 1

2
(
η′

i
)
= g− 1

2
(
xT

i β′). In the model, g1( • ) is the identity link 
function and g2( • ) is the logarithmic link function. 

The log-likelihood function corresponding to the GLD, given in Eq. 
(4), is adjusted to account for the regression model proposed in Eq. (7) 

for the mean E
(
Y′

i
)

and variance log
(
Var

(
Y′

i
) )

functions. Taking this into 
consideration, the log-likelihood given in Eq. (4) is adjusted to account 
for the proposed link functions given in Eq. (7) such that: 

log(L) = log{L(β, β',α|xiyi) }

= n log
(

α
xT

i β'

)

−
∑n

i=1

(
yi − xT

i β
xT

i β'

)

− (α + 1)
∑n

i=1
log

[

1

+ exp
{
−
(
yi − xT

i β
)

xT
i β'

}]

(8)  

where the location, θ, and scale, σ, parameters are replaced with the 
proposed linear predictors. This results in the log-likelihood corre-
sponding to our developed GL regression model. The GL regression log- 
likelihood (Eq. (8)) will be applied in our Bayesian framework. 

4. Bayesian generalized logistic regression (BGLR) 

4.1. Prior distribution 

For the Bayesian framework, we specify prior distributions for each 
model parameter. Since no information is provided, non-informative 
priors are assigned to the mean (β) and variance (β′) for each regres-
sion coefficient along with the GLD shape parameter α. To express prior 
ignorance, each β and β′ is assumed normally distributed with a mean of 
0 and large variance (104) such that: 

β0 ∼ N
(

0, σ2
β0

)

β1 ∼ N
(

0, σ2
β1

)

⋮
βp ∼ N

(
0, σ2

βp

)

β′
0 ∼ N

(
0, σ2

β′
0

)

β′
1 ∼ N

(
0, σ2

β′
1

)

⋮

β′
p ∼ N

(
0, σ2

β′
p

)

(9)  

where σ2
βp 

is some large variance for p = 0,1,…,P. Furthermore, a non- 
informative gamma distribution is considered for α such that α ∼

Γ(a1, b1) where a1 = b1 = 1. The Bayesian approach is advantageous 
since priors can be updated when external information is available or 
using elicitation techniques [36]. It is also possible to set them up 
sequentially using the previous posterior distribution as the current 
prior distribution [36]. 

4.2. Posterior distribution 

In a Bayesian approach, statistical inference is performed on the 

Fig. 1. The standard logistic distribution (a) and the type I GLD (b). The solid black line in panel (a) represents the standard logistic distribution with the following 
parameterization: θ = 0, σ = α = 1. In panel (b) the solid green, blue and red density curves have the following parameterizations: f(x; θ, σ,α) = f(x;0,3, 1), 
f(x; θ, σ, α) = f(x;0, 2, 1) and f(x; θ, σ,α) = f(x;0,1, 1) respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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posterior distribution of the model parameter vector, ψ . In the BGLR 
model, we consider the parameter vector given by: 

ψ =
(
y′

i; β, β′, α
)

(10)  

where β =
(
β0, β1,…, βp

)
is the set of mean regression coefficients and 

β′ =
(

β′
0, β

′
1,…, β′

p

)
is the set of variance regression coefficients. Given 

the priors and likelihood function, the joint posterior density function 
can be expressed as: 

fpost(ψ|y′)∝flike(y′|ψ)fprior(ψ) (11)  

where flike(y′|ψ) is given by: 

flike(y′|ψ) =
∏n

i=1
GLD

(
y′

i; β, β′, α
)

(12)  

and fprior(ψ) is completed with independent prior distributions, given by: 

fprior(ψ) = f (β0) • f (β1) • ⋯ • f
(
βp
)
• f

(
β′

0

)
• f

(
β′

1

)
• ⋯ • f

(
β′p

)
• f (α)

(13) 

We were unable to confirm whether the posterior distribution is 

analytically tractable which is often the case for nonlinear and non- 
Gaussian models. Thus, to generate samples from the posterior distri-
bution, we used MCMC methods by applying the random walk 
Metropolis-Hasting (MH) algorithm. Inference on the parameter vector, 
ψ , can be based on the posterior summaries of the marginal posterior 
distribution such as the mean, median, standard deviation and quantiles. 

4.3. Metropolis-Hasting algorithm 

MCMC methods are a broad set of algorithms used to sample a 
probability distribution [36–39]. In the absence of an analytical solution 
to the GLD posterior distribution, the BGLR applies MCMC methods 
[36,40,41] to sample from the posterior distribution. MCMC methods 
sequentially sample from a simple candidate distribution where the next 
sample value depends on the current sample value and is either accepted 
or rejected based on some probability. If the sample is accepted, then the 
candidate value is updated and applied to the next iteration while, if 
rejected, the current sample is continued into the next iteration. After m 
iterations the sample values approach the desired target distribution. 
Appropriate candidate distributions must: (a) have the same state space; 
(b) have sample draws converge to the target distribution; and (c) easily 
accessible random draws. If the candidate distribution meets these 

Fig. 2. The GLD with location and scale parameters set to θ = 0 and σ = 2 resprectively. Panel (a) illustrates negative skew where the shape parameter is set to α =

0.8 (solid green line), α = 0.5 (solid blue line) and α = 0.1 (solid red line). While panel (b) illustrates positive skew where the shape parameter is set to α = 1.2 (solid 
green line), α = 10 (solid blue line) and α = 50 (solid red line). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 3. The GLD with location values set θ = 0 illustrating negative (panel a) and positive (panel b) skew exhibiting a heavier left tail with increasing α. In panel (a) 
scale and shape parameters are set to σ = 3, α = 0.8 (solid green line), σ = 2, α = 0.5 (solid blue line) and σ = 1, α = 0.1 (solid red line). While in panel (b) scale and 
shape parameters are set to σ = 3, α = 1.8 (solid green line), σ = 2, α = 1.5 (solid blue line) and σ = 1, α = 1.1 (solid red line). Varying σ also allows for a variety of 
other complex shapes further showcasing the flexibility of the GLD. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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requirements in the context of the BGLR model, the random walk MH 
algorithm proceeds as shown in Algorithm 1 [36,41,42]. 

Algorithm 1. Metropolis-Hastings algorithm.   
(a) Draw an initial estimated value in the parameter vector ψ0 from the candidate 

distribution.  
(b) Repeat for t = 1,…,m where m is the number of MCMC chains and  

(i) Draw a sample value from the candidate distribution such that 
ψcand ∼ q

(
.|ψ t− 1)

(ii) Calculate the acceptance ratio λ, used to either accept or reject the sample 
candidate value. The acceptance is obtained by applying the following: 

λ =
fpost(ψcand|y′)q

(
ψ(t− 1) |ψcand

)

fpost(ψ(t− 1) |y′)q(ψcand|ψ(t− 1) )

(iii) Set 

ψt =

{
ψcand with probability min(λ, 1)

ψ(t− 1) otherwise     

(c) Increment the iteration: t = t + 1 and repeat step 2 until m chains have been 
implemented.  

To implement the MH algorithm above, the mean β and variance β′ 

parameters were assigned normal (as described in Section 4.1) given by: 

βp ∼ N
{

μ(t− 1)
normal , σ2

normal

}
(14)  

β′
p ∼ N

{
μ(t− 1)

normal , σ2
normal

}
(15)  

where p = 0, 1,…,P are the of number of parameters in each vector 
space β and β′. For a normal proposal, the mean is centered at the value 
of the previous iteration with some suitably chosen variance. We chose 
not to use a similar formalism for the shape parameter, α, as it exclu-
sively maps to the domain of positive real numbers. Instead, α was 
chosen to be a gamma given by: 

α ∼ Γ
(
a(t− 1) , b(t− 1) ) (16)  

where a(t− 1) =
(μt− 1

gamma)
2

(σt− 1
gamma)

and b(t− 1) =
(μt− 1

gamma)
(σt− 1

gamma)
for t = 1,…,m where m is the 

total number of MCMC chains. 

4.4. DIC score 

To compare the model performance between Bayesian models, a 
deviance information criterion (DIC) [43] score was computed to mea-
sure the goodness-of-fit. DIC is somewhat a Bayesian version of the 
Akaike information criterion (AIC), where the posterior distribution has 
been obtained using the MCMC chains. As illustrated [36], the DIC deals 
with MCMC methods as follows: 

computed fDIC = 2

{

logflike(y′|ψ̂ ) −
1
m

∑m

t=1
logflike(y′|ψt)

}

(17) 

Fig. 4. Four simulations of 10,000 randomly normally distributed data with fitted normal (solid black line) and GL (solid red line) density curves. The simulated data 
all have a mean μnormal = 0 with standard deviation of (a) σnormal = 1, (b) σnormal = 3, (c) σnormal = 5 and (d) σnormal = 7. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 
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where flike(y′|ψ) is the GLD likelihood function and ψ is the parameter 
vector. The second term is the average of ψ over its posterior distribution 
across all calculated MCMC chains where m is the total number of it-
erations. The DIC provides a trade-off between the goodness of fit and 
the complexity of the model. The actual DIC, using the computed fDIC is 
defined in terms of the deviance rather than the log predictive density, 
such that: 

DIC = − 2logf
(
y′|ψ̂ Bayes

)
+ 2fDIC (18)  

where a lower DIC indicates a better balance between model fit and 
complexity, making it a useful tool for model selection in Bayesian 
analysis. 

4.5. R packages, data, and implementation 

The COVID-19 and population data were analyzed using R version 
(4.1.2) [44]. Population data from the 2011 census and regional land 
areas were obtained from NOMIS (https://www.nomisweb.co.uk). The 
COVID-19 data were obtained from the UK Coronavirus dashboard (htt 
ps://coronavirus.data.gov.uk/) currently maintained by the UK Health 
Security Agency. The API was used to collect the data which was 
formatted with the rio (0.5.27) [45], xlsx (0.5.7) [46], httr (1.4.2) [47], 
plyr (1.8.5) [48], and lubridate (1.7.9.2) [49] packages. The tools for the 
type I generalized logistic distribution we acquired using the glogis 
(1.0–1) [34] package. Matrix statistics to obtain posterior summaries 
were computed using the matrixStats (0.61.0) [50] package. Gelman 
and Rubin's convergence diagnostics were performed using the coda 
(0.19–4) [51] package. The R-code is available as supplementary in-
formation (online Appendix A). 

5. Example 

To illustrate the BGLR model, we consider the English and Welsh 
COVID-19 and population density data from 337 lower tier local au-
thorities over a 759 day period beginning 01/03/2020 and ending 29/ 
03/2022 using a (PL) scaling model. This timeframe included different 
testing regimes and a range of government interventions (lockdowns, 
restrictions, vaccine programme, etc.). A snapshot of the formatted data 
set is given in Table 1 and the complete data set is provided as supple-
mentary information (online Appendix B). Issues related to the data set 
and formatting it for analysis have been discussed previously [13]. This 
analysis adds 285 days to a previous analysis done using a simpler model 
[13]. To illustrate the advantages of the BGLR, we compare it to previous 
normality methods and assess bias when assuming a normal system. 

Here we apply the population density PL model along with its line-
arized version as follows: 

YD = Y0PD
β10ε

log(YD) = log(Y0) + βlog(PD) + ε (19)  

where YD = Y/A is the indicator (COVID-19 cases) density, PD = P/A is 
the population density where A is the area of a region, Y0 is the pre- 
exponential factor, β is the PL exponent and ε are residuals that are in-
dependent and identically distributed with common N

(
0, σ2). Rewriting 

Eq. (19) into standard regression form gives: 

Yi = β0 + β1xi + εi (20)  

where Yi = log(YDi), β0 = log(Y0), β1 = β, xi = log(PDi) and εi = ε. The 
BGLR framework allows for asymmetric and heteroscedastic data sets as 
follows: 

E
(
Y′

i

)
= g1(θ) = xT

i β = β0 + β1xi = ηi

log
{

Var
(
Y′

i

) }
= g2(σ) = xT

i β′ = β′
0 + β′

1xi = η′
i

(21)  

where Y′
i ∼ GLD(xi; θ, σ, α). The parameters β0 and β1 are PL regression 

coefficients with variance coefficients β′
0 and β′

1. In this example, β′
0 

corresponds to traditional variance, while β′
1 is a scedasticity parameter 

such that: β′
1 = 0 for homoscedastic; β′

1 < 0 for negatively hetero-
scedastic (decreasing with xi); and β′

1 > 0 for positively heteroscedastic 
(increasing with xi). A straight-line model of variance has been used 
here; however, this is not a requirement allowing more flexible models 
and more detailed metrics of scedasticity. 

5.1. MCMC results 

Gelman and Rubin's convergence diagnostics were used [42,52] with 
values <1.1 indicating convergence and values >1.1 indicating non- 
stationary chains. The MH algorithm was implemented with m =

20,000 iterations with the first 10,000 draws disregarded (burn-in). In 
this way, we found most estimates for β0, β1, θ, σ and α with recognized 
convergence over 759 days and in some cases estimates for β′

0 and β′
1 

(online Appendix C). Despite the existence of potentially more accurate 
estimates for β′

0 and β′
1, the BGLR model still provides a flexible alter-

native and in many cases outperforms normal methods. We note that 
heteroscedasticity was not apparent on all days. 

5.2. Model parameters 

Where possible, we compared our BGLR model (Figs. 5–7, black) to 
the standard linear regression (SLR) model with fixed variance 
(Figs. 5–7, red) and to a Bayesian normal regression (BNR) model with 
varying variance (Figs. 5–7, blue). Computed differences in parameter 
estimates between BGLR and BNR models are also available (Figs. 5–7). 
Positive differences indicate increased estimates and negative differ-
ences indicate decreased estimates in the BGLR model. The BGLR model 
obtains 5 parameters: 2 for θ, (β̂0, β̂1), representing the PL (Fig. 5); 2 for 
σ, (β′

0, β′
1), the PL variance parameters (Fig. 6), and one for α (Fig. 7). 

Although daily pre-exponential factors β̂0 (Fig. 5(a)) and exponents, 
β̂1 (Fig. 5(c)) generally track each other, computed differences highlight 
structured bias in the estimates (Fig. 5; Panels (b) and (d)) for the BNR. 
The BGLR posterior mean and corresponding 95 % credible intervals of 
the posterior distributions of the model parameters are represented in 
grey. The most noticeable differences and wider computed CIs occurred 
at the very beginning of the pandemic, summer 2020 and 2021 when 
fewer regions reporting cases and the number of cases was lower. Some 
of the apparent instability in the β̂0 parameter estimates is due to trends 
in the weekly reporting cycle. 

A key advantage of the BGLR model is the variance regression co-
efficients accounting for the typical variance of GLM (β′

0) and scedas-
ticity (β′

1) in the data (Fig. 6). Normality methods usually assume a 
homoscedastic system. As shown previously [13] and further demon-
strated here, the variance of the COVID data is complex. It was not 
constant and β′

1 (scedasticity) varied from − 1 to 2.5. This additional 
information is indicated in the value of the β′

1 parameter. β′
1 > 0 in-

dicates expanding variance with x (Fig. 6(d)). This was seen at the 
beginning of the pandemic, Summer 2020, December 2020, Spring 

Table 1 
A representation of the COVID-19 data set. The dataset consists of lower tier 
local authority (LTLA) regions aligned to population, area and daily COVID-19 
case statistics.  

Region Population Area 
(Hectares) 

Day 
1 

Day 
2 

Day 
3 

⋯ Day 
759 

Adur 61,167 4180.71 0 0 0 ⋯ 33 
Allerdale 96,468 124,158.29 0 0 0 ⋯ 69 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
York 197,808 27,193.63 0 1 0 ⋯ 147  
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Fig. 5. Daily time series of the estimated parameters and computed differences between models across 759 days. Panels show: PL pre-exponential factors β0 (a), Δβ0 
the difference between BGLR and BNR models (b), PL exponents β1 (c), and Δβ1 (d) between BGLR and BNR models. In panels (a) and (c) blue dots represent the BNR 
model with varying variance, red dots represent the SLR model with fixed variance and the black dots represent the BGLR model. The grey dashed lines represent 95 
% credible intervals (with computed 2.5 % and 97.5 % quartiles) of the posterior distributions of the model parameters corresponding to the BGLR model. The 
horizontal dashed red line in panels (b) and (d) represents no differences in estimated parameters. A positive difference indicates a decreased BGLR parameter 
estimate while a negative difference indicates an increased BGLR parameter estimate. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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2021, October 2021 and December 2021 when rural regions (low pop-
ulation density) had lower variance. β′

1 < 0 indicates decreasing vari-
ance with x (Fig. 6(d)). This happened in April 2020, January–February 
2021, July–August 2021, September 2021, November 2021 and January 
2022 when urban areas had lower variance. This information is not 
provided in SLR models where it is assumed that variance is constant. 
The BNR model returned β′

1 consistently close to 0 indicating homo-
scedastic variance throughout. The BNR model was biased since both the 
BGLR model (Fig. 6c) and the data (Fig. 6d and e) clearly indicate het-
eroscedasticity. The improved modelling of variance expands previous 
studies of COVID-19 [13] providing further information about the 
behaviour of population density on disease propagation. 

The final parameter is the shape parameter, α (Fig. 7a), allowing for 
skewed distributions. If α > 1, the residual distribution is positively 
skewed (Fig. 7(b)), if α = 1 the residual distribution is symmetrical 
(Fig. 7(c)) and for 0 < α < 1, the residual distribution is negatively 
skewed (Fig. 7(d)). This data set was convincingly skewed over the 
period studied with periods dominated by both positive and negative 

skew. In this example, positively skewed residuals were indicative of 
‘hot spots’ and ‘super spreading’ regions and negatively skewed re-
siduals were indicative of ‘cold spots’ and ‘super isolating’ regions. The 
BGLR model reinforces the notion that skewed distributions are an un-
appreciated and recurring feature of disease propagation [13]. The 
BGLR model integrates skew within the model while rigorously ac-
counting for heteroscedasticity. 

5.3. Model comparison 

To explore the preferred model, the DIC score was obtained for both 
Bayesian models (GL and normal) and differences were computed 
(Fig. 8). A positive DIC corresponds to BGLR being the preferred model, 
while a negative value means BNR is preferred. The BGLR model is the 
preferred model for approximately 16 of 25 months in the data set. The 
periods of preference towards the Bayesian normal model correspond to 
fewer regions reporting cases. For example, in the first 17 days of the 
studied period, there are fewer than 200 regions (out of 337 regions) 
reporting at least 1 case. Similar observations occur in summer 2020 and 

Fig. 6. Daily time series of the estimated PL variance regression parameters along with computed differences across 759 days. Panels (a–b) are PL variance pre- 

exponential factors and differences between BGLR and BNR models. Panels (c), (d), and (e) illustrate the scedasticity parameter, β̂
′
1. In panels (a) and (c) blue 

dots represent the BNR model with varying variance and the black dots represent the BGLR model. The Grey dashed lines represent 95 % credible intervals (with 
computed 2.5 % and 97.5 % quartiles) of the posterior distributions of the model parameters corresponding to the BGLR model. The horizontal dashed red line in (b) 
represents no differences in estimated parameters. A positive difference indicates a decreased BGLR parameter estimate while a negative difference indicates an 

increased BGLR parameter estimate. Positive and negative scedasticity are shown in panels (d) (day 140; β̂
′
1 = 1.28 {CI : lower = 1.05 upper = 1.46}) and (e) (day 

330; β̂
′
1 = − 0.50 {CI : lower = − 0.58 upper = − 0.39}). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

(a)

es
�m

at
ed

 sh
ap

e

Day Number

(b) (c) (d)
Day 145 Day 280 Day 734

Fig. 7. Daily time series of shape parameter and selected residual distributions. Panel (a) shows the time series of the shape parameter corresponding to the BGLR 
model (black dots). The Grey dashed lines represent 95 % credible intervals (with computed 2.5 % and 97.5 % quartiles) of the posterior distributions of the model 
parameters corresponding to the BGLR model. The horizontal solid black line represents an unskewed (symmetric) distribution. Example residual distributions with 
(b) positive (α̂ = 1.98 [CI : lower = 1.23,upper = 2.75]), (c) symmetrical (α̂ = 0.90 [CI : lower = 0.66, upper = 1.20] ) and (d) negative (α̂ = 0.19 [CI : lower =
0.14, upper = 0.28] ) skew in the residuals demonstrating the flexibility needed to model residuals throughout the pandemic. Density curves in panels c-d represent 
normal (dashed red line) and GL (solid black line) distributions fitted to residuals obtained from the BGLR model. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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spring 2021. The BGLR model universally provided a better fit after day 
480 (circa 23/06/2021), shortly after Delta spread. Nevertheless, our GL 
regression model allows for a symmetrical and asymmetrical response 
including positive and negative skew. This is not possible when exclu-
sively using normality methods. 

6. Conclusions 

The introduction of the type I GLD within a GLM style framework 
provides key advances in regression methods for heteroscedastic and 
skewed data sets. We can now model heteroscedasticity with positively 
and negatively skewed data using a posterior distribution that may be 
analytically intractable. This was done in a Bayesian framework using 
MCMC methods. Specifically, the MH algorithm was applied with 
assumed normal regression coefficients with large variance (e.g. 104) 
and an informative gamma shape parameter to express prior ignorance. 

When applied to population density and COVID-19 case data the 
BGLR model tended to converge well throughout the pandemic and DIC 
scores indicated the BGLR model out performed normal methods during 
high observational timeframes. It demonstrated that a normal and ho-
moscedastic model was insufficient to produce the complex behaviour 
exhibited during 759 days of the COVID-19 pandemic. It revealed 
varying skew and scedasticity which if ignored results in biased esti-
mates of model parameters. These are previously unreported features of 
the COVID-19 data set. Although the application was COVID-19, this 
regression model could benefit any continuous data set with a sufficient 
number of points. 

The BGLR uniquely models variance. The second moment corre-
sponding to the GLD relates to a variance function including a shape 
parameter to account for skew. In our example we use the posterior 
median to confirm similar analysis of previous residual variance. How-
ever, adjusting the variance function to account for the linear predictor 
allows us to model variance of individual regions providing better local 
understanding of disease propagation. We find that periods with a high 
posterior median did not correspond to universal high variance across 
all regions. Instead, some timeframes exhibit a selection of regions that 
were the driving force of national heterogeneity. 

This study has established a BGLR model that can characterize the 
full spectrum of important features of disease propagation. Previous 
studies of disease propagation have focused on distributions that only 
allow for positive skew. As previously documented [13] and further 
evident in this study, these models are inadequate to represent the 
complexity of infectious disease propagation over time. The BGLR 
models additional shape parameter exhibits skew ranging from strongly 
positive, indicative of ‘hotspot’ and ‘superspreading’ regions, to strongly 
negative, indicative of ‘coldspots’ and ‘superisolating’ regions. In addi-
tion, the BGLR model includes two additional variance parameters. The 
first of these parameters reveals extended periods of contraction 

indicative of regional homogeneity and expansion indicative of regional 
heterogeneity. The second variance parameter indicates hetero-
scedasticity, featuring both varying magnitudes of increasing and 
decreasing variance with population density. The BGLR model's ability 
to reveal these complexities demonstrate its utility for a host of scaling 
and other statistical problem. 

Finally, the model incorporates a distribution (the GLD) where an 
analytic posterior distribution cannot be found or may not exist. The 
approach taken can be used as a template for other distributions to be 
used which have not yet been incorporated into a GLM style framework. 
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