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Abstract 

Pressure gain combustion can attain higher thermodynamic cycle efficiency in gas turbine power 

systems, resulting in the reduction of specific fuel consumption/fuel burn and Carbon dioxide emissions. 

There are many ways to achieve pressure gain and the present research investigates pressure gain 

through shock bubble (gas and liquid bubble) interaction (SBI) using computational fluid dynamics 

(CFD) simulations. The numerical simulations have been performed in 2D and 3D representations of 

the shock tube to depict the interaction of a planar shock wave with distinct gas and liquid 

inhomogeneities. The three scenarios considered cover the interaction of a planar shock wave in air 

with: spherical helium bubble (Mach number, Ma = 1.25); cylindrical helium bubble (Ma = 1.22) and 

cylindrical water bubble (Ma = 1.47). To perform these simulations, the Unsteady Reynolds-Averaged 

Navier-Stokes (URANS) mathematical model and the coupled level set and VOF method within the 

commercial CFD code, ANSYS FLUENT, have been applied. A finite volume method (FVM) is also 

employed to solve the governing equations. For the spherical and cylindrical gas bubble cases, various 

quantitative analyses are presented and compared to the experimental work of Haas and Sturtevant 

(1987). These include: refracted wave, transmitted wave, upstream interface, downstream interface, 

jet, vortex filament, non-dimensional bubble, and vortex velocities. The predicted non-dimensional 

bubble and vortex velocities have also been compared with experimental data, a simple model of shock-

induced Rayleigh-Taylor (RT) instability and other theoretical models. Comparisons are also shown 

between the predicted bubble length/width and the experimentally measured results to elucidate 

changes in the shape and size of the 2D and 3D bubbles. Additional quantitative analyses are also 

presented for the spherical bubble involving the size estimation of the vortex pair as well as their 

spacing. For the shock cylindrical water bubble interaction case, the quantitative predictions include: 

displacement/drift, acceleration, distortion in the lateral direction, distortion in flow direction, area 

variation from bubble distortion, as well as drag coefficient and are compared to the experimental 

measurements of Igra et al. (2002). It has been demonstrated that 3D simulations compare very well 

with the experimental data, suggesting that 3D simulations are necessary to capture SBI process 

accurately. Finally, comprehensive flow visualization has been used to elucidate the shock-bubble 

interaction (SBI) process from bubble compression to the formation of the vortex filaments (cylindrical 

helium bubble), vortex rings (spherical helium bubble), vortices (cylindrical water bubble) as well as the 

production and distribution of vorticity. It is demonstrated for the first time that turbulence is generated 

at the early phase of the SBI process, with the maximum turbulence intensity reaching about 20% 

around the vortex filaments/vortex rings regions for the cylindrical/spherical helium bubble cases 

respectively and about 22% for the cylindrical water bubble case at the later phase of the interaction 

process. 
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1. Introduction 

In this chapter, a brief outline of the motivation for this research, a detailed introduction to the 

research topics and the structure of the thesis are presented.  
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1.1.  Motivation 
 

Pressure gain combustion (PGC) possesses the required potential to hugely boost combined cycle 

performance when implemented in combustion gas turbines. PGC has the ability to replace the steady, 

isobaric (which mainly results in a total pressure loss), subsonic combustion exhibited by conventional 

gas turbine engines with a number of physical phenomena such as resonant pulsed combustion, 

isochoric combustion or supersonic exothermic combustion with front propagating shock wave 

(detonation). PGC principally aims to cause a rise in effective pressure across the combustor while 

utilizing the same volume of fuel as the constant pressure combustor. This technique has been 

adopted from the Humphrey (or Atkinson) cycle and is highly regarded as having a likelihood to 

achieve higher efficiency in gas turbine power systems, potentially attaining up to 4-6% for simple 

cycle systems and 2-4% in combined cycle systems1. These improvements will also prove pivotal for 

the power system level as this efficiency boost would help alleviate associated cost by efficiently 

trapping carbon.  

This project is also useful as it represents an approach to the 65% combustion turbine combined cycle 

efficiency goal as research shows that efficiency boosts in combustion turbines have not been met by 

constantly increasing turbine inlet temperatures1. The PGC concept thus creates an alternative route 

to the ultrahigh efficiency target which certainly is not inhibited by the turbine material limitations 

currently encountered by technology developers. Very interestingly, this technology does not prevent 

further research from being conducted on novel turbine materials and advanced cooling techniques 

particularly for the Integrated Gasification Combined Cycle (IGCC). However, this technology could 

potentially be faced with technical issues like fuel injection, fuel and air mixing, backflow avoidance, 

detonation onset, controlling wave direction, pressure rise maintenance, emissions (CO and NOx) 

control, transient heat transfer, combustor wall cooling and flow (injections and spray) and combustion 

temperature maintenance. Issues related to combustion temperature maintenance is attributable to 

the expansion of the turbine’s hot gas path components. These challenges require commensurate 

research to help curb/prevent these problems.  

A PGC system describes a method where the combustion process generates final stagnation pressure 

which is greater than the original stagnation pressure. A particularly useful illustration is the constant 

volume combustion process within the ideal spark-ignited engine (Gemmen et al., 1995). This constant 

volume combustion (CVC) systems yield more available energy in the final state gas compared to the 

constant pressure combustion (CPC) systems (Gemmen et al., 1995). The adoption of this technology 

for gas turbine cycles under ideal conditions with a pressure ratio of 10:1 and turbine inlet pressure of 

1200K, revealed that efficiency of a CVC system (54%) bettered that of a CPC system (48%) 

(Gemmen et al., 1994). Several authors (e.g., Thring, 1961; Muller, 1971; Kentfield and O’Blenes, 

1987a; 1987b) have tried to adopt this technology with different levels of success achieved. While their 

studies have shown that huge possibilities abound for the attainment of pressure gain, the combined 

challenge of pressure gain, pollutant reduction and engine reliability has not been extensively studied 

(Gemmen et al., 1995).  

 

Pressure gain in gas turbines is a well-recognized combustion technology which promises to provide 

a huge increase in gas turbine efficiency by replacing the conventional constant-pressure heat addition 

process with a constant volume process. This represents a deviation from the conventional gas turbine 

cycle i.e., the Brayton cycle, and a utilization of the Atkinson (Humphrey) thermodynamic cycle. This 

results in a reduced entropy rise thus ensuring that more work is extracted at the turbine and less 

required fuel input for a constant work output. The motivation for this technology follows from the fact 

that for a conventional gas turbine engine, overall pressure loss in the range of 4 – 8% of the stagnation 

pressure delivered by the compressor (without inclusion of pressure loss from isobaric combustion) 

results from the complex fluid flow paths required for flame stabilization, increasing turbulence, and 

 
1 https://www.netl.doe.gov/research/coal/energy-systems/turbines/pressure-gain-combustion 
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dilution schemes for cooling of the combustion products and combustor occurring as the density of the 

working fluid is decreased and velocity increased due to heating (Lefebvre, 2010). Pressure gain 

combustion (PGC), which then seeks to not only eradicate this loss but also substitute it with a net rise 

in stagnation pressure, can be defined as “a fundamentally unsteady process whereby gas expansion 

by heat release is constrained, causing a rise in stagnation pressure and allowing work extraction by 

expansion to the initial pressure” (Paxson, 2017).  

Fig. 1.1 shows the real Brayton and Humphrey Cycles with process 2-3 corresponding to compression 

losses i.e., where ambient air is pressurized adiabatically in the compressor and process 4-5 

corresponding to an adiabatic fluid expansion i.e., where the heated pressurized air gives up its energy 

while expanding in the turbine with no heat addition. The third cycle diagrammatically shown in Fig. 

1.1 corresponds to the PGC cycle which denotes a real gas turbine cycle within which a PGC process 

has been incorporated. 

 

 

 

 

 

 

 

 

 

 

 

 

The highest temperature for the cycle, 𝑇𝑚𝑎𝑥, is equivalent to the Turbine Entry Temperature/Turbine 

Inlet Temperature (TET) for all three cycles. Also, TET and the combustion end pressure i.e., states 

4′ and 4′′ are assumed to have quasi-steady, time-averaged values from an investigation of unsteady 

CVC and PGC processes. The thermal efficiencies for an idealised, loss-free Brayton and Humphrey 

cycles are given as Eqs. (1.1) and (1.2) respectively (Kruggel-Emden et al., 2004): 

𝜂𝑡ℎ = 1 −
𝑇2
𝑇3
= 1 −

1

⫪𝐶
(𝛾−1 𝛾)⁄

                                                                                                                                          (1.1) 

   𝜂𝑡ℎ = 1 − 𝛾
((𝑇4 𝑇2⁄ )(1 𝛾)⁄ ⫪𝐶

(1−𝛾 𝛾2)⁄
− 1)

𝑇4 𝑇2⁄ −⫪𝐶
(𝛾−1 𝛾)⁄

                                                                                                                   (1.2) 

where ⫪𝐶  and 𝛾 denote the compression ratio and ratio of specific heat capacities or adiabatic 

exponent. The thermal efficiency of the ideal Brayton cycle is dependent on the compressor ratio while 

there is an extra reliance on the maximum cycle temperature, 𝑇4 or TET for the ideal Humphrey cycle. 

Fig. 1.2 shows a plot of the thermal efficiency of the ideal Brayton and Humphrey cycles which is 

dependent on the compressor pressure ratio. The computation also utilised an initial cycle 

temperature, 𝑇2 of 300K. 

Figure 1.1: A Temperature-entropy (T-s) diagram showing the Real Brayton, Humphrey and PGC 

Cycles (Eugen, 2014). 
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The ideal Humphrey cycle has a greater thermal efficiency in comparison to the ideal Brayton cycle 

principally attributable to a reduced entropy increase during CVC. This is particularly true at low 

compression ratios and at high turbine entry temperatures (Heiser and Pratt, 2002; Kruggel-Emden et 

al., 2004; Wintenberger and Shepherd, 2004; Wu et al., 2003). However, as the compressor pressure 

ratio rises, the thermal efficiency of the Humphrey cycle gets closer to the thermal efficiency of the 

Brayton Cycle and when the temperature, 𝑇3, at the close of the compression process, becomes equal 

to the fixed TET, the efficiency of both cycles become identical as it then becomes impossible for any 

additional heat to be added to the combustor.  

 

Comparing the thermal efficiency of real PGC cycle to the previously discussed cycles shows that the 

time averaged pressure gain of the unsteady PGC process, as shown by process 3-4′ in Fig. 1.1, is 

assumed to be located somewhere between those of the CPC and CVC. Based on this assumption 

and procedure, a reduced level of entropy is produced during the PGC process compared to the CPC 

of the Brayton cycle thus yielding a higher possible temperature reduction across the expansion 

process. Assuming the compressor power demand requirement stays constant, this results in an extra 

work output (∆ℎ) in the turbine. Furthermore, because of the compression throughout the combustion 

process, a reduced amount of fuel is needed for heat addition to the fluid from a fixed temperature 𝑇3 

to 𝑇𝑚𝑎𝑥. Following from this, the real PGC cycle thermal efficiency, dependent on the averaged 

pressure rise in the combustor, 𝛱 = 𝑝4/𝑝3, can be expressed as (Kruggel-Emden et al., 2004; Probst, 

2002): 

  𝜂𝑡ℎ = 1 −
𝑇4 𝑇2⁄ (1 − (1 − (1 ⫪𝐶 𝛱⁄ )(𝛾−1 𝛾)⁄ )𝜂𝑇) − 1

(𝑇4 𝑇2⁄ − (1 + (⫪𝐶
(𝛾−1 𝛾)⁄

− 1) 𝜂𝐶⁄ ))
                                                                                            (1.3) 

The thermal efficiency of the real Humphrey cycle is given by Eq. (1.4) below (Kruggel-Emden et al., 

2004): 

   𝜂𝑡ℎ = 1 − 𝛾

𝑇4 𝑇2⁄ (1 − (1 − (
𝑇2
𝑇4 ⫪𝐶
⁄ (1 + (⫪𝐶

(𝛾−1 𝛾)⁄
) 𝜂𝐶⁄ ))

(𝛾−1 𝛾)⁄

) 𝜂𝑇) − 1

(𝑇4 𝑇2⁄ − (1 + (⫪𝐶
(𝛾−1 𝛾)⁄

− 1) 𝜂𝐶⁄ ))
                                         (1.4) 

Figure 1.2: Thermal efficiency of the ideal Brayton and Humphrey cycles against compressor 

pressure ratio computed at different TET (Eugen, 2014). 
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From Eqs. (1.3) and (1.4) above, 𝜂𝐶 and 𝜂𝑇 denote the compressor and the turbine isentropic 

efficiencies respectively. Fig. 1.3 shows the thermal efficiencies of the real Brayton and PGC cycle for 

different values of 𝛱 plotted against compressor pressure ratio. The thermal efficiency of the real 

Humphrey cycle is also illustrated for comparison. Eugen (2014) assigned 300K, 1700K, 1.4, 0.86 and 

0.9 as values for  𝑇2, 𝑇4, 𝛾, 𝜂𝐶 and 𝜂𝑇 respectively. From Fig. 1.3, the PGC cycles have a better efficiency 

than the Brayton cycle for the various pressure ratios investigated with maximum advantage 

experienced by small engines with a low compressor pressure ratio. This advantage drops for rising 

compression and cycle temperature ratios with these findings conforming with previous research work 

(Kentfield and O'Blenes, 1987; Lampinen and Turunen, 1992; Welch et al., 1997; Akbari and Müller, 

2003; Li et al., 2007). The real Humphrey cycle shows better performance than the PGC cycle just at 

very low compressor pressure ratios i.e., ⫪ < 6. This real Humphrey cycle’s thermal efficiency rapidly 

declines with rising ⫪ and drops below the Brayton cycle’s thermal efficiency at ⫪= 14. 

 

 

 

 

 

 

 

 

 

 

 

Eugen (2014) also investigated three representative types of engines by studying the impact of a 20% 

combustor pressure-gain i.e., 𝛱 = 1.2 with the aim of clarifying the theoretical capability of PGC. 

Following from this, a micro-jet engine operating at a compressor pressure of 4 and TET of 1000K is 

estimated to have a theoretical rise in cycle efficiency of 30%.  A turboshaft-type engine with ⫪𝐶 and 

TET of 20 and 1500K respectively is estimated to attain a 11.4% rise in cycle efficiency while a turbojet 

with ⫪𝐶 and TET of 38 and 1800K shows an improved capacity of 8.4%. Thus, a subsequent rise in 

the specific power and specific fuel consumption is estimated to be in an identical range of values 

(Kentfield et al., 1980; Kentfield and O'Blenes; 1990; Akbari and Müller, 2003). Eugen (2014) noted 

that the computations as shown in Fig. 1.3 denote a higher range of likely advancements as they have 

ignored the details of how PGC is attained.  

Fig. 1.4 shows an optional implementation of PGC to a gas turbine cycle where the turbine work output 

is identical to that of the reference Brayton cycle. In addition to the improvements in thermal efficiency 

and specific fuel consumption (SFC) as explained previously, the cycle offers an added benefit of 

decreased TET (Eugen, 2014). The pressure gain in the combustor can also be modified by reducing 

Figure 1.3: Thermal efficiency against compressor pressure ratio for real Brayton, Humphrey and 

PGC cycles (Eugen, 2014). 
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the cycle pre-compression, i.e., lowering the number of compressor stages. These two variations result 

in a low-weight, increased dependability, additional efficiency, and reduced cost engine. 

 

 

 

 

 

 

 

 

 

 

This PGC technology provides a massive, thermodynamically verified development capability for gas 

turbine efficiency. A major highlight of this technology is the Vulcan project of the US government’s 

Defense Advanced Research Projects Agency (DARPA). This project was initiated to aid in achieving 

the Department of Defence’s goal of reducing energy consumption throughout the agency2. The 

project will also see that a full-scale CVC power generation turbine engine is devised, fabricated, and 

established with an expectation that the adoption of this technology will lower the fuel consumption of 

fuel gas turbine engines by 20% leading to almost 65 gallons per hour fuel savings in comparison to 

the existing DDG-51 Class gas turbine generator sets2. However, there exists some unsolved 

challenges from the introduction of the PGC. These include: stability and dynamics of the unsteady 

combustion mode, cooling of the combustor and turbine, interaction of compressor and turbine with 

unsteady flow, mechanical and thermal stresses etc. 

In the last hundred years, there has been an abundance of different PGC concepts for adoption in gas 

turbines (e.g., Bauer, 1958; Kentfield and O'Blenes, 1987; Sabatiuk, 1987; Whurr, 1997; Norris and 

Twelves Jr., 2005; Sammann et al., 2005; Murrow et al., 2009). Eugen (2014) explained that all these 

concepts involve unsteady processes during combustion to produce a total pressure gain from inlet to 

outlet. Kentfield & O’Blenes (1987a) and Paxson (2010) also explained that the detonation wave 

combustors, wave rotors, and valveless pulse combustors have been recognised as the PGC concepts 

with the most viability and potential. These PGC concepts also presently establish the basis for 

different industrial and academic research works (e.g., Roy et al., 2004; Offord et al., 2008; Akbari and 

Nalim, 2009; Heffer and Miller, 2009). As Kentfield and O’Blenes (1987a) rightly established that all 

practical pressure gain systems require some form of unsteady fluid mechanics and combustion, the 

pulse combustion (which represents a general category of combustion system) depends on the 

characteristic unsteadiness of resonant chambers. Within the combustion chamber, the periodic 

injection and consumption of air and fuel preserves the resonant mode for the oscillation of fluid in an 

 

2 DARPA Announces Phase II of its Vulcan Program. Available at: http://www.deagel.com/news/DARPA-Announces-Phase-II-
of-its-Vulcan-Program_n000007701.aspx. (Accessed: 26 August 2023) 

Figure 1.4: Temperature-entropy diagram for a conventional Brayton and PGC gas turbine cycles for 

an identical turbine work output (Eugen, 2014). 

 

http://www.deagel.com/news/DARPA-Announces-Phase-II-of-its-Vulcan-Program_n000007701.aspx
http://www.deagel.com/news/DARPA-Announces-Phase-II-of-its-Vulcan-Program_n000007701.aspx
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attached tube. Kentfield and Fernandes (1990) revealed some certain configurations of these sort of 

devices capable of generating up to 4% pressure rise.  

Resonant combustion systems possess three advantageous features that make them possible options 

for first-generation pressure gain combustors (Gemmen et al., 1995). Firstly, they do not need any 

mechanical mechanism to generate unsteady fluid mechanics and combustion as they are propelled 

in a natural mode of instability. Also, as their oscillations are almost sinusoidal, there is a huge 

possibility for pairs of these systems to be run anti-phased with the sole aim of attaining wave 

attenuation (Gemmen et al., 1995). In the same vein, there stands a massive chance to minimise the 

effects of fluid oscillations on gas turbine reliability particularly with the prospects of wave cancellation. 

Lastly, George and Corliss (1988) explained that particular styles of resonant systems like the 

aerovalve pulse combustors have been fabricated without any mechanically moving components like 

the flapper valves and rotary valves. The absence of these mechanically moving components ensure 

that detrimental impacts on gas turbine dependability, accessibility and sustainability are prevented 

(Gemmen et al., 1995). Gemmen et al. (1995) mainly adopted the aerovalved Helmholtz-type 

resonator while Eugene (2014) classified the PGC concepts into five main groups based on the 

mechanism through which PGC is attained namely; Elementary CVCs, Combustors dependent on 

Reciprocating Internal Combustion Engines, Detonation Wave Combustors, Pulse Combustors and 

External and Internal Combustion Wave Rotors. 

More recently, Lutoschkin et al. (2013) studied the possibility of applying shock interaction with a flame 

to attain pressure gain combustion. They explained that this method was very useful in considerably 

enhancing the performance of gas turbine engines as pressure rise could be achieved by employing 

the thermodynamically more efficient unsteady combustion. Using a quasi-one-dimensional model, 

they computed a fully defined one-dimensional flow-field produced at the end of a single shock-flame 

interaction process which they validated utilising experimental data on methane-oxygen-argon flames. 

Their works went to show that a single process of shock-flame interaction yielded a dramatic rise in 

pressure with time in comparison to a constant pressure combustion using the same unburned gas 

conditions. Heiser and Pratt (2002) described the Humphrey cycle as a thermodynamic cycle 

consisting of compression and ‘idealised’ isochoric combustion succeeded by the expansion of the 

working fluid. This cycle compared to a conventional Brayton cycle as shown in Fig. 1.1 for a fixed 

maximum cycle temperature and compressor discharge pressure show that turbine power output as 

well as thermal cycle efficiency are increased for an equal combustion energy. Shock flame interaction 

can have the same positive effects for gas turbine engines as the propagation of shock wave via a 

wavy flame front leads to an increase in gas temperature and pressure as well as an increase in 

turbulence intensity, flame stretch and flame surface area (Ju et al., 1998; Khokhlov et al., 1999; 

Kilchyk, 2009; Lutoschkin et al., 2013).  

This project intends to investigate pressure gain using shock-bubble (gas and liquid bubble) interaction 

(SBI). When vorticity or velocity shear is deposited on a bubble surface by a shock wave due to SBI, 

the bubble surface (represented by the interface across which gases of different densities exist) 

deforms resulting in a change in its surface area. An intensification of this distortion because of shock 

refraction of any disturbance previously existent in the gas interface is termed the Richtmyer–Meshkov 

instability (RMI). Velocity shear is the local variation of velocity across the material interface and is 

induced by the RMI (Diegelmann et al., 2017). This RMI with growing interface distortion leads to 

secondary instabilities like the Kelvin–Helmholtz shear instability which further develop to improve 

mixing and turbulence (Batley et al., 1996). This research then intends to preliminarily study and 

understand shock wave interaction (with a gas and liquid bubble) via a detailed computational fluid 

dynamics (CFD) investigation. From a SBI perspective, positive impacts can be achieved for gas 

turbine engines particularly with respect to a rise in gas pressure as well as an increase in turbulence 

intensity.  
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1.2.  Compressible shockwave propagation through a medium  

For the case of an inviscid adiabatic flow of a perfect gas in a constant area insulated duct as provided 

by Houghton and Brock (1993), the model was reduced to the scenario of an adiabatic flow of a 

compressible fluid through a unit area stream tube as they did not consider wall effects. This is shown 

in Fig. 1.5. 

 

 

  

 

 

 

 

 

From Fig. 1.5, 𝑢, 𝑃, 𝜌 and 𝑀𝑎 represent the velocity, static pressure, density, and Mach number 

respectively. Subscripts 1 and 2 denote sections 1 and 2 respectively. They also revealed that the 

only flow possible in a frictionless tube of constant area, except for the scenario where the flow is 

uniform i.e., 𝑢1 = 𝑢2 ;  𝑃1 = 𝑃2; 𝜌1 = 𝜌2, is a compressible flow (see Eqs. (1.21) and 1.25)) which is 

originally under supersonic conditions but is finally characterised by subsonic conditions subsequently 

followed by a rise in entropy. This compressive flow can abruptly occur requiring that the governing 

equations are obtained assuming that a ‘non-impulsive, insulated’ discontinuity occurs between the 

left and right sections shown in Fig. 1.5 with the flows before and after this discontinuity being uniform.  

 

This discontinuity is termed a shock wave. Shock waves have several applications but of particular 

significance is its use for such purposes as boosting pressure for an ‘airbreathing’ scramjet and 

producing lift via the wave rider structure (Wu et al., 2013). Wu et al. (2013) explained that shock 

waves can be grouped into four classes which include; attached shock wave, e.g. when a supersonic 

flow meets an inward corner; detached shock wave e.g. when a supersonic flow goes past a blunt 

body; recompression shock wave produced for modification to farfield pressure e.g. when a transonic 

flow goes past the upper surface of an airfoil or supersonic flow past a nozzle with high back pressure; 

and secondary induced shock wave from various scenarios e.g. reflection of shock, interaction 

between/among several shock waves, interaction between shock-wave and boundary layer, lateral jet 

flow etc. Wu et al. (2013) also explain that shock waves can be produced from explosion, combustion 

or lightning strike, followed by the appearance of a local high-pressure region characterised by strong 

shock propagating at supersonic speed with 𝑀𝑎 in the range 1.2 ≤ 𝑀𝑎 ≤ 5. 

Wu et al. (2013) also highlighted some characteristics of shock waves as shown below: 

• The extent of a shock wave is in the range of the local mean free path of fluid particles. This then 

means that the shock wave can be referred to as a sharp discontinuity in normal aerodynamic 

flow. 

• The pressure, density, temperature and entropy rise across a shock wave in the streamwise 

direction. 

• The Mach number, velocity and normal velocity component decrease across a shock wave in the 

Figure 1.5: Normal Shock waves for compressible fluid flow through an insulated duct (Houghton and 

Brock, 1993). 
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streamwise direction.  

• The total temperature and tangential velocity component stay constant for a calorically perfect 

gas across a shock in the streamwise direction. 

• The inherent difference between the shock wave and other discontinuities in the fluid flow e.g., a 

slip surface for a 3D geometry or a slip line for a 2D geometry defines a plane across which the 

tangent velocity is discontinuous, but the pressure and normal velocity are continuous. The 

pressure and velocity are continuous while the density is discontinuous across a contact 

discontinuity.  

• The shock wave, as a discontinuity in the flow field, has the contour line of Mach number, 

pressure, density, temperature concentrating close to it as shown in Fig. 1.6. On the other hand, 

the pressure contour lines for a slip plane and contact discontinuity do not concentrate in the 

region of these discontinuities.  

 

 

• The numerical simulation of fluid flow with discontinuities like shock waves, contact discontinuity 

and slip line presents the resolution of this challenge using shock capturing techniques whereby 

the shock wave can be smoothed adopting low-order scheme or high-order scheme when there 

are spurious oscillations close to the shock surface (Toro, 2009; see Fig. 1.7).  

 

 

 

The Sod shock tube challenge, named after Gary A. Sod, is a test for the accuracy of 

computational fluid codes like Riemann solvers. For this challenge, the shock tube is divided into 

two parts by a central diaphragm which splits the fluid within the tube into two different states of 

varying density, velocity, and pressure. The sudden withdrawal of this diaphragm leads to the 

appearance of different forms of waves i.e., shock wave, rarefaction wave and contact 

discontinuity, in the flow field (Sod, 1978). From Fig. 1.7, the dotted lines denote the calculated 

result while the solid lines denote the analytical solution. Adopting the classical boundary shock-

Figure 1.6: Illustration for Concentration of contour at 𝑀𝑎 = 5 for Mach number, pressure, density 

and temperature contour respectively (Wu et al., 2013). 

Figure 1.7: Solution of Sod challenge for Euler equations calculated with; first-order Godunov’s 

method; and second-order two-step Lax-Wendroff technique (Toro, 2009). 
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fitting techniques presents a method where the shock wave is introduced explicitly as outer flow 

boundary based on experimental, theoretical, or numerical-centered knowledge on shock shape 

and location (Salas, 2011). Finally, the floating shock-fitting method as presented by Moretti 

(Moretti, 1973) can be used to identify shock waves via the Rankine–Hugoniot jump condition 

and the technique of characteristics which may be relevant to post-processing shock detection.  

 

1.3.  Governing equations for shock wave propagation 

Houghton and Brock (1993) stated that the suitable equations for a compressible flow assuming that 

a shock discontinuity lies in the flow are obtained from; the perfect gas Equation of State, Conservation 

of momentum as well as Conservation of energy and are given below3; 

 
𝑃1
𝜌1𝑇1

=
𝑃2
𝜌2𝑇2

                                                                                                                                                                       (1.5) 

 𝑚̇ = 𝜌1𝑢1 = 𝜌2𝑢2                                                                                                                                                                 (1.6) 

𝜌1𝑢1
2 − 𝜌2𝑢2

2 + (𝑃1 − 𝑃2) = 0                                                                                                                                     (1.7) 

𝑐𝑝𝑇1 +
1

2
𝑢1
2 = 𝑐𝑝𝑇2 +

1

2
𝑢2

2 = 𝑐𝑝𝑇0                                                                                                                            (1.8) 

Replacing 𝑐𝑝𝑇 with {𝛾 (𝛾 − 1)⁄ } 𝑃 𝜌⁄  and rearranging Eq. (1.8) above gives: 

 
𝛾

𝛾 − 1
(
𝑃1
𝜌1
−
𝑃2
𝜌2
) =

1

2
(𝑢2 − 𝑢1)(𝑢2 + 𝑢1)                                                                                                                   (1.9) 

Simplifying Eq. (1.9) using Eqs. (1.6) and (1.7) yields: 

𝛾

𝛾 − 1
(
𝑃1
𝜌1
−
𝑃2
𝜌2
) =

1

2
(𝑃1 − 𝑃2) (

1

𝜌2
+
1

𝜌1
)                                                                                                                 (1.10) 

Rearranging Eq. (1.10), the Rankine-Hugoniot relationships are obtained as shown below: 

 
𝑃2
𝑃1
=

𝛾 + 1
𝛾 − 1

(
𝜌2
𝜌1
) − 1

𝛾 + 1
𝛾 − 1

− (
𝜌2
𝜌1
)
                                                                                                                                                      (1.11) 

 
𝜌2
𝜌1
=

𝛾 + 1
𝛾 − 1

(
𝑃2
𝑃1
) + 1

𝛾 + 1
𝛾 − 1

+ (
𝑃2
𝑃1
)
                                                                                                                                                      (1.12) 

These relationships then ensure that the pressure ratio, exit Mach number, density ratio, temperature 

ratio, entropy and velocity change across a shock are obtained. 

1.3.1. Pressure ratio through shock 

From the momentum and continuity equations (Eqs. (1.7) and (1.6)), Eq. (1.13) can be obtained: 

       
𝑃2 − 𝑃1
𝑃1

=
𝜌1𝑢1

2 − 𝜌2𝑢2
2

𝑃1
= 𝛾𝑀𝑎1

2 (1 −
𝑢2
𝑢1
)                                                                                                  (1.13) 

Replacing 𝜌2 𝜌1 (= 𝑢1 𝑢2)⁄⁄  from Eq. (1.12) and simplifying gives: 

 
3 The fact that a shock wave has a finite thickness and its own typical properties do not discredit the developed governing 

equations for a compressible flow from previously supersonic state to a finally subsonic state. 
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𝑃2
𝑃1
=

2𝛾

𝛾 + 1
𝑀𝑎1

2 −
𝛾 − 1

𝛾 + 1
                                                                                                                                      (1.14) 

1.3.2. Exit mach number 
 

From Eq. (1.14) and by switching the order of the variables, Eq. (1.15) is derived: 

         
𝑃1
𝑃2
=

2𝛾

𝛾 + 1
𝑀𝑎2

2 −
𝛾 − 1

𝛾 + 1
                                                                                                                                       (1.15) 

Multiplying Eqs. (1.14) and (1.15) produces: 

𝑀𝑎2
2 =

(𝛾 − 1)𝑀𝑎1
2 + 2

2𝛾𝑀𝑎1
2 − (𝛾 − 1)

                                                                                                                                   (1.16) 

1.3.3. Density ratio through shock 
 

Replacing 𝑃2 𝑃1⁄  in Eq. (1.12) with Eq. (1.14) gives: 

𝜌2
𝜌1
=

(𝛾 + 1)𝑀𝑎1
2

2 + (𝛾 − 1)𝑀𝑎1
2                                                                                                                                             (1.17) 

1.3.4. Temperature ratio through shock 
 

Since 𝑇2 𝑇1⁄ = (𝑃2 𝑃1)⁄ /(𝜌2 𝜌1)⁄ , Eq. (1.18) can then be obtained: 

𝑇2
𝑇1
= (

2𝛾𝑀𝑎1
2 − (𝛾 − 1)

𝛾 + 1
)(
2 + (𝛾 − 1)𝑀𝑎1

2

(𝛾 + 1)𝑀𝑎1
2 )                                                                                              (1.18) 

1.3.5. Entropy change through shock 
 

From the Second Law of Thermodynamics, the entropy, S, of a system must increase in a real 

(irreversible) process and is constant only in an ideal (reversible) process. This can be expressed 

below: 

         
∆𝑆

𝑐𝑣
= 𝛾𝑙𝑜𝑔

𝑇2
𝑇1
+ (𝛾 − 1)𝑙𝑜𝑔

𝑃1
𝑃2
                                                                                                                              (1.19) 

Replacing 𝑇2 𝑇1⁄  and 𝑃1 𝑃2⁄  in Eq. (1.19) with Eqs. (1.18) and (1.15) gives: 

         
  ∆𝑆

𝑐𝑣
= 𝑙𝑜𝑔 {(

2 + (𝛾 − 1)𝑀𝑎1
2

(𝛾 + 1)𝑀𝑎1
2 )

𝛾

(
2𝛾𝑀𝑎1

2 − (𝛾 − 1)

𝛾 + 1
)

𝛾−1

}                                                                       (1.20) 

Expanding Eq. (1.20) gives the first term of a series as shown below: 

         
∆𝑆

𝑐𝑣
=
2𝛾(𝛾 − 1)

(𝛾 + 1)2
∗
(𝑀𝑎1

2 − 1)
3

3
                                                                                                                            (1.21) 

When  𝑀𝑎1 > 1, ∆𝑆 > 0, there is a dissipation flow 

And 𝑀𝑎1 < 1, ∆𝑆 < 0 is disallowed by the Second Law of Thermodynamics. 

Putting 𝑐𝑝𝑇1 =
𝛾

𝛾−1
∗
𝑃1

𝜌1
  into Eq. (1.8) yields, 

         
𝑃1
𝜌1
  =

𝛾 − 1

𝛾
{𝑐𝑝𝑇0 −

𝑢1
2

2
} ,

𝑃2
𝜌2
  =

𝛾 − 1

𝛾
{𝑐𝑝𝑇0 −

𝑢2
2

2
},                                                                          (1.22) 

And from Eqs. (1.7) and (1.6), Eq. (1.23) is obtained:  
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         𝑢1 − 𝑢2 =
𝑃2
𝜌2𝑢2

−
𝑃1
𝜌1𝑢1

                                                                                                                                           (1.23) 

Substituting the expressions for 𝑃1 𝜌1⁄  and 𝑃2 𝜌2⁄  from Eq. (1.22) above, Eq. (1.24) is derived: 

         𝑢1 − 𝑢2 =
𝛾 − 1

𝛾
{(𝑢1 − 𝑢2) (

1

2
+
𝑐𝑝𝑇0

𝑢1𝑢2
)}                                                                                                           (1.24) 

The trivial solution 𝑢1 = 𝑢2 can be ignored and Eq. (1.25) is obtained: 

         𝑢1𝑢2 =
2(𝛾 − 1)

𝛾 + 1
𝑐𝑝𝑇0 = 𝑎𝑀𝑎=𝑢𝑛𝑖𝑡𝑦

2                                                                                                                    (1.25) 

Eq. (1.25) describes the limiting case of Sonic flow when 𝑀𝑎1 =1, 𝑢1 = 𝑢2 = 𝑎𝑀𝑎=𝑢𝑛𝑖𝑡𝑦 

1.3.6. The velocity change across shock 
 

From the continuity equation, 𝑢2 𝑢1⁄ = 𝜌1 𝜌2⁄ . Therefore, from Eq (1.17), Eq. (1.26) is derived: 

𝑢2
𝑢1
=
2 + (𝛾 − 1)𝑀𝑎1

2

(𝛾 + 1)𝑀𝑎1
2                                                                                                                                            (1.26) 

1.3.7. Pressure recovery 

This is represented by 𝑅0,1 = 𝑃0,2 𝑃0,1⁄  and can also be re-expressed as 𝑅0,1 = (𝑃0,2 𝑃1) ∙ (𝑃1 𝑃0,1)⁄⁄ . 

This concept can be effectively visualised from a tube closed at one end, by a pressure measuring 

device, with its other end open into the supersonic flow stream. In this case, the pressure recovery 

is modified by the presence of a curved shock wave in front of the tube, which close to the axial 

streamline could be termed a plane as shown below: 

 

 

 

 

 

 

From Fig. 1.8, the axial flow into the pressure measuring device can be assumed to stop at 

pressure, 𝑃02 from the subsonic region behind the shock (𝑃2), after supersonic compression (𝑃1) 

by the shock wave. Following from this and applying the isentropic pressure ratio between the 

region behind the shock wave and the position of the pressure measuring device, Eq. (1.27) is 

derived: 

       

       
𝑃02
𝑃2
= [1 +

𝛾 − 1

2
𝑀𝑎2

2]

𝛾
𝛾−1⁄

                                                                                                                               (1.27) 

 

Figure 1.8: The Assumed Bow shock plane which is normal to the axial flow. 
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1.4.  Governing equations for a moving shock wave 

Having dealt with all these fundamental theories of Shock-wave propagation, this research has further 

investigated the physics behind a moving shock. A moving shock deals with a shock wave that 

propagates through a fluid with a velocity relative to the velocity of the fluid that constitutes the medium. 

This then necessitates the modification of the normal shock relationships previously discussed to 

effectively calculate the properties before and after the moving shock. This theory is also very 

important to this research as the principal objective of this PhD is to investigate the effects of a moving 

shock wave on a gas and liquid bubble.  

Shapiro (1983) derived the theoretical equations for a moving shock wave by considering the gas-

relative and shock-relative velocities as shown in Fig. 1.9.  

 

 

 

 

 

 

 

 

 

 

 

From Fig. 1.9, the shock wave propagates from left to right and the region 1 is ahead of the shock 

wave while the region 2 is behind the shock wave. The velocity, pressure and local speed of sound 

are represented by 𝑢, 𝑃 and 𝑐 respectively. As the speed of the shock wave relative to the gas is W, 

the total velocity thus equates 𝑊 + 𝑢1. 

 

Shapiro (1983) then assumed that a reference frame was then fixed to the shock as shown in Fig. 1.9 

to create an appearance of a stationary shock as the gas in regions 1 and 2 travel with a velocity 

relative to it. This was followed by a representation of region 1 as A and region 2 as B resulting in the 

following shock-relative velocities: 

   𝑢𝐵 = 𝑊 + 𝑢1 − 𝑢2                                                                                                                                                          (1.28) 

   𝑢𝐴 = 𝑊                                                                                                                                                                              (1.29) 

Based on these shock-relative velocities, the properties of the regimes before and after the shock can 

be defined as shown below while introducing temperature (T), density (𝜌) and the Mach number (Ma): 

   𝑃1 = 𝑃𝐴   ;    𝑃2 = 𝑃𝐵     ;     𝑇1 = 𝑇𝐴    ;     𝑇2  =   𝑇𝐵  

   𝜌1 = 𝜌𝐴   ;    𝜌2 = 𝜌𝐵     ;        𝑐1 = 𝑐𝐴   ;     𝑐2  =   𝑐𝐵  

   𝑀𝑎𝐴 =
𝑢𝐴
𝑐𝐴
=
𝑊

𝑐1
                                                                                                                                                              (1.30) 

 

Figure 1.9: Gas-relative and shock-relative velocities for derivation of moving shock waves equations. 
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   𝑀𝑎𝐵 =
𝑢𝐵
𝑐𝐵
=
𝑊 + 𝑢1 − 𝑢2

𝑐2
                                                                                                                                         (1.31) 

Introducing the ratio of specific heat at constant pressure to specific heat at constant volume allows 

the ratios of sound speed, density, and pressure to be obtained as shown below: 

   
𝑐2
𝑐1
= √1 +

2(𝛾 − 1)

(𝛾 + 1)2
[𝛾𝑀𝑎𝐴

2 −
1

𝑀𝑎𝐴
2 − (𝛾 − 1)]                                                                                                  (1.32) 

   
𝜌2
𝜌1
=

1

1 −
2

𝛾 + 1
[1 −

1

𝑀𝑎𝐴
2]
                                                                                                                                         (1.33) 

   
𝑃2
𝑃1
= 1 +

2𝛾

𝛾 + 1
[𝑀𝑎𝐴

2 − 1]                                                                                                                                          (1.34) 

However, for a shock propagating from right to left, the subscripts A and B must be alternated thus 

giving: 

   𝑢𝐵 = 𝑊 − 𝑢1 + 𝑢2                                                                                                                                                          (1.35) 

   𝑀𝑎𝐵 =
𝑊 − 𝑢1 + 𝑢2

𝑐2
                                                                                                                                                     (1.36) 

In order to determine required parameters for the simulation, this research has reviewed several key 

definitions and equations starting with the Mach number which is a dimensionless quantity that 

represents the ratio of velocity of flow (u) past a boundary to the local speed of sounds (c) represented 

as: 

   𝑀𝑎 =
𝑢

𝑐
                                                                                                                                                                             (1.37) 

𝑐 can be derived as: 

𝑐 = √𝛾𝑅𝑇                                                                                                                                                                          (1.38) 

where, 𝛾 is the ratio of specific heats and 𝑅 is the gas constant. 

 

Eq. (1.30) can then be rewritten as: 

 

𝑊 = 𝑀𝑎𝐴𝑐1 = 𝑀𝑎𝐴√𝛾𝑅𝑇1                                                                                                                                           (1.39) 

 

1.5.  Shock/gas bubble interaction 

Shock-bubble interaction (SBI) is an unsteady flow created by shock wave propagation through a 

distinct round inhomogeneity surrounded by ambient fluid in a uniform medium (Niederhaus et al., 

2008). During shock wave propagation through a material of non-uniform thermodynamic properties, 

various processes take place concurrently that change the geometry of the shock wave and the 

thermodynamic state of the medium. These include shock compression and acceleration of the 

material, shock refraction and production of vorticity within the material. Ranjan et al. (2011) explain 

that the simplest configuration through which all these processes can be studied in detail is the 

interaction of the shock wave with a cylindrical or spherical bubble. Their work also showed that shock 

acceleration results in an initial bubble compression and deformation after which a vortex pair or a 

vortex ring is formed for a two-dimensional (2D) or three-dimensional (3D) scenario respectively. As 

the interaction progresses, and with the correct blends of the incident shock strength and variation in 
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density between the bubble and the surrounding fluid, there is a formation of secondary vortices, 

stripping of original bubble’s mass as well as bubble and surrounding fluid mixing (Ranjan et al., 2011).  

Shock interaction with a geometrically distinct density inhomogeneity (like a gas or liquid bubble) 

creates a flow field. This flow field is characterised by the intense coupling of various types of fluid 

dynamic phenomena such as shock wave refraction and reflection; vorticity generation and transport; 

as well as turbulence mixing. This interaction leads to a complex configuration of shock and rarefaction 

waves mainly through focusing and scattering with the concurrent production of characteristic vortices 

and frequent mixing of the surrounding gas with the gas inhomogeneity (Niederhaus et al., 2008). This 

physical phenomenon is preliminarily essential for the studies and investigation of complex challenges 

related to shock travel through an arbitrary material with varying density, temperature, and other 

thermodynamic state variables. SBI thus represents a fundamental pattern for understanding the more 

robust cases of shock accelerated inhomogeneous flows, SAIFs (Zabusky, 1999) with strong 

similarities noticeable in comparison with perturbations from the evolution of Richtmyer-Meshkov 

instability on spontaneously accelerated fluid interfaces (Brouillette, 2002). 

Considering the specific situation where a planar incident shock wave interacts with a discrete sharply 

well-defined spherical gas bubble surrounded by ambient gas. Assuming the surrounding unshocked 

gas has a density and speed of sound of 𝜌1 and 𝑐1 respectively while the density and speed of sound 

of the unshocked bubble gas corresponds to 𝜌2 and 𝑐2 respectively, a parameter called the Atwood 

number (𝐴) can be defined as (Niederhaus et al., 2008): 

𝐴 =  
(𝜌2 − 𝜌1)

(𝜌2 + 𝜌1)
                                                                                                                                                                 (1.40) 

From Eq. (1.40), Niederhaus et al. (2008) explained that two scenarios may be defined corresponding 

to the light bubble case where 𝐴 < 0 and the heavy bubble case where 𝐴 > 0. Zabusky and Zeng 

(1998) had previously distinguished these two cases with respect to the variation in the ideal gas 

speed of sound by stating that for a fixed uniform specific heats ratio, 𝛾, the light bubble case implied 

that 𝑐2 > 𝑐1 while the heavy bubble case meant that 𝑐2 < 𝑐1. Based on this finding, they called the light 

bubble case the ‘slow-fast-slow’ (SFS) scenario and the heavy bubble case the ‘fast-slow-fast (FSF) 

scenario. They also explained that the sign of A determined the configuration of the shock refraction 

patterns which were generated in the SBI. These patterns, configurations and related bubble 

distortions are shown in Fig. 1.10. 
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For the two scenarios, the incident shock wave is refracted while propagating through the curved 

upstream bubble surface due to the variation in the speed of sound. For the case where 𝐴 < 0, this 

refraction is divergent resulting in a transmitted shock wave with a convex curvature (see Fig. 1.10(a), 

(b)). Following from this, an upstream moving reflected rarefaction arises in the surrounding gas with 

the sole aim of conserving mechanical equilibrium. This then leads to the transmitted shock wave 

generating an internally reflected shock wave which impacts the downstream surface of the interior of 

the bubble thus moving the bubble upstream. Henderson (1966, 1989) explains that an irregular shock 

refraction pattern is developed on the bubble exterior as the transmitted shock wave travels in the 

downstream direction in front of the external incident shock. This process creates a Mach Stem, triple 

point, and precursor shock (Niederhaus et al., 2008) and it is possible to trace a slip surface in the 

flow across the path transited by the triple point. Haas & Sturtevant (1987) and Jacobs (1993) 

essentially state that vorticity is intensely placed on the bubble gas/ambient gas interface by the 

baroclinic mechanism (measure of misalignment between the pressure gradient of the interacting 

shock waves and density gradient in the bubble gas) throughout the propagation of the shock wave 

which leads to the overturning of the interface’s upper section and the subsequent production of a 

vortex ring.  

For the 𝐴 > 0 case, refraction is convergent which means that the transmitted shock wave has a 

concave curvature. Here, mechanical equilibrium is preserved after shock impact by the production of 

an upstream-directed reflected shock wave after which the transmitted shock wave travels through the 

bubble and produces an internally reflected rarefaction wave. This internally reflected rarefaction wave 

impacts the downstream interior bubble surface (Niederhaus et al., 2008). If 𝐴 as well as the variation 

in speed of sound are high enough, sections of the shock front sweeping around the bubble edge are 

diffracted (Haas and Sturtevant 1987; Quirk & Karni 1996) which implies that these front sweeping 

shock portions are inverted towards the axis such that the surface of discontinuity stays approximately 

Figure 1.10: Representation of SBI flow field with shock wave travelling from left to right. Light bubble 

case, 𝐴 < 0 (a) during the initial shock wave propagation, and (b) immediately after initial shock wave 

travel. Heavy bubble case 𝐴 > 0 (c) during the initial shock wave propagation and (d) immediately after 

the initial shock wave travel (Nierderhaus et al., 2008). 
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normal to the interface. These diffracted shock waves may then meet with the transmitted shock wave 

at the downstream pole leading to shock focusing and the motion of secondary shock waves both 

laterally and upstream. During this time, vorticity is deposited baroclinically on the interface during the 

propagation of the primary and secondary shocks leading to rotation predominantly in a reverse sense 

to the light bubble scenario.  

There also exists a formation of the supersonic vortex ring analogous to those noticeable in the 

simulations of Winkler et al. (1987) which is produced following the re-transmitted shock front in the 

surrounding gas with the upstream- or downstream positioned perturbations emerging at the bubble’s 

downstream pole.  Niederhaus et al. (2008) pointed out very essentially that the convergence or 

divergence related with shock refraction through the bubble is decided by the acoustic impedance 

disparity at the interface. Following from this, it can thus be inferred that SBIs will exhibit; a divergent, 

‘light bubble’ (𝐴 < 0) refraction behaviour in the non-uniform-specific heat ratio scenario for 

𝜌2𝑐2 (𝜌1𝑐1)⁄ < 1 or a convergent, ‘heavy bubble’ (𝐴 > 0) refraction behaviour for 𝜌2𝑐2 (𝜌1𝑐1)⁄ > 1. 

However, some anomalies could exist where the SBIs will reveal a refraction pattern synonymous to 

divergent light-bubble in the non-uniform-specific heat ratio scenario for 𝜌2𝑐2 (𝜌1𝑐1)⁄ < 1 although 𝐴 > 

0 with the reverse situation also possible. This indicates that there is a chance that externally reflected 

shock waves could exist in some divergent bubble scenario i.e., 𝐴 < 0 due to the offsetting effects of 

the variation in the specific heat ratio on the density variation while externally reflected rarefaction 

waves could also appear for the convergent ‘heavy-bubble’ scenario i.e., 𝐴 > 0. 

 

1.5.1. Generation and evolution of vorticity with associated vortex strength 
 

SBI has been previously studied experimentally by Rudinger & Somers (1960) and Haas & 

Sturtevant (1987) with the latter proposing that this interaction be adopted as a model problem for 

studying vorticity and creation of turbulence in compressible flows with shock-wave propagation. 

Shock wave propagation across a non-uniform gas leads to refraction, diffraction and reflection of 

the shock wave impacting/interacting with inhomogeneities. These processes or deviations from 

the global symmetry alter the shock’s transmission across the gas. Picone and Boris (1983) 

explained that the interactions of pressure waves with density fluctuations in a fluid are the principal 

basis for vorticity formation and turbulbent motion. These rotational flows develop on more 

extended periods compared to shock passage across the local non-uniformity thus resulting in 

major lasting impacts on the composition and characteristics of the fluid (Picone and Boris, 1983).  

Rotational motion has been mainly created from shock-tube experiments primarily via the 

interaction of shocks with inhomogeneous gases thus creating the foundation for shock-bubble 

interaction (Haas, 1983; Haas, 1984; Haas and Sturtevant, 1987) and shock-flame interaction 

(Markstein, 1957a, b). Haas and Sturtevant (1987) have investigated shock interaction with single 

or multiple bubbles while Picone and Boris (1988) investigated spherical flame and single-bubble 

experiments of the earlier mentioned authors with their research representing limiting cases of a 

fluid in which ambient variations are localised and widely separated with respect to their 

representative spatial scales. The experiments of Haas and Sturtevant (1987) created a good 

foundation for studying vorticity generation by shock interactions with discrete density fluctuations 

in a fluid as they have used non-reactive gases. In their research, they used air as the ambient gas 

while the bubble contained a mixture of air and one of helium or Freon-22. Their research also 

investigated geometrical impacts utilising cylindrical or spherical-shaped bubbles. For the 

axisymmetric spherical bubble geometry, they detected the appearance of a vortex ring with 

Markstein (1957a, b) similarly noticing the emergence of a vortex ring but for the axisymmetric 

spherical flame geometry. Haas (1983) indicated that there was a previous challenge associated 

with the discernment of vortex structures in shadowgraphs from experimental analysis with 

cylindrical bubbles. Markstein (1957a, b), Haas (1984) and Haas & Sturtevant (1987) also 

examined the linearized impulsive Rayleigh-Taylor instability theory (Richtmyer, 1960) for the 

purpose of inspecting the flame or bubble behaviour post shock propagation. Following from this, 
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Haas and Sturtevant (1987) used more advanced models credited to Rudinger & Somers (1960) 

and Taylor (1953), as the first model group, and Maxworthy (1977) and Didden (1979) as the other 

model group with the second model group initially handling vortex generation using an analogy of 

an impulsive motion of a piston that emitted fluid from the mouth of a diminutive cylindrical chamber.  

A non-linear theory for the creation of vorticity using shock wave propagation was established by 

Picone and Boris (1983) with Picone et al. (1985) applying this theory to the experiments conducted 

by Markstein (1957a, b), where a planar shock impacted a spherical flame. The resulting numerical 

simulations of the shock-flame interaction assumed a smoothly varying radial density distribution 

(Bennett profile) for the flame as shown below: 

          𝜌(𝑟) = 𝜌∞ +
𝜌0 − 𝜌∞

[1 + (𝑟 𝑆0⁄ )2]2
                                                                                                                                (1.41) 

where 𝜌∞, 𝜌0, r and 𝑆0 denote the density of the surrounding air, flame centre density, distance 

from the flame centre, and flame boundary radius. There was a variation between the Bennett 

distribution and the expected steep gradient at a flame or bubble edge but the timescales and 

velocities in their conducted simulations matched with the experimental values. Their research, 

from the theory and the simulations, showed that the progression of the system is inherently 

nonlinear from the inception of the shock-flame/bubble interaction.  

Picone and Boris (1988) based their theory on the equation that describes the progression of 

vorticity, 𝜔, as given below: 

          
𝑑𝜔

𝑑𝑡
+ 𝜔∇. 𝑣 = 𝜔. ∇𝑣 +

∇𝜌 𝑥 ∇𝑃

𝜌2
                                                                                                                          (1.42) 

where 𝑣, 𝑃 and 𝜌 represent the velocity, pressure, and mass density of the fluid. Eq. (1.42) also 

shows that the disparity between the local gradients for pressure and density would result to the 

non-zero source term, for the creation of vorticity, given below: 

          𝑆 =
∇𝜌 𝑥 ∇𝑃

𝜌2
                                                                                                                                                              (1.43) 

Picone and Boris (1988) then went on to explain the mechanism that involves the propagation of a 

planar shock wave across a gas as well as the impact of such shock wave on a bubble with a 

circular geometry assuming that the bubble has a constant density varying from the ambient air/gas 

density. Their research revealed that the interaction leads to a transmitted shock through the inside 

of the bubble with a part of the incident shock diffracting around the edge of the bubble. They also 

showed that there existed a difference in the timing of the impacts for the various parts of incident 

shock at different parts of the bubble solely attributable to the curved surface of the bubble. This 

meant that the refracted shock within the bubble interior will be curved. There was also going to be 

a distinction between the travel speed of the refracted (interior) shock and the diffracted (exterior) 

shock due to the variation between the bubble density and the density of the ambient gas.  

Haas and Sturtevant (1987) used ray tracing and geometric acoustics to create a valid picture of 

the qualitative characteristics of the physical process described by Picone and Borris (1988). 

Picone and Borris (1988) also provided a very valid picture of this interaction when they defined 

the x-axis as a line parallel to the direction of incident shock travel and passed through the centre 

of the circular cross-section of the bubble. Their illustration also explained that as the incident shock 

reached the bubble, the pressure and density gradient of the shock and bubble respectively at the 

contact point corresponded with the x-axis. From Eqs (1.42) and (1.43) above, it is clear that little 

or no vorticity will be created at this point. However, as the interaction evolves, the diffracted 

incident shock and the refracted interior shock will have pressure gradients misaligned with the 

bubble density gradient with the bubble’s density gradient appearing radially away from the centre 

of the bubble. At this point, the vorticity source term (Eq. (1.43)) is significant and as a result, 
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substantial vorticity is created at the edge of the bubble, where the density gradient is no longer 

zero. There is another shift in the physics of this process as the diffracted and refracted shocks 

arrive the bubble downstream side. Here, the pressure gradients of the shocks and the density 

gradient of the bubbles again almost match with the source term again becoming insignificant at 

the point of the bubble’s intersection with the x-axis. There also exists a perpendicularity of the 

vorticity vector to the plane defined by the circular geometry of the bubble. The sign of the vorticity 

created along the bubble edge in this plane is opposite on the reverse sides of the x-axis. This 

further explains how the rotational motion induced by the significant vorticity alters the bubble and 

circulation of vorticity. As the interaction progresses, the distribution of vorticity rolls up into one of 

two vortex structures depending on the preliminary symmetry/shape of the bubble i.e., a cylindrical 

bubble will roll into a pair of vortex filaments while a spherical bubble will roll into a vortex ring. 

Picone and Borris (1988) further defined the vortex strength along the x-axis stating that for a 

system which varied only in the (x-y)-plane, the vortex strength in the location, 𝑦 ≥ 0, covering the 

top half of the bubble solves Eq. (1.44) below: 

𝑑𝑥

𝑑𝑡
=⎰𝐴(𝑡)

∇𝜌 × ∇𝑃

𝜌2
𝑑𝐴(𝑡)                                                                                                                                      (1.44) 

Eq. (1.44) was gotten by integrating Eq. (1.42) in a Lagrangian manner over the area A(t) which 

covers the upper half of the bubble and translates with the bubble. The vortex strength (also called 

circulation, k) can be numerically calculated by integrating over the shock travel time across the 

bubble as shown below: 

        𝑘 ≈ 2𝑉2 (1 −
𝑉2
2𝑊

)𝑆0𝑙𝑛 (
𝜌∞
𝜌𝑏
)                                                                                                                              (1.45) 

where 𝑉2,𝑊, 𝑆0 , 𝜌∞ , 𝑎𝑛𝑑 𝜌𝑏 represent the velocity of flow behind the shock in the laboratory frame, 

shock velocity, cross-sectional radius of the bubble, density of surrounding gas and bubble gas 

density respectively. They also did not consider the impacts of curvature and variation in the 

strengths of the incident, refracted and diffracted shocks while representing the shock as a planar 

discontinuity to perform this integration. Their work also revealed that the decrease in vortex 

strength compared to what is provided by Eq. (1.45) was predominantly caused by the distortion 

and interaction of the different shocks. Their prediction was confirmed from the estimations of the 

vortex strength using simulation data. Nonetheless, scaling arguments by Picone and Boris (1983) 

show that the functional variations and trends e.g., with 𝑉2 and 𝑊are accurate. Picone and Boris 

(1988) stated that equation (1.45) can provide precise scaling correlations among the different 

parameters and is very important in comprehending both the laboratory experiments and the 

numerical evaluations. An experimental instance exists when analysing the speed at which the 

vortex structures and the bubble travel moments after SBI has ended. Very interestingly, their work 

showed that the propagation velocities of a vortex filament pair or a vortex ring is directly related to 

the vortex strength. Eq. (1.45) also reveals that the normalisation of the velocity using 𝑉2 will reduce 

as the 𝑀𝑎 rises. This is because the ratio of 𝑉2 to 𝑊 rises as Mach number rises. This has been 

experimentally verified by Haas and Sturtevant (1987). 

The source term of the vorticity evolution equation (Eq. (1.43)) also provides the generalisation of 

the normal propagation of the Rayleigh-Taylor instability to a whole possible range of space scales, 

timescales and geometry of perturbation (Picone et al., 1985). Picone and Boris (1988) explained 

that the conventional Rayleigh-Taylor instability theory starts with an infinitesimal spatial 

perturbation which occurs for an unlimited period with respect to the perturbation growth rate. 

Picone and Boris (1988) considered a finite perturbation scenario in form of the gas bubble as well 

as a finite period over which the shock wave propagates through the bubble thus creating vorticity. 

They discovered that this finite perturbation in form of a bubble yields a different outcome 

attributable to the behaviour of the perturbation which is not sinusoidal. This created a deviation 

from the impulsive Rayleigh-Taylor or Richtmyer-Meshkov instability exhibited during the 
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translation of a planar shock across a rippled interface or propagation of a perturbed shock through 

a planar interface which would previously reveal a linear growth (Richtmyer, 1960; Meshkov, 1970). 

Conversely, Picone and Boris’ (1988) work revealed that SBI associated with the consequent 

development of the flow-field represented a nonlinear process from the onset as initially explained. 

However, there has been contentions that the linear theory would fit the shock bubble challenge 

by representing the bubble side facing the propagating shock as a component of a sinusoidal 

density discontinuity with a wavelength equivalent to 2𝜋𝑅 where R represents the bubble radius. 

However, these arguments have been clearly countered by the experimental works of Haas and 

Sturtevant (1987) and the numerical computations of Picone and Boris (1988) where they showed 

that the subsequent deformation of the upstream edge of the bubble by the vorticity field has an 

evident wavelength expressed approximately as 4 3⁄ 𝑅. These two ideas thus create an ambiguity 

related with the choice of wavelength for the linear theory, but the linear theory has generally 

provided valuable understanding (Markstein,1957a, b; Haas & Sturtevant, 1987) with Haas and 

Sturtevant (1987) discussing the relationship between the linear theory and experiment in detail as 

well as detailed pros and cons of the theory. 

 

Haas and Sturtevant also discussed two further models associated with the production of vortex 

and linked them to the numerical simulations of Picone and Boris (1988). The first as purported by 

Rudinger and Somers (1960) defines the vortex formation process as an acceleration of the gas 

bubble during the initial transients and conversion into a vortex ring closely matched by Taylor’s 

(1953) ‘dissolved’ vortex-generating disk. The second model represents Haas and Sturtevant’s 

revision of Kulkarny’s (see Haas and Sturtevant, p. 72), Maxworthy’s (1977), and Didden’s (1979) 

illustration of vortex-ring formation by impulsive fluid flow through a tube’s mouth. These interesting 

adaptations led to Haas and Sturtevant’s (1987) treatment of the air jet observed in the two helium 

cases as a vorticity generating piston. However, Picone and Boris (1988) have since stated that 

both models do not sufficiently describe the real physical process as seen from the dynamics of 

vorticity generation which their simulations showed. Their work also revealed that the principal 

focus should be at the bubble’s edge where the vorticity is situated from the time of interaction 

between the incident shock and the bubble. Also, their simulation showed a subsequent interaction 

of the vorticity with the surrounding fluid, to create a jet, and with itself across the fluid medium to 

yield filaments or a ring.  Lamb (1945) and Picone & Boris (1988) clarified the meaning of ‘vortex 

filament’ to represent a fluid within the vortex tube with a finite cross-section different from a vortex 

line. Within a two-dimensional (x, y) Cartesian system, a finite vortex would typify a vortex filament’s 

cross-section whose axis is a straight line perpendicular to the (x, y) plane. Based on these 

invaluable findings, Picone and Boris (1988) summarized that the bubble’s spontaneously 

produced movement across the surrounding gas did not by itself create the vorticity and that the 

jet was a sign/result of the produced vorticity as opposed to initiating it. 

1.5.2. Description of wave effects and acoustic wave processes 
 

During shock interaction with a spherical or cylindrical volume of gas of varying density and/or 

speed of sound, it is useful that reflection, refraction, diffraction and focusing of waves be closely 

investigated (Haas and Sturtevant, 1987). Several authors (e.g., Jahn, 1956; Abd-el-Fattah et al. 

1976; Abd-el-Fattah and Henderson 1978a, b; Catherasoo & Sturtevant, 1983) have investigated 

shock waves refraction at gas interfaces. Depending on the shock wave incidence angle at the 

interface as well as on the shock strength, the refraction can be regular i.e., intersection of the 

incident, reflected and refracted waves at the same point on the interface, or irregular i.e., an 

intersection of the refracted shock with the interface in front of the incident shock. For the slow-fast 

case i.e., light bubble case (where the gas ahead of the interface has a greater speed of sound 

than the gas behind the interface), the transmitted wave can travel in front of the initial disruption 

in the heavier material resulting in a precursor configuration. Shock refraction from a cylindrical or 

spherical interface includes the complete range of incidence angles and by implication all refraction 
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categories. With respect to the plane refraction challenge and its associated difficulty, it is no 

wonder that minimal consideration has been given to plane shock waves interaction with curved 

gas interfaces. Similarly, Markstein (1957a, b) and Rudinger (1958) investigated shock waves 

interaction with curved flame fronts thus considering the curved slow-fast case from where they 

recognised precursors and lateral shocks related with the irregular refraction phenomenon. The 

works of Pierce (1981) and Friedlander (1958) present a useful foundation for studying the 

deformation of weak shocks by fluid inhomogeneities (which function as lenses). They provided a 

robust literature on the refraction, reflection, and diffraction of waves with extremely small 

amplitudes. There are also close comparisons in the nonlinear case from seldom observed effects 

like tunnelling or glory (see Jones, 1978; Marston and Kingsbury, 1981; Marston and Langley, 

1983). Typical areas where considerable research has been performed include; Ultrasonics field 

where characteristics of cylindrical and spherical sonar targets has been investigated; identification 

of transmitted waves geometry in the liquid-filled cylinders’ scenario (Brill and Überall, 1970) and 

in the metal cylinders’ scenario (Neubauer & Dragonette, 1970); identification of reflected waves 

geometry (Folds 1971); configuration of the internal refracted and reflected waves noticed in the 

scenario of mechanical impact of the liquid-filled cylinder containers (Bockhoff and Rauch, 1973); 

and the documentation of the comparable occurrences of light wave interaction with spherical 

particles (Van de Hulst 1957).  

 
Haas and Sturtevant (1987) acoustically described the wave processes involving the exhibition and 

classification of wavefronts, to a first approximation, produced by the weak plane shock interaction 

with a cylindrical or spherical inhomogeneity. They then explained that the experiment function 

where finite-amplitude wave exists is to explain the impacts of nonlinear motion and volume 

distortion. They then explained that the impact of the perturbing gas is analogous to an acoustic 

lens with index of refraction given as: 

 

         𝑛 =
𝑎1
𝑎2
                                                                                                                                                                         (1.46) 

 
where 𝑎1 and 𝑎2 represent the speed of sound in the external air and the speed of sound in the 

bubble gas while the rays of the acoustic wavesfronts are straight lines in the regions of the 

constant speed of sound. The rays also refract at the boundaries of these constant sound speed 

regions following Snell’s law as given below: 

 

         𝑠𝑖𝑛𝜃𝑖 = 𝑛𝑠𝑖𝑛𝜃𝑟                                                                                                                                                          (1.47) 

 
where 𝜃𝑖 denotes the incident ray angle and 𝜃𝑟 represents the refracted ray angle. There exists a 

rays’ reflection at the boundaries ensuring that the reflection angle is same as the incidence angle. 

 

Haas and Sturtevant (1987) showed the rays resulting from the incident wave interaction with the 

top half of the volume as shown in Figs.1.11 and 1.12. 
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As shown in Fig. 1.11, the incident wave is illustrated by a group of parallel lines incident from the 

right up to the circular boundary at incidence angles rising at intervals of 5 degrees. For Fig. 1.12, 

the intervals are 1 degree apart. The wavefront spacing is selected to correspond to a time step of 

40 microseconds for an interaction of shock waves with a 50-millimetre diameter cylinder. For Fig. 

1.12, the time intervals are 20 microseconds. Fig. 1.11 shows the externally reflected and diffracted 

rays as well as wavefronts.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the geometrical theory of diffraction (Keller, 1955; 1958), the diffracted wave into the 

shadow region arises from a curved diffracted ray on the boundary which delivers straight diffracted 

rays tangentially into the shadow region. The amplitude of the surface diffracted wave is previously 

a proportion of the amplitude of the incident wave. This depends on the material characteristics 

and problem geometry. The surface diffracted wave amplitude also exponentially drops as it travels 

Figure 1.11: External reflected and diffracted rays and wavefronts; where INC denotes incident 

ray; RFL represents reflected and DIF represents diffracted (Haas and Sturtevant, 1987). 

 

Figure 1.12: Rays and wavefronts typical of the divergent scenario; RFR, IRF, TR and TR2 

represent the refracted, internally reflected, transmitted and secondary transmitted waves 

respectively (Haas and Sturtevant, 1987). 
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across the surface. The tangentially shed diffracted wave has an amplitude which is also some 

fraction of the amplitude of the local surface wave. 

 

1.5.3. Representation of the shocked interface system 

Fig. 1.13 below describes the five various regions of the shocked interface system. Regions 1, 2, 

1′, 2′ and 1" correspond to the unshocked surrounding gas, unshocked bubble gas, shocked 

surrounding gas, shocked bubble gas after the propagation of the transmitted shock and shocked 

surrounding gas after the propagation of the initial shock and the reflected shock or rarefaction 

wave. The flow variables for each region are separated using subscripts 1 for the ambient fluid and 

subscript 2 for the fluid in the bubble while single quotations are used to represent the number of 

shock or rarefaction waves that have travelled across the fluid. Following from this, 𝑝1 represents 

the pressure of surrounding gas before SBI, 𝑝2 represents the pressure of the fluids in the bubble 

before SBI while 𝑝1
′  and 𝑝2

′  denote the pressures after the first shock travel.  

 

1.5.4. First aspect of shock bubble interaction: shock compression and 

acceleration 

Shock propagation across a bubble results in bubble compression and an accelerated jump in 

fundamental thermodynamic properties like pressure, temperature and density. Based on this, 

these properties together with the translational velocity must also rise in accordance with the 

Rankine-Hugonoit conditions because the transmitted shock waves travel through the bubble. 

Ranjan et al. (2011) assumed an adiabatic flow through the shock wave without any heat addition 

or removal at the boundary and derived the rise in the fundamental variables from the equations 

for conservation of mass, momentum and energy. Along the shock-wave reference frame, the 

shock relations are given as: 

          𝜌𝑊 = 𝜌′(𝑊 − 𝑢′)                                                                                                                                                    (1.48) 

          𝑝 + 𝜌𝑊2 = 𝑝′ + 𝜌′(𝑊 − 𝑢′)2                                                                                                                              (1.49) 

          ℎ +
𝑊2

2
= ℎ′ +

(𝑊 − 𝑢′)2

2
                                                                                                                                    (1.50) 

Eqs. (1.48), (1.49) and (1.50) represent the Continuity, Momentum and Energy equations with 

respect to the normal shock relations where, 𝑊, 𝑢′, ℎ and ℎ′ represent the velocity of the shock 

Figure 1.13: Diagrammatic representation of shocked interface system for SBI; (a) before shock 

interaction with bubble, and (b) during and after shock interaction with bubble (Ranjan et al., 2011). 
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wave, velocity of fluid behind the shock wave, enthalpy of the fluid infront of the shock wave and 

enthalpy of the fluid behind the shock wave respectively. For a calorically perfect gas with a defined 

specific heat ratio, 𝛾, the thermodynamic relations can thus be summed up as shown below: 

         𝑝 = 𝜌𝑅𝑇                                                                                                                                                                      (1.51) 

         ℎ =
𝛾𝑅𝑇

(𝛾 − 1)
                                                                                                                                                                (1.52) 

where 𝑅 denotes the specific gas constant. Eqs. (1.48) to (1.52) have five variables; 

𝜌′, 𝑢′, 𝑝′, ℎ′ 𝑎𝑛𝑑 𝑇′; which are unknown and must be solved algebraically to derive the shocked state 

variables applicable for the motion of a normal shock wave across a gaseous interface (Liepmann 

and Roshko, 1957; Anderson, 2003). 𝑇′ denotes the temperature after the first shock travel. 

1.5.5. Second aspect of shock bubble interaction: nonlinear acoustic impacts  

The next phase of SBI involves nonlinear acoustic impacts which deals with refraction, reflection 

and diffraction of the incident shock wave by the bubble. This process also involves a subsequent 

change in the shape and motion configuration of the shock wave by the bubble. This is attributable 

to interface curvature and disparity of the acoustic impedance, R, (defined as the product of the 

gas density, 𝜌, and speed of sound, 𝑐, in the medium) at the interface (Ranjan et al., 2011). This 

acoustic impedance disparity makes the bubble behave as a diverging or converging lens 

(Dimotakis and Samtaney, 2006). A useful explanation to this is obtained from a brief description 

of acoustic impedance as a; thermodynamic property unusual to the medium of propagation as 

well as being a measure of a material’s stiffness as it is a proportionality constant between 

impressed velocity and applied pressure. It is different from the normal elastic moduli and is derived 

as 𝜌𝑐2 (Thompson, 1984). A variation of acoustic impedance between two media is termed as 

impedance mismatch and can be represented as:  

𝛿𝑅 = 𝑅2 − 𝑅1                                                                                                                                                             (1.53) 

𝛿𝑅 = 𝜌2𝑐2 − 𝜌1𝑐1;    (𝑅 =  𝜌𝑐)                                                                                                                              (1.54) 

Shock passage over the bubble surface can be investigated conveniently using a 1D method by 

neglecting the bubble interface’s curvature (Ranjan et al., 2011). Shock wave transmission and 

reflection in a gas slab (chosen as fluid 2, see Ranjan et al. (2011)) has been shown in Fig. 1.14. 

Following from Fig. 1.14, two dissimilar after shock cases are investigated based on the sign of the 

impedance mismatch term (𝛿𝑅) at the interface. For the case where 𝛿𝑅 > 0, there is reduction in 

the shock wave speed after propagation followed by a contraction of the initial gas in order to 

Figure 1.14: Diagrammatic representation of 1D shock-wave transmission and reflection in a gas 

slab (a) before shock interaction (b) after shock interaction with  𝜌2𝑐2 > 𝜌1𝑐1, and (c) after shock 

interaction with 𝜌2𝑐2 < 𝜌1𝑐1 (Ranjan et al., 2011). 
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maintain mechanical equilibrium at the interface which implies that the reflected wave is a shock 

wave (see Fig. 1.14 (b)). On the flip side, 𝛿𝑅 < 0 implies that there is a rise in the shock speed after 

propagation followed by an expansion of the initial gas in order to maintain mechanical equilibrium 

at the interface which implies that the reflected gas is a rarefaction wave (see Fig. 1.14 (c)). The 

wave diagram for both scenarios is shown in Fig. 1.15. 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 1.15, the solid double lines, dashed lines and triple diverging solid lines represent shock 

waves, fluid interfaces and rarefaction waves respectively (Niederhaus 2007). For the two 

scenarios described, it is useful to understand that the transmitted shock is permanently 

independent of the impedance of the medium as well as the interface’s shape. Ranjan et al. (2011) 

then explained that shock travel across a bubble can be thought of as an extension of the gas-slab 

challenge. Ranjan et al. (2011) considered the case where the gas slab is a cylindrical or spherical 

bubble. Just as Niederhaus at al. (2008) had used the sign of the 𝐴 to determine the configuration 

of the shock refraction pattern, Ranjan et al. (2007) explained the impacts of the bubble interface 

curvature on the shock refraction pattern for the previously discussed impedance-mismatch cases. 

For the case where 𝜌2𝑐2 > 𝜌1𝑐1, the transmitted shock wave is concave in shape and runs behind 

the exterior incident shock and the reflected shock is a shock wave. This case is termed the 

convergent geometry (see Fig. 1.16 (a)). For the case where 𝜌2𝑐2 < 𝜌1𝑐1, the reflected wave is a 

rarefaction wave. Regular refraction happens at the interface (at small angles of incidence) where 

the transmitted wave and incident wave meet the interface at the same point while irregular 

refraction patterns are observed at higher angles (Henderson 1989, Henderson et al. 1991). This 

case is referred to the divergent geometry (see Fig. 1.16 (b)) and the transmitted shock wave 

quickly travels across the bubble subsequently followed by the formation of a Mach stem, precursor 

shock and triple point located just outside the interface (non-existent in the convergent geometry 

case).  

 

 

 

 

 

 

Figure 1.15: Representation of 1D shock propagation and reflection in gas slab (a) after 

shock interaction with  𝜌2𝑐2 > 𝜌1𝑐1 and (b) after shock interaction with 𝜌2𝑐2 < 𝜌1𝑐1 

(Niederhaus 2007; Ranjan et al., 2011). 
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Also, for the divergent geometry case, higher density contrast i.e., density ratio in excess of 1.5 are 

characterised by irregular refraction of the shock wave resulting in shock focusing. There also 

exists a diffraction of a section of the shock wave front sweeping around the bubble periphery thus 

implying that the bubble is inverted facing the axis such that the discontinuous surface remains 

almost normal to the interface (Haas & Sturtevant 1987, Niederhaus et al. 2008). Following from 

this, the diffracted shock waves intersect at the downstream pole. Ranjan et al. (2011) presented 

an excellent depiction of shock focusing on the downstream pole of a bubble resulting from the 

different phases of shock refraction for the convergent geometry scenario (see Fig. (1.17)). The 

collision of the diffracted shock waves together with the focusing of the transmitted shock wave, 

generates an intense pressure jump and induces an added baroclinic vorticity deposition. Shock 

focusing, in turn, can lead to the production of secondary shock waves which can also result in 

intense deviations from the observed late time flow fields comparable to a reshock phenomenon. 

This is analogous to the Richtmyer-Meshkov flows in shock tubes. 

1.5.6. Third aspect of shock bubble interaction: vorticity production and transport 
 

The third and most essential phase of SBIs is the vorticity deposition as a result of disparity between 

pressure and density gradients. As the shock waves (primary incident shock wave, together with 

the secondary refracted, reflected, diffracted and focused waves) propagates through the bubble, 

vorticity is generated in the flow. Ranjan et al. (2011) therefore defined vorticity as the curl of the 

velocity and is given as: 

          𝜔 ≡ ∇ 𝑋 𝑈                                                                                                                                                                  (1.55) 

Figure 1.16: Diagrammatic representation of the flow-field for shock-bubble interaction as well as 

shock refraction patterns for a; (a) convergent case,  𝜌2𝑐2 > 𝜌1𝑐1 and (b) divergent case, 𝜌2𝑐2 <

𝜌1𝑐1 immediately after initial shock wave propagation with incident shock travelling from left to right 

(Niederhaus, 2007). 

 

Figure 1.17: Representative, schematic view of shock focusing for the convergent geometry 

scenario. Incident shock motion is from top to bottom and the arrows represent position of the shock 

focusing (Ranjan et al., 2011). 
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They then replaced the curl of the momentum equation with a compressible flow and derived the 

vorticity transport equation given below: 

          
𝐷𝜔

𝐷𝑡
= (𝜔 ∙ ∇)𝑈 − 𝜔(∇ ∙ 𝑈) +

1

𝜌2
(∇𝜌 𝑋 ∇𝑝) + 𝑣∇2𝜔                                                                                     (1.56) 

The first term on the right-hand side of Eq. (1.56), (𝜔 ∙ ∇)𝑈, denotes to the vortex-stretching term. 

This term is important particularly with respect to 3D turbulence and mixing. It also denotes the 

stretching as well as the turning and tilting of the vortex lines by gradients in the velocity field. The 

principle of conservation of angular momentum is also revealed in vortex stretching which reduces 

the moment of inertia of fluid elements that make up a vortex line subsequently increasing their 

angular speed. It is useful to understand that this vortex stretching and tilting term are non-existent 

in 2D flows where 𝜔 is perpendicular to the flow. 

The next term on the right-hand side, 𝜔(∇ ∙ 𝑈), denotes the vortex dilation term which is essential 

just for highly compressible fluids. The last term on the right-hand side, 𝑣∇2𝜔, represents the rate 

of change of 𝜔 as a result of molecular diffusion of vorticity in a similar fashion to how 𝑣∇2𝑈 denotes 

the acceleration attributable to velocity diffusion. The negligible physical viscosities of the fluids 

considered, in the range of 10-5 Pa.s, and the short timescales, in the range of 10-3 s, within which 

the evolution of flow is investigated mean that the dissipative effects can be neglected. The third 

term on the right-hand side, 
1

𝜌2
(∇𝜌 𝑋 ∇𝑝), represents the baroclinic term which denotes the vorticity 

production rate as a result of flow baroclinity. This term just shows that the disparity of the local 

pressure from the density gradients results in the production of vorticity in the flow field.  

For a SBI scenario, 𝜔 is previously zero at all locations and as result, the vortex stretching and 

dilation term in Eq. (1.56) above can be ignored. This then means that dissipative effects can be 

ignored and Eq. (1.56) becomes: 

        
𝐷𝜔

𝐷𝑡
=
1

𝜌2
(∇𝜌 𝑋 ∇𝑝)                                                                                                                                                   (1.57) 

Eq. (1.57) suggests that the baroclinicity is the only source for the generation of vorticity in the flow 

field when time = 0. Fig. 1.18 then shows the early time vorticity distribution: 
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During SBI, vorticity is deposited locally on the fluid interface across the bubble with the magnitude 

dependent on the noncollinearity of ∇𝜌 and ∇𝑝. The highest misalignment occurs at the diametral 

plane depending on if the inhomogeneity is 2D i.e., cylindrical, or 3D i.e., spherical. The vortices’ 

rotation is dependent on the orientation of the density gradient at the bubble interface. This is 

shown on Fig. 1.18 for the direction of rotation of the convergent and divergent geometry scenarios 

thus creating sufficient proof that these vortices are the dominant feature of the flow.  

This process of vorticity production is analogous to the Richtmeyer-Meshkov instability. It is useful 

to understand that although the shock refraction pattern is determined by the impedance mismatch 

at the interface, this concept only exists in the early phase of the flow (Ranjan et al., 2011). 

Subsequent to numerous shock travel times, the characteristics noticed in the flow field are 

dominated by the vortical movement. Ranjan et al. (2011) then adopted the concept of 𝐴 as in 

Niederhaus et al. (2008) to illustrate the impact of a variation in density at the bubble interface as 

opposed to the impedance mismatch. Following from this, they have then stated, for the gas pairs 

they chose, that 𝐴 > 0 corresponds with the convergent geometry case (𝜌2𝑐2 > 𝜌1𝑐1) and 𝐴 < 0 

denotes the divergent geometry scenario (𝜌2𝑐2 < 𝜌1𝑐1). Thompson (1984) explained that there was 

a possibility that convergent refraction (𝜌2𝑐2 > 𝜌1𝑐1) could occur even when 𝐴 < 0 and vice versa 

if the impact from the specific heat ratios disrupts the density variations. From the discussed phases 

for SBI, it is then clear that these three fundamental processes are nonlinearly coupled together 

and their concurrent actions in SBI results in the generation of extremely complex sections of 

strong, disorderly rotating motion and mixing4. 

 
4 Ranjan et al. (2011) categorised both shock-accelerated cylinders and spheres as SBIs with the cylinder representing a 2D 
bubble while a sphere represented a 3D bubble. 

Figure 1.18: Diagrammatic representation of the configuration of vectors in baroclinic vorticity 

deposition during and after initial shock propagation in SBI for the; (a) convergent geometry case, 

𝜌2𝑐2 > 𝜌1𝑐1  and (b) divergent geometry case, 𝜌2𝑐2 < 𝜌1𝑐1 (Ranjan et al., 2011) 

 



29 
 

1.6.  Shock/liquid bubble interaction 

Liquid droplets breakup has a range of applications like rain erosion damage, combustion and 

detonation of multi-phase mixtures, atomization of liquid jet, atmospheric distribution of liquid agents 

dispersed at supersonic speeds, and heat recovery applications for geothermal waste. Droplet 

breakup mode can be categorized into five regimes based on the initial Weber number (𝑊𝑒). These 

regimes are: vibrational, bag, bag and stamen, stripping and catastrophic breakup with the initial 𝑊𝑒 

range corresponding to these regimes being ≤12, 12-50, 50-100, 100-350, and >350 respectively 

(Pilch and Erdman, 1987; Hsiang and Faeth, 1992). Theofanous et al. (2004) went ahead to reclassify 

these regimes into the Rayleigh-Taylor Piercing (RTP), which happens in the range 10 < 𝑊𝑒 < 102, 

and the shear-induced entrainment (SIE), which occurs in the range 𝑊𝑒 > 103. They also described a 

transition phase which exists in the range 102 < 𝑊𝑒 < 103. There has been several opinions which 

have been fused into the previously described classifications i.e., some classical works (e.g., Engel, 

1958; Ranger and Nicholls, 1969; Simpkins and Bales, 1972; Waldman et al., 1972; Harper et al., 

1972) as well as some past and more current studies (e.g., Pilch and Erdman, 1987; Wierzba and 

Takayama, 1988; Hsiang and Faeth, 1992; Hsiang and Faeth, 1995; Chou and Faeth, 1998; Joseph 

et al., 1999; Dai and Faeth, 2001; Theofanous et al., 2004; Theofanous and Li, 2008). 

  

Thefanous et al. (2004) explained that when a liquid bubble is subjected to a gas flow, it becomes 

distorted and disintegrates into a ‘cloud’ of tinier droplets at rates and sizes dependent mainly on the 

𝑊𝑒 given below: 

𝑊𝑒 =
𝜌𝑈2𝐷

𝜎
                                                                                                                                                                     (1.58) 

where   𝜌, 𝑈, 𝐷, and 𝜎 denote the gas density, initial relative velocity between the gas and bubble, 

initial liquid bubble diameter, and the bubble surface tension respectively. This process of distortion 

and fragmentation consists of several detailed features with Hinze (1955) explaining that a 𝑊𝑒 greater 

than a critical value of approximately 10 is required for instability (also see Theofanous et al., 2004). 

The different regimes and respective studies that created their definitions is given in Fig. 1.19. Related 

to 𝑊𝑒 is the Reynolds number (𝑅𝑒) which is very important for liquid bubble breakup. Both 

dimensionless numbers are represented by the ratio of the inertial (aerodynamic) force to either the 

capillary (surface tension) force i.e., 𝑊𝑒 or the viscous force i.e., 𝑅𝑒.   
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Pilch and Erdman (1987) explained that when the relative velocity between the bubble and the flow 

field i.e., gas, is considerable, there is a production of mist on the windward (upstream) interface of 

the bubble. This mist is transferred into the bubble’s wake and totally eclipses the bubble in 

experimental shadowgraphs as it is observed as a dark shadow. Thus, Pilch and Erdman (1987) 

explained that breakup time and deformation data derived from shadowgraphs can be misleading as 

this mist makes the bubble appear bigger than it is. Previously, derived data have not been shown in 

Figure 1.19: Breakup regimes obtained at or near atmospheric conditions. All experiments were 

carried out at subsonic or mildly supersonic flow conditions. ST - shock tube, WT - Wind tunnel, NZ – 

Nozzle (Theofanous et al., 2004). 
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a coherent way. Following from this, several independent variables have been employed to analyze 

breakup and bubble deformation properties like breakup times. These include: 𝑊𝑒, Bond number (𝐵𝑜), 

Reynolds number (𝑅𝑒), free stream velocity, dynamic pressure, shock Mach number and pressure 

ratio. Several past and current works have used 𝑊𝑒 as it represents the ratio of unsettling 

hydrodynamic forces (shown as the numerator of Eq. (1.58)) and the steadying surface tension force 

(shown as denominator of Eq. (1.58)). Viscous effects on bubble breakup are associated with the 

Ohnesorge number (𝑂𝑛) shown below: 

 

   𝑂𝑛 =
𝜇𝑑

(𝜌𝑑𝐷𝜎)
1 2⁄
                                                                                                                                                             (1.59) 

where 𝜇𝑑 and 𝜌𝑑 denote the bubble dynamic viscosity and density respectively. As 𝑂𝑛 considers only 

bubble characteristics, Pilch and Erdman (1987) explained that there is then an applied assumption 

that the continuous fluid i.e., gas is insignificant in comparison to the bubble viscosity. A dimensionless 

time property of bubble breakup by Rayleigh-Taylor or Kelvin-Helmhotlz instabilities is given below as: 

   𝑡 = 𝑇
𝑈 ∈1 2⁄

𝐷
                                                                                                                                                                    (1.60) 

where  𝑇 and ∈ correspond to the dimensional time and flow field/drop density ratio respectively. ∈ 

can be expressed as: 

   ∈=
𝜌

𝜌𝑑
                                                                                                                                                                                (1.61) 

1.6.1. Qualitative explanation of breakup mechanisms 
 

Several past researchers have been unsuccessful at making a clear distinction between the 

different liquid bubble breakup mechanisms (Pilch and Erdman, 1987). There are five different 

mechanisms of liquid breakup based on the initial 𝑊𝑒. These mechanisms are listed below and 

represented pictorially in Fig. 1.20. 
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Vibrational breakup happens when the 𝑊𝑒 is small i.e., 𝑊𝑒 ≤ 12  and is characterized by 

oscillations which evolve at the natural frequency of the bubble. Under certain conditions, the flow 

field interacts with the drop in a manner that leads to an increase in the oscillation amplitude. This 

leads to the decomposition of the bubble into a few large fragments. Pilch and Erdman (1987) 

clarified that this type of breakup mechanism does not automatically take place in all instances and 

the overall breakup time is extended in comparison to the other breakup mechanisms.  

 

Bag breakup is similar to the rupturing of soap bubbles from a soap film connected to a ring. Pilch 

and Erdman (1987) likened this breakup mechanism to a thin hollow bag that is ‘blown’ downstream 

while connected to a more massive toroidal rim after which the bag eventually ruptures. This creates 

several small fragments. This is followed by the disintegration of the rim after a brief period 

generating a small amount of large fragments. This mechanism occurs in the range: 12 < 𝑊𝑒 ≤

50.  

Bag-and-Stamen breakup represents a transition mechanism which possesses many 

characteristics similar to the bag breakup and takes place in the range: 50 < 𝑊𝑒 ≤ 100. A thin bag 

is driven downstream while being attached to a massive toroidal rim as in the Bag breakup 

mechanism. A column of liquid or stamen is then produced along the bubble’s axis parallel to the 

oncoming flow. The bag then ruptures before rim and stamen fragmentation takes place.  

Sheet stripping, unlike the Bag & Bag and Stamen breakup mechanisms where bags are produced, 

involves the constant withdrawal of a thin sheet from the edge/interface of the distorting bubble at 

𝑊𝑒 in the range: 100 < 𝑊𝑒 ≤ 350. This is followed by the disintegration of the sheet at a small 

Figure 1.20: Breakup mechanisms (Pilch and Erdman, 1987). 
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distance in the downstream direction from the bubble. Pilch and Erdman (1987) explained that a 

‘coherent residual’ bubble exists throughout the whole breakup process.  

At higher 𝑊𝑒 i.e., 𝑊𝑒 > 350, large-amplitude and small wavelength waves are produced on the 

upstream interface of the bubble with the wave crests continuously eroded by the flowfield i.e., gas 

flow over the bubble surface. This creates the wave crest stripping breakup mechanism.  

For the Catastrophic breakup mechanism, large amplitude, long wavelength waves finally pierce 

the bubble producing many large fragments before wave crest stripping can significantly decrease 

the mass of the bubble. This breakup mechanism causes fragments as well as fragments of these 

fragments to be exposed to more breakup. Pilch and Erdman (1987) explained that this process 

continues until all the fragments have 𝑊𝑒 less than the critical value.  

As presented above, Pilch & Erdman (1987) provided an excellent summary and synthesis on 

bubble breakup. Gel’fand (1996) also provided a comprehensively significant assessment of the 

subject. Hsiang & Faeth (1992), Chou & Faeth (1998) and Dai & Faeth (2001) performed 

comprehensive experiments that focused on a lower 𝑊𝑒 range i.e., approximately between 10 and 

102 while Joseph et al. (1999; 2002) conducted experiments that focused on the higher 𝑊𝑒 range 

i.e., approximately between 104 and 105). There are also classical works on the subject conducted 

by Engel (1958), Ranger and Nicholls (1969), Simpkins and Bales (1972), Waldman and Reinecke 

(1972), and theoretical findings of Harper et al. (1972). The experiments were conducted in shock 

tubes and at pressures close to atmospheric conditions. In a few other scenarios, wind tunnels were 

used. Due to the long lengths of the shock tubes, they were set horizontally which created 

constraints on the injection technique and the drop sizes that could be derived. On the flip side, a 

wind tunnel, which was operated at steady state, required that the liquid be injected via the wall 

boundary layer. Theofanous et al. (2004) explained that this created obstacles to data analysis and 

constrained the conditions available to such experiments.  They then added that asides small and 

typically unrecorded differences, the complete regime classification scheme that emerges from all 

this work is summarized in Fig. 1.19.  

The vibrational, bag and bag-and-stamen regimes are clearly detectable and rather well defined 

with respect to the critical 𝑊𝑒 needed for their initiation. The Bag regime was investigated 

comprehensively, and it was proved that resulting droplet distribution is bimodal i.e., shattering of 

the bag creates one size and the capillary breakup of the bubble circumference produces larger 

sizes. Theofanous et al. (2004) added that no extensive theoretical interpretation of these regimes 

has been documented in the past. They continued by explaining that the shear or stripping regime 

developed from 𝑊𝑒~102 while the catastrophic or shattering regimes become the prevailing 

mechanism from 𝑊𝑒~104 to 105. They also explained that the shear or stripping regime entailed a 

fine mist of liquid originating from the equator seemingly as a result of a shear-induced boundary 

layer on the liquid surface as shown in Fig. 1.19. Taylor (1949) and Ranger & Nicholls (1969) 

provided a simplified viscous description of this regime without taking into consideration the 

interfacial instabilities and its subsequent roughness. Conversely, Harper et al. (1972) and Joseph 

et al. (1999) accounted for interfacial instability without considering shear. Harper et al. (1972) 

provided the first theoretical analysis of the catastrophic regime and considered it to entail 

penetration by Rayleigh-Taylor waves. More recently, Joseph et al. (1999) investigated this regime 

from a similar basis. Very interestingly, Harper et al. (1972) claimed that when 𝑊𝑒~105, there is a 

change in behavior from algebraic to exponential for the growth of instabilities while Joseph et al. 

(1999) claimed that the waves observed on the images in Fig. 1.19 agree with the quickly evolving 

Rayleigh Taylor waves for 𝑊𝑒 ranging from 104 to ~2 𝑥 105. Waldman & Reinecke (1972) and 

Simpkins & Bales (1972) quantitatively compared their experimental findings to Harper et al.’s 

(1972) work on the catastrophic regime.  
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1.7.  Aims and objectives of this research 

Pressure gain combustion (PGC) possesses the needed ability to hugely boost combined cycle 

efficiency and performance when incorporated into the combustion gas turbines. Gulen (2017) explains 

that the only possibility for an isentropic and steady flow process characterised by pressure gain is a 

supersonic flow with a standing shock wave idealised as a discontinuity in the flow field. This has then 

been used as an efficient basis for investigating pressure gain via the interaction of a moving shock 

waves with a gas or liquid bubble. The overall aim of this research is to advance our current 

understanding of shock-bubble-interaction with the following objectives: 

• Carrying out a detailed numerical study of the interaction of a shockwave with a single spherical 

gas bubble to improve our understanding of the physical mechanisms of such a complex process. 

• Carrying out a detailed numerical study of the interaction of shockwaves with a single cylindrical 

gas bubble to advance our understanding of the physical mechanisms of such a complex process.  

• Carrying out a detailed numerical study of the interaction of a shockwave with a single water bubble 

to improve our understanding of the physical mechanisms of such a complex process.  

 

1.8.  Thesis outline 

Chapter one presented the motivation for research, brief description of shock wave propagation, brief 

description of shock interaction with gas/liquid bubble, as well as the aims and objectives. Chapter two 

detailed the literature review of relevant experimental and theoretical studies. The review of 

experimental performance of shock gas/liquid bubble interaction helped identify suitable data sets for 

CFD model validation. Chapter three explained governing equations and numerical methods used in 

the present study. Chapter four examined shock interaction with a spherical helium bubble with in-

depth analysis of results and discussion. Chapter four examined shock interaction with a cylindrical 

helium bubble with a thorough analysis of results and discussion. Chapter six examined shock 

interaction with a water bubble with comprehensive analysis of results and discussion. Chapter seven 

presented the conclusions and future work recommendations. 
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2. Literature Review 

This chapter provides a comprehensive literature review on shock-gas bubble and shock-liquid bubble 

interactions in both two- (2D) and three-dimensional (3D) cases. Previous experimental investigations 

in these research fields are also presented along with the numerical methods adopted in the treatment 

and accurate resolution of shock-gas and shock-liquid interfaces.  
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2.1.  Experimental investigation of shock bubble interaction (SBI) 

Markstein (1957a, b) and Rudinger (1958) investigated the shock interaction with a flame front which 

has an almost spherical shape. Their works formed the basis for the experimental investigations of 

shock waves interaction with curved interfaces although their main aim of study was to evaluate the 

impacts of shock on the volumetric ignition rates. The interaction of pressure waves with density 

gradients is an underlying cause of long-lived vorticity in fluids and is particularly essential in 

combustion due to the emission of chemical energy which creates both pressure and density 

disturbances in fluids. These disturbances subsequently interact yielding a significant vorticity in the 

flow field. Markstein (1957b) illustrated in his classic experiments how the acceleration of an initially 

curved flame surface by a shock wave was succeeded by ignition intensification. His work explained 

that heavy distortions (like inflection and spike formation) were experienced by curved flame fronts 

when accelerated by a shock wave and the volumetric combustion rate was intensified after the shock 

flame interaction. Fig. 2.1 shows the schlieren images from one of his experiments where a weak 

shock propagated through a roughly spherical flame located at about 15cm from the bottom of the 

combustion chamber containing a stoichiometric mixture of n-butane and air.  

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 2.1(a), the distance of the shock wave from the flame boundary is less than 1cm with the flame 

actually appearing more oblong than spherical. In Fig. 2.1(b), the compression of the flame front as 

well as the upward-moving curved rarefaction wave is clearly seen. The central spike of the unburned 

gases crossing the lower portion of the flame front is shown in Fig. 2.1(c) thus initiating the generation 

of a vortex ring. This accelerated flow attributed to the vortex ring results in the production of a very-

fine-grained turbulent ignition zone. Vorticity generation was also studied in a nonreactive medium to 

investigate the fluid dynamic dimensions of this phenomenon. A very interesting technique to boost 

the volumetric burning rate is discovered when a discontinuous flame contains isolated regions of 

ignited or unburned gas surrounded by gases with varying density noticeable in evaporating fuel 

droplets. Rudinger and Somers (1960) considered the reaction of such distinct pockets of varying 

density to impulsive acceleration without added complications to the combustion process. Following 

from this research, they considered a more fundamental challenge related to the interaction of a planar 

Figure 2.1: Shock interaction with a flame that was initially roughly spherical. For this experiment, the 

pressure ratio of incident shock wave is 1.3; and the stoichiometric butane-air mixture is burned at the 

middle of the combustion chamber at a time of 8.70 ms before the origin of the timescale (Markstein, 

1957b; Rudinger, 1958). The times with respect to the initial shock-wave impact are: (a) 0.00 ms, (b) 

0.10 ms, (c) 0.40 ms, and (d) 0.70 ms. 
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shock wave with a light or heavy gas (either spherical or cylindrical inhomogeneities) generated using 

either a spark discharge or small jets or hydrogen, helium or SF6. In these experiments, they found 

that after acceleration by a shock wave, the small spaces in the flow with varying density compared to 

the ambient gas propagated faster or slower than the later depending on if their density was lower or 

higher than the main flow. Their verifications of these impacts were attributable to the instabilities 

induced by the vortices which were stimulated during the shock-wave passage over the spark column. 

This led them to present a simple model for the relative velocity of the shocked bubble. SBI was thus 

obtained as the interaction of a shock wave with a cylindrical or spherical gas inhomogeneity. Their 

work has inspired an enormous amount of work as well as a rich database of available literature as 

regards SBI. 

Haas and Sturtevant (1987) performed experiments in a horizontal shock tube while studying the 

planar shock interaction with a light or heavy gas bubble. They produced the spherical shapes using 

soap bubbles filled with either a light or a heavy gas while the cylindrical structures were enclosed, 

compressed and formed in thin nitrocellulose membranes. They used shadowgraph photography to 

envision and image the wave-front geometry and the distortion of the gas volume. They also compared 

wave patterns predicted with geometrical acoustics such as impacts of refraction, reflection and 

diffraction with the observed flow field. Their research also revealed that for a cylindrical or spherical 

volume occupied by a heavy, low sound speed gas, the wave which transverses the inside focuses 

only on the downstream pole of the cylinder while there is a divergence of a wave propagating through 

a light, high sound speed gas. The deformation of the helium cylinder surrounded by ambient air at 

late times revealed that shock interaction with a light gas resulted in the formation of a pair of vortices 

which propagates faster than the surrounding fluid. In this particular case study of helium, they 

discovered that the primary vortex ring splits off from the main inhomogeneity and travels along the 

axis of symmetry. 

Jacobs (1992, 1993) discovered a novel method where a laminar jet was utilised to create the gas 

cylinder in a horizontal shock tube meaning that there was no requirement for encapsulation of the 

heavy or light gas as done by Haas and Sturtevant (1987). There was also no need for shadowgraph 

photography which was replaced with the planar laser-induced fluorescence (PLIF). Sulfur 

hexafluoride or helium, used as the experiment testing gas, was seeded with a small quantity of 

biacetyl while the jet of the test gas was accelerated by a planar shock wave propagating in a 

perpendicular direction to the jet axis and a cross-section of the flow illuminated with a laser sheet 

which led to the fluorescence of the biacetyl. This experiment along with the improvements from Haas 

and Sturtevant’s (1987) work, as shown in Fig. 2.2, led to a higher quality for flow visualisation as well 

as enabled assessment of species concentration and shock-cylinder interaction induced mixing.  
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The development of two SF6 cylinders accelerated and impacted by a moving shock was investigated 

by Tomkins et al. (2003) to broaden the existing scope for the single-cylinder configuration. Here, they 

used the Planar Mie scattering for the flow visualization. The light scattered by the bubble gas, which 

were seeded with a minute amount of glycol/water fog droplets, was captured with a strengthened 

charge-coupled device (CCD) which was aligned normal to the laser sheet. Digital particle image 

velocimetry (PIV) was used to conduct velocity measurements. From the flow visualisation, they were 

able to show that the flow morphology is highly sensitive to the initial cylinder separation. Kumar et al. 

(2005) then extended the two-cylinder scenario to a three or more-cylinder system in which one of the 

five various systems of SF6 cylinders in ambient air was spontaneously accelerated to yield one or 

more pairs of interacting vortex columns. They also used PLIF in the normal plane to the cylinder’s 

axes for flow visualisation. They discovered that the shock-influenced mixing, from an interfacial area 

generation viewpoint, was affected by the quantity, alignment and positioning of the gaseous cylinders. 

Kumar et al. (2005) had principally conducted this research to understand fluid mixing in SAIFs so as 

to preliminarily study material lines’ stretching at early timescales which exists approximately during 

the first 220µs after the shock impact. These kinds of flows are characterised by a Schmidt number of 

nearly 1 and a 𝑅𝑒 of almost 25,000 depending on the circulation and mean kinematic viscosity. These 

(Schmidt and 𝑅𝑒) ensure that these studies are possible just at early times. Yang et al. (1993) defined 

a specific stretching rate exponent, λ, which is given below: 

 

𝐿(𝑡)

𝐿(𝑡 = 0)
= 𝐴𝑒𝑥𝑝 (

𝜆𝑡

𝑡0
)                                                                                                                                                     (2.1) 

From Eq. (2.1), 𝐿(𝑡) denotes the length of a marked material line at time 𝑡, 𝐿(𝑡 = 0) denotes the length 

of the interface at 𝑡 = 0 i.e., the time the shock first propagates the gaseous cylindrical inhomogeneity, 

𝐴 represents a constant, and 𝑡0= D/2c1 which is the time needed for sound to transit the radius of the 

nozzle and is used for the time normalisation. The integral mixing width of these five configurations 

Figure 2.2: Development of flow-field from a shock interaction with a cylindrical helium inhomogeneity 

(Jacobs, 1992) with shock strength equivalent to 𝑀𝑎 = 1.093. The PLIF images creates a cross-

sectional view of the evolving structure showing (a) the initial jet, (b) t = 0.123 ms after propagation of 

the shock wave, (c) t = 0.273 ms, (d) t = 0.373 ms, (e) t = 0.473 ms, (f) t = 0.573 ms, (g) 0.773 ms, and 

(h) 0.973 ms. 
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were also measured revealing that the integral widths collapsed at early times and thus not an ideal 

measurement of the impact of the initial conditions on the flow mixing. On the flip side, 𝜆, appeared to 

be a satisfactory measurement and evidently separated the different configurations in examination.  

Kumar et al. (2007) experimentally and numerically investigated shock interaction with three gaseous 

SF6 cylinders differentiated in the spanwise direction at a 1.5 spacing ratio. The shock strength they 

used is equivalent to Mach number of 1.2 and their work aimed to understand the sensitivity of 

subsequent flow configurations to relatively small perturbations i.e., alterations in the diffused 

material’s structure between the gaseous cylinders, in the initial conditions where the flow is visualised 

using PLIF. From their research, they obtained four different postshock morphologies as a result of 

the perturbations in the nominally exact initial conditions as they were created by the same nozzle.  

Their study was then different from the two-cylinder configuration investigated by Tomkins et al. (2003) 

as their study revealed that the system’s complexity considerably rises with the number of gaseous 

cylinders in the spanwise direction attributable to increased interactions of the vortices.  

Jacobs et al. (1993); Budzinski et al. (1994); Baltrusaitis et al. (1996) and Prestridge et al. (2001) 

investigated an established issue known as the gas curtain useful for the studying and subsequent 

understanding of mixing induced by the Richtmyer-Meshov instability. This research is very important 

particularly because the gas curtain can be considered a difficult phenomenon with various, narrowly 

spread out, gaseous cylinders in the spanwise direction. Tomkins et al. (2008) investigated the 

problematic situation of fluid mixing following the interaction of a shock wave with strength 𝑀𝑎 = 1.2 

with one gaseous cylinder utilising quantitative PLIF. Fig. 2.3 shows the results from the experimental 

measurements of the spatial distribution of the rates of instantaneous scalar dissipation. This 

instantaneous scalar dissipation rates, which were gotten for the first time at various times after shock 

impact, is given as: 

𝑋(𝑥, 𝑡) ≡ 𝐷(∇𝑐. ∇𝑐)                                                                                                                                                           (2.2) 
 
From Eq. (2.2), 𝐷 denotes the molecular diffusivity between the gases. Their analysis showed 

comprehensive mixing mechanisms which were not supplied by the traditional integral mixing width 

measurements.  

 

Tomkins et al. (2008) also detected three regions of mixing in such a flow which include the bridge 

connecting the two primary vortices, the vortex cores and the Kelvin-Helmholtz (KH) region. In the 

bridge region, mixing is linked to gradient strengthening as a result of straining velocity field. The 

bridge region looks like a rather smooth and non-turbulent stretch of material connecting both primary 

Figure 2.3: Representation of spatial maps for the mixing rate (scalar dissipation rate) of a heavy gas, 

𝑋 𝑐2𝑚𝑎𝑥⁄  at different timescales, t (Tomkins et al. 2008). 
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vortices in the visualisation images and unexpectedly provides 40% to the mixing up to a late timescale 

of approximately 1,000 µs after shock impact. The distribution of instantaneous scalar dissipation rates 

reveals that the bridge i.e., the primary instability, plays a key role in supplying the highest values of 

these rates thus resulting in the most intense mixing in the flow. In the regions on the outer surfaces 

where KH rollers are observable as well as in regions near the middle of the core where secondary 

instabilities and spiral roll up exist i.e., the vortex cores, the mixing is influenced by large scale strain 

fields at early times. This is the case notwithstanding that the induced motions resulting from vorticity 

produce both gradient intensification and rise in surface area as a result of evolving spirals. The KH 

instability is located along outer regions of the flow at transitional times and a mix of Rayleigh-Taylor 

(RT) and KH instabilities develops in the cores. The mixing becomes primarily linked with stretching 

and folding of the concentration fields mainly attributable to motions influenced by the secondary 

instabilities. 

More recently, Layes et al. (2003; 2005; 2009) experimentally investigated a planar shock interaction 

with a spherical gas inhomogeneity formed as a soap bubble. Their pioneering works used high-speed 

shadowgraph imaging to visualise the interaction of shock waves (strengths equivalent to 𝑀𝑎 ≤ 1.25), 

in air, with spherical bubbles occupied by one of krypton, nitrogen, or helium. The pioneering feature 

in their work is the use of high-speed rotating camera shadowgraph technique which was synchronized 

with a stroboscopic nanolite flash lamp. This enabled them to reconstruct the experimental history for 

the movement and distortion of the gaseous inhomogeneity by processing the successive frames 

derived throughout one experiment. They did more work to qualitatively characterise the flow 

progression for SBIs and revealed that for all the cases examined, the streamwise dimension of the 

bubble developed at a constant rate and the shocked bubble propagated at a non-changing 

translational speed at late timescales. Layes’ (2005) dissertation as well as the research works of 

Giordano & Burtschell (2006) and Layes & LeMetayer (2007) showed more detailed investigation of 

these results and the data employed for shock strength was less than or equal to 1.68. SBIs at a higher 

strength (increased Mach numbers) have been studied by Ranjan et al. (2005) where they examined 

the scenario of a soap bubble occupied by argon. This argon-filled soap bubble is then impacted and 

accelerated by a shock with strength equivalent to 𝑀𝑎 = 2.88. They used nitrogen as the ambient fluid 

through which the bubble propagated. In their study, the planar laser diagnostics were used to 

visualise the development of the flow-field in a region close to the bubble’s midplane. In the same vein, 

Ranjan et al. (2007, 2008a) employed analogous diagnostic mechanism to investigate the scenario of 

a helium-filled bubble accelerated by a shock wave with strength equivalent to 𝑀𝑎 = 2.95. Both 

scenarios were characterised by the shocked bubble reaching a uniform translational velocity at late 

times (Layes et al. 2003; 2005). Discrete secondary vortex rings were created at later times too. These 

findings were not noticeable in the lower 𝑀𝑎 experiments. Fig. 2.4 shows the prolonged secondary 

vortex rings that had been captured using the planar laser illuminated experimental images.  
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The appearance of these secondary vortices is essential because they aid the elongation of the mixing 

region as the two counter-rotating vortex rings are more inclined to spraining apart from each other 

subsequently followed by a pinching off. Also, vortex rings are stable coherent structures that continue 

for very late times and travel downstream at an almost uniform velocity. Following from this, they 

expected that in SAIFs, within which strong irregular shock refraction happens in the inhomogeineities, 

prolonged vortex projectiles, like those previously highlighted, will appear in the flow as products of 

shock refraction and should continue to very late timescales after shock interaction (Ranjan, 2007). 

Ding et al. (2017) carried out experimental studies on a planar shock wave interacting with 2D and 3D 

gas cylinders. Their research highlighted the impacts of initial interface curvature on flow morphology, 

wave pattern, distribution of vorticity, and interface movement. In their experiments, they utilized a 

wire-restriction technique based on the soap film method to generate the nitrogen cylinders with 

sulphur hexafluoride as the ambient gas. The 3D cylinders had either convex or concave shapes with 

a minimum surface characteristic. Their work showed, via a high-speed schlieren images, that not 

many disturbance waves exist in the flow field with the changing interfaces developing in a more 

symmetrical manner. Very interestingly, they showed that the shape and size of the 3D cylinders in 

various planes along the vertical direction altered slowly as a result of the presence of the horizontal 

and vertical velocities of the flow. They also explained that pressure oscillations, generated by complex 

Figure 2.4: Long-lived secondary vortex rings with their counterparts as depicted using planar laser 

illuminated experimental images (Ranjan et al., 2005; 2007; 2008a). 
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waves, in the surrounding area of the developing interfaces contributed significantly to the deformation 

of the 3D gas cylinders at early stages of the shock bubble interaction while as time progresses, the 

shocked bubble development was dominated by the baroclinic vorticity deposition on the interface. 

Finally, they compared their 3D with 2D results and explained that the opposite (or identically) signed 

principal curvatures of the concave or (convex) sulphur hexafluoride/nitrogen boundary leads to 

complex high-pressure zones and added vorticity deposition while the upstream interface from the 

symmetric slice of the concave (or convex) nitrogen cylinder travels with an inhibition (or promotion). 

2.2.  Laser-driven experiments 

Different shock-accelerated experiments have been performed for a spherical inhomogeneity at high 

𝑀𝑎 (with values up to 10) utilising the Omega laser at the Laboratory of Laser Energetics (Robey et 

al., 2002; Hansen et al., 2007) as well as at the NOVA laser at the Lawrence Livermore National 

Laboratory (Klein et al., 2000, 2003). The Nova laser had been used by Klein et al. (2000) to produce 

a strong shock with 𝑀𝑎 = 10 which moved through a small beryllium shock tube about 750microns in 

diameter occupied by plastic with low density. Within the plastic was a 100 microns diameter copper 

sphere. This research used a side-on radiography to diagnose the morphology and progression of the 

inhomogeneity as well as the shock path. The need for the shock tube wall materials to be made from 

Beryllium is based on the requirement for the X-rays to pass through a transparent material for 

diagnostics of the observed development. The experiments revealed the initial deformation of the 

copper sphere into vortex-ring structures. Klein et al. (2003) likened their past experimental results in 

Klein et al. (2000) to detailed 2D and 3D radiation hydrodynamic simulations. These simulations 

showed the initial distortion of the bubble into a vortex ring and the subsequent breakup of the vortex 

ring due to the azimuthal bending mode instability as previously investigated by Widnall et al. (1974). 

In 2002, Robey et al. carried out a comparable set of experiments on the Omega laser. They 

concurrently conducted side-on and face-on radiography to restructure the 3D topology of the 

interaction. This ensured that they were able to visualise both the initial deformation of the copper 

sphere into two vortex ring structures and the onset of the azimuthal instability. Hansen et al. (2007) 

extended the Omega experiments by substituting the area-radiography method (adopted by Robey et 

al. (2002)) with a point-projection radiography system. This process ensured that the number of shock 

tube illuminating photons increased thus leading to an improved signal to noise ratio. This new method 

also ensured that the derived images allowed better estimation of the cloud mass as the time 

dependent variable. For the experiments, they substituted the copper sphere, used in previous 

experiments, with an aluminium sphere to investigate the quicker hydrodynamic development for the 

lighter material. This ensured that the material’s deformation was examined for a lengthier time. Their 

experiment also revealed that the variation of cloud mass with time corresponded to a turbulent mass 

stripping model. This firmly indicated the essential function turbulence plays in the evolution at delayed 

timescales. Hansen et al. (2007) also used X-ray radiographs to reveal the 3D structure development 

and mass-stripping impacts as shown below: 
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From the Fig. 2.5, at time 5 ns as seen from the first image, the shock meets the cloud, and the left-

hand side of the cloud is compressed by a factor of 4. This represents the strong shock limit for a 

polytropic gas with an adiabatic constant of 1.67. Following from this, the cloud suffers a classical 

Kelvin-Helmholtz roll-up as seen from the second image (t = 12 ns) and upwards. From here, material 

is stripped from the cloud and stripped material is clearly evidenced following the cloud at times greater 

than or equal to 19ns resulting in a cone-shaped structure which extends all the way to the shock or 

outside the view of the flow field (t = 40 ns). There is also a change in the direction of the ambient flow 

when the time nears 40 ns by the rarefaction while at time 60 ns, the right-hand side of the cloud 

becomes fairly round attributable to the developed reverse flow. When the time progresses to 100 ns, 

the cloud fades. Generally, their work, as seen from the deformation of the cloud, agreed mostly with 

the shock tube experiments described by Ranjan et al. (2005) with respect to the scaled lengthwise 

growth of the bubble. 

 

2.3.  Analytical and numerical modelling of SBI 

Klein et al. (1994) created simple models for several flow field characteristics. However, typical 

experimental diagnostics do not supply access to many of these features such as the velocity 

dispersion and the mean pressure in the bubble. Based on this, Ranjan et al. (2011) focused on 

variables which are quantifiable either directly or indirectly from shock tube experiments such as 

translational vortex velocity and circulation models. Rudinger and Somers (1960) developed a 

simplified theoretical model for SBI which results in the computation of the initial bubble velocity 

denoted as 𝑉𝑏 and final vortex velocity denoted as 𝑉𝑣. Their model assumed that the bubble is primarily 

accelerated by the shock to a velocity, 𝑉𝑏, different from the surrounding shocked gas velocity denoted 

as 𝑢′1. At the early phase, they considered the bubble to be a solid particle and stated the computation 

assumed an impulsive, principally incompressible acceleration. The impulse per unit volume, 𝐼, 

transmitted by the shock to the gas bubble is exactly the same as what the surrounding gas 

experiences and given below as: 

𝐼 = 𝜌′
1
𝑢′1 = 𝜌

′
2
𝑉𝑏 + 𝑘𝜌

′
1
(𝑉𝑏 − 𝑢

1
1)                                                                                                                          (2.3) 

Figure 2.5: X-ray radiograph which reveals the evolution of the cloud with time after the propagation 

of shock waves in form of a blast wave as a rarefaction follows the shock. The direction of the shock 

wave travel is from left to right; perpendicular to the imaged shock particularly at times, t = 19 ns and 

30 ns and in accordance with the orientation of the Au grids in the images at t= 30 ns and 40 ns. Area 

backlighters were used to derive the first four images while point projection radiography were used to 

obtain the last four images (Hansen et al., 2007).  
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where 𝜌′
2
 and 𝜌′

1
 represent the aftershock density of the gas bubble and aftershock density of the 

surrounding gas respectively. The last term on the right-hand side 𝑘𝜌′
1
(𝑉𝑏 − 𝑢

1
1) denotes the impulse 

transmitted to the surrounding gas around the bubble as a result of the movement of the bubble. 𝑘 

represents the inertial coefficient or apparent additional mass fraction. 𝑘 = 0.5 for a spherical bubble 

and 𝑘 = 1 for an infinitely long cylinder travelling at right angles to its axis (Lamb, 1945). From equation 

(2.3), the velocity of the bubble shortly after the propagation of the shock is given as: 

𝑉𝑏 = (
1 + 𝑘

𝜎 + 𝑘
)𝑢′1                                                                                                                                                                (2.4) 

where 𝜎 = 𝜌′
2
𝜌′
1

⁄  is the aftershock density ratio. They then analysed the transformation of the gas 

bubble into a vortex where the energy trapped by the vortex is supplied by the kinetic energy of the 

initial motion thus resulting in a drop of the relative velocity. This is given below: 

𝑉𝑣 − 𝑢
′
1 = 𝛽(𝑉𝑏 − 𝑢

′
1)                                                                                                                                                     (2.5) 

Adopting a computation by Taylor (1953) for the generation of a vortex ring by the impulsive 

acceleration of a disk, they were able to compute the vortex velocity as shown below: 

𝑉𝑣 = (1 + 𝛽
1 − 𝜎

𝜎 + 𝑘
)𝑢′1                                                                                                                                                     (2.6) 

Taylor (1953) provided typical values for 𝛽 = 0.436 for the vortex ring i.e., spherical bubble case and 

𝛽 = 0.203 for the infinitely long vortex pair i.e., cylindrical bubble case (Rudinger and Somers, 1960). 

The Rudinger and Somers vortex-ring velocity model is simple as well as useful. For a fixed aftershock 

velocity ratio, it produces a normalised velocity 𝑉𝑣/𝑢
′
1 which remains constant with the Mach number. 

As there is a degree of certainty in the effective shape of the bubbles in the experiments, Rudinger 

and Somers found that measured velocities of the vortex had values predicted by Eq. (2.6) with 𝛽 

values agreeing with the values for spheres and cylinders. 

Piccone and Boris (1988) performed the first comprehensive numerical study of SBI in 2D following 

the experiments performed by Haas and Sturtevant (1987) for spheres and cylinders. Even though 

their 2D simulations only reached a grid resolution of fewer than 50 cells per bubble radius (R50), they 

still manage to represent the evolution of the vortical features observed by Haas and Sturtevant (1987). 

Their work also presented a model for the computation of the late-time bubble velocity and vortex 

strength magnitude,  𝛤. Piccone and Boris (1988) also used this estimate to define adaptive gridding 

parameter in Eulerian simulations for SBIs. However, they gave no information on the accuracy of the 

model compared with experimental or numerical outcome. This approximation is also valuable as a 

model of the vortex itself even though it was originally meant for the detection of the motion of the 

entire shocked bubble. The circulation, 𝛤, is a scalar quantity which has considerable importance in 

the description of the vertical flows. It is defined around a simple closed curve C as a line integral of 

the velocity as given as follows: 

𝛤 = ∮𝐶 𝑈. 𝑑𝑠                                                                                                                                                     (2.7) 

From Stokes’s theorem, it can then be inferred that the circulation around a reducible curve is 

equivalent to the vorticity flux via an open surface A bounded by the curve as shown below: 

 

𝛤 =⎰𝐴 𝜔. 𝑑𝑆                                                                                                                                                    (2.8) 

The circulation model provided by Piccone and Boris (1988) is dependent on the initial properties of 

the shocked gas, unshocked ambient gas and the bubble. They then used Eq. (2.8) to compute the 
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circulation in half of the bubble with the baroclinic term being the lone source term for the vorticity. 

Their circulation model is derived as: 

𝛤𝑃𝐵 ≈ 2𝑢
′
1 (1 −

𝑢′1
2𝑊𝑖

) (
𝐷

2
) 𝑙𝑛 (

𝜌1
𝜌2
)                                                                                                                              (2.9) 

They also expressed the vortex velocity as: 

𝑉𝑣 ≈ 𝑢
′
1 +

 𝛤𝑃𝐵
2𝜋𝐷𝑣

                                                                                                                                                              (2.10) 

From Eq. (2.10), 𝐷𝑣 is the major diameter of the vortex ring, and D is the initial bubble diameter. Yang 

et al. (1994) numerically examined the shock-cylinder interaction and adopted a similar technique as 

Piccone and Boris (1988) in calculating the circulation. Yang et al. (1994) predicted the circulation 

model (YKZ model) given as: 

 𝛤𝑌𝐾𝑍 ≈
2𝐷

𝑊𝑖

𝑝′
1
− 𝑝1

𝜌′
1

(
𝜌2 − 𝜌1
𝜌2 + 𝜌1

)                                                                                                                                    (2.11) 

They also presented results from 2D simulations for shock interaction with a cylindrical helium bubble 

surrounded by ambient air with 𝑀𝑎 number ranging from 1.05 to 2.0. They also investigated and 

simulated different cases with larger density ratios (𝜒 as denoted by Ranjan et al. (2011) in their review 

paper) less than 1. The simulations utilised a Eulerian flux-corrected-transport method as well as a 

spatial resolution of R20 with the results revealing that the model predicted the circulation obtained 

from simulations to a precision level of almost 85% while Piccone and Boris (1988) were discovered 

to have overvalued the circulation. 

Quirk and Karni (1996) described a comprehensive numerical investigation of SBI using a 

sophisticated adaptive mesh refinement algorithm, with a non-conservative shock-capturing scheme. 

The adaptive mesh refinement technique allowed them to yield outcomes with high resolution at low 

computational cost and there was an effective resolution of the shock refraction pattern and vortical 

features noticed by Haas and Sturtevant (1987). Winkler et al. (1987) also conducted some numerical 

simulations based on the experimental studies of Haas and Sturtevant (1987). In their numerical 

studies, they simulated shock interaction (𝑀𝑎 = 2) with a spherical bubble of a relatively dense gas in 

order to underline the detected evolution of a supersonic vortex ring downstream from the bubble in 

the aftershock flow. Following from this, Cowperthwaite (1989) also created 2D simulations of the 

deformation and movement of a previously spherical mass of Freon 12 gas surrounded by an ambient 

fluid, either air or helium, with computations continued to late times and the velocity of the bubble’s 

center of mass computed as a function of time. The bubble velocity obtained from their simulations 

showed agreement with simple models for drag, added mass and entrainment.  

Samteney and Zabusky (1994) described a detailed analysis of the baroclinic vorticity deposition on a 

planar interface utilising shock polar analysis. This finding was applied to the spherical scenario using 

a near-normality condition given below: 

𝛤𝑆𝑍 = (1 +
𝜋

2
) (

2

1 + 𝛾
) (1 − 𝜒)(1 + 𝑀−1 + 2𝑀−2)(𝑀 − 1)(𝐷/2)𝑐1                                                                (2.12) 

From Eq. (2.12), 𝜒 denotes the density ratio across the interface. Their model revealed that for large 

𝜒, the circulation does not rely on the density ratio. Also, for flows at high Ma, they showed that the 

circulation behaves linearly with Ma. They also proved that their model was effective for the 

convergent-geometry SBI i.e., A > 0, 𝜌2𝑐2 > 𝜌1𝑐1. Zabusky and Zeng (1998) also described their 

numerical study of the shock interaction of planar shocks with a Freon 12 axisymmetric spherical 
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bubble surrounded by ambient air. In their research work, they applied the early axisymmetric 

simulations by Piccone and Boris (1998) to flows with high Mach number (up to 5). They discovered 

that the creation of a secondary vortex ring at the bubble apex was as a result of the secondary shocks 

that appear in the higher-shock-strength-case. Levy et al. (2003) applied an interface-tracking 2D ALE 

hydrodynamic code to simulate the SBI. They had earlier conducted some experimental analysis which 

inspired the numerical simulations that followed. Their numerical model was also an extension of 

Samteney and Zabusky’s (1994) circulation model to the velocity field scaling. Their model revealed 

that the bubble velocity does not rely on the radius of the bubble and the velocity scaling failed for 𝑀𝑎 

> 2.  

Layes et al.’s (2003) experiments have also been numerically investigated by Giordano & Burtschell 

(2006) and Layes & LeMetayer (2007) with both agreeing closely with the experiments. A small 

secondary vortex ring at the bubble’s apex was formed as depicted by the numerical schlieren image 

for the acceleration of shock (with strength 𝑀𝑎 = 1.7) on a krypton bubble (Giordano and Burtschell, 

2006). An analytical method for the computation of the final volume of the inhomogeneity after it is 

accelerated by a shock was described by Giordano and Burtschell (2006). Ranjan et al. (2011) also 

explained that extensive work has been numerically performed on shock-cylinder interaction with 

Marquina and Mulet (2003) simulating the experiments of Haas and Sturtevant (1987) utilising very 

high spatial resolution Their work revealed the evolution of distinctive turbulent features in the flow 

field during delayed timescales. 

Greenough and Jacobs (1996) executed a high-order Godunov implementation of the multifluid 

equations in an adaptive mesh refinement environment (AMR) to investigate as well as successfully 

resolve the challenges related with fine-scale details of the complex, highly vortical flow field detected 

in the experiments conducted by Jacobs (1993). Their system accurately modelled multiple 

component mixtures by considering varying compressibility effects with the embedment of AMR. This 

ensured effective rise in resolution by the concentration of computational effort where high accuracy 

or higher resolution are needed. They also qualitatively and quantitatively compared their results to 

past experimental data which revealed excellent concordance. Some of their key results revealed; 

deposition of counter sign vortex blobs in the jet core by baroclinic production of the curved shock 

wave as it propagates the bubble and the jet; and three stages of bubble development (weak 

deformation, strong deformation, relaxation/reorganization (RR)). They explained that the weak 

deformation stage is characterised by a weak distortion of the helium jet as a result of insubstantial 

vorticity stimulated velocity effects while the strong distortion stage is characterised by large 

deformation of the jet and the vortex blobs influenced by strong vorticity stimulated velocity effects. 

Finally, they explained that the RR stage involved a reorganization of the vorticity field into ‘point-like’ 

pair of vortices. 

Bagabir and Drikakis (2001) investigated the impact of the strength of the incident shock on the 

cylindrical behaviour with similar characteristics as in the experiments conducted by Haas and 

Sturtevant (1987). They carried out these experiments using the Euler equations for different incident 

shock 𝑀𝑎 ranging from 1.22 to 6. They also adopted high-resolution Godunov-type methods as well 

as an implicit solver. Their results showed good concordance with past experimental investigations as 

well as further revealing more gasdynamic characteristics with increasing Ma. Their numerical studies 

showed that larger bubble distortions were discovered at higher 𝑀𝑎 with circular-shaped structure, 

observed at these higher Ma, replacing the ‘c-shaped’ vortical structure that was seen at 𝑀𝑎 = 1.22. 

Finally, their work revealed that with rising Ma, the jet speed emerging at the centre of the bubble 

during SBI was also increased. 

Robey et al. (2002) ensured that they were able to visualise both the initial deformation of a copper 

sphere into two vortex ring structures and the onset of the azimuthal instability by performing a 

comprehensive numerical investigation using a 3D Eulerian adaptive mesh refinement code, which is 

an identical code adopted by Niederhaus (2007) to conduct a parametric investigation for SBI 
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challenge. Their numerical study also revealed that 2D codes are entirely insufficient for fixing the 

noticed azimuthal mode structures. Finally, their paper showed an accurate agreement with the 

noticed deformation of the copper sphere. Their simulations also depicted the breakup of the vortex 

ring as a result of the beginning of bending-mode instabilities. Wang et al. (2018) numerically 

investigated the vortex breakdown behaviour of the scaling criterion in the interaction between an 

incident shock and cylindrical bubbles. Their work laid emphasis on the vortex breakdown 

phenomenon described by the specific stretching factor which directly indicates the drop in normalised 

circulation. They also numerically showed the appearance of vortex breakdown in terms of bubble 

morphology and interface stretching before going on to explain that additional insight into the physical 

mechanism of reduced circulation shows that the impact of viscous dissipation versus baroclinic 

production is strengthened in microscale interactions. Very interestingly, they stated that there exists 

an impedance to roll up (into the vortex structure) for the cylindrical bubble in a microscale interaction 

with the interface deformation not as efficient compared to a macroscale interaction and explained 

that this situation can be elucidated by normalised circulation. To evaluate the level of vortex 

breakdown, their research proposed a dimensionless scaling vortex breakdown number, µ∗, via order-

of-magnitude analysis, which indicates the conflicting contribution from dissipation and baroclinity i.e., 

the ratio of baroclinic to viscous terms. Depending on the viscous effect on the formation of vortex, µ∗ 

is classified under three flow categories i.e., µ∗ < 10−3, 10−3 < µ∗ < 10−1, µ∗ > 10−1, which represent 

inviscid, transient and viscous regimes respectively. Finally, they explained that the introduction of the 

nonlinear factor such as viscous dissipation in flow development leads to scaling breakdown with the 

exact modelling and simulation of the nonlinear factor posing the main difficulties in comprehending 

the microscale dynamics. 

Chen et al. (2021) numerically studied the interaction of shock waves with circular or elliptic bubbles 

in an air medium. They used a five-equation model and the finite volume method (FVM) to numerically 

examine the generation and distribution of vorticity. They also examined its impact on the deformation 

of the bubble interface and acceleration of turbulent mixing of the two-phase gases. Their research 

showed that the time needed to generate the transverse jet and vortex structure reduces while the 

deformation degree and the collapse speed rise as the aspect ratio of the horizontally aligned elliptic 

bubbles is increased. They went forward to state that for vertically aligned elliptic bubbles, the location 

of the transverse jet is linked to the aspect ratio i.e., the more the aspect ratio, the greater the distance 

between the jet position and the centreline. Singh et al. (2021) numerically studied the effect of bulk 

viscosity on flow morphology of shock-accelerated cylindrical light bubble in diatomic and polyatomic 

gases. They adopted an explicit mixed-type modal discontinuous Galerkin scheme with uniform 

meshes to solve a 2D system of unsteady physical conservation laws developed from the Boltzmann-

Curtiss kinetic equations. They also obtained a new complete viscous compressible vorticity transport 

equation including the bulk viscosity. Their result revealed that during the interaction of the shock wave 

with the cylindrical light bubble, the bulk viscosity linked to the viscous excess normal stress in diatomic 

and polyatomic gases play a major role. Their research explained that the diatomic and polyatomic 

gases initiate major significant changes in flow morphology, leading to complex wave patterns, 

production of vorticity, formation of vortex, and bubble distortion. They compared their results with 

monoatomic gases and elucidated that both diatomic and polyatomic gases produce bigger rolled-up 

vortex chains, different inward jet formations, and sizeable mixing zones with intense large-scale 

expansion. Finally, they investigated the impacts of diatomic and polyatomic gases via various 

occurrences like vorticity generation, degree of non-equilibrium, enstrophy, and dissipation rate. 

Following a massive improvement in computational resources over the years, there is added 

competence to simulate SBIs numerically in three spatial dimensions at suitable grid resolutions. This 

has proven to be very expedient as most preliminary aspects of the flow-field developments for SBIs 

are mainly 3D, especially at increased 𝑀𝑎 and 𝐴. However, there is a limited scope for numerical 

investigation of 3D SBIs with the first complete 3D simulations for SBIs examined by Stone and 

Norman (1992). Their simulations were conducted at a simple spatial resolution of R60 showing that 
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vortex rings produced in SBIs from an astrophysical viewpoint (𝑀𝑎 approximately 10) are unsteady in 

three dimensions. This leads to a break-up at late times into fragments. Fig. 2.6 shows their 3D 

rendered images for the distribution of vorticity of SBIs at high 𝑀𝑎. 

 

Klein et al. (2003) also described a 3D adaptive mesh refinement simulation for shock interaction (𝑀𝑎 

approximately equal to 10) with a solid copper sphere in a low-density foam medium. Their simulation 

revealed that an azimuthal bending-mode instability analogous to Widnall instability for incompressible 

flows (Widnall et al., 1974) is present which breaks up the primary vortex ring created during the SBI. 

This azimuthal redistribution of the sphere mass accounted for characteristics of the experimental data 

which could not be completely depicted in 2D simulations. Fig. 2.7 reveals the 3D-rendered image of 

the multimode channelled azimuthal structure visible on the shocked sphere at late times. 

 

 

 

 

 

 

 

Figure 2.6: Cloud fragmentation and 3D distribution of the vorticity magnitude as shown at different 

time scales (with respect to the cloud-crushing time, 𝑡𝑐). The left gray-scale image corresponds to t = 

0.5𝑡𝑐, the middle image corresponds to t = 2.0𝑡𝑐 and the last image corresponding to 4.5𝑡𝑐 (Stone and 

Norman, 1992). 

Figure 2.7: Three-dimensional adaptive mesh refinement simulation of shock sphere at late times 

shown by volume rendering. The shock propagates from top to bottom (Klein et al., 2003) 
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Klein et al. (2003) used an ideal gas equation of state and scale-free calculation, and Fig. 2.7 shows 

the impact of vortex ring instabilities on sphere breakup as well as the unsteady lower ring-like 

structure attributed to Widnall instability. The most robust numerical study of SBIs was conducted by 

Nierderhaus (2007) who utilised a range of 3D multifluid Eulerian simulations. Niederhaus et al. (2008) 

also comprehensively investigated SBIs across an extensive range of 𝑀𝑎 and A. Their work also 

thoroughly examined different essential characteristics of the SBI, and their work revealed that the 

mean density and bubble velocity can be scaled over a broad range of 𝑀𝑎 for a fixed value of A using 

quantities predetermined from the 1D gas dynamics. This is irrespective of the fact that this problem 

displays a complex flow field. There have been some remarkable deviations from a characteristic SBI 

morphology described by both Niederhaus et al. (2008) and Ranjan et al. (2008b) for cases with 𝑀𝑎 

and A greater than 2 and 0.5, respectively. They discovered that the flow field mainly showed a diffuse 

turbulent plume at delayed timescales as opposed to the expected discrete vortex rings and vortex 

projectiles. This is shown below: 

 

Niederhaus et al. (2008) proposed an approach to model the circulation where the velocity field during 

shock propagation is remodelled using one-dimensional gasdynamics parameters. Accordingly, they 

obtained an estimate of the circulation in accordance with one-dimensional gasdynamics 

reconstruction as shown below: 

𝛤𝑅 = 𝑢
′
1𝑦1 +

1

3
𝑅(𝑢′1 − 𝑢

′
2) (

−𝑦1
𝑅
)
3

+ 𝑢′2𝑦2 − 𝑢
′
1(𝑊𝑖𝑡

∗ + 𝑦3)                                                                        (2.13) 

where y represents a line = 2R, and the lengths of the line segments 𝑦1, 𝑦2, 𝑦3, and 𝑦4 obtained from 

1D gasdynamics are given below: 

Figure 2.8: Schlieren images for shock interaction with Freon 12 bubbles surrounded by air with shock 

strength equivalent to 𝑀𝑎 = 5. The shock is propagating from left to right, A = 0.613 and the upper 

images correspond to the vorticity magnitude while the bottom images correspond to density at (a) 

𝜏 = 1.5 (b) 𝜏 = 2.5  (c) 𝜏 = 5.0  (d) 𝜏 = 10.1  (e) 𝜏 = 15.0  (f) 𝜏 = 25.0, where 𝜏 = 𝑡𝑊𝑖 𝑅⁄  and 𝑊𝑖 is the 

lab-frame speed of the incident shock waves and R is the radius of the Freon 12 bubble (Niederhaus, 

2007). 
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𝑦1 =
1
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∗
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𝑦4 = 𝑊𝑖𝑡
∗                                                                                                                                                                           (2.17) 

𝑡∗ =
2𝑅

𝑊̃
                                                                                                                                                                              (2.18) 

where 𝑀𝑎𝑟, 𝑊𝑟, 𝑊𝑡, 𝑢
′
2 and 𝑊̃ represent the 𝑀𝑎 for the reflected shock wave, reflected shock wave 

speed, transmitted shock wave speed, speed of particle behind the transmitted shock wave, and the 

effective shock wave speed (as defined by Zabusky and Zeng (1998)) respectively.  

Eq. (2.14) represents the distance between the bubble apex and the reflected shock wave as it 

transverses the bubble’s axis. It can be modified by replacing 𝑡∗ in it with equation (2.18) as given 

below: 

𝑦1 =
2𝑅

𝑊̃√𝑀𝑎𝑟
(𝑢′2 +𝑊𝑟)                                                                                                                                              (2.19) 

Their circulation results from the 3D simulations against the model values for  𝛤𝑆𝑍,  𝛤𝑌𝐾𝑍,  𝛤𝑃𝐵, and  𝛤𝑅 

revealed that the  𝛤𝑅 gave the most excellent conformity from the wide range of 𝑀𝑎 and density ratios 

studied. Based on this,  𝛤𝑅 is suggested as the best initial approximation when there is a lack of 3D 

simulation data for circulation. 

Ding et al. (2017) completed numerical simulations to examine the interaction between a planar shock 

wave and cylindrical (both 2D and 3D) bubbles. Their numerical research combined the high-order 

weighted essentially non-oscillatory construction with the double-flux scheme to study the detailed 3D 

flow structures. They came up with a generalised 3D theoretical model for predicting the upstream 

interface movements of different gas cylinders. They showed that subsequent to when the shock 

propagates through the cylinder, baroclinic vorticity deposited at the gas cylinder controls the 

deformation of the interface. They continued by explaining that for the 2D case, the vorticity mainly 

has the direction normal to the horizontal plane as opposed to the 3D case where the curved catenary 

leads to further baroclinic vorticity parallel to the horizontal plane. Very importantly, they stressed that 

the interface deformations in the symmetric and boundary slices of the concave and convex cylinders 

suffer from similar 3D effects as a result of their differing principal curvatures of initial interfaces in 

comparison with the 2D scenario. Finally, they showed that the upstream interface along the symmetric 

slice of the convex cylinder travels quicker than the 2D scenario as opposed to the concave upstream 

end which moves slower. The interface velocities were calculated using a generalised 3D high 

amplitude theoretical model. 

2.4.  Applications of SBI and SAIFS 

Shock wave propagation through gas inhomogeneities is driven by the wide applicable areas in which 

this phenomenon occurs together with the requirement to understand the preliminary mechanisms 

related to turbulence creation and mixing. Such applications include, but not limited to; supersonic 

combustion (Marble et al., 1987; Yang et al. 1993, 1994), detonation (Madar, 1965), inertial 

confinement fusion (Zhang and Graham 1997; Lindl et al. 1992), fragmentation of cancer cells 

(Takayama 1999), cavitation damage to human tissues during diagnostic ultrasound or lithotripsy 
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(Takayama 1999; Tamagawa and Akamatsu 1999), shock-boundary layer interaction (Delery 1983), 

instability of collapsing gas bubbles in liquids (Ding and Gracewski 1996), cooling of lightening 

channels (Picone et al. 1981) and astrophysics (Arnett et al. 1989).  

 

SBI has direct relevance as well as exists in natural and man-induced activities. They can also be 

used as a vital tool in the investigation of complex flow scenarios in which a shock wave interacts with 

an inhomogeneity within which acoustic impedance variation exists (Ranjan et al., 2011). A lot of 

progress has been made particularly with respect to measurement and estimation of macroscopic 

geometrical, kinematic and integral characteristics. This progress has also seen the evolution of 

dimensionless scaling laws between these integral characteristics and the flow-governing parameters. 

There has also been research related to measurement and estimation of flow variables like velocity, 

density and pressure as well as the fusion of other physical techniques like chemical reactions and 

plasma physics with the fluid dynamics aspect of this research (Ranjan et al., 2011).  

 

Niederhaus et al. (2008) also followed the work of Rudinger and Somers (1960) on shock-bubble 

interaction where they stated that a shock wave interaction with a density inhomogeneity produced 

perturbations which were non-existent under constant-entropy acceleration. These perturbations 

drastically change the shape of the inhomogeneity and the wavefront of the shock wave thus resulting 

in the generation of distinctive vortices and sometimes, regions of intense mixing. They also explained 

that such interactions could range from the simple case for the propagation of a planar shock wave 

through a uniform medium (without considering variations resulting from a spherical or cylindrical 

density inhomogeneity) to shock-accelerated inhomogeneous flows where a shock wave travels in a 

medium characterised by a variation in density, temperature and other state variables. The later kind 

of flows have extensive applications in broad energy and spatial scales such as shock propagation in 

the interstellar and intergalactic medium (e.g., Klein et al., 1994), sonic boom propagation (e.g., Davy 

& Blackstock, 1971), supersonic combustion (e.g., Yang et al., 1994), shock mitigation in foams (e.g., 

Delale et al., 2005), and shock-wave lithotripsy (e.g., Jamaluddin et al., 2005). Niederhaus et al. (2008) 

also referenced Haas and Sturtevant’s (1987) work when they referred to the shock-bubble interaction 

as a ‘finite-mass high-interface-curvature’ like the Richtmyer–Meshkov instability (Richtmyer 1960; 

Meshkov 1970), which can limit the driven compression efficiency in inertial confinement fusion 

implosions (Lindl, 1995). Following from this, Niederhaus et al. (2008) have considered this shock-

accelerated inhomogeneous flows as a density-interface perturbation whose distortion is influenced 

by an impulsive acceleration. 

 

SAIFs are applicable in a broad range of physical situations across various spatial, temporal and 

energy scales such as astrophysical flows (Arnett, 2000); the interaction of supernova remnants with 

interstellar clouds (Hwang et al., 2005; Klein et al., 1994); atmospheric sonic boom propagation (Davy 

& Blackstock 1971), supersonic combustion systems (Marble et al. 1990, Yang et al. 1994), shock 

travel through foams and bubbly liquids (Ball & East, 1999; Collins et al., 2005; Delale et al., 2005), 

the fragmentation of gallstones or kidney stones by shock waves (Delius et al., 1998; Eisenmenger, 

2001; Gracewski et al. 1993), and high-energy-density systems such as inertial confinement fusion 

devices (Lindl et al., 1992; Lindl, 1995). Ranjan et al. (2011) explained that the dynamics of the 

interstellar medium in spiral galaxies is considerably impacted by the strong shock waves created by 

supernovae explosion, stellar winds, expanding HII regions and spiral density waves (Klein et al., 

1994). Their work also showed that it is widely accepted that the produced shock waves considerably 

change the morphology of the high-density cloud thus resulting in a turbulent exchange of material 

and energy between interstellar gases of varying temperatures and densities. One such example, as 

shown by Hwang et al. (2005), is the remnant of the bright eastern knot of the Puppis A supernova. 

This Puppis A supernova is responsible for the deformation of shock front as a result of the cloud-

shock interaction as seen from the Chandra X-ray telescope. Klein et al. (1994) and Hansen et al. 

(2007) explained the physics of mass stripping from the cloud; energy and momentum transfer to the 

shocked cloud; as well as the instabilities generated by shocks at the cloud boundary which they 
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modelled after laser-driven high-energy-density SBI experiments. SAIFs are also seen in shock-

mitigation systems based on two-phase flows in which bubbly liquids and aqueous foam barriers are 

utilised to dissipate the impulse of the shock waves (Ball and East, 1999; Collins et al., 2005; Delale 

et al., 2005). This redistribution is mainly due to heat transfer at the interface as well as small-scale 

internal processes on the foam interior. Ball and East (1999) also showed that aqueous foams 

displayed high acoustic impedance and low speed of sound which subjects the shock and blast waves 

to refraction. This incomplete transmission at foam/air interfaces is subsequently delayed within the 

foam. 

Another useful application is found in inertial confinement fusion experiments (where temperature and 

density of the thermonuclear fuel confined in a small capsule is elevated to values required for a fusion 

reaction). This is usually done by imploding the capsule with a convergent spherical shock wave 

produced by direct or indirect illumination of the capsule using several high-power laser beams 

(Ranjan et al., 2011). Lindl et al. (1992) and Lindl (1995) noticed that as the shock wave travelled 

across the solid capsule, the shock-induced turbulent mixing5 resulted in the intermingling of the shell 

material with the energy source i.e., fuel, which could hugely reduce the generation of energy from the 

fusion reaction. 

 

Piccone and Boris (1983) argued that pressure waves interactions with fluid density oscillations are a 

principal cause of vorticity and turbulent motion. They explained that these rotational flows developed 

on a significantly lengthier period compared to shock propagation across the density inhomogeneity. 

They indicated that production of vorticity by rotational flow and strongly associated processes has 

demonstrated to be important in investigations related to; ramjet engines’ operation (Rudinger, 1958), 

inertial confinement fusion efficiency (Emery et al., 1984), and lightening channel cooling rates (Picone 

et al., 1981). The wide application and usefulness of this vorticity generation can be linked to the 

essential lasting impacts which rotational flows have on the structure and properties of the fluid (Picone 

and Boris, 1983). 

2.5.  Experimental investigation of shock/liquid bubble interaction 

Most of the initial experimental investigations regarding bubble breakup by stripping was performed 

by Ranger and Nicholls (1969; 1972). They investigated the interaction between the shock wave and 

the liquid column at various phases of the breakup procedures utilizing streak photography. Joseph et 

al. (1999) carried out similar experiments utilizing a high-speed camera. Their findings were finished 

from a series of experiments in which different liquids were applied. Their experiments also produced 

incident shock waves with strengths of 2 and 3. Their work only examined the shock liquid droplet 

interaction and the waves produced around the bubble. Similar experiments for stripping type breakup 

were performed by Simpkins and Bales (1972), Krzeczkowski (1980), Yoshida & Takayama (1990), 

Hirahara & Kawahashi (1992), and Theofanous & Li (2008).  

Ranger and Nicholls (1969) presented experimental and analytical results for liquid bubble 

disintegration. They noticed breakup to take place due to the interaction between the bubble and the 

convective flowfield created by the propagation of shock wave over it. The aim of their work was to 

establish the breakup rate and the time required for disintegration to take place. They presented 

photographs as well as results on bubble displacement and disintegration time for various scenarios 

involving shock waves travelling in air at Mach numbers ranging from 1.5 to 3.5. Their experiment 

used water bubbles with diameters ranging from 750 to 4000 microns. They also formulated a model 

for the disintegration process by considering that breakup occurs from ‘boundary-layer stripping’ as 

the shearing effects induced by the high-speed flow leads to the creation of a boundary layer in the 

bubble surface. Their work showed that the stripping away of this layer accounts for this breakup. They 

combined their experimental measurement of the changes in bubble shape and variations in bubble 

 
5 Shock-induced turbulent mixing is attributable to the perfectly non-spherical shape of the shock wave; the small amplitude 

contained within the capsule surface; and the high wave number manufacturing imperfections. 
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velocity (with time) together with their analytical findings to calculate the rate of fragmentation.  With 

respect to changes in bubble shape, they discovered that the initially spherical drop is distorted into a 

planetary ellipsoid having its major axis perpendicular to the flow direction. From an analytical 

viewpoint, their work showed that breakup time is directly related to the bubble diameter and the 

square root of the liquid to gas density ratio but inversely related to the velocity.  

Simpkins and Bales (1972) experimentally investigated the distortion of originally spherical bubbles 

subjected to an external flow for wide range of 𝑊𝑒 and 𝐵𝑜. They compared their observed variation in 

bubble ‘response’ with analytical predictions. Their results revealed that beyond a 𝑊𝑒𝑐𝑟, the ‘response’ 

is no longer vibratory and becomes monotonic with time. They then observed that even though the 

‘response’ is erratic, the distortion exerted by the external aerodynamic pressure distribution is still the 

principal factor. Their measurements of the drag coefficient (𝐶𝐷) produced an average value of 2.5 

over a wide range of Re. Finally, their measurements of bubble acceleration showed a good 

agreement with Taylor’s prediction for a lenticular bubble and their work revealed that the time at which 

Taylor instability takes place is inversely related to the Bo to a quarter power.  

Waldman and Reinecke (1972) experimentally examined the challenge of determining raindrop 

breakup impacts in the shock layer of a high-speed automobile. Their research aimed to compute the 

surface damage on automobiles induced raindrops. They derived their experimental data in a shock 

tube using shadowgraphy and x-ray photography. They showed these data as correlations of non-

dimensional time required for the disintegration of the raindrops. They also expressed the 𝑊𝑒 

combined with the raindrop mass change and trajectory as a function of non-dimensional time. Their 

work also expressed the connection between the experimental scenario and the flight case which they 

used to describe the stagnation and downstream conical flow regions of a high-speed shock layer. 

They used their experimental correlations to perform computations for the mass fraction of the 

impacting raindrop, velocities, and impact angles for an automobile travelling through a rainstorm. 

Following from these experimental data correlations and the histories of actual drop mass, their 

computations revealed that both the stripping and catastrophic breakup modes are significant in the 

stagnation area of the automobile while only the stripping breakup mechanism is important in the 

downstream conical flow region. Finally, they concluded by stating that bubble breakup is a 

significantly more dominant mechanism than deceleration or deflection with respect to the protection 

of the surface of a high-speed automobile from the approaching rain.  

Wierzba and Takayama (1988) experimentally examined the stripping-type breakup of water bubbles. 

They performed their experiments in a 60 x 150 mm cross-sectional shock tube equipped with pulsed 

laser holographic interferometry. They used water bubbles with diameters of 1,030 and 4,300 microns. 

The shock wave (having strengths of 1.3 and 1.5) was produced in atmospheric air. The 𝑊𝑒 and 𝑅𝑒 

for these scenarios ranged from 600 to 7600 and 1.38 to 10.4 x 104 respectively.  Their images were 

very conspicuous to allow the observation of the droplet structure during the different distortion phases 

of the breakup procedure in comparison to past experimental data for stripping-type breakup. These 

images were derived by spark shadowgraphs, streak schlieren methods and high-speed movies. Their 

work noted that past experimental works were also impaired because the structure of the fragmenting 

bubble could not be visualized properly. This was due to the impact of light scattering through the 

micromist. Wierzba and Takayama (1988) then aimed to use the holographic interferometry to re-

evaluate the classical challenge of the stripping-type breakup of the liquid bubble. They then 

established a four-stage mechanism of the stripping type breakup of liquid bubbles.  

Yoshida and Takayama (1990) revealed that various droplet breakup patterns were noticed when 

adopting various techniques for flow visualization. For instance, their work revealed that the droplet 

fragmentation pattern detected while utilizing the double-exposure image holographic interferometry 

were distinct from those noted on the unconstructed holograms i.e., equivalent to a direct 

shadowgraph. To support their argument, Igra and Sun (2010) explained that the results of Ranger & 

Nicholls (1969), Simpkins & Bales (1972) and Joseph et al. (1999) showed that the disintegrating 

spherical droplets looked like fireballs. Based on these images, Igra and Sun (2010) further inferred 
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that it was difficult to differentiate the internal structure of the fragmenting spherical droplets i.e., the 

shattering mists clouds and wakes. On the other hand, utilizing holographic interferometry revealed 

that the derived somewhat 3D images indicated mist clouds and wakes that were distinct from those 

detected in schlieren and shadowgraph photographs. Very interestingly, Igra and Sun (2010) also 

pointed out that the distinct images produced by the holographic interferometry is attributable to their 

object beams that convey phase information, generated by the scattered light, from the micromist 

particles to the holofilm. Via reconstruction, the phase information was partly recovered but could not 

be captured in the schlieren or shadowgraph technique. Nevertheless, most of the documented 

experiments utilized schlieren or shadowgraph techniques to image the droplet breakup process.  

Hirahara and Kawahashi (1992) experimentally examined the distortion and breakup of water as well 

as silicone oil droplets within a shock tube. Their bubbles, which varied from 200 to 500 microns in 

diameter, were produced by an oscillatory capillary. The diameter of the water bubbles ranged from 

220 to 390 microns (𝑊𝑒 from 7.1 to 13) while that of the silicone oil ranged from 380 to 590 microns 

(𝑊𝑒 from 20 to 65). Their experimental examinations were performed close to the 𝑊𝑒𝑐𝑟. They used 

the shadowgraph technique to optically visualize their results. They explained the impact of the liquid 

viscosity on the breakup mechanism as well as on the breakup time. Their research also revealed that 

the smallest 𝑊𝑒 approached the breakup 𝑊𝑒𝑐𝑟 and the bubbles fragmented in the stamen or bag 

mechanism for moderate 𝑊𝑒 values. Also, they showed that the distortion time until a bubble 

fragments into small particles is not reliant on the magnitude of the 𝑊𝑒 for the liquid droplets they 

employed. According to their findings, this distortion time depended on the pressure distribution in the 

vicinity of the bubble as well as the shearing stress induced by bubble distortion. They detected several 

breakup mechanisms like the Bag, Bag-and-stamen and the Chaotic mode and presented their 

reliance on the 𝑊𝑒 and 𝑂𝑛. Finally, they revealed that the non-dimensional distortion time for silicon 

bubbles is more prolonged than the water bubbles’ and the silicon oil droplets were more deformed 

than the water droplets because of the viscosity effects.  

Hsiang and Faeth (1992) experimentally discovered the characteristics of drop distortion and 

secondary breakup for air disturbances at normal temperature and pressure induced by a shock wave. 

They utilized several liquids like water, glycerol solutions, n-heptane, ethyl alcohol and mercury to 

yield 𝑊𝑒 in the range of 0.5 to 1000, 𝑂𝑛 in the range of 0.0006 to 4, liquid/gas density ratios in the 

range of 580 to 12,000 as well as 𝑅𝑒 in the range of 300 to 16,000. They also employed several 

measurements like the pulsed shadowgraphy and holography to derive bubble distortion 

characteristics before breakup as well as size distribution of the bubble after breakup.  Their work 

showed that drop deformation and breakup existed at 𝑊𝑒 > 1. They also detected various distortion 

and breakup regimes like no deformation, non-oscillatory deformation, oscillatory deformation, bag 

breakup, multimode breakup and shear breakup. These distortion and bubble disintegration modes 

have been listed in order of rising 𝑊𝑒 at 𝑂𝑛 < 1. Their work also revealed that at the start of bubble 

distortion and disintegration, 𝑊𝑒 rises with increasing 𝑂𝑛 and no breakup is noticed when 𝑂𝑛 > 4 as 

a result of the ‘stabilizing’ impact of the liquid viscosity. Drop sizes were also shown to reduce after 

secondary breakup as 𝑊𝑒 increased. Finally, they explained that bubble characteristics following 

secondary breakup at high 𝑊𝑒 showed a potential for the ensuing breakup of the biggest drops in the 

size distribution provided relative velocities remained the same during breakup.  

Hsiang and Faeth (1995) experimentally investigated the distortion characteristics of a bubble caused 

by a shock wave and steady ‘disturbances’. They used three test equipment which include: a shock 

tube to measure the impacts of shock wave ‘disturbances’ on bubbles travelling in gases; a 10m high 

drop tube facility to measure the impacts of steady ‘disturbances’ on bubbles propagating in gases; 

and a 1m high drop tube equipment to measure the impacts of ‘steady disturbances’ on bubbles in 

liquids. They also used different dispersed and continuous phase gases and liquids to obtain 

dispersed/continuous phase density ratios of 1.15 – 12,000, 𝑂𝑛 of 0.0006 – 600, 𝑊𝑒 of 0.004 – 700 

and 𝑅𝑒 of 0.03 – 16,000. They showed that at low 𝑂𝑛, e.g., < 1, and for all types of disturbances, 

substantial bubble distortion (estimated at 5%) started at 𝑊𝑒 with values approximately equal to one. 
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They also recorded that the distortion subsequently stopped because of the inception of breakup at 

𝑊𝑒 ranging from 10 to 20. These shifts were not impacted by the 𝑂𝑛 for steady ‘disturbances’ but a 

rise in the 𝑂𝑛 led to a progressive rise in the 𝑊𝑒 range for the distortion and breakup regimes for shock 

wave ‘disturbances’. Another shift from the dome-shaped to the bowl-shaped bubbles (which they 

linked to the shift between the bag and shear breakup) was correlated primarily with respect to the 𝑊𝑒 

and 𝑅𝑒 for the selected conditions. Finally, they showed that bubble distortion for steady ‘disturbances’ 

was not reliant on dispersed/continuous phase density ratios but was largely less than that of shock 

wave ‘disturbances’ at comparable conditions because of the lack of ‘overshoots’ from inertial impacts. 

On the other hand, they explained that bubble 𝐶𝐷, normalized by the 𝐶𝐷 of a solid sphere at an identical 

𝑅𝑒, correlated reasonably well based solely on the extent of bubble distortion. 

Joseph et al. (1999) experimentally investigated the breakup of viscous and viscoelastic drops in the 

high-speed airstream following a shock wave in a shock tube. The interaction was visualized using a 

rotating drum camera which provides one photograph every 5 𝜇𝑠. They created movies for the bubble 

disintegration history of different viscous bubbles (of varying viscosity) and viscoelastic bubbles at very 

high 𝑊𝑒 and 𝑅𝑒 using the derived photographs. Their results also revealed that bubbles in the range 

of 1mm are diminished to droplet clouds and even to vapor in times < 500 𝜇𝑠. Their movies showed 

Bag and Bag & Stamen breakup at very high 𝑊𝑒, in the regime previously classified as ‘Catastrophic’. 

Essentially, they explained that the movies enabled them to create accurate graphs that depict the 

relationship between displacement and time. They then used the graph to calculate precise values of 

acceleration ranging from 104 to 105 multiplied by the gravity acceleration. They stated that these high 

values of the acceleration from the gas to the liquid exposes the flattened bubbles to a high risk of RT 

instabilities. Finally, they revealed that the most unstable Rayleigh Taylor wave fits almost ‘perfectly’ 

with waves measured on the improved images of bubbles from the movies, but the impacts of viscosity 

cannot be ignored.  

Dai and Faeth (2001) experimentally examined the secondary bubble breakup induced by shock wave 

disturbances for the multimode breakup regime. They performed their measurements in a shock tube 

utilizing pulsed shadowgraphy and holography to detect the mechanism and breakup results. They 

used water and ethanol drops with liquid/gas density ratios more than 500, 𝑂𝑛 less than 0.1 and 𝑊𝑒 

ranging from 15 to 150. The development of the characteristics in the multimode breakup regime with 

rising 𝑊𝑒 started when the bag breakup regime ends, and plume bubble emerged at the apex of the 

bag. They stated that this plume drop is noticed at a 𝑊𝑒 of approximately 15 which continues in a 

bag/plume breakup regime characterized by the appearance of both bag-like structures and plume 

bubbles. This is followed by a shift to the absence of bags at a 𝑊𝑒 of approximately 40 finishing with 

a plume/shear breakup regime which entails the evolution of plume-like structures. These plume-like 

structures gradually developed into a parent bubble and ligament system as the shear breakup regime 

is approached at a 𝑊𝑒 of approximately 80. Finally, their work provided measurements for breakup 

times, bubble distortion characteristics and 𝐶𝐷 before breakup starts, distribution of resulting bubble 

sizes for different breakup structures, bubble velocities succeeding breakup, and rates of liquid 

removal as breakup takes place. They provided these characteristics as a function of the 𝑊𝑒 in the 

multimode breakup regime with their results conforming with the findings of Hsiang and Faeth (1992) 

at equivalent 𝑊𝑒. 

Igra and Takayama (2001) experimentally examined the distortion and breakup of a cylindrical water 

bubble impacted by a planar shock wave.  They performed their experiments in a shock tube which 

had a double-exposure holographic interferometer to ensure qualitative imaging of the gas and liquid 

phases. The cylindrical water column had a diameter and height of 4.8 mm and 4 mm respectively 

and was subjected to a planar shock wave with strength of 1.47 in atmospheric air. The 𝑊𝑒 and 𝑅𝑒 

relating to these conditions were 6.9 x 103 and 1.12 x 105 respectively. Their work evaluated density 

variations and wave interaction within the water bubble using interferometric fringes after which they 

discussed the impact of these examinations on the bubble breakup. They also estimated the distortion 

and disintegration processes of the bubble using interferograms. Their results revealed that the 
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pressure distribution within the water droplet impacted mainly the distortion in the first and second 

stages of the breakup after which it became irrelevant at later stages as boundary layer stripping took 

over as the dominant factor. Finally, their experimental findings which investigated the stripping type 

breakup mechanism were concordant with the explanations offered by Wierzba and Takayama (1988) 

for the stripping type breakup of spherical bubbles. 

Igra et al. (2002) performed experiments in a shock tube to study water droplet distortion and breakup 

from shock wave loading. They produced a 6.4 mm diameter water bubble inside the test section of 

the shock tube. They also generated a shock wave (Mach number of 1.3) at atmospheric air. They 

then used a double exposure finite-fringe holographic interferometry with a double path arrangement 

for visualization. To validate their findings, they collected and compared their interferograms of the 

bubble breakup process with past experiments performed at the Shock Wave Research Centre 

(SWRC) for various diameters and Ma. They showed their results in a non-dimensional manner. They 

then evaluated the 𝐶𝐷 and compared it with that of spherical droplets taking into consideration the 

distortion of the water bubble. They observed identical trends for the spherical bubbles. Interestingly, 

their work revealed that the 𝐶𝐷 reduces with a rise in the incident shock Mach number which was 

contrary to the findings of Ranger and Nicholls (1969), Simpkins and Bales (1972), Pilch and Erdman 

(1987). These authors explained that the 𝐶𝐷 of a spherical bubble is constant over a broad range of 

Mach numbers. Their work computed the 𝐶𝐷 of the water bubble for different scenarios employing 

different assumptions. Finally, they evaluated the 𝐶𝐷 of the water bubble for different scenarios based 

on several assumptions. They explained that the 𝐶𝐷 can be estimated more precisely by considering 

the mass, frontal area and velocity variations which would produce a lesser value than what was 

estimated without these assumptions. 

Igra and Takayama (2003) experimentally examined the interaction between two cylindrical bubbles 

and a planar shock wave. These two water droplets had a diameter of 4.8 mm and were positioned 

30 mm apart within a shock tube test section. These two bubbles were then impinged by a shock wave 

(𝑀𝑎 = 1.47) which was generated in atmospheric air. The 𝑊𝑒 and 𝑅𝑒 corresponding to these flow 

conditions were 6.9 x 103 and 1.12 x 105 respectively. They then utilized double exposure holographic 

interferometry to visualize the shock/water bubble interaction. They were able to estimate the 𝐶𝐷 of 

the shock impacted water bubbles from the effective visualization of the water droplets’ distortion, drift, 

and acceleration. Their work showed that the front water bubble acted the same way a solitary water 

droplet would react given similar flow conditions. In contrast, the drift and acceleration of the rear water 

bubble was less substantial in comparison to the front droplet thus implying that the 𝐶𝐷 of the rear 

bubble was less than that of the front one. This revealed that the front bubble had impacted the flow 

field in the vicinity of the rear water drop.  

Theofanous et al. (2004) produced experimental measurements on interfacial instabilities and breakup 

of Newtonian liquid bubbles that had been suddenly subjected to rarefied, high speed air flows with 

𝑀𝑎 = 3. Their experimental method ensured a comprehensive observation of interfacial features and 

mixing for the entire duration of the breakup cycle performed for a broad span of 𝑊𝑒. They discovered 

that the RT instability is the active mechanism for freestream 𝑊𝑒 as small as 28 (for low viscosity 

liquids). They also showed that stripping instead of piercing is the asymptotic regime as We 

approaches infinity. Their work proved that comprehensive visual evidence for 𝑊𝑒 over 26 but less 

than 2600 is particularly useful for performing CFD simulations in a bid to provide and improve 

fundamental understanding of aero-breakup over a wide range of conditions.  

Theofanous and Li (2008) utilized laser-induced fluorescence to image the experimental procedure 

involving the exposure of liquid drops to supersonic gas streams. Their experimental findings achieved 

quality images. Their experimental results revealed that past documented findings, which used the 

shadowgraph technique, permitted misconceptions that resulted in erroneous conceptualizations and 

theory of the physics that control bubble disintegration at high 𝑊𝑒 > 103. Contrary to previous results, 

they explained that the governing mechanism at these high 𝑊𝑒 is the shear-induced motion 

characterized by a major radial component and instabilities on the subsequently produced elongated 
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liquid sheet. On the other hand, at low 𝑊𝑒 < 102, their data showed the quantitative characteristics of 

‘multiwave’ bubble piercing induced by RT instabilities.  Finally, their well resolved images present 

exceptionally appropriate benchmarks for Direct Numerical Simulations (DNS) of interfacial 

instabilities and specifically of bubble disintegration.  

Theofanous et al. (2012) performed experiments and direct numerical simulations to develop the work 

of Theofanous and Li (2008) which concerned aerobreakup physics of water-like, low viscosity liquid 

bubbles to Newtonian liquids with any viscosity. Their work dealt with a broad range of aerodynamics 

from almost incompressible to high Mach number flows. They then validated and measured the 

principal physics of the Rayleigh-Taylor piercing (RTP) and Shear-Induced Entrainment (SIE) using 

viscosity and capillary based scalings for fluids of varying viscosity. Interestingly, their work established 

the importance and predictive power of linear stability analysis of the Rayleigh-Taylor and Kelvin-

Helmholtz challenges for the RTP and the SIE regimes. Finally, they examined the advanced phases 

of bubble disintegration and the resulting particle-clouds whilst providing a distinct description and 

measurement of breakup times. 

Theofanous et al. (2013) conducted experiments and direct numerical simulations to develop the 

works of Theofanous and Li (2008) which concerned aerobreakup physics of water-like, low viscosity 

liquid bubbles and of Theofanous et al. (2012) for Newtonian liquids of varying viscosity, to polymer-

thickened liquids over a broad range of viscoelasticity. Their work dealt with a broad range of 

aerodynamics from almost incompressible to supersonic flows. They recorded their visualizations 

using 𝜇𝑠/𝜇𝑚 resolutions. They adopted a similar scaling technique as documented in their previous 

research i.e., Theofanous et al. (2012) which was modified to validate and measure the key physics 

of the RTP and SIE regimes. The modifications are based on the shear thinning and elastic behavior 

of these liquids. They explained that even at conditions beyond the RTP regime, there is no breakup 

or observed ‘particulation’ but an apparent unstable bubble which have been elongated into sheets 

and recovered elastically to re-form an integral mass. They continued by explaining that this resistance 

to breakup is discovered beyond the SIE regime which is now characterized by the generation of an 

extensive filament which sustains a considerable level of cohesiveness until the dynamic pressure of 

the gas is sufficient enough to lead to filament ruptures. This then led them to define a third regime 

particularly for viscoelastic liquids. They called this regime the SIE for ruptures (or the SIER). They 

stated that beyond this regime, the degree of ‘particulation’ rises and the characteristic dimension of 

produced fragments reduces in an unending manner with rising dynamic pressure. Finally, they 

outlined a rheology-based scaling method for elasticity regulated ‘phenomena’ and proposed a way 

for similar representations (using polymer and solvent variations) with respect to critical rupture stress 

that can be quantified separately. As in their previous publication i.e., Theofanous et al. (2012), they 

examined the advanced phases of bubble disintegration and the resulting particle-clouds as well as 

provided a distinct description and measurement of breakup times. 

Sembien et al. (2016) experimentally examined a complex system of waves travelling within a water 

column because of the impact of a plane shock wave. In their studies, they qualitatively and 

quantitatively studied flow characteristics like large negative pressure created by expansion wave 

focusing, cavitation bubble nucleation and a re-circulation zone. Several methods have been adopted 

to generate the water bubbles (see Joseph et al., 1999; Hirahara and Kawahashi, 1992; Igra and 

Takayama, 2001) but the diameter had continually been constrained to a few millimeters. Sembien et 

al. (2016) explained that the production of large diameter water droplets is essential for the 

comprehensive analysis of wave movements within the bubble, but it is difficult to maintain a cylindrical 

geometry of a large water bubble as the water is likely to ‘splash’ sideways.  They overcame this 

challenge by applying an external force to hold the bubble walls in place. They clarified that this method 

would not impact the flow and test chamber transparency characteristics. They also adopted the super-

hydrophobic coating methods with the coating used on a finite area of the bottom window of the test 

chamber. The hydrophobicity level was also selected to prevent the water from gliding sideways on 

the bottom window at static ‘unperturbed’ requirements. They then pushed an O-ring of 22mm 

diameter against the bottom window after which the hydrophobic coating was cautiously put on the 



58 
 

ambient region. The coating layer thickness was small in comparison to the channel thickness. They 

then utilized an air gun to accelerate the drying procedure followed by the removal of the O-ring after 

half an hour. The top window was then positioned in place and secured. Finally, the 22mm diameter 

water column was created by injecting water from a syringe inserted through a small hole positioned 

at the rear end of the test chamber.  

2.6.  Numerical investigation of shock/liquid bubble interaction 

Harper et al. (1972) theoretically and numerically investigated the breakup of accelerating liquid drops. 

They showed that an accelerating liquid bubble under the influence of surface tension is unstable to 

small disturbances that are greater than the first critical value of the 𝐵𝑜. They used numerical and 

second order asymptotic techniques to characterize the normal mode reaction/behaviour and the 

neutral stable modes at greater 𝐵𝑜. They also used the initial-value challenge to study the unsteady 

reaction of an originally spherical bubble accelerated by an ambient gas flow. This then led them to 

present a theory that incorporated acceleration and aerodynamic impacts to enable them to take into 

consideration the complete dynamic range of 𝑊𝑒 and 𝐵𝑜. Finally, they compared their findings with 

experimental measurements that comprised of nonstop vibration, permanent aerodynamic 

deformation and erratic fragmentation with good agreements observed.  

Igra and Takayama (2001) numerically investigated the distortion and breakup of a cylindrical water 

drop to further elucidate the breakup process of spherical liquid bubbles by shock wave loading. They 

derived their numerical results by solving the Euler equations utilizing the Cubic Interpolated Pseudo-

particle (CIP) technique to handle a two-phase flow field comprising of compressible and 

incompressible fluids. They also modified this scheme to adequately describe the gas/liquid interface 

and prevent any density jump from smearing across the interface. They were able to achieve this by 

computing the density independently for each phase independently. They estimated the density at 

every grid point by employing a density function in a similar manner to the CIP. Following from this, 

they derived a sharp density gradient for the entirety of the flow field which meant that the scheme 

could adequately treat gas/liquid interfaces characterized by a huge density ratio. Their numerical 

findings, after comparison with the suitable interferograms, revealed good quantitative agreement for 

the density variation in air while only qualitative concordance was obtained for water with respect to 

the numerical density distributions. They also compared the results they derived for the cylindrical 

water drop with a similar solid cylinder case. They discovered that only at the preliminary phases did 

the flow surrounding the water bubble resemble that noticed on a solid cylinder. Their research then 

showed that at approximately 40 𝜇𝑠, after the shock wave had impinged on the water column, some 

variation was noticed in the flow field close to the back of the droplet which were not observed in the 

numerical results produced from shock interaction with the solid cylinder. Following from this, they 

then concluded that the water bubble had undergone some deformation at the preliminary phase.  

Quan and Schmidt (2006) numerically simulated the impulsive acceleration of a liquid spherical bubble 

by a gaseous flow. Their numerical studies aimed to examine drag force and bubble distortion. They 

studied the dynamics of this interaction by solving the incompressible Navier-Stokes equations utilizing 

a finite volume staggered mesh method combined with a moving mesh interface tracking scheme. 

They explained that the advantage of this scheme is the direct application of the interface conditions 

on an explicitly located interface with no thickness. Their work also showed that the bubble shape 

altered during droplet acceleration and the factor of distortion of the bubble is as tiny as 0.2. This then 

meant that they applied mesh adaption techniques to attain satisfactory mesh quality as well as 

effectively capture the interface curvature. Very usefully, their research showed that the total 𝐶𝐷 was 

greater than the characteristic steady state 𝐶𝐷 of solid spheres at similar 𝑅𝑒. This conformed with the 

observation of Temkin and Kim (1980) whose work revealed that the unsteady drag of decelerating 

relative flows is always greater than the steady drag. Quan and Schmidt (2006) believed that this 

greater drag force could be attributed to the large recirculation region preceding the distorted bubble. 

They then examined the impacts of the viscosity and density ratios as well as that of the initial 𝑊𝑒 on 
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the dynamics of the bubble. Their results showed that the initial 𝑊𝑒 and viscosity ratio have 

considerable impacts on the bubble dynamics, but the density ratio does not. Finally, they discovered 

that a reduction of the surface tension resulted in a greater bubble deformation and drag force while 

a rise in the bubble viscosity led to smaller distortions and a reduced drag force.  

Chen (2008) carried out two dimensional simulations to investigate the stripping breakup of a water 

droplet. They explained that the disintegration of a liquid bubble subjected to a high-speed gas flow is 

a popular multiphase flow problem and that the stripping breakup mechanism occurs over a broad 

range of 𝑊𝑒 i.e., from 100 to nearly 20,000. They adopted a multiphase flow solver with a five-equation 

model to examine the development of the stripping breakup process for a water bubble. They carried 

out various test scenarios like the gas-gas shock tube, water-air shock tube, and the underwater 

explosion challenges to validate their numerical techniques. For comparison of their work with 

experimental measurements, they used water bubbles with diameters of 6.4 mm and 4.8 mm and 𝑀𝑎 

of 1.3 and 1.47. They examined the stripping breakup of a water bubble and discussed shape 

distortion, vortex shedding, unsteady drag force as well as flow instability. Their work showed good 

agreement with the experimental data in dimensionless form with respect to the bubble drift, 

acceleration and change in volume. Finally, they used flow visualization to display the development of 

a water bubble during the stripping breakup process for an inviscid flow.  

Igra and Sun (2010) performed a numerical study for the loading of cylindrical water column with shock 

waves adopting a fully conservative scheme. This scheme, which considered subcell-sized particles 

like water ligaments, was applied to capture gas-liquid interfaces sharply without any difficulties 

associated with spurious pressure oscillations or density diffusion. The scheme could also resolve 

fragments smaller than 1 grid-cell size. Their results conformed well with experimental measurements 

with respect to the distortion and shape of the water droplet impacted by a planar shock wave with 

varying strengths i.e., 1.3 and 1.47. Also, good concordance was derived from the experimental 

analysis for changes in the shock wave location. They also revealed that it was possible to notice the 

beginning of fragmentation of the water bubble located at the same position as in the experimental 

results. Their work usefully pointed out that previously published CFD works did not consider bubble 

distortion but just the simulation of the early impingement of the shock wave on the water droplet. They 

also examined results derived from the interaction of supersonic shock wave (𝑀𝑎 = 3) with the water 

bubble. All their results revealed stripping breakup but no Rayleigh-Taylor-type oscillations/piercing 

thus proving that the principal mechanism for water droplet breakup is boundary-layer stripping as a 

result of high velocity shear flow and the gradual motion of the distorting water bubble. Finally, Igra 

and Sun (2010) noticed that a 2D cylindrical water column acted in the same way as a spherical bubble 

after they compared bubble distortion and fragmentation. They further explained that the 2D scenario 

allows for a more straightforward visualization when conventional methods like shadowgraph, 

Schlieren, and/or interferometry are applied. 

Meng and Colonius (2015) numerically simulated the interaction between water cylinders and normal 

shocks by solving the multicomponent, compressible Euler equations. They aimed to examine the 

preliminary phases of break up in the cylindrical water bubbles. They set up their simulations to match 

and compare their findings to the experimental system of Igra and Takayama (2001). Generally, their 

work was able to correctly compute the cylindrical bubble’s center of mass velocity, acceleration, and 

unsteady 𝐶𝐷. Their numerical work noticed qualitative breakup characteristics like original streamwise 

flattening of the bubble and the generation of tips at the cylinder’s boundary which verified past 

experimental observations of stripping breakup mechanism. Interestingly, their work showed and 

explained the existence of a ‘transitory recirculation’ area at the bubble’s equator and a continuous 

upstream jet in the wake. They investigated the impacts of the shift between subsonic and supersonic 

post-shock flow by broadening the incident shock Mach strengths beyond the ones that had been 

previously examined in experiments. They observed that velocities in the supersonic post-shock flow 

region did not considerably change the bubble’s behavior as they were able to efficiently ‘collapse’ the 

drift, acceleration, and drag curves for all the shock Mach numbers that were simulated. They then 
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adopted a technique which reduced ‘noise errors’ to compute the cylindrical bubble’s acceleration. 

Afterwards, they collapsed all the shock Mach numbers using the approach of scaling with the 

pressure ratio across the incident shock. Although they had shown that the unsteady 𝐶𝐷 increases 

with time when calculated utilizing the constant initial bubble diameter, their work came up with a useful 

approximation as regards the computation of this parameter. This related with the estimation of the 𝐶𝐷 

as a constant throughout the initial breakup phase by adopting the cylindrical bubble’s distorted 

diameter. Finally, they explained that within the characteristic ambiguity of the various techniques 

utilized to extract measurements from past experimental and numerical findings, their comparisons 

with different experimental bubble distortion measurements revealed good concordance.   

Sembien et al. (2016) numerically investigated the interaction of a planar shock wave with a 22 mm 

diametrical water column. Their simulations enabled them to study the wave motions within the water 

bubble as well as estimate the spatial location of the expansion wave focusing point and the 

corresponding negative peak pressures. They concentrated on the wave propagation within the 2D 

water droplet during the preliminary phases of SBI following their comprehensive experimental 

visualization and pressure measurements. They adopted a modern method of specifically handling 

the test chamber windows where symmetric cylindrical water droplets of relatively large diameters 

were generated. The water bubble is then impacted by a shock wave produced adopting the exploding 

wire (EW) methods with visualization performed utilizing the shadowgraph technique. They then 

adopted Star-CCM+ CFD solver to conduct numerical simulations which allowed them to explicate 

and investigate the flow characteristics noticed in their experiments.  

Xiang and Wang (2017) conducted numerical analysis on the interaction of a planar shock wave with 

a water bubble embedded with and without a cavity of varying sizes at higher 𝑊𝑒. They calculated 

their numerical fluxes using the Godunov-type Harten-Lax-van Leer contact Riemann solver together 

with an incremental fifth order weighted essentially non-oscillatory (WENO) scheme. WENO schemes 

are well-known high-order schemes for solving hyperbolic conservation laws (Lin et al., 2023) and was 

first presented by Liu et al. (1994). WENO schemes are particularly relevant for numerical challenges 

consisting of strong discontinuities and complicated smooth solution structures (Zhang and Shu, 

2016). Xiang and Wang (2017) then adopted a third-order Total Variation Diminishing (TVD) Runge-

Kutta scheme to advance the solution in time. A TVD scheme was first presented by Harten (1983) 

and can serve as a high-resolution scheme for computing the solutions of hyperbolic conservation 

laws. A TVD scheme is thus employed to capture sharper shock predictions and suppress spurious 

oscillations of the solution (Kupka et al., 2012). The research work of Xiang and Wang (2017) 

qualitatively and quantitatively investigated the morphology and dynamical features of the bubble 

deformation process to determine the disintegration mechanism as well as to show the development 

of transverse jets under various incident shock intensities and embedded-cavity sizes. Afterwards, 

they obtained the jet tip velocities by examining the evolution of the interface. Their work revealed that 

the liquid bubble is susceptible to aerodynamic disintegration characterized by the generation of micro-

mist at advanced phases as opposed to liquid evaporation due to the insufficient heating impacts of 

the ambient air. They then numerically proved that the liquid-phase pressure will reduce lower than 

the saturated vapor pressure with this low pressure maintained for a certain time due to the expansion 

wave focusing. This expansion wave focusing accounted for the cavitation within the water bubble. 

With respect to measurements, their work identified the geometrical parameters of the distorted water 

bubble revealing that the centerline width reduces as opposed to the transverse height which rises in 

a non-linear manner with time. Interestingly, their research showed that the distortion rates compared 

non-linearly under various 𝑀𝑎 with the initial transverse jet observed for a water bubble with an 

embedded cavity. This contrasted with the water hammer shock and the second jet which did not 

appear under the impact of incident shock waves with low intensity. Their recorded x-velocity 

component at the rear stagnation point stayed constant at the rear stagnation location for a 

‘comparable’ time after a deteriorated development. This showed that the downstream wall of the 

shocked water ring somehow travelled in a uniform manner. They then clarified that the acceleration 

of the downstream wall is stabilized by the trailing shedding vortex. They claimed that this effect is 
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clearer under higher Ma. Finally, they compared the entire field enstrophy and discovered that the 

rising ‘trend’ is characterized by the contributed production of a vortex because of the baroclinic 

impacts of the shock wave’s interaction on the two-phase interfaces.  

Liu et al. (2018) numerically simulated liquid bubble disintegration in supersonic flows. They employed 

a five-equation model based on the finite-difference technique. They then used an anti-diffusion 

technique to improve the interface capturing quality. This anti-diffusion approach was presented as a 

correction of volume fraction after every computation step to sharpen the interface. They confirmed 

the ‘robustness’ of this method using the hybrid variable reconstruction in which the second order and 

high-order techniques were adopted in discontinuous and continuous flow fields respectively. 

Following the recent classification of droplet breakup regimes, their simulations fell within the shear 

induced entrainment regime. They stated that surface tension and viscid forces were insignificant for 

both 2D and 3D simulations in comparison to the momentum of the high-speed air flows. Their 

simulations set the inflow parameters corresponding to 𝑀𝑎 of 1.2, 1.5 and 1.8 to attain various dynamic 

pressures while an initial liquid to gas density ratio of 1000 was used. Their findings revealed that the 

breakup process was broken into three phases which they thoroughly examined considering the 

gas/liquid interactions. Interestingly, their research showed that the shear between the high-speed gas 

flow and the liquid bubble led to surface instabilities on the windward side of the bubble while the 

instabilities on the leeward side was induced by vortices. They investigated the motion of the liquid 

center mass and examined the unsteady acceleration. Finally, they showed that the characteristic 

breakup time was around 1.0 using either the criterion of bubble thickness or liquid volume fraction.  

Meng and Colonius (2018) performed a three-dimensional numerical simulation examining the 

disintegration of a spherical water bubble in the flow following a normal shock wave. Their studies 

employed the compressible multicomponent Euler equations in a finite-volume scheme combined with 

shock and interface capturing to simulate the bubble and ambient gas flow. Their work discussed the 

characteristics of the bubble distortion and disintegration in the stripping breakup regime as well as 

offered descriptions of the surrounding gas flow. Their studies of observed surface instabilities and a 

Fourier decomposition of the flow field showed asymmetrical azimuthal modulations and broadband 

instability growth which led to disordered flow inside the wake area. Finally, they compared their 

breakup process with available experimental visualizations which showed good qualitative agreement 

with respect to the bubble’s early distortion and transformation into a muffin-like shape. This was 

succeeded by the breakup of the liquid sheet which envelops a cavity in the near -field wake area. 

Kaiser et al. (2020) numerically examined the interface distortion during the early phases of the 

breakup of a water bubble in a surrounding flow field. They used high resolution numerical simulations 

taking into account the compressible Navier-Stokes equations (which control the movement of the two 

fluids) as well as considering capillary forces and impacts of viscosity. They modelled the multiphase 

flow using a level set based sharp interface method with conservative interface interaction. They then 

discretized the governing equations using FVM with low dissipation flux reconstruction at cell faces 

following a fifth-order WENO scheme and a third-order Runge-Kutta TVD explicit time integration 

scheme. Their results showed that they were able to attain a precise estimation of wave dynamics and 

interface distortion of the liquid bubble. The first and second phases of bubble deformation 

corresponding to flattening of the cylinder and sheet shearing at the bubble equator respectively were 

also successfully replicated. They revealed the formation of a clear pressure-wave pattern in the 

supersonic flow area close to the cylindrical bubble’s equator post shock propagation. They explained 

that these waves interacted with the phase interface leading to the local interface disturbances which 

formed at the same period as the beginning of the second phase. They continued by stating that it 

was expedient to attain a resolution of these waves to allow for an effective ‘prediction’ of the hat-like 

structure at the upstream face of the cylinder during the second phase of the bubble disintegration 

which had only been noticed in experimental visualizations of this specific breakup mechanism. Their 

findings supported the connection of the sheet stripping mode with the local formation of recirculation 

zones. They pointed out that, at very preliminary phases of the shock bubble interaction, a correct 

prediction of the interaction between the secondary wave system and the interface instabilities is 
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crucial to attain a qualitative concordance between their simulations and the experimental results of 

Igra and Takayama (2001). Finally, their high-resolution findings showed that recirculation zones 

existed at several positions along the interface and are directly linked to the growth of water sheet-

forming interface disturbances.  

2.7.  Bubble shapes employed in shock/liquid bubble interaction  

Several experimental analyses (e.g., Ranger and Nicholls, 1969; 1972; Simpkins and Bales, 1972; 

Krzeczkowski, 1980; Wierzba and Takayama, 1988; Yoshida and Takayama, 1990; Hirahara and 

Kawahashi, 1992; Hsiang and Faeth, 1992; Joseph et al., 1999; Theofanous et al., 2004; Theofanous 

and Li, 2008; Theofanous et al., 2012; Theofanous et al., 2013) have utilized a spherical liquid bubble 

to visualize the 3D interaction between the travelling shock wave and the liquid column in question. 

However, Igra and Sun (2010) explained that 3D visualization is still evolving and wave interactions 

within the bubble and the wake structure have certainly not been accurately imaged. On the flip side, 

the interaction between a planar shock wave and a cylindrical liquid droplet, which Igra and Sun (2010) 

described as a 2D bubble, can be correctly studied. In order to consider the fragmentation process 

and elucidate the impact of wave movements within the bubble, it is essential that the head-on 

impingement of the liquid bubble by the shock wave is effectively visualized. The findings of such 

imaging can be accurately broadened to clarify complex 3D bubble fragmentation processes. Igra & 

Takayama (2001) and Igra et al. (2002) performed experiments detailing shock interaction with a 

cylindrical water droplet for various 𝑀𝑎 and with several bubble diameters. They stated that on 

evaluation and comparison of the bubble distortion with that of a spherical droplet, similarities were 

observed. They also reported that due to the distinctive experimental set-up, the distortion of the water 

bubble preceding its full breakup is approximately half of what is observed in a comparable spherical 

droplet scenario. Igra and Takayama (2003) performed experimental analysis of two cylindrical water 

bubbles exposed to the loading of a planar shock wave. More recently, Sembian et al. (2016) 

conducted experiments involving the interaction of a planar shock wave with a cylindrical water droplet. 

From a numerical standpoint, several authors (e.g., Igra and Sun, 2010; Meng and Colonius, 2015; 

Sembien et al., 2016; Kaiser et al., 2020) have used a cylindrical droplet geometry while others (e.g., 

Quan and Schmidt, 2006; Theofanous et al., 2012; Theofanous et al., 2013; Meng and Colonius, 2018) 

have utilized a spherical bubble shape.  

2.8.  Conclusions  

An extensive literature review has been performed to: advance the current understanding of SBI, 

identify suitable experimental data sets for CFD model validation, and gain the necessary knowledge 

for the execution of the CFD simulations. Although several past experimental works have been studied 

and presented in this chapter, the main experimental studies that have been adopted for the numerical 

model validation are: Haas and Sturtevant (1987) for shock helium bubble interaction and; Igra & 

Takayama (2001) & Igra et al. (2002) for shock water bubble interaction. The findings from this literature 

review can then be applied to simulate shock-gas and shock liquid-bubble interaction capable of 

attaining pressure gain in gas turbines which possesses the needed ability to hugely boost combined 

cycle efficiency and performance. Therefore, these investigated shock bubble interaction studies are 

very relevant as they have served as an efficient basis for investigating pressure gain via the interaction 

of a moving shock wave with a gas or liquid bubble.  

 

 

 

 

 



63 
 

3. Methodology 

This chapter outlines the conservation laws/equations and the various approaches available to 

modelling turbulence. Detailed explanations are also provided for various simulation techniques and 

numerical methods available to solve shock-gas and shock-liquid problems. These include the different 

turbulent models, interface tracking techniques like the Volume-of-Fluid (VOF) and Level-set methods 

etc. This chapter thus presents a theoretical context for the understanding and applicability of the 

adopted numerical methods accessible on the ANSYS Fluent package.  
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3.1.  Governing equations: general form, control volume approach 

If 𝜙 (𝑥, 𝑡) represents any conserved intensive property in a control volume (CV), the total amount of 𝜙 

in CV can be expressed as: 

∫
𝐶𝑉(𝑡)

 𝜌𝜙(𝑥, 𝑡)𝑑𝑉                                                                                                                                                               (3.1) 

Taking into account the fixed CV, the rate of change of 𝜙 in the CV with time can be described using 

Eq. (3.2): 

𝑑

𝑑𝑡
∫
𝐶𝑉(𝑡)

 𝜌𝜙(𝑥, 𝑡)𝑑𝑉 =
𝜕

𝜕𝑡
∫
𝐶𝑉(𝑡)

 𝜌𝜙(𝑥, 𝑡)𝑑𝑉 + ∮
𝐶𝑆(𝑡)

𝜌𝜙(𝑥, 𝑡)(𝑈⃗⃗ ). 𝑛𝑑𝑆                                                            (3.2) 

                                 

where 𝑈⃗⃗  and 𝑛 denote the velocity vector and unit vector normal to the control surface (CS). Eq. (3.2) 

explains that the change in 𝜙 in the CV is given a property change in the CV together with its flux 

across the CS.  

The rate of change of 𝜙 in the fixed CV is same as its volume and surface sources. This is shown 

below: 

𝜕

𝜕𝑡
∫
𝐶𝑉(𝑡)

 𝜌𝜙(𝑥, 𝑡)𝑑𝑉 + ∮
𝐶𝑆(𝑡)

𝜌𝜙(𝑥, 𝑡)(𝑈⃗⃗ ). 𝑛𝑑𝑆 = ∫
𝐶𝑉(𝑡)

 𝑆𝑣(𝜙)𝑑𝑉 + ∮𝐶𝑆(𝑡)𝑆𝑆(𝜙). 𝑛𝑑𝑆                                 (3.3) 

  

Accounting for an infinitesimal CV, Eq. (3.3) can be shown in differential form as seen below: 

𝜕𝜌𝜙

𝜕𝑡
+ ∇. (𝜌𝜙𝑈⃗⃗ ) = 𝑆𝑉(𝜙) + ∇. 𝑆𝑆(𝜙)                                                                                                                          (3.4) 

or  

𝜕𝜌𝜙

𝜕𝑡
+ ∇. (𝜌𝜙𝑈⃗⃗ ) = 𝑆(𝜙)                                                                                                                                                  (3.5) 

where;  

𝑆(𝜙) = 𝑆𝑉(𝜙) + ∇. 𝑆𝑆(𝜙)                                                                                                                                                (3.6) 

Several authors (e.g., Batchelor, 2000; Ferziger and Peric, 2012; Aris, 2012) have expressed the 

governing equations of continuum mechanics in the form of Eq. (3.5) 

3.1.1. Continuity/conservation of mass equation 
 

Mass conservation in infinitesimal fluid element can be illustrated by the following equation: 

𝜕𝜌

𝜕𝑡⏟
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 
𝑜𝑓 𝑚𝑎𝑠𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡
𝑣𝑜𝑙𝑢𝑚𝑒 𝑤𝑖𝑡ℎ 𝑡𝑖𝑚𝑒

+ ∇. (𝜌𝑈⃗⃗ )⏟    
𝑛𝑒𝑡 𝑓𝑙𝑢𝑖𝑑 𝑓𝑙𝑜𝑤
𝑎𝑐𝑟𝑜𝑠𝑠 𝑓𝑙𝑢𝑖𝑑

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

= 0                                                                                                                          (3.7) 

3.1.2. Conservation of momentum equation 
 

Momentum conservation in infinitesimal fluid element can be illustrated by the following equation: 

𝜕𝜌𝑈⃗⃗ 

𝜕𝑡⏟
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒
𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚
𝑤𝑖𝑡ℎ 𝑡𝑖𝑚𝑒

+ ∇. (𝜌𝑈⃗⃗ ⊗ 𝑈⃗⃗ )⏟        
𝑛𝑒𝑡 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑓𝑙𝑜𝑤
𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑑𝑢𝑒 𝑡𝑜

𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛
𝑣𝑒𝑜𝑙𝑐𝑖𝑡𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

= −∇𝑝⏟
𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑐ℎ𝑎𝑛𝑔𝑒
𝑑𝑢𝑒 𝑡𝑜 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

+ ∇. (𝜏̿)⏟  
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑑 
𝑏𝑦 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠

+ 𝜌𝑆𝑀⏟
𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚

                      (3.8) 
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where 𝜏̿ denotes the viscous stress tensor, 𝑆𝑀 is a source term that may comprise of the body forces 

i.e., gravity force, centrifugal force, Coriolis force and electromagnetic force. 

The viscous stress tensor, 𝜏̿, is expressed below: 

𝜏̿ = 𝜇

[
 
 
 
 
 

(∇𝑈⃗⃗ + (∇𝑈⃗⃗ )
𝑇
)⏟        

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 
𝑑𝑢𝑒 𝑡𝑜

𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

−
2

3
∇. 𝑈⃗⃗ 𝐼⏟  

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 
𝑑𝑢𝑒 𝑡𝑜 

𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 ]
 
 
 
 
 

                                                                                                (3.9)  

where 𝜇 and 𝐼 denote the molecular viscosity and unit tensor respectively. 

3.1.3. Conservation of energy equation 
 

Energy conservation within an infinitesimal fluid element can be illustrated below: 

𝜕𝜌𝐸

𝜕𝑡⏟
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒
𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 
𝑤𝑖𝑡ℎ 𝑡𝑖𝑚𝑒

+ ∇. (𝜌𝐸𝑈⃗⃗ )⏟      
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 
𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑎𝑢𝑠𝑒𝑑 
𝑏𝑦 𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑣𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

= −∇. (𝑝𝑈⃗⃗ )⏟      
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘
𝑑𝑜𝑛𝑒 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 

𝑏𝑦 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑓𝑜𝑟𝑐𝑒

+ ∇. [𝜇 (∇𝑈⃗⃗ + (∇𝑈⃗⃗ )
𝑇
) 𝑈⃗⃗ − (

2

3
𝜇(∇. 𝑈⃗⃗ 𝐼)𝑈⃗⃗ )]⏟                          

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘 
𝑑𝑜𝑛𝑒 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 

𝑏𝑦 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠

⏞                                    
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠

+

𝜌𝑞̇ + ∇. (𝑘∇𝑇)⏟        
𝑛𝑒𝑡 ℎ𝑒𝑎𝑡 𝑖𝑛𝑓𝑙𝑢𝑥
𝑖𝑛𝑡𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

+ 𝜌𝑈⃗⃗ 𝑆𝐸⏟  
𝑠𝑜𝑢𝑟𝑐𝑒 
𝑡𝑒𝑟𝑚

                                                                                                                                            (3.10)  

where 𝑘, 𝑞̇, and 𝑇 represent the thermal conductivity, rate of volumetric heat addition per unit mass 

and temperature respectively. 𝐸 denotes the total energy equivalent to the addition of the internal 

energy 𝑒 (per unit mass) and kinetic energy 𝑈⃗⃗ 2 2⁄  (per unit mass). Source term, 𝑆𝐸, may comprise 

of body forces which influence total energy. Therefore, Eq. (3.10) can also be expressed as: 

𝜕 (𝜌 (𝑒 + (𝑈⃗⃗ 2 2⁄ )))

𝜕𝑡
+ ∇. (𝜌 (𝑒 +

𝑈⃗⃗ 2

2
) 𝑈⃗⃗ )

= ∇. (𝑝𝑈⃗⃗ ) + ∇. [𝜇 (∇𝑈⃗⃗ + (∇𝑈⃗⃗ )
𝑇
) 𝑈⃗⃗ − (

2

3
𝜇(∇. 𝑈⃗⃗ 𝐼)) 𝑈⃗⃗ ] + 𝜌𝑞̇ + ∇. (𝑘∇𝑇) + 𝜌𝑈⃗⃗ 𝑆𝐸   (3.11) 

Anderson (1995) also explained that with some manipulations and algebra, Eq. (3.11) can be used 

to obtain the transport equation for kinetic energy, internal energy and enthalpy equation. Anderson 

(1995) also explained that the continuity, momentum and energy conservation equations are 

coupled system of non-linear partial differential equations (PDEs) and hence are quite complicated 

to solve analytically. As such, there is no overall closed form of solution to the governing equations 

above. Eqs. (3.7), (3.8) and (3.10) reveal several unknown and dependent variables i.e., five 

equations and six unknown flow-field variables (𝜌, 𝑝, 𝑈𝑥, 𝑈𝑦, 𝑈𝑧, and 𝑒). Several authors (e.g., 

Anderson, 1995; Versteeg and Malalasekera, 2007) explained that the Navier-Stokes equation 

system can be closed by introducing the equation of state for pressure i.e., 𝑝 = 𝑝(𝜌, 𝑇) and internal 

energy, 𝑖 = 𝑖(𝜌, 𝑇) which presents seven equations and one extra variable (seven equations and 

seven flow field variables).  

3.2.  Approaches to modelling turbulence 

Turbulence leads to the appearance of eddies in the flow with a broad range of length and time scales 

that interact in a dynamically complicated manner.  In this regard, a huge level of research has been 

directed at the development of numerical methods that capture the essential impact of turbulence. The 

methods can be categorized into the following three classes: 
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3.2.1. Turbulence models for Reynolds-averaged Navier-Stokes (RANS) equations  
 

These models lay emphasis on the mean flow and the impacts of turbulence on mean flow 

characteristics. Before the application of numerical methods, the Navier-Stokes equations are time 

averaged, or ensemble averaged in flows with time dependent boundary conditions. Additional 

terms appear in the time-averaged (or Reynolds-Averaged) flow equations because of the 

interactions between different turbulent fluctuations. These additional terms are modelled with 

classical turbulence models with 𝑘 − 𝜀 and the Reynolds stress turbulence models being the most 

popularly common ones. They also require modest computing resources to attain a relatively 

precise flow simulation. As a result, this approach has been the basis for most engineering flow 

computations in the past three decades (Versteeg and Malalasekera, 2007). 

3.2.2. Large eddy simulations (LES) 
 

This approach represents the intermediate form of turbulence computations which focuses on the 

behavior of the larger eddies. This technique entails the space filtering of the unsteady Navier-

Stokes equations before computations are performed. This filtering process permits the larger 

eddies and discards the smaller ones. The sub-grid scale model introduces this impact on the 

resolved flow i.e., mean flow together with the large eddies as a result of the smallest, unresolved 

eddies. It can be used to treat Unsteady CFD challenges with complex geometry but places a high 

strain on computing resources with respect to large storage requirement and the constraint of a 

huge volume of computations (Versteeg and Malalasekera, 2007).  

3.2.3. Direct numerical simulations (DNS) 
 

These approaches calculate the mean flow and all turbulent velocity fluctuations. They solve the 

unsteady Navier-Stokes equations on spatial grids which are adequately fine to resolve the 

Kolmogorov length scales. There is also dissipation of energy and the need for appropriately small-

time steps to resolve the period of the quickest fluctuations. These computations are very expensive 

with respect to computing resources and as a result, this approach is not readily applied for industrial 

flow simulations (Versteeg and Malalasekera, 2007). 

Based on these three approaches, this research has adopted and tested turbulence models for 

unsteady RANS equations (URANS). This is because the RANS approach is uncomplicated, 

computationally cheap and more economical than more detailed techniques like the LES, hybrid 

RANS/LES and DNS. As a result, it has been widely applied in industry for different applications 

like design, assessment and optimization, prediction of off-design performance (Hanjalic, 2005) etc. 

 

3.3.  The governing equations for URANS 

Generally, the RANS model, which represents the most extensively adopted approach for computing 

industrial flows, solves the ensemble-/time-averaged Navier-Stokes equations (ANSYS, 2018). Yang 

(2014) expressed the URANS governing equations as shown below: 

 

𝜕𝑈𝑖
𝜕𝑥𝑖

= 0                                                                                                                                                                              (3.12) 

 

𝜕𝑈𝑖
𝜕𝑡

+
𝜕(𝑈𝑖𝑈𝑗)

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑃̅𝑖
𝜕𝑥𝑗

+
𝜕

𝜕𝑥𝑗
[𝑣
𝜕(𝑈𝑖)

𝜕𝑥𝑗
] −

𝜕(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)

𝜕𝑥𝑗
                                                                                           (3.13) 

 

ANSYS (2018) also explains that in Reynolds averaging, the solution variables in the instantaneous 

(exact) Navier-Stokes equations are decomposed into the mean i.e., ensemble-averaged or time-

averaged and fluctuating components. The velocity components can be expressed as shown below; 
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𝑢𝑖 = 𝑢̅𝑖 + 𝑢𝑖
′ ,                                                                                                                                                                    (3.14) 

  

where 𝑢̅𝑖 represents the mean velocity component and 𝑢1
′  represents the fluctuating velocity 

component. 𝑖 can take values from 1 to 3. Similarly, for pressure and other scalar parameters, the 

representation below can be used: 

 

𝜑 = 𝜑̅ + 𝜑′ ,                                                                                                                                                                     (3.15) 

 

where 𝜑 represents any scalar quantity such as pressure, energy, or species concentration. Placing 

expressions in the form of Eq. (3.14) and (3.15) into the instantaneous continuity and momentum 

equations, performing a time average and dropping the overbar on the mean velocity gives the 

ensemble-averaged momentum equations, which is expressed in Cartesian tensor form as: 

 

𝜕𝜌

𝜕𝑡
+
𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖) = 0                                                                                                                                                         (3.16) 

 

  
𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = −

𝜕𝑝

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑗
−
2

3
𝛿𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗
)] +

𝜕

𝜕𝑥𝑗
(−𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ )                                   (3.17) 

 

Eqs. (3.16) and (3.17) above are referred to as RANS equations and have a similar general form as 

the instantaneous Navier-Stokes equations with the velocities and other solution parameters now 

denoting the ensemble-averaged or time-averaged values. Eq. (3.17) also shows some extra terms 

which denote turbulence effects with the need to model the Reynold stresses, −𝜌𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅ . ANSYS (2018) 

explains that for variable density flows, Eqs. (3.16) and (3.17) can be taken as Favre-averaged Navier-

Stokes equations (Hinze, 1975), where the velocities now represent mass-averaged values. 

 

3.4.  Turbulence models  

ANSYS Fluent has several Turbulence models as shown in Fig. 3.1 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 represents the various turbulence models available on ANSYS Fluent with an increase in 

complexity and computational cost from top to bottom. This research has tried to investigate the effects 

of the standard k-𝜀, realizable k-𝜀, SST k-𝜔, and Reynolds stress on SBI thus necessitating the 

elaborate examination of the theories within these models.  

 

Figure 3.1: Turbulence Models Available in Fluent (ANSYS, 2018) 
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3.4.1. The standard k-𝜺 turbulence model 

 

This is a two-equation turbulence models which permits the estimation of turbulent length and scale 

by solving two separate transport equations. It was introduced by Launder and Spalding (1972) and 

is characterised by stability, reduced cost, and realistic precision on a broad scale with wide 

applications in industrial flows and heat transfer simulations. It is also a semi-empirical model which 

relies on model transport equations (Launder and Spalding, 1972) for the turbulence kinetic energy, 

k, (obtained from the exact equation) and dissipation rate, 𝜀. (derived from physical reasoning). To 

derive this model, it is assumed that the flow is fully turbulent, and the impacts of molecular viscosity 

can be ignored. 

 

k and 𝜀 are derived from the transport equations as shown below: 

 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀 + 𝑆𝑘                                                      (3.18) 

 

and, 

 

𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝜀
)
𝜕𝜀

𝜕𝑥𝑗
] + 𝐶1𝜀

𝜀

𝑘
(𝐺𝑘 + 𝐶3𝜀𝐺𝑏) − 𝐶2𝜀𝜌

𝜀2

𝑘
+ 𝑆𝜀                                    (3.19) 

 

From Eqs. (3.18) and (3.19), 𝐺𝑘 denotes the production of turbulence kinetic energy influenced by 

the mean velocity gradients and computed as given below: 

 

        𝐺𝑘 = −𝜌𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑖
                                                                                                                                                       (3.20) 

 

𝐺𝑘 can also be computed in a way that is consistent with the Boussinesq hypothesis as given below: 

 

𝐺𝑘 = 𝜇𝑡𝑆
2                                                                                                                                                                     (3.21) 

 

where S is the modulus of the mean rate-of-strain tensor given as: 

 

𝑆 ≡ √2𝑆𝑖𝑗𝑆𝑖𝑗                                                                                                                                                                 (3.22) 

 

𝐺𝑏 denotes the generation of turbulence kinetic energy as a result of buoyancy computed as shown 

below: 

 

𝐺𝑏 = 𝛽𝑔𝑖
𝜇𝑡
𝑃𝑟𝑡

𝜕𝑇

𝜕𝑥𝑖
                                                                                                                                                        (3.23) 

 

where 𝑃𝑟𝑡 denotes the turbulent Prandtl number for energy (with default value = 0.85 for the 

standard and realizable k- 𝜀) and 𝑔𝑖 represents the 𝑖th direction component of the gravitational 

vector. The thermal expansion coefficient, 𝛽 is given as: 

 

       𝛽 = −
1

𝜌
(
𝜕𝜌

𝜕𝑇
)
𝑝
                                                                                                                                                            (3.24) 

 

For ideal gases, Eq. (3.23) becomes: 
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𝐺𝑏 = −𝑔𝑖
𝜇𝑡
𝜌𝑃𝑟𝑡

𝜕𝜌

𝜕𝑥𝑖
                                                                                                                                                     (3.25) 

 

Henkes et al. (1991) also expressed the degree to which the dissipation rate, 𝜀, is impacted by the 

buoyancy as determined by the constant 𝐶3𝜀 which is not specified on ANSYS fluent but can be 

computed using Eq. (3.26) below: 

 

𝐶3𝜀 = 𝑡𝑎𝑛ℎ│
𝑣

𝑢
│                                                                                                                                                         (3.26) 

 

where 𝑣 and 𝑢 represent the flow velocity components parallel and perpendicular to the gravitational 

vector. respectively ANSYS (2018) thus explains that 𝐶3𝜀 will be unity for buoyant shear layers 

where there exists an alignment between the main flow and gravity direction but will be zero when 

the buoyant shear layers are perpendicular to the gravitational vector. From Eq. (3.18), 𝑌𝑀 denotes 

the fluctuating dilatation contribution (in compressible turbulence) to the total dissipation rate and 

expressed below: 

 

𝑌𝑀 = 2𝜌𝜀𝑀𝑡
2                                                                                                                                                                (3.27) 

 

where, 𝑀𝑡 denotes the turbulent Mach number given as: 

 

𝑀𝑡 = √
𝑘

𝑎2
                                                                                                                                                                    (3.28) 

 

where 𝑎 is the sound speed ≡ √𝛾𝑅𝑇 

 

From Eq. (3.19), 𝐶1𝜀, 𝐶2𝜀 and 𝐶3𝜀 are constants with default values 1.44, 1,92 and 0.09 respectively; 

while 𝜎𝑘 and 𝜎𝜀 are turbulent Prandtl numbers for k and 𝜀 respectively and have default values 1.0 

and 1.3 respectively. 𝑆𝑘 and 𝑆𝜀 are user-defined source terms (Launder and Spalding, 1972). 𝜇𝑡 

denotes the turbulent (or eddy) viscosity and calculated by combining k and 𝜀 given below: 

 

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
                                                                                                                                                                 (3.30) 

 

where 𝐶𝜇 represents a constant. 

 

3.4.2. The realizable k-𝜺 turbulence model 
 

This model represents a variant or modification to the standard k-𝜀 model to enhance its 

performance (Shih et al., 1995). This model is different from the standard k- 𝜀 as it comprises a 

different formulation for the turbulent viscosity and its modified transport equation for the dissipation 

rate, 𝜀, has been obtained from an exact equation for the transport of the mean-square vorticity 

fluctuation. It is also called realizable as it fulfils certain mathematical constraints on the Reynolds 

stresses thus conforming to the physics of turbulent flows (standard k-𝜀 and RNG k-𝜀 models are 

not realizable) 

 

The Boussinesq relationship and the eddy viscosity definition can be combined to fully understand 

the mathematics that drives this model which yields the normal Reynolds stress in an 

incompressible strained mean flow as shown below: 
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𝑢2̅̅ ̅ =
2

3
𝑘 − 2𝑣𝑡

𝜕𝑈

𝜕𝑥
                                                                                                                                                     (3.31) 

 

From Eq. (3.31), and when 𝑣𝑡 ≡ 𝜇𝑡 𝜌⁄ , yields the case where the normal stress, 𝑢2̅̅ ̅, which is a 

positive quantity, becomes negative i.e., becomes non-realizable when the strain is substantial 

enough to satisfy the relation below: 

 

𝑘

𝜀

𝜕𝑈

𝜕𝑥
>

1

3𝐶𝜇
≈ 3.7                                                                                                                                                      (3.32) 

In the same way, ANSYS (2018) explains that Schwarz inequality for shear stresses (𝑢∝̅̅̅̅ 𝑢̅𝛽
2 ≤ 𝑢∝

2𝑢𝛽
2̅̅ ̅̅ ̅̅ ̅; 

with no summations on 𝛼 and 𝛽) can be ignored when the mean strain rate is large. It continues by 

stating the easiest way to attain realizability, i.e., positivity of normal stresses and Schwarz 

inequality for shear stresses, is to vary the constant, 𝐶𝜇, by sensitizing it to the mean flow i.e., mean 

distortion and the turbulence (k, 𝜀). 𝐶𝜇 has been used extensively by many researchers (e.g., 

Reynolds, 1987) and has been sufficiently validated by experimental support where it is discovered 

to have a value of 0.09 and 0.05 for a logarithmic layer of equilibrium boundary layers and for a 

strong homogenous flow respectively. The realizable k-𝜀 turbulence model is a massive upgrade 

on its standard k-𝜀 counterpart for cases where the flow structures include strong streamline 

curvature, vortices and rotation. This model also has proven competencies for a broad range of 

flows (Shih et al., 1995; Kim et al., 1997) like rotating homogeneous shear flows, free flows including 

jets and mixing layers, channel and boundary layer flows, and separated flows with performances 

significantly better than the standard k- 𝜀 model. Finally, this model can calculate the spreading rate 

for axisymmetric jets and planar jets, i.e., possesses good resolution of the round-jet anomaly. 

These reasons have ensured that this turbulence model is applied in this research. 

 

Another weakness of the standard k-𝜀 model or other traditional k-𝜀 turbulence models abound in 

the modelled equation for 𝜀. For the standard k-𝜀 model or other traditional k-𝜀 turbulence models, 

the popular round-jet anomaly based on the discovery that the prediction of the spreading rate for 

axisymmetric jets is unexpectedly poor mainly attributable to the modelled dissipation equation. 

Thus, the realizable k-𝜀 Turbulence Model introduced by Shih et al. (1995) was intended to address 

the shortcomings of the traditional k-𝜀 Turbulence Models by incorporating; a novel eddy-viscosity 

formula comprising a variable 𝐶𝜇 originally introduced by Reynolds (1987); and a new model 

equation for 𝜀 dependent on the dynamic equation for the fluctuation of the mean-square vorticity. 

ANSYS (2018) warns that creation of non-physical turbulent viscosities in cases when the 

computational domain has rotating and stationary fluid zones like multiple reference frames, rotating 

sliding meshes etc. poses a drawback for the realizable k-𝜀 Turbulence Model. This is because this 

model incorporates the impacts of mean rotation in the definition of turbulent viscosity (see Eq. 

(3.30) above and Eqs. (3.38) and (3.39) below). 

 

ANSYS (2018) derived the modelled transport equations for k and 𝜀 in the realizable k-𝜀 model as 

given below: 

 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑗
(𝜌𝑘𝑢𝑗) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀 + 𝑆𝑘                                                      (3.33) 

 

And, 

 

 

𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑢𝑗) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝜀
)
𝜕𝜀

𝜕𝑥𝑗
] + 𝜌𝐶1𝑆𝜀 − 𝜌𝐶2

𝜀2

𝑘 + √𝑣𝜀
+ 𝐶1𝜀

𝜀

𝑘
𝐶3𝜀𝐺𝑏 + 𝑆𝜀                        (3.34) 
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where: 

 

𝐶1 = 𝑚𝑎𝑥 [0.43,
𝜂

𝜂 + 5
]                                                                                                                                            (3.35) 

 

𝜂 = 𝑆
𝑘

𝜀
                                                                                                                                                                         (3.36) 

 

𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗                                                                                                                                                                 (3.37) 

 

From Eqs. (3.33) and (3.34) above, 𝐺𝑘, 𝐺𝑏 and 𝑌𝑀 denote the same parameters (and have the same 

equations) as detailed in Eqs. (3.20), (3.23), and (3.27)). 𝐶2 and 𝐶1𝜀 represent constants with default 

values of 1.44 and 1.9 respectively and are selected to enable the model to work appropriately for 

particular canonical flows. 𝜎𝑘 and 𝜎𝜀 represent the turbulent Prandtl numbers for k and 𝜀 respectively 

having default values of 1.0 and 1.2 respectively. 

 

From Eq. (3.34), the production term in the 𝜀 equation i.e., the second term on the right-hand side, 

does not require the production of k as it does not comprise the same 𝐺𝑘 term as seen in the 

standard k- 𝜀 turbulence model. This present equation structure more appropriately denotes the 

spectral energy transfer. Also, there exists a destruction term i.e., the third term on the right-hand 

side of Eq. (3.34) which has no singularity as it denominator never disappears even when k 

disappears or tends towards 0 or even gets negative. The standard k-𝜀 model has a singularity due 

to k in the denominator.  

 

The eddy viscosity for the realizable k-𝜀 turbulence model is same as in the standard k-𝜀 turbulence 

model. However, for the realizable k-𝜀 turbulence model, the constant, 𝐶𝜇, is calculated as shown 

below: 

 

𝐶𝜇 =
1

𝐴0 + 𝐴𝑠
𝑘𝑈∗

𝜀

                                                                                                                                                      (3.38) 

 

where:  

 

        𝑈∗ ≡ √𝑆𝑖𝑗𝑆𝑖𝑗 + 𝛺̃𝑖𝑗𝛺̃𝑖𝑗                                                                                                                                               (3.39) 

 

and, 

 

𝛺̃𝑖𝑗 = 𝛺𝑖𝑗 − 2𝜀𝑖𝑗𝑘𝜔𝑘                                                                                                                                                   (3.40) 

 

𝛺𝑖𝑗 = 𝛺𝑖𝑗̅̅ ̅̅ − 𝜀𝑖𝑗𝑘𝜔𝑘                                                                                                                                                      (3.41) 

 

where 𝛺𝑖𝑗 denotes the mean rate-of-rotation tensor viewed in a moving reference frame with the 

angular velocity, 𝜔𝑘. 𝐴0 and 𝐴𝑠 which represent the model constants represented by: 

 

𝐴0 = 4.04                                                                                                                                                                     (3.42) 

 

and, 
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𝐴𝑠 = √6𝑐𝑜𝑠𝜑                                                                                                                                                               (3.43) 

 

where: 

 

𝜑 =
1

3
𝑐𝑜𝑠−1(√6𝑊)                                                                                                                                                   (3.44) 

 

and, 

 

       𝑊 =
𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖

𝑆̃3
                                                                                                                                                              (3.45) 

 

       𝑆̃ = √𝑆𝑖𝑗𝑆𝑖𝑗                                                                                                                                                                    (3.46) 

 

       𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
+
𝜕𝑢𝑖
𝜕𝑥𝑗
)                                                                                                                                                  (3.47) 

 

From Eqs. (3.30) and (3.38), it is evident that the constant, 𝐶𝜇, is dependent on the mean strain and 

rotation rates, the angular velocity of the system rotation as well as the turbulence fields, k and 𝜀. 

ANSYS (2018) also assigns a standard value of 0.09 for an initial sublayer in an equilibrium 

boundary layer to 𝐶𝜇. The values for 𝐶𝜇 = 0.09 and 𝐴0 = 4.04 have been used (particularly for the 

realizable k-𝜀 turbulence model) as they are default values recommended by ANSYS Fluent and 

yielded desirable results for the simulated cases. 

 

3.4.3. Shear-stress transport (SST) k-𝝎 model 
 

The standard k- 𝜔 model is an empirical model dependent on model transport equations for the 

turbulence kinetic energy, k, and the specific dissipation rate, 𝜔, which is synonymous to the ratio 

of the dissipation rate to the turbulence kinetic energy i.e., 𝜀 𝑘⁄  (Wilcox, 1998). The standard k-𝜔 

model adopts the Wilcox k-𝜔 model (Wilcox, 1998) which inputs modifications for the impact of low 

𝑅𝑒, compressibility and shear flow spreading. However, the Wilcox model is limited with respect to 

the solutions’ sensitivity to values for k and 𝜔 particularly outside the shear layer i.e., freestream 

sensitivity. The Baseline (BSL) k- 𝜔 model was introduced by Menter (2009) to ensure the efficient 

combination of the robust and precise formulation of the k- 𝜔 model in the wall vicinity region with 

the freestream independence of the k- 𝜀 model in the far field. The BSL k- 𝜔 model is more advanced 

than the standard k- 𝜔 model based on the three refinement processes. First, the standard k- 𝜔 and 

the transformed k- 𝜀 models are multiplied by a blending function after which both models are 

summed up. The blending function is designed to be unity in the vicinity of the wall region thus 

activating the standard k- 𝜔 model, while it is set to 0 away from the surface thus activating the 

transformed k- 𝜀 model. Secondly, the BSL model adopts a damped cross-diffusion derivative term 

in 𝜔. Finally, the BSL model incorporates different modelling constants. The transport equations for 

the BSL k- 𝜔 model closely resemble the standard k- 𝜔 model: 

 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(𝛤𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘                                                                                       (3.48) 

 

and, 

 

𝜕

𝜕𝑡
(𝜌𝜔) +

𝜕

𝜕𝑥𝑗
(𝜌𝜔𝑢𝑗) =

𝜕

𝜕𝑥𝑗
(𝛤𝜔

𝜕𝜔

𝜕𝑥𝑗
) + 𝐺𝜔 − 𝑌𝜔 + 𝐷𝜔 + 𝑆𝜔                                                                      (3.49) 
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From Eq. (3.48) above, 𝐺𝑘 denotes the production of turbulent kinetic energy and is expressed in a 

similar fashion as the standard 𝑘 − 𝜔 and realizable 𝑘 − 𝜀 model. 𝐺𝜔, from Eq. (3.49), denotes the 

production of 𝜔 and is computed using: 

  

𝐺𝜔 =
𝛼𝛼∗

𝑣𝑡
𝐺𝑘                                                                                                                                                               (3.50) 

 

The formulation given in Eq. (3.50) above varies from the standard k- 𝜔 model with respect to the 

manner in which the term, 𝛼∞, is estimated. For the standard k- 𝜔 model, 𝛼∞ is expressed as a 

constant, i.e., 0.52 while for the BSL k- 𝜔 model, it is given as: 

 

𝛼∞ = 𝐹1𝛼∞,1 + (1 − 𝐹1)𝛼∞,2                                                                                                                                   (3.51) 

 

where:  

 

𝛼∞,1 =
𝛽𝑖,1
𝛽∞
∗
−

𝜅2

𝜎𝜔,1√𝛽∞
∗
                                                                                                                                             (3.52) 

 

𝛼∞,2 =
𝛽𝑖,2
𝛽∞
∗
−

𝜅2

𝜎𝜔,2√𝛽∞
∗
                                                                                                                                             (3.53) 

 

and 𝜅 = 0.41. 𝑌𝑘 and 𝑌𝜔 denote the dissipation of k and 𝜔 as a result of turbulence. The dissipation 

of k is given as: 

 

𝑌𝑘 = 𝜌𝛽
∗𝑓𝛽∗𝑘𝜔                                                                                                                                                            (3.54)  

 

where: 

 

𝑓𝛽∗ = {
1, 𝜒𝑘 ≤ 0

1+680𝜒𝑘
2

1+400𝜒𝑘
2 , 𝜒𝑘 > 0

                                                                                                                                            (3.55)  

 

where: 

 

𝜒𝑘 ≡
1

𝜔3
𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
                                                                                                                                                         (3.56) 

 

and 

 

𝛽∗ = 𝛽𝑖
∗[1 + 𝜁∗𝐹(𝑀𝑡)]                                                                                                                                              (3.57) 

 

𝛽𝑖
∗ = 𝛽∞

∗ (
4 15 + (𝑅𝑒𝑡 𝑅𝛽⁄ )

4
⁄

1 + (𝑅𝑒𝑡 𝑅𝛽⁄ )
4 )                                                                                                                             (3.58) 

 

where 𝜁∗ = 1.5; 𝑅𝛽 = 8 and 𝛽∞
∗ = 0.09 

 

and,  

 

𝑅𝑒𝑡 =
𝜌𝑘

𝜇𝜔
                                                                                                                                                                     (3.59) 
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For the BSL k- 𝜔 model, 𝑓𝛽∗ is unity and thus Eq. (3.54) reduces to: 

 

𝑌𝑘 = 𝜌𝛽
∗𝑘𝜔                                                                                                                                                                 (3.60) 

 

The dissipation of 𝜔 is given by: 

 

𝑌𝜔 = 𝜌𝛽𝑓𝛽𝜔
2                                                                                                                                                               (3.61) 

 

where:  

 

𝑓𝛽 =
1 + 70𝜒𝜔
1 + 80𝜒𝜔

                                                                                                                                                          (3.62) 

 

 

𝜒𝜔 = |
(𝛺𝑖𝑗𝛺𝑗𝑘𝑆𝑘𝑖)

(𝛽∞
∗ 𝜔)3

⁄ |                                                                                                                                   (3.63) 

 

 

𝛺𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                                                                                                                 (3.64) 

 

where the strain rate tensor, 𝑆𝑖𝑗, is given below: 

 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
+
𝜕𝑢𝑖
𝜕𝑥𝑗
)                                                                                                                                                 (3.65) 

 

Eq. (3.65) above comprises both the rotation and strain tensors which suppresses the creation of 

eddy viscosity and consequently suppresses the eddy viscosity itself at locations where the 

measure of vorticity is greater than the strain rate. 𝛽 in Eq. (3.61) is given as: 

 

𝛽 = 𝛽𝑖 [1 −
𝛽𝑖
∗

𝛽𝑖
𝜁∗𝐹(𝑀𝑡)]                                                                                                                                          (3.66) 

 

The compressibility function, 𝐹(𝑀𝑡), is given below: 

 

𝐹(𝑀𝑡) = {
0, 𝑀𝑡 ≤ 𝑀𝑡𝑜

𝑀𝑡
2 −𝑀𝑡𝑜

2 , 𝑀𝑡 > 𝑀𝑡𝑜
                                                                                                                     (3.67) 

 

where: 

  

        𝑀𝑡
2 =

2𝑘

𝑎2
                                                                                                                                                                      (3.68) 

 

and 𝑀𝑡𝑜 = 0.25 while 𝑎 is given as:  

 

𝑎 = √𝛾𝑅𝑇                                                                                                                                                                    (3.69) 

 

ANSYS (2018) explains that for the high 𝑅𝑒 scenario of the k-𝜔 model, 𝛽𝑖
∗ = 𝛽∞

∗ . For the 

incompressible case, 𝛽∗ = 𝛽𝑖
∗. The standard k- 𝜔 model constants as adopted by ANSYS (2017) 
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are: 𝛼∞
∗ = 1; 𝛼∞ = 0.52; 𝛼0 =

1

9
; 𝛽∞

∗ = 0.09; 𝛽𝑖 = 0.072; 𝑅𝛽 = 8; 𝑅𝑘 = 6; 𝑅𝜔 = 2.95; 𝜁∗ = 1.5; 𝑀𝑡𝑜 =

0.25; 𝛼𝑘 = 𝛼𝜔 = 2. 

 

For the standard k-𝜔 model, 𝛽𝑖 is described as a constant with the default value of 0.072 while Eq. 

(3.62) describes 𝑓𝛽. However, for the BSL k-𝜔 model, 𝑓𝛽 is unity and Eq. (3.61) is reduced to: 

 

𝑌𝜔 = 𝜌𝛽𝜔
2                                                                                                                                                                   (3.70) 

 

Also, for the BSL k-𝜔 model, 𝛽𝑖, as opposed to having a constant value, is derived as: 

 

𝛽𝑖 = 𝐹1𝛽𝑖,1 + (1 − 𝐹1)𝛽𝑖,2                                                                                                                                        (3.71) 

 

𝐹1 is described by Eq. (3.78), and the default constant value of 0.072 is still used for 𝛽𝑖 in low 𝑅𝑒 

correction for BSL to describe 𝛼0
∗ as seen in Eq. (3.72) below: 

 

𝛼0
∗ =

𝛽𝑖
3
                                                                                                                                                                         (3.72) 

 

As the BSL k-𝜔 model is dependent on both the standard k-𝜔 model and the standard k-𝜀 model 

(ANSYS, 2018), there is then a need to change the standard k-𝜀 model into k and 𝜔 adopted 

equations to allow for the combination of these two models together. This then leads to the adoption 

of a cross-diffusion term, as seen as the fourth term on the right-hand-side of Eq. (3.49) shown 

below: 

 

𝐷𝜔 = 2(1 − 𝐹1)𝜌
1

𝜔𝜎𝜔,2

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
                                                                                                                             (3.73) 

 

From Eqs. (3.48) and (3.49), 𝛤𝑘 and 𝛤𝜔 denote the effective diffusivities for the BSL k- 𝜔 model as 

derived below: 

 

𝛤𝑘 = 𝜇 +
𝜇𝑡
𝜎𝑘
                                                                                                                                                                 (3.74) 

 

𝛤𝜔 = 𝜇 +
𝜇𝑡
𝜎𝜔
                                                                                                                                                                (3.75) 

 

where 𝜎𝑘 and 𝜎𝜔 represent the turbulent Prandtl numbers for k and 𝜔 respectively and are 

expressed as: 

 

𝜎𝑘 =
1

𝐹1 𝜎𝑘,1⁄ + (1 − 𝐹1) 𝜎𝑘,2⁄
                                                                                                                                 (3.76) 

 

𝜎𝜔 =
1

𝐹1 𝜎𝜔,1⁄ + (1 − 𝐹1) 𝜎𝜔,2⁄
                                                                                                                               (3.77) 

 

where 𝐹1 denotes the blending function and given as: 

 

𝐹1 = 𝑡𝑎𝑛ℎ(𝛷1
4)                                                                                                                                                            (3.78) 

 

𝛷1 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 (
√𝑘

0.09𝜔𝑦
,
500𝜇

𝜌𝑦2𝜔
) ,

4𝜌𝑘

𝜎𝜔,2𝐷𝜔
+𝑦2

]                                                                                                 (3.79) 
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𝐷𝜔
+ = 𝑚𝑎𝑥 [2𝜌

1

𝜎𝜔,2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10]                                                                                                                 (3.80) 

 

where y represents the distance to the next surface and 𝐷𝜔
+ denotes a positive portion of the cross-

diffusion term. The turbulent viscosity, 𝜇𝑡, is given by: 

 

𝜇𝑡 = 𝛼
∗
𝜌𝑘

𝜔
                                                                                                                                                                   (3.81) 

 

Constants 𝜎𝑘,1, 𝜎𝜔,1, 𝜎𝑘,2, 𝜎𝜔,2, 𝛽𝑖,1 and 𝛽𝑖,2 for the BSL k-𝜔 model have default values of 2.0, 2.0, 

1.0, 1.168, 0.075 and 0.0828 respectively. Other constants like; 𝛼∞
∗ ; 𝛼∞; 𝛼0; 𝛽∞

∗ ; 𝛽𝑖; 𝑅𝛽; 𝑅𝑘; 𝑅𝜔; 𝜁∗; 

𝑀𝑡𝑜; 𝛼𝑘, and 𝛼𝜔 have equivalent default values as the standard k-𝜔 model. 

 

The SST k-𝜔 model incorporates all the refinements of the BSL k-𝜔 model, and also considers the 

transport of the turbulence shear stress in turbulent viscosity description thus ensuring that this 

model possesses more accuracy and reliability for a broader range of flows like the adverse 

pressure gradient flows, airfoils, transonic shock waves compared to the standard and the BSL k-

𝜔 model. The BSL model merges the merits of the Wilcox and the k-𝜀 model but is unable to properly 

estimate the start and amount of flow separation from smooth surfaces. This is because both models 

do not consider the transport of the turbulent shear stress thus leading to an overproduction of the 

eddy-viscosity. The appropriate transport behaviour can be derived by using a constraint to the 

formulation of the eddy-viscosity as shown below: 

 

 𝜇𝑡 =
𝜌𝑘

𝜔

1

𝑚𝑎𝑥 [
1
𝛼∗
,
𝑆𝐹2
𝑎1𝜔

]
                                                                                                                                           (3.82) 

 

where S is the magnitude of strain rate and the coefficient 𝛼∗ is defined as: 

 

𝛼∗ = 𝛼∞
∗ (
𝛼0
∗ + 𝑅𝑒𝑡 𝑅𝑘⁄

1 + 𝑅𝑒𝑡 𝑅𝑘⁄
)                                                                                                                                         (3.83) 

 

where: 

 

𝑅𝑒𝑡 =
𝜌𝑘

𝜇𝜔
                                                                                                                                                                     (3.84) 

 

and: 𝑅𝑘 = 6. 𝛼0
∗ is as defined by Eq. (3.72). 𝐹2 can be expressed as: 

 

𝐹2 = 𝑡𝑎𝑛ℎ(𝛷2
2)                                                                                                                                                           (3.85) 

 

𝛷2 = 𝑚𝑎𝑥 [2
√𝑘

0.09𝜔𝑦
,
500𝜇

𝜌𝑦2𝜔
]                                                                                                                                 (3.86) 

 

where y denotes the distance to the next surface. Constants 𝜎𝑘,1, 𝜎𝜔,1, 𝜎𝑘,2, 𝜎𝜔,2, 𝑎1, 𝛽𝑖,1 and 𝛽𝑖,2 for 

the SST k-𝜔 model have default values of 1.176, 2.0, 1.0, 1.168, 0.31, 0.075 and 0.0828 

respectively. Other constants like; 𝛼∞
∗ ; 𝛼∞; 𝛼0; 𝛽∞

∗ ; 𝑅𝛽; 𝑅𝑘; 𝑅𝜔; 𝜁∗; 𝑀𝑡𝑜; and ∝𝑘, have equivalent 

default values as the standard k-𝜔 model. 
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3.4.4. Reynolds stress model 
 

Yang (2014) notes that the averaging procedure presents some unknown terms such as the 

Reynolds stresses (
−𝜕(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)

𝜕𝑥𝑗
⁄ ). These Reynolds stresses have been given by a turbulence 

model before the governing equations can be solved.  

 

Several turbulence models have been developed till date and this research looks to utilise the most 

advanced turbulence models like the Reynolds stress model (RSM), which computes the Reynolds 

stresses utilising transport equations as opposed to approximating them adopting other techniques 

such as an eddy viscosity approach like the k-epsilon model. The Reynolds stress transport 

equations can be obtained from the Navier-Stokes equations and can thus be derived, ignoring 

body and rotation forces as follows: 

 

𝜕(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)

𝜕𝑡
+
𝜕(𝑈𝑘𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)

𝜕𝑥𝑘

= −[𝑢𝑖𝑢𝑘̅̅ ̅̅ ̅̅
𝜕(𝑈𝑗)

𝜕𝑥𝑘
+ 𝑢𝑗𝑢𝑘̅̅ ̅̅ ̅̅

𝜕(𝑈𝑗)

𝜕𝑥𝑘
] +

𝜕

𝜕𝑥𝑘
[𝑣
𝜕(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)

𝜕𝑥𝑘
− 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑢𝑘̅̅ ̅ −

𝑝

𝜌
(𝑢𝑖𝛿𝑗𝑘 + 𝑢𝑗𝛿𝑖𝑘)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
] +

𝑝

𝜌
[
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

− 2𝑣
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑗

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                                                                                                                                             (3.87) 

 

The two terms on the left-hand side of Eq. (3.87) above denote the time derivative and convection 

term. The first term on the right-hand side of the equation denotes the generation induced by mean 

flow distortion; the second term denotes the diffusive transport influenced by molecular, turbulent 

and pressure diffusion; the third term denotes the pressure-strain term which explains the stress 

redistribution as a result of oscillating pressure; while the fourth term denotes the dissipation term. 

As several terms in this exact transport equation require modelling, the turbulent diffusive transport 

term is thus modelled using a simplified version of the generalised gradient diffusion model 

introduced by Daly and Harlow (1970) with the aim of improving stability. This is shown below: 

 

𝐷𝑇,𝑖𝑗 =
𝜕

𝜕𝑥𝑘
[
𝜇𝑡
𝜎𝑘

𝜕(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)

𝜕𝑥𝑘
]                                                                                                                                          (3.88) 

 

Gibson and Launder (1978) proposed a pressure-strain model for the pressure-strain term, which 

is represented by the third term on the right-hand side of Eq. (3.87) adopting the classical 

decomposition technique comprising of three components; the slow pressure-strain term, the rapid 

pressure strain term and the wall reflection term as given by: 

 

𝜙𝑖𝑗 = 𝜙𝑖𝑗,1 + 𝜙𝑖𝑗,2

+ 𝜙𝑖𝑗,𝑤                                                                                                                                           (3.89) 

 

𝜙𝑖𝑗,1 = −𝐶1𝜌
𝜀

𝑘
[𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ −

2

3
𝛿𝑖𝑗𝑘]                                                                                                                               (3.90) 

 

𝜙𝑖𝑗,2 = −𝐶2 [(𝑃𝑖𝑗 + 𝐶𝑖𝑗) −
2

3
𝛿𝑖𝑗(𝑃 − 𝐶)]                                                                                                            (3.91) 

 

𝜙𝑖𝑗,𝑤 = 𝐶1
′ [𝑢𝑘𝑢𝑚̅̅ ̅̅ ̅̅ ̅𝑛𝑘𝑛𝑚𝛿𝑖𝑗 −

3

2
𝑢𝑘𝑢𝑖̅̅ ̅̅ ̅̅ 𝑛𝑘𝑛𝑗 −

3

2
𝑢𝑘𝑢𝑗̅̅ ̅̅ ̅̅ 𝑛𝑘𝑛𝑖]

0.4𝑘1 2⁄

𝑑

+ 𝐶2
′ [𝜙𝑘𝑚,2𝑛𝑘𝑛𝑚𝛿𝑖𝑗 −

3

2
𝜙𝑖𝑘,2𝑛𝑘𝑛𝑗 −

3

2
𝜙𝑗𝑘,2𝑛𝑘𝑛𝑖]

0.4𝑘3 2⁄

𝜀𝑑
                                           (3.92) 
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From Eq. (3.92), 𝐶1 = 1.8, 𝐶2 = 0.6, 𝐶1
′ = 0.5 and 𝐶2

′ = 0.3, d, 𝑃𝑖𝑗 and 𝐶𝑖𝑗 represent the normal 

distance to the wall, production term and the convective terms respectively. Yang (2014) also 

presented the modelled transport equation for the dissipation rate as given by: 

 

𝜕(𝜀)

𝜕𝑡
+
𝜕(𝜀𝑈̅1)

𝜕𝑥𝑖
=
𝜕

𝜕𝑥𝑖
[(𝑣 +

𝑣𝑡
𝜎𝜀
)
𝜕𝜀

𝜕𝑥𝑖
] +

1

2
𝐶𝜀1𝑃𝑖𝑖

𝜀

𝜌𝑘
− 𝐶𝜀2

𝜀2

𝑘
                                                                         (3.93) 

 

here, 𝜎𝜀, 𝐶𝜀1 and 𝐶𝜀2 have numerical values of 1.0, 1.44 and 1.92 respectively. 

 

ANSYS (2018) notes that the RSM must be utilised if the investigated flow field show anisotropy In 

the Reynolds stresses as seen in flow cases like cyclone flows, highly swirling flows in combustors, 

rotating flow passages, and stress-influenced secondary flows in ducts. ANSYS (2018) also details 

that the exact form of the Reynold stress transport equations can be obtained by taking moments 

of the exact momentum equation, i.e., multiplying the exact momentum equation for the fluctuations 

by the fluctuating velocities and averaging. This multiplication is subsequently Reynolds-averaged. 

They then expressed the exact transport equations for the transport of the Reynolds stresses, i.e., 

𝜌𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅  which are given as: 

 
𝜕

𝜕𝑡
(𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ )⏟      

𝑙𝑜𝑐𝑎𝑙 𝑡𝑖𝑚𝑒
𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

+
𝜕

𝜕𝑥𝑘
(𝜌𝑢𝑘𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ )

⏟        
𝐶𝑖𝑗≡ 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= −
𝜕

𝜕𝑥𝑘
[𝜌𝑢𝑖

′𝑢𝑗
′𝑢𝑘
′̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑝′(𝛿𝑘𝑗𝑢𝑖

′ + 𝛿𝑖𝑘𝑢𝑗
′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]

⏟                      
𝐷𝑇,𝑖𝑗≡ 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+

𝜕

𝜕𝑥𝑘
[𝜇

𝜕

𝜕𝑥𝑘
(𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ )]

⏟          
𝐷𝐿,𝑖𝑗≡ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

−𝜌 (𝑢𝑖
′𝑢𝑘
′̅̅ ̅̅ ̅̅ 𝜕𝑢𝑗

𝜕𝑥𝑘
+ 𝑢𝑗

′𝑢𝑘
′̅̅ ̅̅ ̅̅ 𝜕𝑢𝑖

𝜕𝑥𝑘
)

⏟                
𝑃𝑖𝑗≡ 𝑠𝑡𝑟𝑒𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

−𝜌𝛽(𝑔𝑖𝑢𝑗
′𝜃̅̅̅̅̅ + 𝑔𝑗𝑢𝑖

′𝜃̅̅̅̅̅)⏟              
𝐺𝑖𝑗≡ 𝑏𝑜𝑢𝑦𝑎𝑛𝑐𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝑝′ (
𝜕𝑢𝑖

′

𝜕𝑥𝑗
+
𝜕𝑢𝑗

′

𝜕𝑥𝑖
)

⏟        
𝜑𝑖𝑗≡ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑠𝑡𝑟𝑎𝑖𝑛

−

2𝜇
𝜕𝑢𝑖

′

𝜕𝑥𝑘

𝜕𝑢𝑗
′

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅

⏟      
𝜀𝑖𝑗≡ 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

−2𝜌𝛺𝑘(𝑢𝑗
′𝑢𝑚
′̅̅ ̅̅ ̅̅ ̅𝜀𝑖𝑘𝑚 + 𝑢𝑖

′𝑢𝑚
′̅̅ ̅̅ ̅̅ ̅𝜀𝑗𝑘𝑚)⏟                    

𝐹𝑖𝑗≡ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

+ 𝑆𝑢𝑠𝑒𝑟⏟
𝑢𝑠𝑒𝑟−𝑑𝑒𝑓𝑖𝑛𝑒𝑑
𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚

                                                                       (3.94)  

 

3.5.  Simulation techniques: interface tracking methods 

Among the several interface tracking techniques, the Volume-of-Fluid (VOF) technique, Level-set 

method and Front-tracking approach are extensively applied for gas bubble/liquid flow interaction, 

shock gas bubble interaction and shock liquid bubble interaction. The first two techniques, as applied 

in this research, are introduced in the following sections. 

 

3.5.1. Level-set technique 
 

This approach was originally proposed by Osher and Sethian (1988) to simulate the motion of an 

incompressible two-phase flow (Osher and Sethian, 1988). The level-set technique adopts a 

distance function to capture the gas-liquid interface on the fixed Eulerian grid. The distance function 

ф (𝑥, 𝑦, 𝑡) describes the distance from position (𝑥, 𝑦) to the gas-liquid interface at time 𝑡 in two 

dimensions. The interface, denoted as 𝛤, represents the zero-level set of a ф function. This is shown 

below: 

 

𝛤 = {(𝑥, 𝑦 ∣ ф(𝑥, 𝑦, 𝑡)) = 0}                                                                                                                                    (3.95) 

The level set function is considered positive in one phase and negative in the second phase. This 

is shown in Fig. 3.2 and is shown in Eq. (3.96). 

ф(𝑥, 𝑦, 𝑡) {

> 0, 𝑝ℎ𝑎𝑠𝑒 1
= 0, 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
< 0, 𝑝ℎ𝑎𝑠𝑒 2

                                                                                                                               (3.96) 
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The development of ф is controlled by a transport equation shown in Eq. (3.97): 

𝜕ф

𝜕𝑡
+ 𝐮. ∇ф = 0                                                                                                                                                           (3.97) 

      

Level set techniques can handle topological variations and it is mostly straightforward to derive high 

precision but these approaches are not conservative. Although the initial value of the level set 

function, ф0, is set to be the distance function as shown in Fig. 3.2, the level set function may not 

stay as a distance function at  𝑡 > 0 when the advection equation is solved for ф (Yu and Fan, 2008). 

Thus, a reinitialization approach is required to maintain the zero-level set as the position of the gas-

liquid interface.  

 

 

 

 

 

 

 

 

 

 

The numerical studies of Deshpande and Zimmerman (2006) discovered from their 2D drop 

dynamics that there was still a 9% loss in the cross-sectional area of the bubble after reinitialization 

although this was significantly better than the 32% loss in the droplet’s cross-sectional area without 

reinitialization (Deshpande and Zimmerman, 2006). To overcome this challenge, some researchers 

attempted to combine the VOF approach with the level set technique to develop a conservative 

scheme (Olsson and Kreiss, 2005; Olsson et al., 2007). This is discussed in further detail in Section 

3.5.3. Enright et al. (2002) presented an efficient semi-Lagrangian based particle level-set technique 

for exact interface capturing. They explained that this technique had the potential to possess better 

conservation characteristics in comparison to the standalone level set approach.  

3.5.2. The volume of fluid (VOF) technique 
 

This technique has been widely applied in the simulation of two-phase flow since it was proposed 

by Noh and Woodward (1976). This method implicitly defines the volume fraction within every grid 

cell of one of the fluids. The volume fraction, 𝛾 is given as: 

𝛾 {

= 1, 𝑝ℎ𝑎𝑠𝑒 1
= 0, 𝑝ℎ𝑎𝑠𝑒 2

0 < 𝛾 < 1, 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
                                                                                                                                  (3.98) 

The volume fraction is advected by the velocity field as shown in Eq. (3.99): 

𝜕𝛾

𝜕𝑡
+ ∇. (𝐮𝛾) = 0                                                                                                                                                        (3.99) 

Figure 3.2: Properties of the level-set function showing that the level-set function has positive 

values in the continuous phase, negative values in the dispersed phase, and is equal to zero at the 

interface (Deshpande and Zimmerman, 2006) 
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The volume fraction is used to compute the mean density, viscosity and other characteristics in the 

interface grid cells. Afterwards, the gas-liquid two-phase problem is converted into a one fluid 

problem by solving a set of momentum equations. The surface tension can also be computed using 

the volume fraction within and adjacent to the grid cell (Brackbill et al., 1992). This model is a surface 

tracking technique adopted for a fixed Eulerian mesh. It is normally applied to cases involving two 

or more immiscible fluids where the interface position (between the fluids) is of particular interest. 

For this model, one set of momentum equations is apportioned to the fluids, and the volume fraction 

for every fluid in every computational cell is tracked throughout the domain. This model also has 

wide applications such as stratified flows, flows at free surfaces, filling, sloshing, large bubbles’ 

motion in a liquid, liquid motion following a dam break, jet breakup estimation incorporating surface 

tension, and the tracking of liquid-gas interface either in the steady or transient modes (ANSYS, 

2018). The VOF model formulation in ANSYS Fluent is generally utilised to calculate a time-

dependent solution. This model formulation also depends on the absence of interpenetration by the 

two fluids. The volume fraction of a phase in the computational cell is introduced as a variable on 

the addition of that phase to the model. ANSYS (2018) also notes that the sum of volume fractions 

of all phases must equal one and the field for all variables and properties are allocated to the phases 

as well as denote volume-averaged values provided the volume fraction of every phase is known 

at every location. This then implies that the variables and properties in any particular cell are either 

wholly representative of one of the phases or representative of a mixture of the phases reliant on 

the values of the volume fraction. Following from this, if the 𝑞𝑡ℎ fluid’s volume fraction in the cell is 

represented by 𝛾𝑞, then subsequently any of the conditions listed below are possible: 

✓ If 𝛾𝑞 is zero, then the cell of the 𝑞𝑡ℎ fluid is empty. 

✓ If 𝛾𝑞 is one, then the cell of the 𝑞𝑡ℎ fluid is full. 

✓ When 𝛾𝑞 is greater than zero but less than one, then the computational cell contains the 

interface between the 𝑞𝑡ℎ fluid and one or more other fluids. 

𝛾𝑞 is similar to 𝛾 except that 𝛾 denotes the volume fraction of any of the phases depending on its 

value i.e., 0, 1 or 0 < 𝛾 < 1 (see Eq. 3.98) while 𝛾𝑞 denotes the volume fraction of the 𝑞𝑡ℎ fluid in 

the cell such that any of the conditions listed above are possible. ANSYS Fluent then assigns the 

suitable properties and variables to every control volume within the computational domain 

depending on the local value of 𝛾𝑞. 

3.5.2.1. Volume fraction equation 
 

The tracking of interface(s) between the phases is achieved using the solution of a continuity 

equation for the volume fraction of one or several other faces. This equation, corresponding to 

the 𝑞𝑡ℎ phase, is given below: 

 

1

𝜌𝑞
[
𝜕

𝜕𝑡
(𝛼𝑞𝜌𝑞) + ∇ ∙ (𝛼𝑞𝜌𝑞𝑣 𝑞) = 𝑆𝛼𝑞 +∑(𝑚̇𝑝𝑞 − 𝑚̇𝑞𝑝)

𝑛

𝑝=1

]                                                                  (3.100) 

where 𝑚̇𝑞𝑝 denotes the mass transfer rate from phase q to phase p and 𝑚̇𝑝𝑞 represents the 

mass transfer rate from phase p to phase q. ANSYS (2018) states that the source term on the 

right-hand side of Eq. (3.100) = 0 by default but a constant or a user-defined mass source for 

every phase can be defined. The equation for the volume fraction will not be solved for the 

primary phase as the volume fraction of the primary phase can be calculated using the limitation 

below: 

 

∑∝𝑞

𝑛

𝑝=1

= 1                                                                                                                                                    (3.101) 
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Eq. (3.101) is solved by adopting the implicit or explicit time formulation as explained below. 

 

3.5.2.2. The implicit formulation 

 
The volume fraction is discretised as shown below using this formulation scheme: 

 

𝛼𝑞
𝑛+1𝜌𝑞

𝑛+1 − 𝛼𝑞
𝑛𝜌𝑞

𝑛

∆𝑡
𝑉 +∑(𝜌𝑞

𝑛+1𝑈𝑓
𝑛+1𝛼𝑞,𝑓

𝑛+1)

𝑓

= [𝑆𝛼𝑞 +∑(𝑚̇𝑝𝑞 − 𝑚̇𝑞𝑝)

𝑛

𝑝=1

] 𝑉                                   (3.102) 

where; 𝑛 + 1, 𝑛, 𝛼𝑞
𝑛+1, 𝛼𝑞

𝑛, 𝛼𝑞,𝑓
𝑛+1, 𝑈𝑓

𝑛+1, and 𝑉 represent the present time step index, initial time 

step index, cell value of volume fraction at time step n+1, cell value of volume fraction at time 

step n, face value of the 𝑞𝑡ℎ volume fraction at time step n+1, volume flux through the face at 

time step n+1, and cell volume. As the volume fraction at the present time is dependent on 

other quantities at the present time step, a scalar transport equation is solved iteratively for 

every secondary phase volume fraction at every time step. The faces fluxes are also 

interpolated utilising the chosen spatial discretization scheme. This formulation scheme can be 

applied for both a time-dependent and steady-state simulations.  

 

3.5.2.3. The explicit formulation 
 

This formulation is time-dependent and the discretization of the volume fraction follows the 

equation below; 

 

𝛼𝑞
𝑛+1𝜌𝑞

𝑛+1 − 𝛼𝑞
𝑛𝜌𝑞

𝑛

∆𝑡
𝑉 +∑(𝜌𝑞𝑈𝑓

𝑛𝛼𝑞,𝑓
𝑛 )

𝑓

= [∑(𝑚̇𝑝𝑞 − 𝑚̇𝑞𝑝)

𝑛

𝑝=1

+ 𝑆𝛼𝑞] 𝑉                                             (3.103) 

where n+1, n, ∝𝑞,𝑓, 𝑉 and 𝑈𝑓 represent the present time step index; initial time step index, face 

value of the 𝑞𝑡ℎ volume fraction, volume of cell and the volume flux through the face influenced 

by normal velocity respectively. As the volume fraction at the present time step is directly 

computed depending on known quantities at the previous time step, the explicit formulation 

does not need an iterative solution of the transport equation at every time step. The face fluxes 

can then be interpolated using interface tracking or capturing schemes such as Geo-

Reconstruct, CICSAM, Compressive, and Modified HRIC. ANSYS (2018) usefully points out 

that the software package impulsively refines the time step for the volume fraction equation 

integration, but the dynamism of this software also allows the user to influence the time step 

calculation by suitably adjusting the Courant number with options to update the volume fraction 

once for every time step or once for every iteration within each time step. The numerical 

simulations for this research have employed the explicit formulation.  
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3.5.2.4. Near interface interpolation 

 
There is a need for convection and diffusion fluxes, via the control volume faces to be calculated 

and balanced with the source terms inside the control volume. The geometric reconstruction 

and donor-accepted schemes ensure that a special interpolation treatment is adopted at the 

cells that are close to the interface between the phases. Fig. 3.3 details the real interface shape 

together with the interfaces denoted by these individual techniques: 

 

 

This research has used the explicit formulation scheme to handle cells that are close to the 

interface, between the phases, with the same interpolation as the cells that are wholly occupied 

with one phase or the other. The Compressive Scheme and Interface-Model-based Variants, 

which is a second order reconstruction scheme developed from the slope limiters, is then 

applied in the selected spatial discretization scheme. This scheme prevents the spurious 

oscillations or wiggles that would otherwise exist with high order spatial discretization schemes 

because of sharp alterations in the solution domain.  The theory behind this scheme can be 

used in zonal discretization and the phase localized discretization which adopt the compressive 

scheme framework. This is shown as: 

 

𝛼𝑓 = 𝛼𝑑 + 𝛽∇𝛼𝑑 ∙ 𝑑𝑟⃗⃗⃗⃗                                                                                                                                      (3.104) 

 

where 𝛼𝑓, 𝛼𝑑, 𝛽, ∇𝛼𝑑, and 𝑑𝑟⃗⃗⃗⃗  represent the face VOF value, donor cell VOF, value of slope 

limiter, donor cell VOF gradient value and the cell to face distance. The values for the slope 

limiter are within the range 0 ≤ 𝛽 ≤ 2 and for 𝛽 < 1, the spatial discretization is denoted by a 

low-resolution scheme and for 1 ≤ 𝛽 ≤ 2, the spatial discretization is denoted by a high-

resolution scheme. This is shown extensively in Table 3.1 below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Interface computations for: (a) real interface shape; (b) Geometric reconstruction 

(piecewise-linear) scheme representation of the interface shape; and (c) Donor-accepted scheme 

for representation of the interface shape (ANSYS, 2018). 
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         Table 3.1: Values of the slope limiter and the applicable discretization schemes.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The compressive scheme is also based on the interface regime type selection as when sharp 

interface regime modelling is chosen, this scheme is just appropriate for modelling sharp 

interfaces. But when sharp/dispersed interface modelling is selected, the compressive scheme 

is suitable for both sharp and dispersed interface modelling. 

3.5.2.5. Material properties 

The material properties that exist in the VOF transport equations are defined by the presence 

of the component phases in every control volume. For instance, for a two-phase system, 

assuming both phases are denoted by subscripts 1 and 2, as well as the volume fraction of 

phase 2 being tracked, the density in each cell can then be expressed as: 

𝜌 = 𝛼2𝜌2 + (1 − 𝛼2)𝜌1                                                                                                                                 (3.105) 

Generally, for an n-phase system, the volume fraction averaged density can be expressed as: 

𝜌 = ∑ ∝𝑞 𝜌𝑞                                                                                                                                                     (3.106)  

ANSYS (2018) explained that all other properties like viscosity are calculated in a similar 

fashion. 

3.5.2.6. Momentum equation 
 

One momentum equation is solved across the domain, and the resulting velocity field is shared 

among the phases. The momentum equation, which is based on the volume fractions of every 

phase across the properties of 𝜌 and viscosity, 𝜇, is shown below: 

𝜕

𝜕𝑡
(𝜌𝑣 ) + ∇ ∙ (𝜌𝑣 𝑣 ) = −∇p + ∇ ∙ [𝜇(∇𝑣 + ∇𝑣 𝑇)] + 𝜌𝑔 + 𝐹                                                                (3.107) 

3.5.2.7. Energy equation 

The energy equation as shared among the phases, is expressed below: 

𝜕

𝜕𝑡
(𝜌𝐸) + ∇ ∙ (𝑣 (𝜌𝐸 + 𝑝)) = ∇ ∙ (𝑘𝑒𝑓𝑓∇𝑇 −∑∑ℎ𝑗,𝑞𝐽 𝑗,𝑞

𝑗𝑞

+ (𝜏𝑒𝑓𝑓 . 𝑣 )) + 𝑆ℎ                            (3.108) 

Value of 
Slope Limiter, 

β 
Appropriate Applicable Scheme 

0 first order upwind 

1 
second order reconstruction confined by the global 
minimum/maximum of the volume fraction 

2 compressive 

0 < β < 1 and 
1 < β < 2 

blended: where a value that lies between 0 and 1 implies 
blending of the first order and second order and a value that 
lies between 1 and 2 implies blending of the second order 
and the compressive scheme. 
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where 𝑘𝑒𝑓𝑓 denotes the effective conductivity and can also be expressed as 𝑘 + 𝑘𝑡 (𝑘𝑡 

represents the turbulent thermal conductivity, and is defined based on the applied turbulence 

model), 𝐽 𝑗 denotes the diffusion flux species 𝑗, ℎ𝑗,𝑞 represents the enthalpy of species 𝑗 in phase 

𝑞, and 𝐽 𝑗,𝑞 denotes the diffusive flux of species 𝑗 in phase 𝑞. The first three terms on the right-

hand side of Eq. (3.108) denote the energy transfer due to conduction, species diffusion, and 

viscous dissipation respectively. 𝑆ℎ comprises volumetric heat sources that have been defined 

by the user without including the heat sources created by finite-rate volumetric or surface 

reactions as species formation enthalpy has already been included in the total enthalpy 

computation. 

The VOF model handles energy, E, as a mass-averaged variable as shown below: 

𝐸 =
∑ ∝𝑞 𝜌𝑞𝐸𝑞
𝑛
𝑞=1

∑ ∝𝑞 𝜌𝑞
𝑛
𝑞=1

                                                                                                                                         (3.109) 

where 𝐸𝑞 for every phase is dependent on the specific heat of that phase as well as the shared 

temperature and is given below: 

𝐸𝑞 = ℎ𝑞 −
𝑝

𝑝𝑞
+
𝑣2

2
                                                                                                                                         (3.110) 

where ℎ𝑞 for the individual phases is based on the specific heat of the particular phase and the 

shared temperature. The density, 𝜌, effective thermal conductivity, 𝑘𝑒𝑓𝑓, and effective viscosity, 

𝜇𝑒𝑓𝑓 are also shared by the phases and computed by volumetric averaging over the phases.  

3.5.3. Coupled level-set and VOF scheme 
 

The level-set approach is a well-known interface tracking approach for calculating two-phase flows 

with topologically complex interfaces. In the level set method (Osher and Sethian, 1988), the 

interface is captured and tracked by the level-set function designated as a signed distance from 

the interface. As the level set function is smooth and continuous, its spatial gradients can be 

accurately computed which will subsequently yield accurate approximations of interface curvature 

and surface tension force caused by this curvature. However, there is an associated deficiency 

with this method’s ability to preserve volume conservation (Olsson et al., 2007). On the contrary, 

the VOF method is naturally volume-conserved as it calculates and tracks the volume fraction of a 

particular phase in every cell instead of the interface itself. The limitation of the VOF method rests 

in the computation of its spatial derivatives as the volume of fluid of a particular phase is 

discontinuous throughout the interface. Therefore, to conquer the deficiencies of the level-set 

method and the VOF method, a coupled level-set and VOF technique is provided in ANSYS Fluent. 

The coupled level-set and VOF scheme is mainly created for two-phase flows where no mass 

transfer is included as well as is adopted for just transient flow problems.  The level-set function, 

𝜑, is described as a signed distance to the interface. Following from this, the interface, represented 

by a zero level-set, 𝜑(𝑥, 𝑡), can be written as 𝛤 = {𝑥|𝜑(𝑥, 𝑡) = 0} in a two-phase flow system. This 

zero level-set is shown as: 

 

𝜑(𝑥, 𝑡) = {

+|𝑑|, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑥 ∈ 𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑝ℎ𝑎𝑠𝑒
0, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑥 ∈   𝛤

−|𝑑|, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑥 ∈ 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑝ℎ𝑎𝑠𝑒
                                                                      (3.111) 

 

where d represents the distance to the interface.  

 

The development of the level set function can be expressed in a comparable way as the VOF 

model as shown below: 
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𝜕(𝜌𝑢⃗ )

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑢⃗ ) = −∇p + ∇ ∙ 𝜇[∇𝑢⃗ + (∇𝑢⃗ )𝑇] − 𝐹 𝑠𝑓 + 𝜌𝑔                                                                     (3.112) 

where 𝐹 𝑠𝑓 is the force existing from the surface tension effects as derived below: 

 

𝐹 𝑠𝑓 = 𝜎𝜅𝛿(𝜑)𝑛⃗                                                                                                                                                        (3.113) 

 

where 𝜎 represents the co-efficient of surface tension. 𝛿(𝜑) is expressed as: 

 

       𝛿(𝜑) = {

0, |𝜑| ≥ 𝑎

1 + 𝑐𝑜𝑠(𝜋𝜑/𝑎)

2𝑎
, |𝜑| < 𝑎

                                                                                                           (3.114) 

 

where 𝑎 denotes the thickness of the interface on each side. The local interface normal, 𝑛⃗ , and 

curvature, 𝜅, of the interface can be expressed as: 

 

        𝑛⃗ =
∇𝜑

|∇𝜑|
│𝜑=0                                                                                                                                                         (3.115) 

 

         𝜅 = ∇ ∙
∇𝜑

|∇𝜑|
│𝜑=0                                                                                                                                                   (3.116) 

                       

The application of the default surface tension as given in Eq. (3.113) can yield spurious currents 

appearing in the solution. To prevent these impacts, ANSYS Fluent presents two weighting 

functions that redistribute the surface tension force in the direction of the heavier phase in the 

interface cells. These are: 

 

1) The density correction formulation which modifies Eq. (3.113) by including a density ratio 

as shown below: 

 

𝐹 𝑠𝑓 =
𝜌

1/2(𝜌1 + 𝜌2)
𝜎𝜅𝛿(𝜑)𝑛⃗                                                                                                                    (3.117) 

 

where 𝜌 is the volume-based density 

 

2) The Heaviside function scaling formulation modifies Eq. (3.113) by including the Heaviside 

function as shown below: 

 

𝐹 𝑠𝑓 = 2𝐻𝜑𝜎𝜅𝛿(𝜑)𝑛⃗                                                                                                                                     (3.118) 

where: 

𝐻𝜑 = {

0, 𝜑 < −𝑎  𝑖. 𝑒.  𝑔𝑎𝑠 𝑝ℎ𝑎𝑠𝑒
1, 𝜑 > 𝑎  𝑖. 𝑒.  𝑙𝑖𝑞𝑢𝑖𝑑 𝑝ℎ𝑎𝑠𝑒

1

2
[1 +

𝜑

𝑎
+
1

𝜋
𝑠𝑖𝑛 (

𝜋𝜑

𝑎
)] , |𝜑| ≤ −𝑎

                                                               (3.119)  

 

3.6.  Surface tension modelling 
 

Surface tension exists due to the attractive forces between molecules in a fluid. This research has 

mainly investigated SBI for gas pairs and shock wave liquid interaction. For the SBI involving gas 
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pairs, surface tension can generally be ignored. For a liquid bubble in air i.e., shock propagating 

through the air and impacting the liquid bubble, surface tension effects have been considered. Within 

the liquid bubble, the net force on a liquid molecule due to its neighbouring liquid molecules is zero. 

However, at the liquid bubble surface, the net force is radially inward and the combined impacts of the 

radial components of force across the entire surface yields a surface contraction. This leads to a boost 

in pressure on the concave side of the bubble interface. Therefore, the surface tension is a force acting 

only at the surface and is required to maintain equilibrium for these types of interactions. It is also 

looks to stabilize the radially inward inter-molecular attractive force with the radially outward pressure 

force across the bubble surface. In areas where the two fluids i.e., air and water are separated but 

one of them is not in the form of spherical or cylindrical bubbles, the surface tension looks to decrease 

the free energy by reducing the interfacial area. The essence of the surface tension impacts is 

dependent on the value of two dimensionless quantities; the 𝑅𝑒, and the capillary number, 𝐶𝑎; or 𝑅𝑒 

and 𝑊𝑒. For 𝑅𝑒 << 1, Ca given below is the quantity of interest: 

 𝐶𝑎 =
𝜇𝑈

𝜎
                                                                                                                                                                         (3.120) 

And for 𝑅𝑒 >>1, 𝑊𝑒 given below is the quantity of interest: 

 𝑊𝑒 =
𝜌𝐿𝑈2

𝜎
                                                                                                                                                                   (3.121) 

where U denotes the free-stream velocity. ANSYS (2018) added that it is safe to ignore the surface 

tension effects provided 𝐶𝑎 ≫ 1 or 𝑊𝑒 ≫ 1.  

3.7.  Spatial discretization techniques 
 

ANSYS Fluent, by default, stores discrete values of the scalar, 𝜑, at the cell centres, 𝑐0 and 𝑐1 (as 

seen in Fig. 3.4) but face values 𝜑𝑓 are needed for the convection terms in Eq. (3.122) below:  

 

  
𝜕𝜌𝜑

𝜕𝑡
𝑉 + ∑ 𝜌𝑓𝑣 𝑓

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

𝜑𝑓 ∙ 𝐴 𝑓 = ∑ 𝛤𝜑 ∇⃗⃗ 𝜑𝑓

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

∙ 𝐴 𝑓 + 𝑆𝜑𝑉                                                                                     (3.122) 

 

where, 
𝜕𝜌𝜑

𝜕𝑡
𝑉,𝑁𝑓𝑎𝑐𝑒𝑠, 𝜑𝑓, 𝜌𝑓𝑣 𝑓 ∙ 𝐴 𝑓, 𝐴 𝑓, ∇⃗⃗ 𝜑𝑓, and 𝑉 represent the, temporal discretization, number of 

faces enclosing cell, value of 𝜑 convected via face 𝑓, mass flux via the face, area of the face 𝑓, |𝐴|  (=

|𝐴𝑥𝑖̂ + 𝐴𝑦𝑗̂| in 2D, gradient of 𝜑 at face 𝑓 and the cell volume respectively. 

 

Eq. (3.122) is derived from the discretization of Eq. (3.123) below: 

 

  ∫
𝑉

𝜕𝜌𝜑

𝜕𝑡
𝑑𝑉 + ∮ 𝜌𝜑𝑣 . 𝑑𝐴 = ∮ 𝛤𝜑∇𝜑. 𝑑𝐴 + ∫𝑉 𝑆𝜑𝑑𝑉                                                                                             (3.123) 

 

where; 𝜌, 𝑣 , 𝐴 , 𝛤𝜑 , ∇𝜑, and 𝑆𝜑 represent the density, the velocity vector = 𝑢𝑖̂ + 𝑣𝑗̂ in 2D, surface area 

vector, diffusion coefficient for 𝜑, gradient of 𝜑 = (𝜕𝜑/𝜕𝑥)𝑖̂ + (𝜕𝜑/𝜕𝑗)𝑗̂ in 2D, and source of 𝜑 per unit 

volume. Eq. (3.123) above is used at every control volume, or cell, in the computational domain. Eq. 

(3.123) also represents the discretization of the governing equations taking into account the unsteady 

conservation for the transport of a scalar quantity, 𝜑, expressed in integral form for an arbitrary control 

volume, V. 
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Thus, the face values 𝜑𝑓 require interpolation from the cell centre values. This is achieved utilising an 

upwind scheme. ANSYS (2018) defines upwinding as the process whereby the face value 𝜑𝑓, is 

obtained from quantities in the cell upstream or upwind with respect to the direction of the normal 

velocity, 𝑣𝑛, in Eq. (3.122). The diffusive terms in Eq. (3.122) are central-differenced and possess a 

second-order accuracy. Several upwind schemes are available on the ANSYS Fluent package and 

applicable to the studied SBI scenarios. These include the; First-Order Upwind, Second-Order 

Upwind, Centra-Differencing, Bounded Central Differencing, Quick, and Third-Order Monotone 

Upstream Schemes for Conservation Laws (MUSCL), This research has adopted the Third-Order 

MUSCL Scheme. This scheme was introduced by Van Leer (1979) based on the original MUSCL by 

blending a central differencing scheme and second-order upwind scheme as shown below: 

 

𝜑𝑓 = 𝜃𝜑𝑓,𝐶𝐷 + (1 − 𝜃)𝜑𝑓,𝑆𝑂𝑈                                                                                                                                     (3.124) 

 

where  𝜑𝑓,𝐶𝐷 and 𝜑𝑓,𝑆𝑂𝑈 denote the face values for a variable, 𝜑𝑓, computed using the central-

differencing scheme and second-order upwind scheme respectively. 𝜃 is solution-dependent variable 

whose values satisfies the inequality; 0 ≤ 𝜃 ≤ 1. When 𝜃 = 1, 𝜑𝑓 yields a central differencing second-

order interpolation value. If 𝜃 = 0, 𝜑𝑓 results in a second-order upwind value.  

 

𝜑𝑓,𝐶𝐷 can be derived using Eq. (3.125) given below: 

 

𝜑𝑓,𝐶𝐷 =
1

2
(𝜑0 + 𝜑1) +

1

2
(∇𝜑𝑟,0 ∙ 𝑟 0 + ∇𝜑𝑟,1 ∙ 𝑟 1)                                                                                                (3.125) 

 

where the indices 0 and 1 denote the cells that share face 𝑓. ∇𝜑𝑟,0 and ∇𝜑𝑟,1 represent the 

reconstructed gradients at cells 0 and 1 respectively. 𝑟  represents the vector that is directed to the 

face centroid from the upstream cell centroid. In the derivation of 𝜑𝑓,𝑆𝑂𝑈, higher-order accuracy is 

achieved at cell faces via a Taylor series expansion of the cell-centered solution about the cell centroid. 

A multidimensional linear reconstruction technique (Barth and Jespersen, 1989) is then applied to 

calculate quantities at the cell faces thus ensuring that second-order accuracy is attained. 𝜑𝑓,𝑆𝑂𝑈 is 

computed as shown below: 

 

𝜑𝑓,𝑆𝑂𝑈 = 𝜑 + ∇𝜑. 𝑟                                                                                                                                                       (3.126) 

 

where 𝜑 and ∇𝜑 denote the cell-centered value and its gradient within the upstream cell. This gradient 

is determined in each cell. As opposed to the QUICK scheme, which is just suited to structured hex 

meshes, this scheme can be applied to arbitrary meshes. It also has the ability to enhance spatial 

accuracy for all categories of meshes by substantially decreasing numerical diffusion for complicated 

Figure 3.4: Diagrammatic representation of control volume adopted for the discretization of a Scalar 

Transport Equation 
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three-dimensional flows in comparison to the second-order upwind scheme. This scheme is also 

available for all transport equations. 

 

3.8.  Temporal discretization techniques 
 

The governing equations must be discretised in both space and time for transient simulations. 

Temporal discretization involves the integration of each term in the differential equations over a time 

step ∆𝑡. The integration of the transient term is simple as shown below via a generic expression for 

the time progression of a variable 𝜑: 

𝜕𝜑

𝜕𝑡
= 𝐹(𝜑)                                                                                                                                                                     (3.127) 

where the function F includes any spatial discretization. When the time derivative is discretised 

adopting backward differences, the first order accurate temporal discretization is expressed as: 

𝜑𝑛+1 − 𝜑𝑛

∆𝑡
= 𝐹(𝜑)                                                                                                                                                      (3.128) 

And the second-order discretization is expressed as: 

3𝜑𝑛+1 − 4𝜑𝑛 + 𝜑𝑛−1

2∆𝑡
= 𝐹(𝜑)                                                                                                                                   (3.129) 

where 𝜑, 𝑛 + 1, and 𝑛 represent a scalar quantity; value at succeeding time level, 𝑡 + ∆𝑡, and value at 

present time level, 𝑡. 

This research has adopted the first order accurate temporal discretization technique because it is 

completely stable irrespective of the time step size. This scheme is also compatible with the explicit 

volume fraction scheme which has been employed in this research. 

3.9.  Conclusions 
 

This chapter presented the governing laws/equations, turbulence models and numerical 

techniques/schemes that have been employed to solve the SBI challenge. Details of the URANS 

equations solved using a pressure-based finite volume method (FVM) are presented. It was 

demonstrated by Onwuegbu and Yang (2022) that for this kind of flow, the URANS approach could 

predict the flow accurately at a substantially lowered cost so that there was no requirement for two 

other more accurate approaches, i.e., LES or DNS. The URANS equations are developed by 

averaging the instantaneous Navier-Stokes equations with some additional terms called Reynolds 

stresses being created during the averaging process. These terms need to be approximated/modelled 

using a turbulence model. Three turbulence models have been examined and presented aimed at 

selecting the model that best matches the experimental results. The CLSVOF scheme, for interface 

tracking and treating complex topological interfacial changes, has also been presented and explained 

to predict the bubble compression dynamics and formation of vortical structures/vortices. A third order 

MUSCL scheme, for the spatial discretization of both momentum and the continuity equations, has 

also been presented. Descriptions are also provided for the compressive scheme adopted for spatial 

discretization of the volume fraction equations thus aiding in the avoidance of spurious oscillations or 

wiggles. With respect to this scheme, explanations are also offered for the different interface regime 

types. Finally, descriptions of the first-and second-order schemes, for the temporal discretization of 

the URANS equations, are provided. 
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4. Shock/Spherical Bubble Interaction 

4.1.  Introduction  

The interaction between the incident shock and a spherical helium bubble was simulated using a finite 

volume method (FVM) to solve the governing integral equations for the conservation of mass and 

momentum within the commercial CFD software, ANSYS Fluent 19.0. Hence, the objective of this 

chapter is to accurately perform two-dimensional (2D) and three-dimensional (3D) computational fluid 

dynamics (CFD) simulations to investigate the complex interaction of a supersonic shock wave (𝑀𝑎 = 

1.22) with a spherical helium bubble aimed at properly comprehending and analysing shock wave 

travel, bubble compression and deformation with time. To do this, the Unsteady Reynolds-Averaged 

Navier-Stokes (URANS) mathematical model and the coupled Level Set (LS) and Volume of Fluids 

(VOF) method, also referred to as the CLSVOF scheme, have been applied in the present study. Mesh 

refinement was executed on different 2D and 3D meshes using Adaptive Mesh Refinement (AMR) 

which ensured fine cells surrounded and travelled with the bubble and shock wave. The different grid 

configurations (from the smallest number of element sizes to the highest) were then used to simulate 

shock travel in air and through the bubble to determine the positions of the: upstream interface, 

downstream interface, and jet. The results from the different meshes were then compared to 

experimental measurements to determine the optimal grid configuration. This process is the mesh 

independence study where the best mesh is selected for the other aspects of shock bubble interaction 

(SBI) to be simulated.  

The simulations are evaluated by comparing predicted velocities of refracted wave, transmitted wave, 

upstream interface, downstream interface, jet, and vortex ring with related existing experimental data. 

The predicted non-dimensional bubble and vortex velocities have also been compared with 

experimental data and other theoretical models. The experimental data of Haas and Sturtevant (1987) 

detailed the interaction of a weak shock wave with a spherical helium bubble and presented valuable 

qualitative and quantitative data related to bubble motion, bubble deformation, vortex ring formation, 

and air/helium mixing. The theoretical models of Rayleigh Taylor (Taylor, 1953) and Rudinger & 

Somers (1960) presented numerical relations for interface distortion and bubble acceleration 

respectively. Comprehensive flow visualization has been provided and analysed to elucidate the SBI 

process from the inception of bubble compression up to the creation of vortex rings as well as vorticity 

production and distribution. The constant reflection and refraction of the acoustic wave patterns as 

well as the location of the incident, refracted and transmitted waves at the bubble compression stage 

are also presented. To gain further understanding into the SBI flowfield, turbulence is examined to 

allow for the investigation of small flow structures and turbulent mixing between helium and air at the 

later stage of SBI. This is because to the best of our knowledge, no previous studies have addressed 

the generation and development of turbulence at the later stages of SBI as well as the evolution of the 

vortex rings from inception to the later phases. These knowledge gaps will be elucidated in the current 

study. Furthermore, it is demonstrated that turbulence is generated with some small flow structures 

formed and more intensive turbulent mixing of helium with air starts to develop at the later stage of 

SBI. 2D simulations of SBI have also been conducted in the present study to assess their accuracy 

through a direct comparison against 3D SBI simulations and previous experimental data. 

4.2.  Methodology 

4.2.1. Governing equations and numerical methods 

SBI is predominantly unsteady and turbulence is usually generated after the interaction so that the 

URANS approach is adopted in the present study. It was demonstrated by Onwuegbu and Yang 

(2022) that the URANS approach could be adopted to predict the flow accurately at a significantly 

lower cost compared to two other approaches, i.e., LES or DNS. These two other approaches for 
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simulating turbulent flows have not been selected in the present study principally because the flow 

consists of mainly unsteady large scale flow structures which URANS can capture very well. The 

URANS equations are derived by averaging the instantaneous Navier-Stokes equations and the 

averaging procedure leads to extra terms called Reynolds Stresses which need to be modelled 

using a turbulence model. There have been many turbulence models developed and the selection 

of a suitable turbulence model in the present study will be presented in Section 4.2.5.  

It is crucial to capture the bubble deformation in SBI studies and hence an interface tracking method 

is needed. There are many methods available to track the interface but some of those methods 

could fail when handling large interface deformations such as disintegration and fusing of fronts 

(Shyue, 1998). It has been demonstrated that a CLSVOF scheme boosts a higher accuracy than 

the standalone LS or VOF method as it combines their merits and overcomes their deficiencies 

(Olsson and Kreiss, 2005). The CLSVOF approach has proven to be a potent tool to solve huge 

interface deformations and applied successfully by Niederhaus et al. (2008) to study SBI. Therefore, 

this approach has been employed in the present study. A third-order Monotone Upstream-centered 

Schemes for Conservation Laws (MUSCL) scheme was used for the spatial discretization. The 

scheme is selected as it has the capabilities to boost spatial accuracy for all grid types by decreasing 

numerical diffusion particularly for complex 3D flows (ANSYS, 2018). The compressive scheme, 

which is a second order reconstruction scheme, was also adopted for spatial discretization of the 

volume fraction equations thus aiding in the avoidance of spurious oscillations or wiggles. With 

respect to the compressive scheme, the sharp/dispersed interface regime was applied. The sharp 

method helps to resolve the air-gas bubble interface sharply while the diffuse interface methods are 

simpler and robust and can efficiently handle high 𝑀𝑎 shocks, high pressure, and density gradients 

across the interface as well as the huge topological alterations of the interface. A first-order implicit 

scheme was used for the temporal discretization of the 2D and 3D URANS equations.  To achieve 

numerical stability and accuracy, the Courant Friedrichs Lewy number was set as 0.5 and a very 

small-time step of 4 × 10−7 seconds was used to accurately capture detailed flow developments. 

4.2.2. Computational details 

The computational set-up is based on the experiment carried out by Haas and Sturtevant (1987) 

with the main parameters listed in Table 4.1 below. 

Table 4.1: Experimental conditions 
 

 

 

 

Figures 4.1(a) and (b) present the computational domains and the boundary/initial conditions for 

the 2D (half of the domain/axisymmetric model) and 3D cases. The flow is assumed axis-

symmetrical in the 2D case with the horizontal 𝑥 -axis in the direction of the shock tube axis and the 

𝑦 -axis in the vertical direction. The domain length in the 2D case is Lu + 0.44d (d= 45mm is the 

bubble diameter) where Lu is variable to ensure enough room that will allow the shocked bubble 

travel throughout the monitored time. The domain height is 0.99d as shown in Fig. 4.1(a). The 

computations are performed only on the upper half as it is a mirror image of the lower half. The 

lower boundary of the grid (Edge GH) represents the shock-tube axis. A no-slip wall boundary 

condition is applied at the upper boundary i.e., wall of shock tube (Edge EF). The computational 

set-ups match those in the experiment by Haas & Sturtevant (1987) with the right boundary (Edge 

EH) being the inlet as the incident shock propagated from right to left in the experiment. The left 

boundary corresponds to the outlet, which is shown as Edge FG. At inlet, density, pressure, and 

velocity are specified and the right boundary cells comprise of parameter values, i.e., 𝜌2, 𝑃2, 𝑣𝑥 =

      

Bubble gas 
 

Ambient gas 
 

𝑴𝒂   
 

𝑨 

         Helium         Air         1.25 -0.715 
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𝑉2, 𝑣𝑦 = 0 , which is equivalent to the area behind the supersonic planar shock. As revealed from 

within the computational domain, identical values are utilised as initial conditions behind the shock 

which are located at a few cells within the computational grid. The values of these parameters also 

denote the post-shock properties of the ambient gas utilised in the initialisation and are calculated 

from the Rankine-Hugonoit relationships (Houghton and Brock, 1993). The right boundary condition 

allows the smooth outflow of reflected waves created by the SBI. The left boundary condition 

equivalently allows the smooth outflow of any leftward-moving waves, including the distorted 

incident shock. Fig. 4.1(a) also reveals that the left boundary condition is achieved by sustaining a 

‘zero gradient’ for all fluid variables, i.e., ∇𝑢 = 0, ∇𝑃 = 0, ∇𝜌 = 0.  

 

 

 

 

 

 

 

 

 

 

 
The computational domain length in the 3D case is the same as that in the 2D case while the domain 

height and width are both 1.98d as shown in Fig. 4.1(b). The same boundary conditions used in the 

2D case are applied in the 3D case and a no-slip wall boundary condition is applied on the side 

walls. Like the 2D scenario, the 3D outflow condition has adopted a zeroth-order extrapolation to 

the boundary whereby the outermost data plane is transferred into the boundary such that the 

gradients across the boundary equate zero (∇𝑣 = 0, ∇𝑃 = 0, ∇𝜌 = 0). The 2D and 3D scenarios, as 

Figure 4.1: (a) Top half of the computational domain and boundary/initial conditions for the 2D 

case; and (b) Computational domain for the 3D case. 
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in Quirk and Karni (1996), distanced the bubble from the incident shock in order to prevent ‘start-

up’ errors, which reveal themselves as a couple of small-frequency waves travelling on the inert 

features (Quirk, 1991), from disrupting the SBI process. This ‘start-up’ errors are created when a 

shock spreads to its actual profile in the presence of an ‘exact’ discontinuity like the bubble as initial 

conditions (Hillier, 1991). As one of the major challenges to the simulation of high-order CFD 

procedures involving high-Reynolds number flows is mesh generation, this research has looked to 

produce a high-quality 2D and 3D mesh to ensure that the best predictions that match the 

experimental results are obtained. To this effect, an unstructured mesh (particularly in the bubble 

surrounding for the 2D mesh and the entire 3D mesh, see Fig. 4.2(a) – (c)) has been produced. As 

a justification, this research has studied the works of several authors (e.g., Jameson and Mavriplis, 

1986; Mavriplis et al., 1989; Jameson, 1995; Mavriplis, 1995; 1996; 1997; 1998; Venkatakrishnan, 

1996; Gerhold et al., 1997; Hasselbacher et al., 1999; Eliasson, 2001) who have explained that 

finite volume methods formulated on unstructured grids are extensively adopted in the treatment of 

complex geometries. Unstructured grids also offer the capability of adapting the grid locally to 

enhance the accuracy of the simulations without suffering computational difficulties associated with 

global refinements (Dalal et al., 2008). The 2D and 3D computational grids are shown below: 

As seen from Fig. 4.2(a), the main flow region has been discretised into quadrilateral cells while the 

near bubble surrounding consists of triangular cells i.e., the mesh can then be classified as a hybrid 

mesh consisting of a structured uniform grid in most of the flow region and an unstructured grid in 

the vicinity of the bubble. The hybrid mesh was adopted to ensure an appropriate grid resolution 

was attained in areas close to the boundaries and the air-bubble interface as well as specify spatial 

discretization suitable for the current flow problem (Cameron, 2011). The triangulation method was 

adopted to create the grid in the bubble surroundings. This concept has been previously used by 

Lohner and Parikh (1988). The 3D computational grid (Figure 4.2(b) and (c)) shows an unstructured 

mesh consisting of a tetrahedral volume mesh in the main flow region and the gas bubble while a 

triangular surface mesh is applied at the air/helium bubble interface. The mesh also shows that the 

unstructured tetrahedral volume mesh is mainly uniform away from the bubble surroundings and 

has a greater element size compared to the cells within the bubble. This mesh was generated using 

the tetrahedralization technique as previously applied by Betro (2010) with the target of adding 

adaptive competences to the background grid. As unstructured meshes have irregular connectivity 

with each cell having varying number of neighbours, this research has employed a combination of 

a finite-volume discretization with pressure velocity coupling via a Coupled algorithm to allow for 

the co-located storage of velocity and pressure components (Jiang and Przekwas, 1994; 

Figure 4.2: (a) Hybrid mesh for the 2D case; (b) unstructured mesh for the 3D case; and (c) Close 

view of fine mesh around bubble; all from Adaptive Mesh Refinement (AMR). 
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Thomadakis and Leschziner, 1994; Demirdzic and Muzaferija, 1995; Davidson, 1996). This 

research has then applied Adaptive Mesh Refinement (AMR) to superimpose finer sub-grids within 

the bubble and its vicinity as these regions require finer resolution. The AMR algorithm generally 

represents a scheme for integrating systems of hyperbolic partial differential equations and it aims 

to lessen the integration costs by fitting the local resolution of the generated mesh to the local 

requirements of the intended solution. The research findings of Berger & Oliger (1984) and Berger 

& Collela (1989) provided the foundation for AMR. Quirk (1991) and Quirk & Karni (1996) built on 

these past works to describe AMR within a hierarchical grid context. Other authors (e.g., Henderson 

et al., 1991; Klein et al., 1994; Bell et al., 1994; Nourgaliev et al., 2006; Nierderhaus et al., 2008) 

have adopted AMR in their numerical studies of SBI. For this research, AMR is built in by ANSYS 

Fluent and can be manipulated by the user to achieve the desired amount of extra grid cells that 

surround the interface and travel with the bubble and shock wave. This ensured complete control 

of grid resolution. In Figs 4.2(a) – (c), the adapted mesh has two levels of AMR superposed on the 

original grid with a refinement ratio of 2 each.  

4.2.3. Initialization of the computational problem 

This research initialised the helium gas within the bubble, and the unshocked surrounding fluid i.e., 

area between initial diaphragm and outlet at atmospheric conditions (see Fig. 4.1(a) and (b)). The 

initialisation assumes that the bubble and the unshocked surrounding fluid are originally in a state 

of rest as well as in thermal and mechanical equilibrium thus implying that any original buoyant 

movement of the bubble is ignored.  

The JANAF data (Gordon and McBride, 1976) is used to derive the ratio of specific heats, 𝛾, for 

bubble gas (helium) and surrounding gas (air) utilising the original, unshocked pressure and 

temperature. Both fluids retained a constant value of 𝛾 throughout the computation. 

This research adopted the Rankine-Hugonoit relationships (Houghton and Brock, 1993) to calculate 

the post-shock characteristics of the surrounding air, as shown on the right-hand side of Fig. 4.1(a). 

The post-shock 𝑀𝑎, pressure and density are computed using the following mathematical relations 

respectively: 

𝑀𝑎2
2 =

(𝛾 − 1)𝑀𝑎1
2 + 2

2𝛾𝑀𝑎1
2 − (𝛾 − 1)

,                                                                                                                                      (4.1) 

𝑃2
𝑃1
=

2𝛾

𝛾 + 1
𝑀𝑎1

2 −
𝛾 − 1

𝛾 + 1
,                                                                                                                                         (4.2) 

𝜌2
𝜌1
=

𝛾 + 1
𝛾 − 1

(
𝑃2
𝑃1
) − 1

𝛾 + 1
𝛾 − 1

(
𝑃2
𝑃1
)
,                                                                                                                                                   (4.3) 

where 𝑀𝑎1 = 1.25, 𝑃1 and 𝜌1 represent the initial Mach number, pressure and density of the ambient 

air respectively, as shown on the left-hand side of Fig. 4.1(a). 

4.2.4. Mesh independence study 

Mesh refinement was executed on different 2D and 3D meshes using AMR which ensured fine cells 

surrounded and travelled with the bubble and shock wave. The different grid configurations (from 

the smallest number of element sizes to the highest), after AMR, were then used to simulate shock 

travel in air and through the bubble to determine the positions of the: upstream interface, 

downstream interface, and jet. The results from the different meshes were then compared to 

experimental measurements to determine the optimal grid configuration. This process is the mesh 

independence study where the best mesh is selected for the other aspects of shock bubble 
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interaction (SBI) to be simulated. A mesh independence study has been carried out with three 

meshes for both 2D case (0.16, 0.24 and 0.28 million cells) and 3D case (3.6, 6.2, 9.2 million cells). 

Fig. 4.3 presents the bubble compression and changes against time in terms of three representative 

points (upstream, jet and downstream locations). It can be seen that for the 2D case (Fig. 4.3(a)), 

the results are hardly changing when the mesh is refined from 0.24 to 0.28 million cells and hence 

there is need to refine the mesh further and the rest of the 2D simulations have been performed 

using 0.28 million cells. Similarly for the 3D case (Fig. 4.3(b)), the results obtained using the mesh 

with 6.2 million cells are very close to the results obtained using the mesh with 9.2 million cells and 

hence there is no need to refine the mesh further. The rest of the 3D simulations have been carried 

out using 9.2 million cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: (a) Results obtained with three meshes for the 2D case; and (b) Results obtained with 

three meshes for the 3D case. 
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4.2.5. Turbulence model selection 

There are many turbulence models and there is no general consensus which model is the best as 

their performances are very much case dependent. There is hardly any knowledge gained so far 

about the performance of turbulence models in the simulation of SBI. Hence in the present study, 

three widely used and high rated turbulence models, the realizable k-ε, the shear stress transport, 

SST k-𝜔 and a Reynolds Stress Model (RSM), have been tested to assess their performance in the 

3D case. Fig. 4.4 presents the comparison between the predicted three location changes of the 

bubble against the experimental data of Haas & Sturtevant (1987). It is evident from Fig. 4.4 that 

the predictions using all three turbulence models are very close to each other, but the results 

obtained using the realizable k-ε are slightly closer to the experimental data. Therefore, the 

realizable k-ε is employed in the present study. 

 

 

 

 

 

 

 

 

 

 

4.3.  Results and discussion 

4.3.1. Comparison between the measured and predicted velocities 

Table 4.2 presents the comparison between the measured and predicted velocities of incident (𝑣𝐼), 

refracted (𝑣𝑅) and transmitted waves (𝑣𝑇), initial upstream interface (𝑣𝐼𝑈), final upstream interface 

(𝑣𝐹𝑈), initial downstream interface (𝑣𝐼𝐷), air-jet head (𝑣𝐴𝐽), and vortex ring (𝑣𝑉𝑅). The average 

velocities of these acoustic wave characteristics are derived by utilising minimum squares line 

adjustments to approximate their approximate locations at different times along the advected bubble 

trajectory. Generally speaking, the calculation of these velocities entails the measurement of the 

changes in their respective positions over 50-time steps and dividing by the elapsed duration, 𝑇, 

i.e., 𝑇 ≥ 4 𝑥 10−7𝑥 50 ≥ 20𝜇𝑠. As such, the values provided in Table 4.2 have been computed by 

averaging over a number of such intervals.   

 

 

Figure 4.4: Comparison of predictions with experimental data for different turbulence models. 



96 
 

Table 4.2: Comparison between the experimental data of Haas & Sturtevant (1987) and the 

predictions.  

 𝑣𝐼 𝑣𝑅 𝑣𝑇 𝑣𝐼𝑈 𝑣𝐹𝑈 𝑣𝐼𝐷 𝑣𝐴𝐽 𝑣𝑉𝑅 

Experimental data 420 960 365 190 125 145 335 165 

Predictions (2D) 406.7 932.1 351.5 178.7 115 134.6 318.9 155.8 

Predictions (3D) 416 951.4 361.3 184.7 122 142.4 331.1 161.8 

 
As can be seen from Table 4.2, an excellent agreement between the 3D predictions and 

experimental data has been obtained for all velocities with the maximum error being 2.8% for the 

initial upstream interface velocity. The 2D predictions also agree well with the measured values with 

the maximum error being 8% for the final upstream interface velocity.    

4.3.2. Bubble acceleration and vortex formation 

Air is accelerated in the shock tube as the shock wave propagates, from a state of rest to a uniform 

velocity, 𝑉′2. This 𝑉′2 is derived as (Jacobs, 1992; 1993): 

𝑉′2 =
2𝑎0
𝛾 + 1

(𝑀𝑎1 −
1

𝑀𝑎1
),                                                                                                                                       (4.4) 

where  𝛾, 𝑎0, and 𝑀𝑎1 represent the specific heats ratio, sound speed behind the shock and the 

Mach number of the shock respectively. As helium is less dense than air, the major flow velocity 

trailing the incident shock functions as a piston on the bubble thus contributing to bubble 

deformation and compression (Layes et al., 2003). The sphere will then be accelerated to a higher 

velocity than 𝑉′2, which means that the light helium gas travels ahead of the ambient air as it is 

transported down the shock tube. Rudinger and Somers (1960) developed a basic two-stage model 

for this: in the first stage and during the early transient, the helium bubble accelerates as a solid 

body to velocity 𝑉′𝑏; in the second stage, it changes into a vortex ring with velocity 𝑉′𝑣 based on 

the Taylor mechanism (Taylor, 1953). Within the first stage, the travelling undistorted bubble acts 

as Taylor’s ‘dissolved’ vortex-generating disk and as such, 𝑉′𝑏 , denotes the disk velocity. Rudinger 

and Somers (1960) proposed that in the first stage, the impulse per unit volume experienced by the 

bubble, 𝐼𝑏 would be the same as that underwent by the ambient air i.e., product of 𝜌𝑎𝑖𝑟 and 𝑉′2. This 

is given in the following equation: 

 

𝐼𝑏 = 𝜌𝑎𝑖𝑟  𝑥 𝑉
′
2 = 𝜌𝑏𝑉

′
𝑏 + 𝑘𝜌𝑎𝑖𝑟(𝑉

′
𝑏 − 𝑉

′
2),                                                                                                       (4.5) 

𝑘 denotes the apparent mass fraction for a sphere and is equal to 0.5 (Rudinger and Somers, 1960) 

and 𝜌𝑏 is the gas density in the bubble. From Eq. (4.5), the initial non-dimensional velocity of the 

bubble is then computed as: 

 

𝑉𝑁𝐷𝑏 =
𝑉′𝑏
𝑉′2

=
1 + 𝑘

𝜎 + 𝑘
,                                                                                                                                                   (4.6) 

where 𝜎 = 𝜌𝑏/𝜌𝑎𝑖𝑟  

 

The conversion of the helium bubble into a vortex indicates a drop in the relative velocity. This is 

shown below as: 

 

𝑉′𝑣 − 𝑉
′
2 = 𝛽(𝑉

′
𝑏 − 𝑉

′
2),                                                                                                                                         (4.7) 

𝛽 has a numerical value of 0.436 as presented by Taylor (1953) and all calculations used the same 

value of 𝛽. Similarly, from Eq. (4.6), the non-dimensional vortex velocity can be computed as: 
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𝑉𝑁𝐷𝑣 =
𝑉′𝑣
𝑉′2

= 1 + 𝛽
1 − 𝜎

𝜎 + 𝑘
,                                                                                                                                        (4.8) 

To compute 𝑉𝑁𝐷𝑏 and 𝑉𝑁𝐷𝑣, 𝑉′𝑏 is calculated as the average of the predicted  

𝑣𝐼𝑈 and 𝑣𝐼𝐷 while 𝑉′𝑣 is taken as 𝑣𝑉𝑅  from Table 4.2.  The   𝑉𝑁𝐷𝑣  and 𝑉𝑁𝐷𝑏 as well as the predicted 

and measured values are presented in Table 4.3 below. 

Table 4.3: Theoretical, numerical and experimental non-dimensional bubble and vortex velocities 

 

 

 

  

It can be seen from Table 4.3 that the predictions and the experimental data agree very well, 

especially that the 3D predictions are very close to the experimental data while the theoretical values 

are much larger with the non-dimensional bubble velocity being almost twice the prediction and 

experimental values. This strongly indicates that the two-stage model proposed by Rudinger and 

Somers (1960) does not quite represent the real situation of bubble acceleration and vortex 

formation in the process of SBI. 

4.3.3. Deformation and development of the interface: prediction of upstream and 

jet interface velocities 
 

In this section and Section 4.3.4, the predicted rates of deformation will be compared to the 

experimentally measured ones and the growth rate of small sinusoidal perturbations induced by the 

impulsive acceleration of a plane interface proposed by the Rayleigh-Taylor theory. This 

comparison will be made at three characteristic interface points, i.e., upstream, jet, and downstream 

interfaces. Haas and Sturtevant (1987) stated that it is informative to investigate the relationship 

between the shock-generated deformation of gas cylinders and the Rayleigh-Taylor instability (RTI) 

of plane interfaces. They used the illustration where a cylinder is taken to be representative of a 

sinusoidal perturbation having an amplitude of 𝜂0 = 𝑅 (𝑅 represents the cylinder’s radius) and 

wavelength 𝜆 = 2𝜋𝑅 (wavenumber 𝑘 = 1 𝑅⁄ ). This then meant that the sine wave is tangential to 

and has identical curvature at crests and troughs as the cylinder. This further implied that the 

amplitude of the effective perturbation is significantly large (𝑘𝜂0 = 1) and variations of the 

observations from linear theory may indicate the impacts of finite amplitude and non-linearity.  

 

According to the theory of impulsive RTI, the interface is assigned a mean translational velocity, 𝑉, 

and a constant perturbation velocity, 𝑣, at the troughs and crests when a shock wave impacts a 

plane interface deformed by the small undulating perturbations of long wavelength (Markstein, 

1957a; 1957b; Richtmyer, 1960). This perturbation velocity is given below: 

𝑣 = ±𝑘𝜂0𝑉𝐴,                                                                                                                                                                 (4.9) 

where 𝐴 denotes the Atwood number. The interface deforms at a constant rate and there is a 

continuance of the velocity field as there is no further acceleration after shock impingement. The 

crests or trough velocity normalised by the translational velocity 𝑉 can be expressed as: 

𝛶 = 1 + 𝑣 𝑉,⁄                                                                                                                                                               (4.10) 

Employing Eq. (4.9) into Eq. (4.10) as well as equations for the wave number, 𝑘 (= 1 𝑅⁄ ), and 

amplitude, 𝜂0(= 𝑅), yields Eq. (4.11) below: 

𝛶 = 1 ± 𝛼𝐴,                                                                                                                                                                 (4.11) 

 𝑉𝑁𝐷𝑏 𝑉𝑁𝐷𝑣 

Theoretical 2.199 1.52 

Experimental data 1.3 1.28 

Predictions (2D) 1.177 1.181 

Predictions (3D) 1.26 1.246 
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where the plus sign relates to a shock incident on a concave interface (trough), and 𝛼 = 1 for a 

locally cylindrical interface. Haas and Sturtevant (1987) adopted the first-order correction for non-

linearity suggested by Richtmyer (1960) considering the compression of the interface shape by the 

incident shock by replacing the amplitude, 𝜂0, with 𝜂0(1 − 𝑉 𝑣𝐼⁄ ). They then stated that for their 

experiments, the compression (1 − 𝑉 𝑣𝐼⁄ ) varies from 0.59 to 0.9.  Table 4.4 shows, with respect to 

the upstream and jet interface, the normalised perturbation velocity estimated from the RTI theory 

as well as the translational velocity, dimensionless upstream and jet interface velocities measured 

from the experiments and predicted from our simulations (both 2D and 3D). The dimensionless 

upstream interface velocity, 𝛶𝐼𝑈, is computed by normalising 𝑣𝐼𝑈 with 𝑉, i.e., 𝛶𝐼𝑈 = 𝑣𝐼𝑈 𝑉⁄ . Similarly, 

the dimensionless jet velocity, 𝛶𝐴𝐽, has been obtained by normalising 𝑣𝐴𝐽 with 𝑉, i.e., 𝛶𝐴𝐽 = 𝑣𝐴𝐽 𝑉⁄ . 

Haas and Sturtevant (1987) computed the values of 𝑉 from one-dimensional theory. 𝑉, used in the 

current study, has been computed adopting the same method applied in the derivation of the various 

wave velocities and characteristic interface point velocities (see Section 4.3.1). 

Table 4.4: Dimensionless upstream interface and jet interface velocities from CFD simulations 
compared to the Rayleigh-Taylor theory and experiments. 𝑈 is in m/s. 

 

 

 

Table 4.4 compares the predicted 𝛶𝐼𝑈 and 𝛶𝐴𝐽 with both experiments and theory. The predicted initial 

rate of deformation at the upstream interface, 𝛶𝐼𝑈, is significantly lower than the estimation, 𝛶, of 

RTI theory but is in close agreement with the experimentally measured 𝛶𝐼𝑈, particularly in the 3D 

predictions. The predicted 𝛶𝐴𝐽, on the other hand, is higher than the predicted  𝛶𝐼𝑈, and there is little 

disparity between the predicted 𝛶𝐴𝐽 (2D and 3D) and both;  𝛶 (estimated from RTI theory) and the 

experimentally measured 𝛶𝐴𝐽. This is indicative of the fact that our numerical model is sufficiently 

reliable and accurate. Again, the 3D predictions are more accurate than the 2D predictions. 

 

 

 

 

 

 

 

 

 

 

 

𝑉 
Theory Experimental CFD Predictions (2D) CFD Predictions (3D) 

𝛶 𝛶𝐼𝑈 𝛶𝐴𝐽 𝑉 𝛶𝐼𝑈 𝛶𝐴𝐽 𝑉 𝛶𝐼𝑈 𝛶𝐴𝐽 

177 1.432 1.07 1.89 171.16 1.04 1.82 175.50 1.05 1.89 

Figure 4.5: Comparison between numerical and experimental dimensionless displacements of the 

upstream edge against time. 
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As shown in Fig. 4.5, the characteristic upstream interface displacement, 𝑦𝑢𝑝𝑠, is normalised by the 

bubble diameter (𝑑) to allow an efficient comparison of our predicted results to other experimental 

findings. Fig. 5.5 presents the comparison between the predicted dimensionless displacement of 

the upstream interface (𝑦𝑢𝑝𝑠 𝑑)⁄  and the experiments of Haas and Sturtevant (1987). It can be seen 

clearly that a very good agreement between the present 3D predictions and the experimental data 

has been obtained. It is also shown in Fig. 4.5 that the 3D predictions are much closer to the 

experimental data than the 2D predictions, confirming that 3D simulation is needed when a shock 

wave interacts with a spherical bubble in order to capture such interaction accurately. 

 

4.3.4. Deformation and development of the interface: prediction of downstream 

interface velocities 
 

Following from the analysis provided in Section 4.3.3, Table 4.5 has been provided, with respect to 

the downstream interface, and shows the normalised perturbation velocity estimated from the RTI 

theory as well as the translational velocity, dimensionless downstream interface velocities 

measured from experiments and predicted from our simulations (both 2D and 3D). The 

dimensionless downstream interface velocity, 𝛶𝐼𝐷, is computed by normalising 𝑣𝐼𝐷 with 𝑉, i.e., 𝛶𝐼𝐷 =

𝑣𝐼𝐷 𝑉⁄ . Similarly, 𝑉, used in the experiments of Haas and Sturtevant (1987) have been computed 

from one-dimensional theory. 𝑉, used in the current study, has been computed adopting the same 

method applied in the derivation of the various wave velocities and characteristic interface point 

velocities (see Section 4.3.1). 

Table 4.5: Downstream interface velocities from CFD simulations compared to the Rayleigh-Taylor 

theory and experiments. 

𝑉 
Theory Experimental CFD Predictions (2D) CFD Predictions (3D) 

𝛶 𝛶𝐼𝐷 𝑉 𝛶𝐼𝐷 𝑉 𝛶𝐼𝐷 

110.9 1.869 1.31 104 1.29 108.33 1.31 

During SBI, the downstream interface is initially disrupted by the shock that has previously impinged 

on and distorted the upstream interface. This is evident from the development of small-scale 

undulations on the downstream interface. Table 4.5 compares the predicted 𝛶𝐼𝐷 with both 

experiments and theory. The predicted 𝛶𝐼𝐷 is considerably lower than the estimation, 𝛶, of RTI 

theory but is in close agreement with the experimentally measured 𝛶𝐼𝐷. This again confirms the 

reliability and precision of our numerical model. There is also a small difference between the 2D 

and 3D results with the 3D predictions showing better concordance.  
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As shown in Fig. 4.6, the characteristic downstream interface displacement, 𝑦𝑑𝑜𝑤𝑛𝑠, is normalised 

by bubble diameter (𝑑). It is evident that the 3D predictions agree very well with the experimental 

data (Haas and Sturtevant, 1987). Furthermore, it can be seen clearly from Fig. 4.6 that 2D 

predictions are not as accurate as the 3D predictions, which is consistent with the above discussion 

that 3D simulations are needed to capture the shock bubble interaction accurately. 

Further comparison of the 2D and 3D predictions against the experimental data is shown in Fig. 4.7 

which presents the predicted and measured three location changes of the bubble against time. It 

can be clearly seen that the predictions agree well with the experimental data and as expected 

better agreement has been obtained between the 3D predictions and the experimental data. It is 

clear from the previously discussed quantitative comparisons between the predictions and 

experimental data that the present numerical simulations, particularly the 3D simulations, have 

depicted the complicated process of SBI excellently. As a result, subsequent analysis will follow the 

3D results.  The CPU times per 50 iterations are 144 seconds and 4,032 seconds for the performed 

2D and 3D simulations respectively using the best 2D and 3D grids as detailed in Section 4.2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Dimensionless numerical and experimental measurements of the characteristic scales 

against time. 
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4.3.5. Quantitative evolution of the bubble length and width 

There are various ways a spherical bubble subjected to a shock wave can deform based on the 

direction of shock wave travel across the density gradient. This has been experimentally proven by 

Haas & Sturtevant (1987), Layes at al. (2003) and Levy et al. (2003). Two directions are important 

for the distortion of the bubble post shock wave propagation. These two directions are parallel and 

perpendicular to the direction of shock wave travel. Layes et al. (2005) clarified that there is not one 

orientation of distortion perpendicular to the flow but an entire plane orthogonal to the shock wave 

travel. They then assumed that the distortions which occurred in this plane are radial i.e., an 

axisymmetric flow, provided the size of the bubble was not too large in comparison to the square 

Figure 4.7: Comparison of the 2D and 3D predictions against the experimental data at: (a) small 

time; and (b) large time. 
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cross section of the shock tube. They then referred to the length and height of the bubble as the 

horizontal and vertical size of the bubble respectively. Fig. 4.8 shows a representation of side and 

front view of the original inhomogeneities (before shock wave impact) and the deformed bubbles 

(after shock impingement). 

 

 

 

 

 

 

 

 

All results presented here and in Section 4.3.6 are compared to the experimental work of Layes et 

al. (2005). The evolution of the deforming bubble length is shown in Fig. 4.9 (a) which shows a 

reduction of the bubble length after the shock wave propagates through it. This reduction in length 

corresponds to the compression phase of the bubble and continues up to 250 𝜇𝑠. This stage is 

followed by an increase in the bubble length and corresponds to the period when the air-jet impinges 

on the downstream interface of the bubble. The air-jet effect on the downstream interface of the 

bubble leads to a stretching of the deforming bubble which results in an increase in the length of 

the bubble. Fig. 4.9 (a) also shows the rise in the bubble length after 250 𝜇𝑠, albeit at varying 

incremental rates, up to 1000 𝜇𝑠. From Fig. 4.9(a), it is clear that the current prediction of the 

evolution of bubble length compares well with experimental measurements.  

The evolution of the deforming bubble height is shown in Fig. 4.9(b). Fig. 4.9(b) also presents the 

prediction of the downstream ring height starting from when this downstream ring emerges from the 

downstream interface of the bubble after shock impingement. The description of both heights for 

the upstream and downstream rings is presented within Fig. 4.9(b). Due to bubble compression, 

the bubble expands vertically which leads to a small initial increase in its height. This increase 

continues up to 250 𝜇𝑠 (rapidly from SBI inception to 100 𝜇𝑠; less steeply from 100 𝜇𝑠 to 200 𝜇𝑠, 

and gradually from 200 𝜇𝑠 to 250 𝜇𝑠) followed by the observation of an almost uniform height up till 

450 𝜇𝑠 (the height is actually increasing from 250 𝜇𝑠 to 450 𝜇𝑠 but at a very slow rate) before the 

height of the deformed bubble starts to drop slowly up to 900 𝜇𝑠. The height then tends towards a 

steady value from 900 𝜇𝑠 to 1000 𝜇𝑠. Very interestingly, the period when the bubble height rises 

very slowly corresponds to when the air-jet starts piercing through the downstream interface and 

the subsequent formation of the downstream ring. This is consistent with Fig. 4.9(b) which also 

shows predictions for the evolution of the downstream ring height starting from approximately 250 

𝜇𝑠. All the heights predicted before the downstream ring emerges are representative of the evolution 

of the height of the upstream ring. The height of the downstream ring increases rapidly till 300 𝜇𝑠 

followed by a less swift rise in the height up to 400 𝜇𝑠. From 400 𝜇𝑠, the height increases gradually 

with varying degrees of increments up to 850 𝜇𝑠. From 850 𝜇𝑠, the downstream height starts to 

approach a constant value. As will be explained in Section 4.3.9, the height of the downstream ring 

increases from inception up to 850 𝜇𝑠 because the downstream ring continues to grow attributable 

to the amount of vorticity contained within it. Similarly, the upstream ring height reduces from 

approximately 450 𝜇𝑠 up till 1000 𝜇𝑠 as the upstream ring reduces in size owing to a reduction in 

Figure 4.8: Representation of (a) the side views of the initial length and height of the original bubble 

as well as that of the altered length and height of the deformed bubble; and (b) front views of the 

initial height of the original bubble as well as that of the altered height of the deformed bubble. 
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the amount of vorticity contained within it compared to the downstream ring. Finally, Fig. 4.9(b) 

shows that the predicted upstream/downstream ring heights compare well with the experimentally 

measured ones. 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

4.3.6. Quantitative evolution of the vortex ring size and vortex pair spacing 

Vorticity develops from the non-collinearity between the pressure and density gradients. The 

vorticity is responsible for the creation, emergence, and development of a vortex ring. The ring 

shape of produced vortices arises from the original spherical geometry (Layes et al., 2005). As 

already established in Section 4.3.5, two rings emerge after the shock pierces through the 

Figure 4.9: (a) Comparison of the predicted to the measured bubble length; and (b) Comparison of 

the predicted to the measured upstream/downstream ring height. 
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downstream interface of the deformed bubble. Fig. 4.10(a) below shows the evolution of the vortex 

ring size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 4.10(a), it is shown that the upstream ring sizes (both in the horizontal and vertical 

directions) reduce while the downstream components rise. This leads to the downstream ring 

becoming larger than the upstream ring attributable to increased concentration of the generated 

vorticity in the downstream ring. Layes et al. (2005) links this increased size of the downstream ring 

in comparison to the upstream ring to the transfer of mass between this pair of rings. The 

downstream ring contains most of the produced vorticity as the turbulent mixing of helium and air 

intensifies within this ring (see Section 4.3.13). Fig. 4.10(a) also shows that the main difference 

between the decrease in the horizontal and vertical upstream vortex ring sizes is that the former 

Figure 4.10: (a) Comparison of the predicted to measured vortex ring sizes; and (b) Comparison of 

the predicted to measured vortex pair spacing. 
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revealed a steeper rate of reduction from 300 𝜇𝑠 to 500 𝜇𝑠 compared to the latter. However, the 

reduction trend of the vertical upstream ring size showed a steeper rate of reduction from about 600 

𝜇𝑠 to 800 𝜇𝑠 compared to that of the horizontal upstream ring size with both upstream sizes showing 

similar reduction patterns between 500 𝜇𝑠 and 600 𝜇𝑠. Both horizontal and vertical upstream ring 

sizes look to approach a constant value from 800 𝜇𝑠 to 1000 𝜇𝑠. With respect to the increase in the 

downstream ring size, the evolution of the horizontal downstream ring size showed a steeper rise 

compared to that of the vertical downstream ring size. Again, as in the previously presented 

comparisons, Fig. 4.10(a) shows an excellent concordance between the predicted and measured 

evolution of the vortex ring in both the horizontal and vertical directions.  

 

The progression of the spacing between the vortex pair is presented in Fig. 4.10(b). Fig. 4.10(b) 

details the evolution of the distance between the centers of the two opposite upstream vortex rings 

and that of the two opposite downstream vortex rings. It also shows a steady progression of the 

vortex spacing between the centers of the two opposite upstream vortex rings i.e., the change in 

the upstream vortex pair spacing between successive time steps is almost constant shown by the 

small reductions in this parameter from 300 𝜇𝑠 to 1000 𝜇𝑠 as this parameter approaches a constant 

value. On the other hand, the spacing between the downstream pair rises very rapidly from 250 𝜇𝑠 

to 300 𝜇𝑠 and less swiftly from 300 𝜇𝑠 to 400 𝜇𝑠. This is followed by a gradual rise in the downstream 

vortex pair spacing up till 800 𝜇𝑠 after which this parameter approaches an almost constant value 

up till 1000 𝜇𝑠. Similar to the increase in the downstream height, the downstream vortex pair spacing 

shows a rising profile because the downstream ring continues to grow attributable to the amount of 

vorticity contained within it. Similarly, the upstream vortex pair spacing drops very slowly from 300 

𝜇𝑠 to 1000 𝜇𝑠  and approaches a constant value as the upstream ring reduces in size. This is 

attributable to a reduction in the amount of vorticity contained within the upstream ring compared to 

that held in the downstream ring. Finally, the predicted upstream/downstream vortex pair spacing 

compare well with the experimentally measured ones as shown by Fig. 4.10(b). 

4.3.7. Vortex generator representation for the spherical helium bubble 

This section predicts the vortex strength produced by the penetration of spherical helium bubble by 

the air-jet stimulated by the RTI. Haas and Sturtevant (1987) treated the jet head as a solid piston 

with the piston velocity (𝑉𝑝) given below: 

 

𝑉𝑝 = 𝑣𝐴𝐽 − 𝑉
′
𝑏 ,                                                                                                                                                            (4.12) 

 

The distance travelled by the piston can be represented with 𝐷𝑝. The works of Maxworthy (1977) 

and Didden (1979) investigated the production of vortex rings by an impulsive motion of a piston 

which expels a cylindrical fluid volume from a short compartment into the ambient environment. 

Haas and Sturtevant (1987) adapted these works to compute the circulation related to the motion 

of the piston and the vortex circulation. Their comparison of these two circulation values helped 

estimate the ‘efficiency’ of the effective piston generator. They then derived the circulation related 

to the piston given as: 

 

𝛤𝑝 =
1

2
𝑉𝑝𝐷𝑝 ,                                                                                                                                                                 (4.13) 

 

The Reynolds number (𝑅𝑒) related to the piston is given as: 

 

𝑅𝑒 =
𝛤𝑝

𝜗
,                                                                                                                                                                        (4.14) 
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where 𝜗 represents the kinematic viscosity of air. The Kelvin formula for the velocity of a vortex ring 

of Radius, (𝑅𝑣) and core radius (𝑟𝑐) can be used to estimate the circulation in the vicinity of the 

vortex, 𝛤𝑣. The velocity of a vortex ring (𝑉𝑣,𝑘𝑒𝑙) as computed from the Kelvin formula is given below:  

 

𝑉𝑣,𝑘𝑒𝑙 =
𝛤𝑣
4𝜋𝑅𝑣

[𝑙𝑛 (
8𝑅𝑣
𝑟𝑐
) −

1

4
],                                                                                                                                (4.15) 

 

Haas and Sturtevant (1987) explained that 𝑟𝑐 is small in comparison to 𝑅𝑣 which is similar to what 

this research predicted as presented in Table 4.6. 

 

Table 4.6: Parameters for the piston and vortex ring. 
 

 

From Table 4.6, 𝑉𝑝, 𝐷𝑝, 𝑅𝑣, and  𝑟𝑐 are estimated from this research’s numerical findings i.e., 3D 

schlieren images while 𝑉𝑣,𝑘𝑒𝑙 can be estimated using some previously derived velocities as 

presented below: 

 

𝑉𝑣,𝑘𝑒𝑙 = 𝑉
′
𝑣 − 𝑉

′
2,                                                                                                                                                    (4.16) 

 

Table 4.6 also shows a good agreement between the predicted and measured 𝛤𝑝, 𝛤𝑣 and 𝑅𝑒. Both 

numerical predictions and experimental measurements also show a remarkably huge percentage 

of the jet/piston related circulation transmitted to the vortex i.e., 84% for this numerical study and 

88% for experimental analysis of Haas and Sturtevant (1987). Lastly, the 𝑅𝑒 which is of the order 

of 105 prove that the generated vortex rings are turbulent. 

4.3.8. Visualization of the shock bubble interaction process 

The elaborate and important processes involved in bubble distortion, vorticity production, air-jet 

development, and the entire late-time development of the SBI process will be further analysed in 

this section. This section was not presented first as this research intended to quantitatively validate 

the obtained numerical predictions as shown from Section 4.3.1 to Section 4.3.7 before the 

presentation of the qualitative comparisons. Fig. 4.11 presents six snapshots of the simulated 

images (left) and shadow-photographs (right) taken in the experiment. Time, 𝑡, is normalized using 

the shock velocity and the diameter of the bubble. Hence 𝑡 is non-dimensional.  

  𝑉𝑝  𝐷𝑝  𝑉𝑣,𝑘𝑒𝑙  𝑅𝑣  𝑟𝑐  𝛤𝑝  𝛤𝑣  𝛤𝑣 𝛤𝑝⁄   𝑅𝑒  

Haas & 
Sturtevant (Exp.) 

167 30 37 15 4 2.51 2.21 0.88 1.75 x 105 

Current Study 167.55 25.92 32.11 14.96 3.38 2.17 1.82 0.84 1.4 x 105 
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Overall, the predictions capture the SBI process, especially the key features, very well as the 

simulated images are quite similar to the shadow-photographs at all those six times. The simulation 

results are symmetrical because of the applied boundary conditions. Fig. 4.11(a) shows the incident 

shock wave shortly after its collision with the helium bubble and the refracted wave, travelling ahead 

of the incident shock, can be clearly seen from the simulated image while it is barely observable 

from the shadow-photograph. The shadow-photograph in Fig. 4.11(b) reveals the spherical 

transmitted shock wave at the left trailed by a flat front which represents the torus-shaped secondary 

transmitted wave’s projection. All these features are well captured in the simulation as shown in the 

simulated image (left side of Fig. 4.11(b)). Fig. 4.11(b) also shows that the bubble is flattened in the 

Figure 4.11: Snapshots of simulated images (left) on the central x-y plane and shadow-

photographs (right) at: (a) 𝑡=0.27; (b) 𝑡=0.84; (c) 𝑡=1.33; (d) 𝑡=2.09; (e) 𝑡=3.73; and (f) 𝑡=5.76. 
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direction of shock travel. As time progresses, a developing air jet has started to penetrate the 

upstream interface of the helium volume, which appears to be sinking inwards as seen from Fig. 

4.11(c), thus making the distorted bubble appear kidney shaped due to the re-entrant jet’s formation 

at the upstream end. The re-entrant jet is formed due the impact of the ambient air on the upstream 

interface driven by the generated vorticity (Zhu et al., 2019) and pierces much further into the bubble 

as shown in Fig. 4.11(d), accompanied by back-scattered waves to the right which are more clearly 

observable in the simulated images. In the meantime, diffracted waves are observed in both the 

simulated images and shadow-photographs, more obvious in the shadow-photographs. During 

bubble deformation and the formation of the air-jet, which is shaped as a convergence nozzle, 

clearly shown in Fig. 4.11(f), and also observed in the study by Yoo and Sung (2018), there is a 

gradual rise in the velocity magnitude arriving at the bubble centre. Due to the interfacial density 

mismatch, the pressure preceding the upstream region of the bubble increases with the air-jet 

causing the lighter helium gas with the bubble to move to the right and the heavier air to move to 

the left. These movements are responsible for the bubble hollowing from the upstream interface 

and through the centre. Similarly, as can be seen from Figs. 4.11(a) to 4.11(d), the pressure 

upstream of the helium volume is considerably higher than that on the downstream region and this 

pressure differential means that the heavier air accelerates the lighter helium thus subjecting the 

deformed bubble to the Richtmyer–Meshkov (RM) instability (shock-induced Rayleigh-Taylor 

instability). It is understood that vortex rings in the post-shock are formed due to the RM instability 

at the bubble interface. The simulated images in Figs. 4.11(e) and 4.11(f) in the present study show 

a visible appearance and formation of such vortex rings, demonstrating the existence of the RM 

instability. Both the simulated images and shadow-photographs in Figs. 4.11(e) and 4.11(f) also 

show that the air jet impinges on the downstream air-helium interface and eventually passes through 

the bubble.  

4.3.9. Visualization of vorticity 

Vorticity production and transport possibly denotes the most essential component of SBI, and Fig. 

4.12 presents the predicted contours of vorticity at various phases of the SBI process. Vorticity is 

so important in SBI as it, together with the aerodynamic forces, predominantly controls the bubble’s 

motion and shape (Layes et al., 2003) so that the visualization of vorticity can help to understand 

the SBI process. It is generally accepted that vorticity is generated due to a misalignment of the 

local pressure and density gradients, which is then deposited and transported in the flow when the 

shock waves (incident, refracted, diffracted, and focused waves) travel through the bubble. It is 

interesting to note that even at the early stage, vorticity is generated as shown in Fig. 4.12(a) around 

the air-helium interface (bubble surface) where pressure and density gradient are located. The 

vorticity produced by the baroclinic mechanism initiates the deformation of the upstream surface 

and leads to the caving in/inversion of the upstream bubble surface towards the downstream bubble 

surface as shown in Figs. 4.12(b) to (d), ensuring that the related rotational fluid motion creates an 

air-jet which pierces the downstream bubble interface as shown in Fig. 4.12(e). The magnitude of 

the deposited vorticity is determined by the non-collinearity of the local pressure and density 

gradients. As the maximum misalignment is located at the diametral plane, the maximum vorticity 

is thus accumulated at this location thus a justification for the formation of a pair of vortex rings 

close to the diametral plane. During the process of shock wave interaction with the helium bubble, 

the RM instability causes the bubble collapse and deformation after which the fluids i.e., helium and 

air, rotate and continue to develop to form the vortical structures as shown in both Fig. 4.11(f) and 

Fig. 4.12(f). As these perturbations develop, vortices produced at the interface rolls up and drags 

helium into a distinctive downstream (primary) vortex ring. Figure 4.12(f) also shows that most of 

the generated vorticity is situated in the downstream vortex ring. 
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4.3.10.      3D flow visualization 

3D flow visualization will be presented in this section to further illustrate the SBI process. The 

notations used in the analysis are defined in the schematic below (Fig. 4.13).  

 

 

 

 

 

 

 

 

 

Snapshots of the predicted pressure iso-surfaces showing a quarter bubble (better suited to show 

certain feature) are presented below to elucidate the change in position of the helium bubble, 

generation of the various wave patterns as well as the formation of the vortical structures. There 

are two points, a point on the upstream edge of the bubble – point C and the highest point of the 

bubble – point D as shown in Fig. 4.14(a), which are very relevant in understanding how the shocked 

bubble travel as well as the formation of the vortical structures. 

 

Figure 4.12: Snapshots of vorticity contours on the central x-y plane at: (a) 𝑡=0.27; (b) 𝑡=0.84; (c) 

𝑡=1.33; (d) 𝑡=2.09; (e) 𝑡=3.73; and (f) t=5.76. 

Figure 4.13: Schematic of the SBI process: (a) upstream/downstream interfaces; (b) air-jet; and (c) 

primary vortex ring and helium lobe (adopted from Haas and Sturtevant (1987)) 
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At early stage as shown in Fig. 4.14(a), the planar incident shock has collided with the bubble face, 

generating a refracted shock inside the bubble. The shocked bubble is subsequently deformed and 

at 𝑡=0.84, the incident shock has propagated more than half the length of the bubble and lagged 

the refracted shock as shown in Fig. 4.14(a). At 𝑡=1.33, the incident shock travels past the entire 

bubble length as shown in Fig. 4.14(b) and lags the transmitted shock culminating from the 

encroachment of the refracted shock on the downstream bubble edge. At this stage, points C and 

D have moved a considerable distance from their original positions. As previously discussed, the 

resulting baroclinic vorticity generation from shock motion across the bubble ensures that the 

associated rotational motion pulls a jet of surrounding air through the bubble centre. This air-jet is 

first detected 𝑡=1.33 as shown in Fig. 4.14(b), which also shows how far the transmitted wave has 

travelled ahead of the shocked bubble with the generated vorticity causing the upstream surface to 

continuously cave-in in the direction of the impinging air-jet and towards the downstream surface. 

This air-jet that penetrates the helium volume and pierces through the downstream edge of the 

bubble is analogous to the so-called spike of the RM instability at a perturbed gaseous air-helium 

interface. This caving-in/inversion continues as shown in Figs. 4.14(c) and (d) until point C is no 

longer visible in Fig. 4.14(e). At the later stage (𝑡=3.73 and 𝑡=5.76), the inverted part of the upstream 

surface has impinged on the downstream surface with vorticity spinning up and dragging the bubble 

fluid (helium) into a characteristic vortex ring at the downstream bubble end. 

Figure 4.14: Pressure iso-surfaces at: (a) 𝑡=0.84; (b) 𝑡=1.33; (c) 𝑡=2.09; (d) 𝑡=3.73; and (e) 𝑡=5.76. 
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Fig. 4.15 presents snapshots of the predicted pressure iso-surfaces showing more clearly certain 

features of the full bubble compression process and shock propagation. It can be seen from Fig. 

4.15(a) that at 𝑡=0.84 the transmitted wave is already behind the bubble while the incident shock is 

still propagating through the bubble. Distortion and movement of the spherical inhomogeneity has 

already taken place. The upstream region of the bubble has gradually become flat. The transmitted 

wave travels further behind the bubble and significant distortion of the bubble is observable in Fig. 

4.15(b). The air-jet has become evident as shown in Fig. 4.15(b) and the piercing effects of the air-

jet are pronounced in Figs. 4.15(c) and (d) where the upstream interface approaches the 

downstream interface. This is then followed by the formation of a well-defined vortex ring as shown 

in Fig. 4.15(e).  

4.3.11.      Vortex ring evolution 

The primary vortex ring (𝑝𝑣𝑟) involves highly complex, distorted rotational motion and mixing which 

have formed from the non-linear coupling of shock compression and acceleration, nonlinear 

acoustic impacts as well as generation and transport of vorticity (Layes et al., 2005; Ranjan et al., 

2007; Ranjan et al., 2008; Ranjan et al., 2011). Hence the development of 𝑝𝑣𝑟 at the later stage of 

the SBI with respect to its formation and evolution will be further explained through flow visualization 

in this section. It can be seen from Fig. 4.16a(i) and Fig. 4.16b(i) that the initial spherical bubble has 

evolved into three distinct volumes at 𝑡=3.73, with the smallest volume at the downstream end. This 

Figure 4.15: Pressure iso-surfaces at: (a) 𝑡=0.84; (b) 𝑡=1.33; (c) 𝑡=2.09; (d) 𝑡=3.73; and (e) 𝑡=5.76. 
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smallest volume increases in size with time as shown in Figs. 4.16a(ii – iii) and Figs. 4.16b(ii – iii). 

As time goes by, helium is drawn in and rolled up by the generated vorticity induced by shock 

propagation within this smallest volume. The apparent onset of the 𝑝𝑣𝑟’s formation is observed in 

Fig.  4.16a(iii) and Fig. 4.16b(iii) at 𝑡=4.69. This process continues and at 𝑡=5.28, a distinctive 𝑝𝑣𝑟 

has been formed, which is clearly observable in Fig. 4.16a(iv) and Fig. 4.16b(iv). This 𝑝𝑣𝑟 becomes 

more and more distinctive as shown in Figs. 4.16a(v – viii) and Figs. 4.16b(v – viii). These figures 

also clearly show that the ℎ𝑙 extends from the upstream edge to where the 𝑝𝑣𝑟 exists and carries 

more than 60% of the helium volume, i.e., the ℎ𝑙 is much larger than the 𝑝𝑣𝑟 in volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To the best of our knowledge, very little information is available regarding the rotation direction of 

the ℎ𝑙 and the 𝑝𝑣𝑟 as SBI progresses. This is especially the case with respect to the evolution of 

the 𝑝𝑣𝑟 and its increase in size as revealed above. Similarly, the rotation of the 𝑝𝑣𝑟 is also linked to 

the deposition of vorticity in it as SBI increases. This leads to a subsequent reduction in the ℎ𝑙 as 

𝑝𝑣𝑟 increases in size throughout the SBI process. From Fig. 4.17, the top ℎ𝑙 rolls up in a 

counterclockwise direction while the top 𝑝𝑣𝑟 develops and rolls up in the clockwise direction. On 

the flip side, Figs. 4.17(a) and (c) show that the bottom ℎ𝑙 rotates in the clockwise direction while 

Figure 4.16: (a) contours of density on the central x-y plane at: (i) 𝑡=3.73; (ii) 𝑡=4.02; (iii) 𝑡=4.69; (iv) 

𝑡=5.28; (v) 𝑡=5.38; (vi) 𝑡=5.48; (vii) 𝑡=5.67; (viii) 𝑡=5.76. (b) iso-surfaces of density at: (i) 𝑡=3.73; (ii) 

𝑡=4.02; (iii) 𝑡=4.69; (iv) 𝑡=5.28; (v) 𝑡=5.38; (vi) 𝑡=5.48; (vii) 𝑡=5.67; (viii) 𝑡=5.76.      
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the bottom 𝑝𝑣𝑟 evolves and rolls up in the anticlockwise direction. Fig. 4.17(b) is provided as it 

shows the streamlines on the sides of the  ℎ𝑙 and 𝑝𝑣𝑟 which are clearer and more traceable.  

4.3.12.      Onset and development of turbulent mixing 

The RM instability, which appears when the shock wave accelerates the perturbed interface 

separating the heavier air and the lighter helium, initially starts with perturbations which develop 

linearly followed by a non-linear stage where these perturbations grow into complex structures 

shaped as a converging spike as seen previously in Figs. 4.11(c) and (d). As time progresses, the 

downstream end of the helium bubble is ruptured by the impinging air-jet as shown in Figs. 4.11(e) 

and (f). Subsequently, more intensive mixing of helium with air occurs with some small flow 

structures formed as shown in Fig. 4.18 below, indicating that turbulent mixing starts to develop at 

the later stage of the SBI in the present study. It can be seen from Fig. 4.18 that the mixing is mainly 

concentrated inside the 𝑝𝑣𝑟, the bridge region which connects the ℎ𝑙 to the 𝑝𝑣𝑟 as well as the outer 

interface of these areas. This is concordant with the findings of Tomkins et al. (2008) who observed 

three main regions of mixing i.e., the vortex core, the outer boundary, and the bridge area joining 

Figure 4.17: Rotation direction of ℎ𝑙 and 𝑣𝑓 revealed by (a) density contours on the central x-y 

plane; (b) deformed quarter spherical bubble; and (c) distorted full spherical bubble. All images are 

at 𝑡=5.76. 
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the two major vortices. Furthermore, it is evident from Fig. 4.18 that large-scale entrainment occurs 

around the 𝑝𝑣𝑟, leading to the increase of 𝑝𝑣𝑟 and reduction of ℎ𝑙 as time passes by. The density 

contours from 𝑡=0.84 to 𝑡=5.76 were not displayed in Fig. 4.18 as they did not show any notable 

signs of turbulent mixing between air and helium. 

4.3.13.      Turbulence generation and development 

This section focuses on the turbulence generation and development of the SBI process. Fig. 4.19 

presents contours of turbulence intensity which has been used to characterise freestream 

turbulence. Turbulence intensity (represented by turb-intensity in Fig. 4.19) has been computed by 

ANSYS Fluent using the empirical correlation shown below (ANSYS, 2018): 

turb‑intensity =
100

𝑈
√
2

3
𝑘                                                                                                                                     (4.17) 

where 𝑈 and 𝑘 represent the streamwise velocity and turbulent energy respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Density contours on the central x-y plane revealing the development of turbulent 

mixing, (a) 𝑡=6.15, (b) 𝑡=7.16, (c) 𝑡=8.31, (d) 𝑡=9.90. 
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It is well known that SBI involves a broad range of complicated features, from shock wave refraction 

and reflection, generation, and transport of vorticity, to the onset of turbulent mixing but hardly any 

previous experimental and numerical studies have addressed one very important feature – 

turbulence generation and development. It can be seen from Fig. 4.19(a) that turbulence starts to 

be generated initially around the bubble interface at early stage when 𝑡=0.84. As times passes by, 

the bubble interface is severely distorted, and more turbulence is generated around the tip of the 

air-jet as shown in Fig. 4.19(b) with the maximum turbulence intensity reaching about 11%. After 

the air-jet pierces through the downstream bubble interface, turbulence is mainly generated around 

the 𝑝𝑣𝑟 region and maximum turbulence intensity level increases gradually to about 14% when a 

distinctive 𝑝𝑣𝑟 has already been formed at 𝑡=5.76 as shown in Fig. 4.19(d). Afterwards the 

turbulence field looks similar and turbulence level increases gradually as shown in Figs. 4.19(e-g) 

to a maximum turbulence intensity of about 20% at 𝑡=9.9 as shown in Fig. 4.19(h). 

 

4.4.  Conclusions 

The mechanism of a spherical bubble deformation and compression from the interaction with an 

incident shock at 𝑀𝑎 = 1.25 has been examined through a numerical study. The URANS mathematical 

model is employed with a CLSVOF scheme to capture the helium bubble and air interface accurately. 

Both 2D and 3D simulations have been carried out and it is demonstrated that the 3D predictions are 

much closer to the measured values, with a very good agreement between the predicted velocities of 

refracted wave, transmitted wave, upstream interface, downstream interface, jet, vortex ring and the 

corresponding measured values. Also, a comparison of the 2D and 3D predicted non-dimensional 

bubble and vortex velocities to the experimentally measured ones show a very good agreement, but 

the 3D predictions showed better concordance. This suggests that 3D simulations are necessary for 

accurate predictions of SBI which is inherently 3D, especially at the later stage of SBI. The predicted 

Figure 4.19: Contours of turbulence intensity on the central x-y plane at: (a) 𝑡=0.84, (b) 𝑡=2.09, (c) 

𝑡=3.73, (d) 𝑡=5.76, (e) 𝑡=6.15, (f) 𝑡=7.16, (g) 𝑡=8.31, (h) 𝑡=9.90. 
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dimensionless upstream, downstream, and jet interface velocities were also compared to both the 

Rayleigh Taylor Theory, for estimating the growth rate of small sinusoidal perturbations, and past 

experimental results. Our 2D and 3D results show a good agreement with the theoretical predictions 

and experiments. As in the previous comparisons, the 3D predictions are much closer to the theoretical 

estimations and experimental measurements.  

Another quantitative assessment that was conducted involved comparing the predicted temporal 

variations of the bubble length and width as well as the produced vortex sizes and vortex pair spacing 

to that measured in past experimental works. There was a good agreement between the predictions 

of the current study and the experimental data. This research noticed that the bubble length initially 

decreased due to bubble compression before increasing due to an increase in the bubble length in the 

lateral direction after the air-jet pierces the downstream interface and the downstream ring emerges. 

The upstream ring height initially increased corresponding to the bubble compression which resulted 

in bubble elongation in the vertical direction. This was followed by a very gradual rise in this parameter 

after which it dropped in connection to the increasing height of the downstream ring. The height of the 

downstream ring continuously increased albeit at different incremental rates. Finally, these sets of 

comparisons revealed that the upstream ring height, downstream ring height, horizontal upstream ring 

size, vertical upstream ring size, upstream vortex pair spacing and downstream vortex pair spacing 

tended towards a constant value. The final quantitative assessment conducted involved comparing 

the predicted piston and vortex ring circulations to the experimentally measured ones. This research’s 

estimations showed a very good agreement with the experimental measurements with the order of the 

computed Reynolds number i.e., 105, proving that the generated vortex rings are turbulent. 

Flow visualization shows that the predictions have captured many salient flow features observed 

experimentally very well as the simulated images generally conform to the experimental 

shadowgraphs. The simulated images have clearly shown the initial distortion and flattening of the 

upstream edge of helium-filled spherical bubble, followed by the formation of an air-jet that grows 

towards and impinges on the downstream bubble edge. The evolution of wave patterns involved in the 

SBI, i.e., incident wave, transmitted wave and refracted wave, is also clearly illustrated. As the SBI 

progresses at the air-helium interface which has already been deformed by little undulating 

perturbations of long wavelengths that grew linearly, the formation of the primary vortex ring induced 

by the RM instability is observed. The detailed evolution process of the primary vortex ring from its 

onset to its development to a full distinctive vortex ring has been revealed via the flow visualization. In 

particular, the present study shows clearly that turbulence is generated at relatively early stage of the 

SBI before the formation of primary vortex ring (𝑝𝑣𝑟). After the formation of this distinctive 𝑝𝑣𝑟, 

turbulence is mainly generated around the 𝑝𝑣𝑟 region with the maximum turbulence intensity reaching 

around 20%. To our best knowledge, turbulence generation and development has not been 

presented/discussed in any of the previous relevant studies. 
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5. Shock/Cylindrical Bubble Interaction 

5.1.  Introduction 

The objective of this chapter is to accurately perform two-dimensional (2D) and three-dimensional (3D) 

computational fluid dynamics (CFD) simulations to investigate the complex interaction of a supersonic 

shock wave (𝑀𝑎 = 1.22) with a cylindrical helium bubble. To do this, the Unsteady Reynolds-Averaged 

Navier-Stokes (URANS) mathematical model and the coupled Level Set (LS) and Volume of Fluids 

(VOF) method, also referred to as the CLSVOF scheme, within the commercial CFD code, FLUENT, 

have been applied in the present study. The simulations are evaluated by comparing predicted 

velocities of refracted wave, transmitted wave, upstream interface, downstream interface, jet and 

vortex filament with related existing experimental data. The predicted non-dimensional bubble and 

vortex velocities have also been compared with experimental data and a simple model of shock-

induced Rayleigh-Taylor (RT) instability (i.e., Richtmyer–Meshkov instability) and other theoretical 

models. Comprehensive flow visualization has been used to explain the shock-bubble interaction (SBI) 

process from the onset of bubble compression up to the formation of the vortex filaments as well as 

the production and distribution of vorticity. Comparisons are also shown between the predicted bubble 

length/width and the experimentally measured results to elucidate changes in the shape and size of 

the 2D and 3D bubbles. To gain further understanding into the SBI flowfield, turbulence is examined 

to allow for the investigation of small flow structures and turbulent mixing between helium and air at 

the later stage of SBI. This is because, to the best of our knowledge, no previous studies have 

addressed the generation and development of turbulence at the SBI later stages as well as the 

evolution of vortex filaments from inception to the later phases. These knowledge gaps will be 

elucidated in the current study. 2D simulations are also performed as most numerical studies are 2D 

primarily due to its computational efficiency but there is always a question mark on the precision of 2D 

simulations. Hence, the 2D SBI simulations are directly compared against 3D SBI numerical 

simulations and previous experimental data to evaluate their accuracy. 

5.2.  Methodology 

5.2.1. Governing equations and numerical methods 

The interaction between supersonic air and a cylindrical helium bubble at the air-helium interface 

as well as the subsequent shock wave travel and bubble deformation were simulated using a 

pressure-based FVM to solve the governing integral equations for the conservation of mass and 

momentum i.e., URANS equations. This ensured that the present understanding of the complex 

SBI process is advanced. SBI is predominantly unsteady, and turbulence is generated at the later 

stage of SBI with usually large-scale unsteady flow structures. It was demonstrated by Onwuegbu 

and Yang (2022) that for this kind of flow, the URANS approach could predict the flow accurately at 

a significantly reduced cost so that there was no need using two other more accurate approaches, 

i.e., LES or DNS. The URANS equations are derived by averaging the instantaneous Navier-Stokes 

equations with some extra terms called Reynolds stresses being generated during the averaging 

process. These terms need to be approximated/modelled using a turbulence model. There are 

many turbulence models available and the selection of an appropriate turbulence model for this 

research will be presented in Section 5.2.5. As this kind of computational problem involves mixing 

the incident shock wave and the bubble gas at the air-gas interface which leads to the creation of 

complex turbulent structures in the supersonic flow, it is expedient to efficiently capture the bubble 

deformation. As such, an accurate interface tracking technique is required to capture the bubble 

deformation properly. Several methods are available to track the interface but most of them often 

fail to sustain pressure equilibrium for grid cells nearby the interfaces where two or more fluid 

components are mixed. They also struggle to handle large interface distortions, i.e., disintegration 

and fronts fusing (Shyue, 1998). From a numerical investigation of SBI viewpoint, various 
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researchers (e.g., Niederhaus et al., 2008; Taniguchi et al. 2014) had investigated the subject using 

VOF with varied success. 2D and 3D CLSVOF schemes were then adopted to track the air/helium 

interface, predict the bubble compression dynamics and formation of vortex filaments as well as 

treat topological changes at the interface. A third order MUSCL scheme was employed to discretize 

both momentum and the continuity equations spatially. The compressive scheme, which is a second 

order reconstruction scheme, was also adopted for spatial discretization of the volume fraction 

equations. With respect to the compressive scheme, the sharp/dispersed interface regime was 

applied. A first-order implicit scheme was used for the temporal discretization of the 2D and 3D 

URANS equations.  To achieve numerical stability and accuracy, the Courant Friedrichs Lewy 

number was set as 0.5 and a very small-time step of 4 × 10−7 seconds was used to accurately 

capture detailed flow developments. These equations, models and schemes have been elaborately 

discussed in Chapter 3.  

 

5.2.2. Computational details 

 
The computational set-up replicates the experiment carried out by Haas and Sturtevant (1987) with 

the key parameters, which are shown in Table 5.1. 

 

Table 5.1: Experimental conditions. 

 

 

 

 

Fig. 5.1(a) shows the 2D representation of the computational domain (half of the domain) detailing 

the initial conditions within the domain and boundary conditions for the computations. This research 

simulated this 2D cross-section using cartesian coordinates where the 𝑥-axis is horizontal, and the 

𝑦-axis is vertical. The dimensions of the 2D computational domain (𝑑 ×  (𝐿𝑎 + 0.4𝑑) are provided 

as a function of the bubble diameter, d (= 50 mm as in the experimental demonstrations of Haas 

and Sturtevant, 1987) while 𝐿𝑥 varies and is selected to provide enough room to hold the shocked 

bubble travel throughout the monitored time. The computations are performed only on the upper 

half as it is a mirror image of the lower half. The lower boundary of the grid (Edge CD) represents 

the shock-tube axis while the upper boundary of the computational grid (Edge AB) is treated as a 

solid wall with the no-slip wall boundary condition applied. The right boundary is the inlet, which is 

shown as Edge AC, while the left boundary corresponds to the outlet, which is shown as Edge BD. 

The incident shock propagates from right to left and the right boundary cells comprise of parameter 

values, i.e., 𝜌2, 𝑃2, 𝑢𝑥 = 𝑈2, 𝑢𝑦 = 0 , which is equivalent to the area behind the supersonic planar 

shock. As revealed from within the computational domain, identical values are utilised as initial 

conditions behind the shock which are located at a few cells within the computational grid. The 

values of these parameters also denote the post-shock properties of the ambient gas utilised in the 

initialisation and are calculated from the Rankine-Hugonoit relationships (Houghton and Brock, 

1993). The right boundary condition allows the smooth outflow of reflected waves created by the 

SBI. The left boundary condition equivalently allows the smooth outflow of any leftward-moving 

waves, including the distorted incident shock. Fig. 5.1(a) also reveals that the left boundary 

condition is achieved by sustaining a ‘zero gradient’ for all fluid variables, i.e., ∇𝑢 = 0, ∇𝑃 = 0, ∇𝜌 =

0. For both 2D and 3D cases, the upstream end of the bubble is kept at some distance from the 

incident shock. This is because a shock has an expected tendency to spread to its usual profile 

given an ‘exact discontinuity’ as initial conditions (Hillier, 1991) which could lead to errors that 

adversely delay the SBI process. 

      

Bubble gas 
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𝑴𝒂 
 

𝑨 

         Helium         Air         1.22 -0.715 
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For the 3D simulations (see Fig. 5.1(b)), the x-axis is coincident with the shock-tube long axis in the 

direction of shock-wave travel. The y-axis and z-axis are along the traverse directions. The incident 

shock wave and the free stream flow propagate in the x direction.  The computational geometry 

represents a physical region (shown as a cuboid) with dimensions 2𝑑 ×  (𝐿𝑥 + 0.4𝑑) ×  2𝑑, where 

d is the bubble diameter and 𝐿𝑥 has been selected to enable complete propagation of the shocked 

bubble for the required times. Similar boundary conditions as in the 2D case are applied for the 3D 

case and a no-slip boundary condition is employed on the top, bottom, and side walls e.g., the inflow 

and outflow boundary conditions for the 3D case are as specified for the 2D inlet and outlet boundary 

conditions as shown in Fig. 5.1(a). As in the 2D case, the 3D outflow condition has adopted a zeroth-

order extrapolation to the boundary whereby the outermost data plane is transferred into the 

boundary such that the gradients across the boundary equate zero (∇𝑣 = 0, ∇𝑃 = 0, ∇𝜌 = 0). 

Figure 5.1: (a) The upper half of the shock tube revealed by the surrounding heavy black line and 

boundary/initial conditions for the 2D case; and (b) Computational domain for the 3D case.  
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The 2D cylindrical challenge (set-up and boundary conditions) is similar to the 2D spherical problem 

as both scenarios have replicated the experimental conditions of Haas and Sturtevant (1987). Their 

experiments showed that they used a similar set-up for both experiments performed on either a 

single cylindrical or spherical bubble. As in the experiments, this research has only varied the flow 

Mach number (1.25 for the spherical case and 1.22 for the cylindrical case) and bubble dimensions 

(45mm diameter for spherical case and 50mm diameter for cylindrical case). 

 

 

The 2D (Fig. 5.2(a)) and 3D computational grids (Figs. 5.2(b) and (c)) consist mainly of structured 

meshes in the main flow region while the region in the vicinity of the bubble (both inside and outside) 

has been discretised into unstructured grids, i.e., both hybrid grids. The unstructured cells used in 

the bubble vicinity for both 2D and 3D cases enable the local alignment of the grid orientation to the 

dominant flow direction due to their flexible nature thus lessening numerical diffusion (Holleman et 

al., 2013) and have been validated by the works of previous researchers (e.g., Holleman et al., 

2013; Zubair et al., 2013). These unstructured grids make it easy to dynamically adapt the grid to 

the local structures of interest. As seen from Figs. 5.2(b) and (c), the 3D mesh is a hybrid grid 

consisting of uniform hexahedral meshes in most of the main flow region and smaller uniform 

hexahedral meshes within the bubble while the bubble vicinity (just outside and inside) is discretised 

into ‘smaller-cell’ unstructured triangular prisms. The cartesian cut-cell method, previously applied 

by Ingram et al. (2013), Berger et al. (2012), and Johnson (2013), has been used to generate this 

mesh. This method proves very useful to preserve the decoupling between the volume hexahedral 

mesh resolution and the surface triangulation in the bubble vicinity whilst focusing on resolution 

requirements close to the boundaries and reducing mesh irregularities in the cut cells (Berger et al., 

2012). 

 

Prior to the application of AMR, the cells inside the bubble and in its vicinity were made to be finer 

than the cells in the main flow region and the wall. AMR helps to generate a more robust high-

resolution grid capable of reproducing a sharp representation of discontinuities as well as can 

sufficiently resolve the various flow structures to be investigated. With respect to AMR, several 

authors (Berger and Oliger, 1984; Henderson et al., 1991; Bell et al., 1994; Klein et al., 1994; Quirk 

and Karni, 1996; Nourgaliev et al., 2006; Nierderhaus et al., 2008, etc.) had extensively applied it 

to SBI computations. The AMR settings are selected to ensure maximum refinements in all areas 

Figure 5.2: (a) 2D hybrid mesh; (b) 3D unstructured mesh; and (c) Close view of fine mesh around 

bubble from Adaptive Mesh Refinement (AMR). 
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having a non-zero bubble fluid volume fraction and close to any strong density gradients 

(Nierderhaus et al., 2008). AMR thus ensured that the mesh is refined inside the bubble and its 

vicinity (including the primary shock wave) guaranteeing that the fine cells surround and travel with 

the bubble to provide for the strong interaction between the incident shock waves and the bubble. 

For this research, AMR is built in by ANSYS Fluent and can be manipulated by the user to achieve 

the desired amount of extra grid cells that surround the interface and travel with the bubble and 

shock wave. This procedure gave us complete control of grid resolution. In Figs 5.2(a) – (c), the 

adapted mesh has two levels of AMR superposed on the original grid with a refinement ratio of 2 

each. 

5.2.3. Initialization of the computational problem 

This research initialised the helium gas within the bubble and the unshocked surrounding fluid, i.e., 

area between initial diaphragm and outlet at atmospheric conditions. The initialisation assumes that 

the bubble and the unshocked surrounding fluid are originally in a state of rest as well as in thermal 

and mechanical equilibrium thus implying that any original buoyant movement of the bubble is 

ignored.  

The JANAF data (Gordon and McBride, 1976) is used to derive the ratio of specific heats, 𝛾, for 

bubble gas (helium) and surrounding gas (air) utilising the original, unshocked pressure and 

temperature. Both fluids retained a constant value of 𝛾 throughout the computation. 

This research adopted the Rankine-Hugonoit relationships (Houghton and Brock, 1993) to calculate 

the post-shock characteristics of the surrounding air, as shown on the right-hand side of Fig. 5.1(a). 

The post-shock 𝑀𝑎, pressure and density are computed using the following mathematical relations 

respectively: 

𝑀𝑎2
2 =

(𝛾 − 1)𝑀𝑎1
2 + 2

2𝛾𝑀𝑎1
2 − (𝛾 − 1)

,                                                                                                                                      (5.1) 

𝑃2
𝑃1
=

2𝛾

𝛾 + 1
𝑀𝑎1

2 −
𝛾 − 1

𝛾 + 1
,                                                                                                                                         (5.2) 

𝜌2
𝜌1
=

𝛾 + 1
𝛾 − 1

(
𝑃2
𝑃1
) − 1

𝛾 + 1
𝛾 − 1

(
𝑃2
𝑃1
)
,                                                                                                                                                   (5.3) 

where 𝑀𝑎1 = 1.22, 𝑃1 and 𝜌1 represent the initial Mach number, pressure and density of the ambient 

air respectively, as shown on the left-hand side of Fig. 5.1(a). 

5.2.4. Mesh independence study 

A mesh independence study has been performed with three mesh qualities for both 2D case (0.14, 

0.20, and 0.29 x 106 cells) and 3D case (4.5, 5.8, and 9.5 x 106 cells) to determine the best grid 

resolution that will yield the most optimal computational results in comparison to the experimental 

works of Haas and Sturtevant (1987). Figs. 5.3(a) and (b) show the changes in bubble compression 

and jet formation with respect to three representative positions, i.e., upstream, jet, and downstream 

locations as specified in the respective figures. For the 2D case represented by Fig. 5.3(a), the 

results show little disparity when the mesh is refined from 0.20 to 0.29 x 106 cells, and hence there 

is no need to refine the mesh further. As such, the remaining 2D simulations are carried out using 

0.29 x 106 cells. Similarly, for the 3D case represented by Fig. 5.3(b), the derived results from the 

mesh with 5.8 x 106 cells show little variation from the results obtained from the mesh with 9.5 x 106 

cells and hence there is no need to further refine the mesh.  Following this analysis, all 3D 

computations are performed using 9.5 x 106 cells. 
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5.2.5. Turbulence model selection 
 

Lawson and Barakos (2011) explained that the associated flow fields for a SBI will be characterised 

by the strong acoustic effects, unsteadiness, and turbulence. This means that the mixing process 

between the supersonic shock wave and the bubble will yield more complex turbulent features. 

Also, SBI shows structures that are preliminarily turbulent (Haas and Sturtevant, 1987) and there is 

a fundamental variation in the behaviour of 2D and 3D turbulence which is due to the lack of the 

Figure 5.3: (a) Coarse, fine and finer meshes in 2D case; and (b) Coarse, fine and finer meshes in 

3D case. 
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vortex-stretching mechanism in 2D (Pope, 2000). Furthermore, Klein et al. (2003) experimentally 

investigated the presence of non-axisymmetric perturbations in the original bubble geometry which 

they observed to trigger azimuthal vortex-ring instabilities like the type described by Widnall et al. 

(1974). Several authors (e.g., Quirk and Karni, 1996; Grasso and Pirozzoli, 1999; Nierderhaus et 

al., 2008; Ding at el., 2018; Georgievskiy et al, 2018; Lei and Li, 2018; Fan et al., 2019; Ray et al., 

2019; Zhai et al., 2019; Liang et al., 2020; Li et al., 2021) had numerically investigated SBI using 

the compressible Euler equations which govern the adiabatic and inviscid flows (Toro, 2009). But if 

the late-stage RMI involving small-scale structures and even turbulent mixing are to be discussed 

(as in the current study), physical viscosity should be considered (Ding et al., 2018). This then 

necessitates the use of turbulence models to effectively study the SBI phenomenon as there is 

hardly any knowledge acquired till date concerning the performance of turbulence models for SBI 

simulations. This research thus stands as a new research dimension to studying SBI. There are 

several turbulence models and there is no general agreement which model is most superior as their 

individual performance is very case dependent. Based on this, this research has adopted three 

extensively applied and highly rated turbulence models: the realizable k-ε, the shear stress transport 

(SST) k-ω, and a Reynolds stress model (RSM). These three turbulence models have been 

examined to evaluate their performance for the 3D case. Fig. 5.4 shows the comparison between 

the predicted three location variations of the bubble using these three turbulence models versus the 

experimental data of Haas and Sturtevant (1987). It is clearly seen in Fig. 5.4 that the predictions 

using all three turbulence models show little disparity but the results from the realizable k-ε are 

slightly closer to the experimental data. Therefore, realizable k-ε turbulence model is adopted in this 

research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.  Results and discussion 

5.3.1. Comparison of measured to predicted velocities 

Table 5.2 below shows the comparison between the measured (experimental) and predicted 

(numerical) velocities of incident (𝑢𝐼), refracted (𝑢𝑅) and transmitted waves (𝑢𝑇), as well as the 

different characteristic interface points, i.e., initial upstream interface (𝑢𝐼𝑈), final upstream interface 

Figure 5.4: Comparison of numerical results between different turbulence models and experimental 

data. 
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(𝑢𝐹𝑈), initial downstream interface (𝑢𝐼𝐷), air-jet head (𝑢𝐴𝐽), and vortex filament (𝑢𝑓). The average 

velocities of these acoustic wave characteristics are obtained by using minimum squares line 

adjustments to estimate their approximate locations at different times along the advected bubble 

trajectory. Generally speaking, the computation of these velocities involves the measurement of the 

changes in their respective positions over 50-time steps and dividing by the elapsed duration, 𝑇, 

i.e., 𝑇 ≥ 4 𝑥 10−7𝑥 50 ≥ 20𝜇𝑠. Therefore, the values provided in Table 5.2 have been calculated by 

averaging over a number of such intervals. 

As seen from Table 5.2, there is an excellent agreement between the 3D predictions and the 

experimental data for all the derived velocities with the maximum error being 2.65% for the final 

upstream interface velocity. There is also a good concordance between the 2D predictions and the 

measured experimental values with the maximum error being 11.68% for the final upstream 

interface velocity clearly demonstrating that the 3D simulations produce more accurate results.  

Table 5.2: Comparison between the experimental data of Haas & Sturtevant (1987) and the 

numerical predictions. All velocities provided are in m/s. 

 

 

 

 

5.3.2. Air displacement, bubble acceleration and vortex formation 
 

This section looks to compare the predicted rates of deformation with the experimentally measured 

values and a model of bubble acceleration/vortex generation put forward by Rudinger and Somers 

(1960). Ding et al. (2017) explained that the pressure oscillations occurring around the evolving 

air/helium interface, to an extent, control the movement of the interface at early SBI phases. Air is 

accelerated in the shock tube during shock wave propagation, from a state of rest to a uniform 

velocity, 𝑈2, derived as (Jacobs, 1992; 1993): 

𝑈2 =
2𝑎0
𝛾 + 1

(𝑀𝑎1 −
1

𝑀𝑎1
),                                                                                                                                         (5.4) 

As helium is less dense than air, the cylinder will be accelerated to a larger velocity than 𝑈2 and the 

principal flow velocity behind the incident shock acts as a piston on the bubble thus leading to the 

bubble deformation and compression. This then means that the light helium gas travels ahead of 

the ambient air as it is propagated down the shock tube following the incident shock wave. Even 

though helium bubble initially translates as a solid cylinder, it eventually yields to the forces induced 

by the propagation of the ambient air. This is what leads to the formation of the vortex filament pair. 

Rudinger and Somers (1960) presented a simple two-phase model of SBI in which throughout the 

early transients, the bubble accelerates as a solid body to a velocity of 𝑈𝑏 and is transformed into a 

vortex ring with a velocity of 𝑈𝑣 in the final evolution phase following Taylor’s mechanism (1953). 

The travelling, undistorted bubble during the first phase functions as Taylor’s ‘undissolved’ vortex-

generating disk such that 𝑈𝑏 represents the disk velocity. Rudinger and Somers (1960) proposed 

that the impulse per unit volume undergone by the bubble, 𝐼𝑏, would equal that underwent by the 

ambient air, i.e., 𝜌𝑎𝑖𝑟  ×  𝑈2, where 𝜌𝑎𝑖𝑟 denotes the ambient gas density. This is shown below: 

𝐼𝑏 = 𝜌𝑎𝑖𝑟  𝑥 𝑈2 = 𝜌𝑏𝑈𝑏 + 𝑘𝜌𝑎𝑖𝑟(𝑈𝑏 − 𝑈2),                                                                                                             (5.5) 

where 𝜌𝑏 denotes the bubble gas density. 𝑘 represents the apparent mass fraction for a cylinder, 

which is equal to 1.0 (Rudinger and Somers, 1960). Rudinger and Somers (1960) used 1.0 for 𝑘 in 

 𝑢𝐼 𝑢𝑅 𝑢𝑇 𝑢𝐼𝑈 𝑢𝐹𝑈 𝑢𝐼𝐷 𝑢𝐴𝐽 𝑢𝑓 

Experimental data 410 900 393 170 113 145 230 128 

CFD Predictions (2D) 397.5 882.7 378.1 153.6 99.8 130.4 217.3 115.9 

CFD Predictions (3D) 403.3 894.6 388.8 166.5 110 141.3 226.7 122.2 
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their calculations because it allowed the initial non-dimensional bubble velocity, 𝑈𝑁𝐷𝑏, to be 

calculated from Eq. (5.5) as the ratio of the disk velocity to the uniform air velocity after shock 

propagation. From their calculations, they derived 𝑈𝑁𝐷𝑏 as:  

𝑈𝑁𝐷𝑏 =
𝑈𝑏
𝑈2
=
1 + 𝑘

𝜎 + 𝑘
,                                                                                                                                                    (5.6) 

where 𝜎 = 𝜌𝑏/𝜌𝑎𝑖𝑟 . 

The conversion of the bubble into a vortex implies a drop in the relative velocity, as shown below: 

𝑈𝑣 − 𝑈2 = 𝛽(𝑈𝑏 − 𝑈2),                                                                                                                                               (5.7)  

in which 𝛽 has a numerical value of 0.203 for the cylinder as computed by Rudinger and Somer 

(1960). 

From Eq. (5.7), the non-dimensional vortex velocity can be calculated as: 

𝑈𝑁𝐷𝑣 =
𝑈𝑣
𝑈2
= 1 + 𝛽

1 − 𝜎

𝜎 + 𝑘
,                                                                                                                                         (5.8) 

The predicted, theoretical, and measured values for these two non-dimensional velocities are 

presented in Table 5.3. 

Table 5.3: Theoretical, numerical and experimental non-dimensional bubble and vortex velocities. 

 

 

 

 

It can be seen from Table 5.3 that the predicted initial bubble velocity in the 3D case agrees very 

well with the experimental data while the theoretical value is far too large. Nevertheless, for the 

vortex velocity, the theoretical value is slightly closer to the experimental data than the 3D prediction, 

indicating that the theoretical model could capture the vortex formation reasonably well but not the 

bubble acceleration. It is demonstrated again that the 3D predictions are more accurate than the 

2D predictions and the complete process of bubble acceleration and vortex formation can be well 

captured by the 3D simulations. 

5.3.3. Distortion and evolution of the interface: prediction of upstream and jet 

interface velocities 

In this section and Section 5.3.4, this research will compare the predicted rates of deformation to 

experimentally measured ones and the growth rate of small sinusoidal perturbations induced by the 

impulsive acceleration of a plane interface proposed by the Rayleigh-Taylor theory. This 

comparison will be made at three characteristic interface points, i.e., upstream, downstream, and 

interfaces. Haas and Sturtevant (1987) stated that it is informative to investigate the relationship 

between the shock-generated deformation of gas cylinders and the Rayleigh-Taylor instability (RTI) 

of plane interfaces. They used the illustration where a cylinder is taken to be representative of a 

sinusoidal perturbation having an amplitude of 𝜂0 = 𝑅 (𝑅 represents the cylinder’s radius) and 

wavelength 𝜆 = 2𝜋𝑅 (wavenumber 𝑘 = 1 𝑅⁄ ). This then meant that the sine wave is tangential to 

and has identical curvature at crests and troughs as the cylinder. This further implied that the 

amplitude of the effective perturbation is significantly large (𝑘𝜂0 = 1) and variations of the 

observations from linear theory may indicate the impacts of finite amplitude and non-linearity.  

 𝑈𝑁𝐷𝑏 𝑈𝑁𝐷𝑣 

Theoretical 1.692 1.140 

Experimental data 1.37 1.12 

CFD Predictions (2D) 1.240 1.012 

CFD Predictions (3D) 1.345 1.068 
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According to the theory of impulsive RTI, the interface is assigned a mean translational velocity, 𝑈, 

and a constant perturbation velocity, 𝑢, at the troughs and crests when a shock wave impacts a 

plane interface deformed by the small undulating perturbations of long wavelength (Markstein, 

1957a; 1957b; Richtmyer, 1960). This perturbation velocity is given below: 

𝑢 = ±𝑘𝜂0𝑈𝐴,                                                                                                                                                                 (5.9) 

where 𝐴 denotes the Atwood number. The interface deforms at a constant rate and there is a 

continuance of the velocity field as there is no further acceleration after shock impingement. 

Changing to laboratory coordinate system, the crests or trough velocity normalised by the 

translational velocity 𝑈 is shown below: 

𝛶 = 1 + 𝑢 𝑈,⁄                                                                                                                                                               (5.10) 

The laboratory coordinate system represents a Cartesian-coordinate system where the x and y axes 

are in the horizontal plane while the z axis is in the vertical plane (Atkins and Escudier, 2013). It is 

frequently employed to reference experimental observations. Substituting Eq. (5.9) into Eq. (5.10) 

as well as equations for the wave number, 𝑘 (= 1 𝑅⁄ ), and amplitude, 𝜂0(= 𝑅), yields Eq. (5.11) 

below: 

𝛶 = 1 ± 𝛼𝐴,                                                                                                                                                                 (5.11) 

where the plus sign relates to a shock incident on a concave interface (trough), and 𝛼 = 1 for a 

locally cylindrical interface. Haas and Sturtevant (1987) adopted the first-order correction for non-

linearity suggested by Richtmyer (1960) considering the compression of the interface shape by the 

incident shock by replacing the amplitude, 𝜂0, with 𝜂0(1 − 𝑈 𝑢𝐼⁄ ) and stated that for their 

experiments, the compression (1 − 𝑈 𝑢𝐼⁄ ) varies from 0.59 to 0.9.  Table 5.4 shows, with respect to 

the upstream and jet interface, the normalised perturbation velocity estimated from the RTI theory 

as well as the translational velocity, dimensionless upstream and jet interface velocities measured 

from the experiments and predicted from our simulations (both 2D and 3D). The dimensionless 

upstream interface velocity, 𝛶𝐼𝑈, is computed by normalising 𝑢𝐼𝑈 with 𝑈, i.e., 𝛶𝐼𝑈 = 𝑢𝐼𝑈 𝑈⁄ . Similarly, 

the dimensionless jet velocity, 𝛶𝐴𝐽, has been obtained by normalising 𝑢𝐴𝐽 with 𝑈, i.e., 𝛶𝐴𝐽 = 𝑢𝐴𝐽 𝑈⁄ . 

Haas and Sturtevant (1987) had computed the values of 𝑈 from one-dimensional (1D) theory. 𝑈, 

used in the current study, has been computed adopting the same method applied in the derivation 

of the various wave velocities and characteristic interface point velocities (see Section 5.3.1). 

Table 5.4: Dimensionless upstream interface and jet interface velocities from CFD simulations 

compared to the Rayleigh-Taylor theory and experiments. 𝑈 is in m/s. 

 

 

 

Table 5.4 compares the predicted 𝛶𝐼𝑈 and 𝛶𝐴𝐽 with both experiments and theory. The predicted initial 

rate of deformation at the upstream interface, 𝛶𝐼𝑈, is significantly lower than the estimation, 𝛶, of 

RTI theory but is in close agreement with the experimentally measured 𝛶𝐼𝑈, particularly in the 3D 

predictions. The predicted 𝛶𝐴𝐽, on the other hand, is higher than the predicted  𝛶𝐼𝑈, and there is little 

disparity between the predicted 𝛶𝐴𝐽 (2D and 3D) and both;  𝛶 (estimated from RTI theory) and the 

experimentally measured 𝛶𝐴𝐽. This is indicative of the fact that our numerical model is sufficiently 

reliable and accurate. Again, the 3D predictions are more accurate than the 2D predictions 

𝑈 
Theory Experimental CFD Predictions (2D) CFD Predictions (3D) 

𝛶 𝛶𝐼𝑈 𝛶𝐴𝐽 𝑈 𝛶𝐼𝑈 𝛶𝐴𝐽 𝑈 𝛶𝐼𝑈 𝛶𝐴𝐽 

158 1.432 1.08 1.46 152.6 1.01 1.42 157.7 1.06 1.44 
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As shown in Fig. 5.5, the characteristic upstream interface displacement, 𝑦𝑢𝑝𝑠, is normalised by the 

bubble diameter (𝑑) to allow an efficient comparison of our predicted results to other experimental 

and numerical findings. Fig. 5.5 presents the comparison between the predicted dimensionless 

displacement of the upstream interface (𝑦𝑢𝑝𝑠 𝑑)⁄  and the experiments of Haas and Sturtevant 

(1987), including the previous numerical results by Chen et al. (2021). It can be seen clearly that a 

very good agreement between the present 3D predictions and the experimental data has been 

obtained while the numerical results by Chen et al. (2021) are extremely close to the present 3D 

predictions at the early stage of the shock bubble interaction (first 125 s). Nevertheless, after the 

first 125 s, the predictions by Chen et al. (2021) starts to divert away from both experimental data 

and the current 3D predictions. It is also shown in Fig. 5.5 that the 3D predictions are much closer 

to the experimental data than the 2D predictions, confirming that 3D simulation is needed when a 

shock wave interacts with a cylindrical bubble in order to capture such interaction more accurately. 

 

5.3.4. Distortion and evolution of the interface: prediction of downstream interface 

velocity 

Table 5.5 has been provided, with respect to the downstream interface, and shows the normalised 

perturbation velocity estimated from the RTI theory. It also shows the translational velocity, 

dimensionless upstream and jet interface velocities measured from experiments and predicted from 

our simulations (both 2D and 3D). The dimensionless downstream interface velocity, 𝛶𝐼𝐷, is 

computed by normalising 𝑢𝐼𝐷 with 𝑈, i.e., 𝛶𝐼𝐷 = 𝑢𝐼𝐷 𝑈⁄ . Similarly, 𝑈, used in the experiments of Haas 

and Sturtevant (1987) have been computed from one-dimensional theory. 𝑈, used in the current 

study, has been computed adopting the same method applied in the derivation of the various wave 

velocities and characteristic interface point velocities (see Section 5.3.1). 

 

 

Figure 5.5: Comparison between numerical and experimental dimensionless displacements of the 

upstream edge against time. 
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Table 5.5: Downstream interface velocities from CFD simulations compared to the Rayleigh-Taylor 

theory and experiments. 

𝑈 
Theory Experimental CFD Predictions (2D) CFD Predictions (3D) 

𝛶 𝛶𝐼𝐷 𝑈 𝛶𝐼𝐷 𝑈 𝛶𝐼𝐷 

98.8 1.622 1.47 92.3 1.41 97.5 1.45 

During SBI, the downstream interface is initially disrupted by the shock that has previously impinged 

on and distorted the upstream interface. This is evident from the development of small-scale 

undulations on the downstream interface. This will be extensively discussed in Section 5.3.6. Table 

5.5 compares the predicted 𝛶𝐼𝐷 with both experiments and theory. The predicted 𝛶𝐼𝐷 is considerably 

lower than the estimation, 𝛶, of RTI theory but is in close agreement with the experimentally 

measured 𝛶𝐼𝐷. There is also a slight variation between the 2D and 3D results. This again shows the 

reliability and precision of our numerical model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 5.6, the characteristic downstream interface displacement, 𝑦𝑑𝑜𝑤𝑛𝑠, is normalised 

by bubble diameter (𝑑). It is evident that the 3D predictions agree very well with the experimental 

data (Haas and Sturtevant, 1987). Furthermore, it can be seen clearly from Fig. 5.6 that 2D 

predictions are not as accurate as the 3D predictions, which is consistent with the above discussion 

that 3D simulations are needed in order to capture the shock bubble interaction accurately. 

5.3.5. Numerical measurements of the temporal changes of the interfacial 

characteristic scales 

Temporal changes in the length and width of the developing interface are plotted in Fig. 5.7. These 

measurements have been made using the series of images derived from the numerical simulations. 

The description of these interfacial characteristic scales is enclosed in Fig. 5.7. As in Sections 5.3.3 

and 5.3.4, the length and width of the evolving interface have been normalised using the diameter 

of the cylinder.  

Figure 5.6: Comparison between numerical and experimental dimensionless displacements of the 

downstream edge against time. 
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As seen from Fig. 5.7, the length of the developing interface decreases rapidly after the incident 

wave impinges the upstream interface, i.e., early shock compression quickly shortens the evolving 

interface’s length. This is also obvious from the deformation and compression of the upstream 

interface. For the 2D and 3D cases, the length attains a minimum value at about 160 μs. At this 

stage, the helium bubble has been flattened at the upstream interface. After this phase, the length 

gradually increases up to 470 μs for the 2D case and up to 440 μs for the 3D case. This phase is 

characterised by the formation of the air-jet, upstream interface’s inversion and roll-up as well as 

the formation inception of the downstream vortex filament due to the acceleration of the vorticity 

induced air/helium interface by the shock wave This is followed by a gradual decrease in the 2D 

length between 470 μsec and 520 μs and a slightly steeper increase in the 3D length between 440 

μsec and 520 μs. Up to 480 μs, where the 3D interface lengths are lower than the 2D lengths, it can 

be inferred that the 3D case is more representative of the early shock acceleration and bubble 

deformation compared to the 2D case as the 3D movement of the evolving interface dominates the 

flow field. This is because observations of the 2D and 3D lengths at any time in Fig. 5.7, up to 480 

μs, show that the 3D case produces a comparatively shorter length which indicates a greater bubble 

compression. The period up to 480 μs covers and extends beyond early stage SBI as the air jet has 

almost reached the downstream interface and vortex filaments have appeared. A turning point 

exists at about 500 μsec after which the 3D length becomes greater than the 2D length. The stage 

after the turning point up to when the 2D lengths start to increase again is characterised by a steep 

decline in 2D length and a gradual increase in the 3D length between 500 μs and 520 μs. The 

physical meaning of the turning point is indicative of the steep rise in the 3D length over the 2D 

length. The greater 3D length showed that the 3D bubble has started to become stretched in the 

flow direction influenced by the formation of the distinctive vortex filaments. After the turning point, 

3D stretching is more pronounced than 2D stretching. This is also indicative that the 3D vortex 

filaments are more developed than the 2D vortex filaments. This again shows that the 3D case is 

more representative of bubble deformation and evolution of vortical structures compared to the 2D 

case. After 520 μs, the 2D and 3D lengths continue to increase up to 880 μs with varying growth 

rates. Subsequently, a steep increase in the 2D and 3D lengths is observed up to 960 μs followed 

Figure 5.7: Dimensionless numerical and experimental measurements of the characteristic scales 

against time. 
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by a gradual increase in the 2D and 3D lengths up till the end of the simulation. From 480 μs till the 

end of the simulation, the 3D lengths remain greater than the 2D lengths. 

The width of the perturbed interface for the 2D and 3D case initially keeps rising with a decreasing 

velocity (attributable to the greater change in the SBI time compared to the change in the bubble 

width as SBI progresses). This growth in the width is very fast up to approximately 200 μs before 

an ensuing decrease in the growth rate of the width up to about 300 μs for the 3D case and 

approximately 280 μs for the 2D case. The period between 280 μs and 300 μs for the 2D case is 

characterised by a steep increase in the width. Up till this point, the 3D widths are greater than the 

2D widths i.e., up till 300 μs, the greater 3D widths show that the deformed 3D bubble has been 

stretched more laterally compared to the deformed 2D bubble.  The period up to 300 μs when the 

3D width is greater than 2D width is also consistent with the observations for the 2D and 3D length 

comparisons. A greater compression for the 3D case, due to the 3D lengths being smaller than the 

2D lengths, will lead to a higher 3D bubble width compared to the 2D bubble width. Thus, the 

temporal variations of the interfacial characteristic scales for the 3D setup shows a more 

compressed and vertically stretched/elongated bubble compared to the 2D setup, which is indicative 

that the 3D case is more representative of shock acceleration, bubble deformation and 

compression. Another turning point exists at about 300 μsec after which the 2D width becomes 

greater than the 3D width. The physical meaning of the turning point is indicative of the steep rise 

in the 2D width over the 3D width. Shortly after this stage, the 2D width increases faster than the 

3D width, which has now been further subjected to a reduced growth rate, i.e., at SBI times greater 

than 300 μs, a greater width is observed for the 2D case in comparison to the 3D case. This stage 

is also characterised by a steep rise in 2D width and a gradual rise in the 3D width (between 300 

μs and 320 μs). Ding et al. (2017) explained that this reduced 3D width compared to the 2D width 

at late stages shows that the 3D cylinder’s width is greatly hindered by the 3D effects, i.e., gradients 

of pressure and vorticity generation, irrespective of its direction of principal curvature. Subsequently, 

the 2D width continues to increase at a swift rate up to about 480 μs (steeper growth rate observed 

between 300 μs and 320 μs followed by a comparatively reduced growth rate up to 480 μs) while 

the 3D width continues to increase at a steady rate but still below the higher 2D width. After 480 μs, 

the 2D and 3D widths continue to increase but at a lower rate compared to the previous phase. This 

persists up to approximately 720 μs for the 2D case and about 680 μs for the 3D case after which 

both widths tend towards an almost constant value. This lasts for about 80 μs, i.e., from 720 μs to 

800 μs for the 2D case and from 680 μs to 760 μs for the 3D case. This stage coincides with when 

the air has encroached the downstream interface and the vortex filaments have significantly 

evolved. Afterwards, the 2D width slowly increases with time and remains higher than the 3D width. 

At this stage, the rate of change of the 3D width is steeper than that of the 2D width, as seen from 

the slope of both lines in this period. The fluctuating changes in the widths of the evolving interface 

from 480 μs is indicative of the formation, evolution and deformation of the vortex filaments. 

Generally, the 3D case is more representative of an ideal SBI scenario as the interfacial 

characteristic scales suffer from 3D effects with respect to pressure/density gradient mismatch as 

well as vorticity generation, deposition and transport. 

Fig. 5.8 below presents the predicted and measured bubble evolution using three representative 

positions, i.e., upstream, jet, and downstream locations. It can be seen clearly again that the 3D 

predictions match the experimental data of Haas and Sturtevant (1987) extremely well while the 2D 

predictions are a bit further away from the experimental data. It is evident from this comparison and 

the above quantitative comparisons between the predictions and experimental data that the 3D 

simulation has captured the complex shock bubble interaction accurately and all the following 

analysis will be based on the 3D results. The CPU times per 50 iterations are 127 seconds and 

3,558 seconds for the performed 2D and 3D simulations respectively using the best 2D and 3D 

grids as detailed in Section 5.2.4. 
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5.3.6. Visualization of shock-bubble interaction morphology 

The intricate and crucial processes involved in bubble deformation, generation of vorticity, growth 

of air-jet and the overall late-time development of the SBI process will be further investigated in this 

section. Fig. 5.9 presents eight (8) snapshots of the simulated images (right) and shadow-

photographs (left) captured in the experiment. Time, t, is normalised by the shock velocity and the 

diameter of the bubble. The dimensionless time, t = 0 corresponds to the instant when the incidence 

shock impinges the upstream end of the bubble. The predictions captured the SBI process 

excellently, particularly the major characteristics, as the simulated images are considerably like the 

shadow-photographs at all 8 times. The notations used in the analysis are defined in Fig. 5.9. 𝑢𝑒, 

𝑑𝑒, and 𝑎𝑗 represent the upstream interface, downstream interface, and air-jet. ℎ𝑏𝑠, and 𝑣𝑓 denote 

the helium bridge structure and vortex filament. Fig. 5.9(a) shows the helium cylindrical bubble at 

𝑡=0.34 following the incident shock wave (𝑖𝑤) impingement on the upstream side of the helium 

volume from the right-hand-side. The 𝑖𝑤 is seen as two straight branches connected at the top and 

bottom of the bubble interface to the curved refracted wave (𝑟𝑠) on the left side of Fig. 5.9(a) 

(travelling inside the bubble) and to the reflected wave (𝑟𝑓𝑤) on the right side of Fig. 5.9(a) 

(travelling outside the bubble). Fig. 5.9(a) is also indicative of regular refraction as the 𝑟𝑠 and the 

𝑖𝑤 intersect the interface at the same point (Ranjan et al., 2011). Fig. 5.9(b) (𝑡=0.51) reveals the 𝑟𝑠 

travelling further forward and faster than the 𝑖𝑤 (because the sound velocity of the helium bubble is 

greater than that of air). The 𝑟𝑠 is connected to the two branches of the primary transmitted wave, 

𝑝𝑡𝑠, (at the top and bottom of the bubble). The top and bottom 𝑝𝑡𝑠 intersect the two branches of the 

𝑖𝑤 before tangentially meeting the 𝑟𝑓𝑤. The 𝑝𝑡𝑠, on crossing the 𝑖𝑤, forms a precursor to it. Fig. 

5.9(b) is also indicative of an irregular shock refraction pattern as the 𝑝𝑡𝑠 transmits downstream in 

front of the exterior 𝑖𝑤 (Henderson, 1966; Henderson, 1989; Niederhaus, 2007). There is a slight 

flattening of the upstream interface of the bubble during this period as observed from Fig. 5.9(b). At 

𝑡=0.6, there is a complete emergence of the 𝑝𝑡𝑠 from the downstream end of the bubble, i.e., left-

hand interface coupled with the appearance of the converging internal reflected wave (𝑖𝑟𝑤) seen 

with two cusps, as shown in Fig. 5.9(c). The simulated image in Fig. 5.9(d) at 𝑡=0.85 shows that the 

𝑖𝑟𝑤 has developed into a diverging wave (not very visible from experiments) after propagating 

Figure 5.8: Comparison of the 2D and 3D predictions against the experimental data. 
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across its caustic. Outside the bubble, the two branches of the 𝑠𝑡𝑠 intersect each other around the 

centre of the bubble and connected to the ends of the 𝑖𝑟𝑤 at the interface. The continuous 

compression of the upstream interface means the cylinder distortion persists and at 𝑡=2.11, the 

deformed helium cylinder has attained a kidney shape, as seen in Fig. 5.9(e). From 𝑡=2.11 to 𝑡=8.44 

(see Figs. 5.9(e – h)), the re-entrant 𝑎𝑗/spike forms and develops through the bubble centre. This 

𝑎𝑗 is shaped as a convergence nozzle (Yoo and Sung, 2018) (see Figs. 5.9 (f), (g) and (h)) and the 

magnitude of the velocity arriving at bubble centre becomes progressively greater. Due to the 

interfacial density mismatch, the pressure on the upstream end of the bubble increases with the 𝑎𝑗, 

which makes the lighter helium to push against the heavier air causing the top and bottom ends of 

the upstream interface to move up (to the right) and the middle end of the upstream interface (area 

through which 𝑎𝑗 pushes through) to move down (to the left in the direction of shock propagation). 

This movement leads to a caving of the upstream interface through the centre. As seen from Figs. 

5.9(a-j), the pressure upstream of the helium volume is significantly greater than that on the 

downstream area. This pressure difference means the heavier air accelerates the lighter helium 

thus subjecting the distorted bubble to the Richtmyer-Meshkov instability, RMI (shock-induced 

Rayleigh-Taylor Instability, RTI) (Sharp, 1984). During the evolution of the shock induced RTI and 

after the development of small amplitude perturbations, which grow linearly with time on the bubble 

interface, a nonlinear regime follows. This non-linear regime is characterised by the appearance of 

a mushroom-shaped spike (MSS) formed when the heavier air penetrates the lighter helium. The 

simulated image in Fig. 5.9(g) clearly shows the MSS (the area highlighted with blue markers). 

When the top of the 𝑎𝑗 impinges the downstream air/helium interface, the downstream interface 

spreads out horizontally ultimately producing a pair of 𝑣𝑓. The simulated images in Figs. 5.9(g) and 

(h) for the current study reveal a visible presence and formation of such 𝑣𝑓 pair demonstrating the 

existence of the RMI. Generally, it is recognised that the MSS and the 𝑣𝑓 pair in the post shock are 

formed because of the RMI (shock induced RTI) at the bubble interface. 
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Figure 5.9: Snapshots of experimental shadow-photographs (left) and simulated images (right) on the 

central x-y plane at: (a) 𝑡=0.34; (b) 𝑡=0.51; (c) 𝑡=0.6; (d) 𝑡=0.85; (e) 𝑡=2.11; (f) 𝑡=3.88; (g) 𝑡=5.74; and 

(h) 𝑡=8.44. 
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5.3.7. Vorticity generation dynamics 

One of the most essential phases of SBI is the vorticity generation and deposition due to the 

disparity between pressure and density gradients. As the shock waves (incident, refracted, 

diffracted, and focused waves) propagate through the bubble, vorticity is generated and transported 

in the flow. Vorticity is so essential in SBI as it, together with aerodynamic forces, principally 

influences the motion and structure of the bubble (Layes et al., 2003). 

 

Fig. 5.10 shows contours of the vorticity magnitude at different stages of SBI process. At the early 

stage as shown in Figs. 5.10(a-d), vorticity is produced around the air/helium interface (bubble 

surface) as a result of flow baroclinity, i.e., due to the misalignment between the local pressure 

gradient and the density gradient. The air-jet formation can be clearly seen in Fig. 5.10(d). In Fig. 

5.10(e), at 𝑡=3.88, the air-jet is about to reach the downstream interface and the upstream interface 

is severely distorted with more vorticity generated around the interface region. At 𝑡=5.74, the air-jet 

reaches the downstream interface, as shown in Fig. 5.10(f), and a pair of vortex filaments (𝑣𝑓) is 

clearly observed with high vorticity concentrated in the vortex filament region. As time passes by, 

more vorticity is generated around the 𝑣𝑓 region and the surrounding regions, as shown in Figs. 

5.10(g) and (h), and small flow structures can be observed too at the later stage of SBI process. 

This strongly suggests that vorticity, generated by baroclinic mechanism, plays a very important 

role in the SBI process. It initiates the deformation of the upstream surface and afterwards, strong 

rotational motion pulls a jet of ambient air through the centre of the bubble. Subsequently, the jet 

Figure 5.10: Snapshots of vorticity contours on the central x-y plane at: (a) 𝑡=0.51; (b) 𝑡=0.68; (c) 

𝑡=1.02; (d) 𝑡=2.11; (e) 𝑡=3.88; (f) 𝑡=5.74; (g) 𝑡=6.92; and (h) 𝑡=8.44. 
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deforms the bubble until it pierces the downstream bubble interface, and vortices at the bubble 

surface roll up and drag helium into a distinctive downstream 𝑣𝑓 pair, as shown in Figs. 5.10(f-h). 

5.3.8. Visualisation of 3D flow 
 

Fig. 5.9 shows the shock-bubble interaction process on a cross section, and the 3D morphology of 

the deformed cylindrical bubble is shown in Figs. 5.11(a-h), corresponding to the simulated 

schlieren images shown in Fig. 5.9 at the same instants. Fig. 5.11 presents a more realistic 

perspective to bubble compression and distortion as it reveals: a gradual flattening of the upstream 

interface after the 𝑖𝑤 impingement; the air-jet penetration of the bubble; as well as the formation, 

roll-up, and evolution of the 𝑣𝑓 pair. 

 

 

The 3D flow visualisation presented in Fig. 5.12 will help to further demonstrate the SBI process, 

particularly with respect to the observation of various wave patterns, wave propagation, positional 

changes of the cylindrical helium bubble, bubble deformation and 𝑣𝑓 development. 

Figure 5.11: Three-dimensional (3D) morphology of the deformed cylindrical bubble at: (a) 𝑡=0.34; 

(b) 𝑡=0.51; (c) 𝑡=0.6; (d) 𝑡=0.85; (e) 𝑡=2.11; (f) 𝑡=3.88; (g) 𝑡=5.74; and (h) 𝑡=8.44. 
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Snapshots of the predicted pressure iso-surfaces presenting a quarter bubble (better suited to 

reveal certain features and changes in the helium bubble location) are shown in Fig. 5.12. With 

respect to explaining the change in bubble position with time, this research has labelled two points, 

A (on the upstream edge of the bubble) and B (farthest point of the bubble located on the 

downstream edge), as shown in Fig. 12(a). The two points are very important in understanding how 

the shocked and deformed bubble travels as well as the formation of the 𝑣𝑓. At an early phase as 

shown in Fig. 5.12(a), the planar 𝑖𝑤 has impacted the bubble’s upstream interface generating a 𝑟𝑠 

inside the bubble that travels faster than the 𝑖𝑤 because the speed of sound in the bubble gas, i.e., 

helium, is greater than the speed of sound in the surrounding gas, i.e., air. This then means that the 

𝑟𝑠 is slowly invading the downstream end at 𝑡=0.51, as shown in Fig. 5.12(a). This 𝑟𝑠, which is 

travelling far ahead of the 𝑖𝑤, is connected at the air/helium interface to the 𝑝𝑡𝑠, which in turn 

intersects the 𝑖𝑤. Fig. 5.12(a) does not show the deforming upstream end of the bubble, which is 

gradually becoming flatter (see Fig. 5.11(b)), so that the location of the 𝑟𝑠 in comparison to the 𝑖𝑤 

can be clearly revealed particularly as the 𝑟𝑠 approaches the downstream interface. As the 

upstream interface continues to deform and compress at 𝑡=0.68, the transmitted shock (𝑡𝑠) has 

Figure 5.12: Pressure iso-surfaces at: (a) 𝑡=0.51; (b) 𝑡=0.68; (c) 𝑡=0.85; (d) 𝑡=1.02; (e) 𝑡=2.11; (f) 

𝑡=3.88; (g) 𝑡=5.74; and (h) 𝑡=8.44. 
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emerged from the downstream end and has travelled a small distance away from the downstream 

interface, as shown in Fig. 5.12(b). The 𝑖𝑤 has travelled about half of the bubble length and lags 

the 𝑡𝑠, as shown in Fig. 5.12(b). Points A and B have moved a small distance compared to their 

initial positions in Fig. 5.12(a). This shows that the shocked bubble has travelled a small distance 

from its initial location. Fig. 5.12(c) (𝑡=0.85) shows that the 𝑡𝑠 has travelled a large distance away 

from the downstream interface with the 𝑖𝑤 still trailing but has itself propagated more than half of 

the length of the helium bubble. Similarly, points A and B have moved more distance compared to 

their positions in Fig. 5.12(b). At 𝑡=1.02, the 𝑖𝑤 is still travelling past the bubble length but has 

almost propagated the entire bubble length, as shown in Fig. 5.12(d), and still lags the 𝑡𝑠 which has 

travelled ahead of the shocked bubble. In this phase, points A and B have moved a considerable 

distance from their original locations and considerable motion of the helium volume has already 

taken place. The bubble is also almost completely flattened at the upstream interface, as shown in 

Fig. 5.12(d), as it has suffered considerable deformation and compression. Vorticity production, 

deposition and distribution across the air/helium interface produced by the baroclinic effect during 

shock impingement on the upstream end of the bubble and the subsequent shock propagation 

across the bubble ensures that the associated rotational motion pulls a jet of ambient air through 

the centre of the bubble. This 𝑎𝑗 is first noticed at  𝑡=2.11, as shown in Fig. 5.12(e), with produced 

vorticity leading to the continuous inversion of the upstream surface in the direction of the 

penetrating 𝑎𝑗 and towards the downstream end. This 𝑎𝑗 which pierces through the helium bubble 

volume and impinges on the downstream edge is analogous to the so-called RMI spike at a 

perturbed gaseous air/helium interface. This caving-in/inversion continues as seen in Fig. 5.12(f) at 

𝑡=3.88 until point B is no longer visible in Figs. 5.12(g) and (h). Point A in Fig. 5.12(f) has also 

moved a significantly further distance compared to its original position. At the later phase (𝑡=5.74 

and 𝑡=8.44), the inverted part of the upstream interface, i.e., through the centre of the bubble, has 

impinged on the downstream bubble end with vorticity rolling up and dragging helium into a 

characteristic 𝑣𝑓 pair at the downstream side of the deformed helium volume. The final position of 

point A which is almost at the end of the shock tube is indicative of the significant distance travelled 

by the distorted bubble from SBI inception to late times. 

Fig. 5.13 shows the snapshots of the predicted pressure iso-surfaces revealing more clearly specific 

characteristics of the full bubble compression process and shock travel, particularly with respect to 

the observation of various wave patterns, wave propagation, bubble deformation and the air-jet 

formation. Fig. 5.13 also reveals the development of the air-jet, induced by vorticity, which leads to 

the formation of a pair of 𝑣𝑓 at the later phase of the shock-bubble interaction process. 
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Once the planar incident wave (𝑖𝑤) impacts the bubble’s upstream edge, a refracted wave (𝑟𝑠) is 

generated inside the bubble and the 𝑟𝑠 travels faster than the 𝑖𝑤 because the speed of sound in the 

bubble gas, i.e., helium is greater than the speed of sound in the surrounding gas, i.e., air. As shown 

in Fig 5.13(a) at 𝑡=0.51, the 𝑟𝑠 travels quickly towards the downstream bubble interface.  The curved 

𝑟𝑠 is connected at the top and bottom of the bubble surface to two curved branches of the 𝑝𝑡𝑠. The 

two branches of the 𝑡𝑠 (at the top and bottom of the shocked bubble) intersect the two branches of 

the 𝑖𝑤. At 𝑡=0.68 and as the distortion and compression of the upstream interface persists, the 𝑡𝑠 

has emerged from the downstream end and has propagated a slight distance away from the 

Figure 5.13: Pressure iso-surfaces at: (a) 𝑡=0.51; (b) 𝑡=0.68; (c) 𝑡=0.85; (d) 𝑡=1.02; (e) 𝑡=2.11; (f) 

𝑡=3.88; (g) 𝑡=5.74; and (h) 𝑡=8.44. 
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downstream interface, as shown in Fig. 5.13(b). The 𝑖𝑤 has travelled about half of the bubble length 

and lags the 𝑡𝑠, as shown in Fig. 5.13(b). Fig. 5.13(c) (𝑡=0.85) shows that the 𝑡𝑠 has propagated 

more distance away from the downstream interface with the 𝑖𝑤 still trailing but has itself travelled 

more than half of the length of the helium bubble. Deformation and movement of the cylindrical 

inhomogeneity has already occurred at this stage in comparison to the original shape and position 

of the helium bubble. At 𝑡=1.02, the 𝑖𝑤 is still travelling past the bubble length but has almost 

travelled the entire bubble length, as shown in Fig. 5.13(d), but still lags the 𝑡𝑠 which has propagated 

way ahead of the shocked bubble. The bubble is also nearly entirely flattened at the upstream 

interface, as shown in Fig. 5.13(d). This is because the shocked bubble has been perturbed by 

continuous wave accelerations thus subjecting it to considerable compression and distortion. At 

𝑡=2.11 and as the 𝑖𝑤 propagates across the bubble, baroclinic vorticity is generated, deposited, and 

transported locally at the bubble surface which acts as the discontinuity between the helium gas 

and the surrounding air. Subsequently, the first clear appearance of the 𝑎𝑗, which penetrates the 

bubble through its centre at the upstream end, is observed. As shown in Fig. 5.13(e), the bubble 

has deformed considerably and is now ‘kidney-shaped’. At 𝑡=3.88, the 𝑎𝑗 is more well-defined and 

clearly visible (see Fig. 5.13 (f)) as vorticity has intensified significantly. Fig. 5.13(g) shows the 

bubble stretching horizontally and forming the 𝑣𝑓 pair as the head of the 𝑎𝑗 impinges on the 

downstream interface at 𝑡=5.74. Fig. 5.13(g) shows the fully developed 𝑣𝑓 which are separated by 

the ℎ𝑏𝑠 at 𝑡=8.44. Interestingly, Figs. 5.13(e-g) reveal how the 𝑎𝑗 forms. This represents an area of 

SBI that has not been clearly detailed and communicated in past literature, particularly with respect 

to shock cylindrical bubble interaction. 

5.3.9. Evolution of vortex filament 
 

The distortion of the bubble at late timescales shows that the shock interaction with the helium 

bubble having a lower density than its surrounding air leads to the formation of 𝑣𝑓 pair. These pairs 

of vortices stay close to each other and propagate faster than the surrounding air. During the 

development of the RMI and after the emergence of small-scale amplitude perturbations, which 

originally develop linearly with time at the bubble surface, a non-linear regime ensues where the 

flow is soon dominated by a pair of counter-rotating 𝑣𝑓, i.e., the top 𝑣𝑓 rolling up in the clockwise 

direction and the bottom 𝑣𝑓 rolling up in the anti-clockwise direction. Both vortex filaments evolve 

from opposite-sign vorticity (suggestive of the filaments’ direction of rotation) that is baroclinically 

deposited along the top and bottom edges of the downstream bubble interface. Tomkins et al. 

(2003) explained that it is vorticity that leads to the non-linear growth of the bubble interface and 

the subsequent curling into two vortices such that the flow is swiftly controlled by a pair of counter-

rotating vortex. Fig. 5.14(a) shows the emergence and development of the vortex filament from 

𝑡=3.88 to 𝑡=8.44.  Figs. 5.14(a, i-viii) also show some undulation on the bubble surface. Tomkins et 

al. (2003; 2008) clarified that these undulations can be construed as an indication of a secondary 

instability, probably connected with the Kelvin-Helmholtz shear instability or probably baroclinic in 

nature. Fig. 5.14 also shows that the volume and intensity of the curled vortices increase 

significantly as SBI progresses from Fig. 5.14(a) to Fig. 5.14(h), and these vortices are noticeable 

at the air/helium interface (visible from the small-scale undulations on the bubble surface) because 

of the baroclinic deposition and accumulation of vorticity as time progresses. This also explains the 

increase in the size of 𝑣𝑓 as SBI progresses, as seen in Fig. 5.14, where the distorted and evolved 

helium bubble in Figs. 5.14(a, viii) and (b, viii) have the largest 𝑣𝑓  pair compared to the deformed 

bubbles at the previous timescales. When the 𝑎𝑗 pierces through the evolving interface, the 𝑣𝑓 pair 

evolve progressively with an almost constant distance between them. Hence, the shape and size 

of the resultant 𝑣𝑓 pair change with time attributable to the wave pattern evolution and baroclinic 

vorticity with respect to the original 3D interface. With respect to size, Figs. 5.14(a) and (b) show 

that as the 𝑣𝑓 pair increases in size, the trailing helium lobe decreases in size as SBI progresses. 
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Fig. 5.14(b) shows the evolution of the 𝑎𝑗. To the best of our knowledge, jet formation and 

development has not been accurately visualised in the past. The 𝑎𝑗 can be best explained by 

observing the RMI driven MSS highlighted in Fig. 5.9(i) and easily detectable from Figs. 5.14(a, iii 

and iv). Figs. 5.14(b, i-viii) reveal the emergence of small and large-scale turbulent structures on 

the air-jet as it evolves and as SBI progresses. A look at the flow dynamics involved in Figs. 5.14(a, 

i-viii; b, i-viii) with respect to the evolution of the 𝑣𝑓 pair, 𝑎𝑗 and ℎ𝑏𝑠 show that there is a transition 

from the development of the RMI (which begin as small amplitude perturbations at the bubble 

surface) (see Fig. 5.14(a, i)) to the development of a non-linear turbulent regime characterised by 

a MSS and the emergence of a 𝑣𝑓 pair from vorticity induced fluid roll-up (see Figs. 5.14(a, i-viii; b, 

i-viii)). Summarily, the flow at 𝑡=3.88 shows the encroachment of the downstream bubble interface 

by 𝑎𝑗 while it shows a fully developed 𝑣𝑓 pair and fully stretched and almost non-existent ℎ𝑏𝑠 at 

𝑡=8.44. 

Figure 5.14: (a) Contours of density on the central x-y plane at: (i) 𝑡=3.88; (ii) 𝑡=4.56; (iii) 𝑡=5.15; 

(iv) 𝑡=5.74; (v) 𝑡=6.16; (vi) 𝑡=6.92; (vii) 𝑡=7.68; and (viii) 𝑡=8.44. (b) Iso-surfaces of density at: (i) 

𝑡=3.88; (ii) 𝑡=4.56; (iii) 𝑡=5.15; (iv) 𝑡=5.74; (v) 𝑡=6.16; (vi) 𝑡=6.92; (vii) 𝑡=7.68; and (viii) 𝑡=8.44. 
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To the best of our knowledge, very little information is available regarding the roll-up direction of the 

ℎ𝑙 and the 𝑣𝑓 as SBI progresses. This is especially the case with respect to the evolution of the 𝑣𝑓 

and its increase in size as revealed above. Similarly, the roll-up of the 𝑣𝑓 is also linked to the 

deposition of vorticity in the 𝑣𝑓 as SBI increases. This leads to a subsequent reduction in the ℎ𝑙 as 

𝑣𝑓 increases in size throughout the SBI process. From Fig. 5.15, the top ℎ𝑙 rolls up in a 

counterclockwise direction while the top 𝑣𝑓 develops and rolls up in the clockwise direction. On the 

flip side, Figs. 5.15(a) and (c) show that the bottom ℎ𝑙 rotates in the clockwise direction while the 

bottom 𝑣𝑓 evolves and rolls up in the anticlockwise direction. Fig. 5.15(b) is provided as it shows 

the streamlines on the inside of the deformed bubble which are more traceable and clearer. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: Roll-up direction of helium lobe (ℎ𝑙) and 𝑣𝑓 revealed by (a) density contours on the 

central x-y plane; (b) density iso-surfaces of deformed quarter cylindrical bubble; and (c) density 

iso-surfaces of distorted whole cylindrical bubble. All images are at 𝑡=8.44. 

Figure 5.16: Density contours revealing the development of turbulent mixing: (a) 𝑡=4.56; (b) 𝑡=5.74; 

(c) 𝑡=6.92; and (d) 𝑡=8.44. 
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5.3.10. Inception and progression of turbulent mixing 
 

 

Chen et al. (2021) explained that the vorticity production and distribution has an essential influence 

on bubble interface distortion after which turbulent mixing of the two-phase gas is accelerated. 

Singh et al. (2021) similarly clarified that the mixing of the surrounding air with the deformed 

cylindrical bubble is driven by the generated vortices from SBI. Turbulent mixing between the air 

and helium is thus strengthened by the gradual diffusion of the vortices. Tomkins et al. (2008) 

discovered three mixing regions for a SBI flow. These regions include the bridge connecting the 𝑣𝑓 

pair, the vortex cores, and the Kelvin-Helmholtz (KH) region. For the bridge, mixing is linked with 

gradient intensification as a result of the straining velocity field. Mixing in the KH regions and the 

vortex cores is driven by the large-scale strain fields at early times even though the induced 

movements caused by vorticity generate both gradient intensification and an increase in surface 

area from growing spirals. The KH region in Fig. 5.16 is represented by the outer surfaces or 

air/helium interface bounding the ℎ𝑙 and the 𝑣𝑓. It is characterised by the appearance of small 

perturbations/undulations which grow in high shear regions as SBI progresses. The vortex cores 

(𝑣𝑓 pair) and the bridge (ℎ𝑏𝑠) connecting the 𝑣𝑓 pair are shown in Fig. 5.16. At late timescales, 

mixing is predominantly linked with the elongation and collapsing of concentration fields due to an 

induced motion stimulated by the secondary instability (Tomkins et al., 2008). These three regions 

are well observed in the current study and are thoroughly explained in the following paragraphs. 

Fig. 5.16 shows contours of the helium bubble volume fraction. The scale shows that the maximum 

volume fraction, i.e., 1 (blue) signifies helium filled area. Figs. 5.16(a-d) reveal a drop in the volume 

fraction of helium; at the bubble interface, within the 𝑣𝑓 pair, within the ℎ𝑙 ahead of and connected 

to the 𝑣𝑓, as well as along the ℎ𝑏𝑠. These regions reveal areas of mixing between the air and helium 

at the respective timescales. This is shown by the small-scale vortices generated on the 𝑣𝑓 pair, 

helium lobe, and ℎ𝑏𝑠 due to the baroclinic vorticity production. This goes to show that bubble 

distortion is linked to the production, distribution, and deposition of vortices, which have the capacity 

of accelerating the turbulent mixing between air and helium. Chen et al. (2021) also provided an 

interesting background to the turbulent mixing acceleration by deposited vortices when they stated 

that vortices play a key role in accelerating the interaction between the internal flow and external 

flow in the bubble, i.e., the baroclinic mechanism induced by a mismatch between pressure and 

density gradients. There is pronounced mixing at the bubble surface, as shown by the helium 

volume fraction scale. This is attributable to the rapid steepening of gradients along the air/helium 

interface associated with the generated vorticity, which has been deposited across the interface 

after impact by propagating the shock wave. 

Figure 5.16: Density contours on the central x-y plane revealing the development of turbulent 

mixing at: (a) 𝑡=4.56; (b) 𝑡=5.74; (c) 𝑡=6.92; and (d) 𝑡=8.44. 
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Fig. 5.16(a) (at 𝑡=4.56) shows that the most intense mixing in the flow is contributed by the ℎ𝑏𝑠. 

Significant level of instantaneous mixing takes place in the ℎ𝑏𝑠, as shown in Fig. 5.16(a). This is 

because large-scale strain field produced by vortices linked to the primary instability swiftly 

elongates the air/helium interface, regularly steepening the concentration gradients such that 

considerable mixing is noticed in the ℎ𝑏𝑠. However, after 𝑡=5.74, there is a reduction in mixing along 

the ℎ𝑏𝑠. This drop at late times was reported by Tomkins et al. (2008) and attributable to the 

advection of material away from the mask lower boundaries, i.e., diminishing material supply held 

within the bridge. A look at the helium volume fraction scales also reveals a similar scenario from 

𝑡=6.92 to 𝑡=8.44 (see Figs. 5.16(b-d)), which show that the air entrained within the ℎ𝑏𝑠 becomes 

dissipated leading to a reduced total mixing. Another reason could be that the ℎ𝑏𝑠 is no longer 

adequately supplied with the fresh (unmixed) air on which any small-scale gradients can function. 

Also, even though vorticity deposited by shock propagation significantly boosts mixing, the total 

mixing rate is not at its highest, i.e., areas where the fine-scale velocity gradients are expected are 

spatially separated from the regions of purest air.  

The well mixed state of the 𝑣𝑓 pair and the trailing helium lobe at late times, i.e., 𝑡=6.92 and  𝑡=8.44 

(see Figs. 5.16(c-d)), shows that the unstable small-scale structures are efficient mixers as a close 

examination of Figs. 5.16(a-d) shows that these structures are in constant motion, and in Fig. 

5.16(d), a certain combination of two such structures is observed in the ℎ𝑏𝑠 and trailing ℎ𝑙. These 

small-scale movements observed in the flow field deform the air/helium interface and augment the 

diffusive mixing of air and helium. These small-scale structures, which have various sizes as seen 

in Figs. 5.16(a-d), are indeed trapped islands of air. As the evolving 𝑎𝑗 interacts with the growing 𝑣𝑓 

pair, these islands of air are trapped within the filaments. As SBI progresses, the 𝑣𝑓 no longer 

comprises of pure helium but mostly well mixed regions of helium and air. The vortices linked to the 

primary instability accelerate mixing in these regions by stretching the interface (Tomkins et al., 

2008). This stretching leads to further entrainment of air and increased air/helium mixing such that 

as more air mass is infused into the mixing region via SBI, the entrained fluid, i.e., air, becomes 

homogenised with the helium by turbulent mixing via the intermingling of the two fluids. Thus, the 

volume fraction of helium within the 𝑣𝑓 pair and the helium lobe reduces while that of air increases 

within the same areas. Figs. 5.16(a-d) reveal smaller ‘satellite’ vortices outside the vortex filament 

pair, which again according to the helium volume fraction scale represent the small-isolated pockets 

of air. 
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5.3.11. Generation and development of turbulence 

 

The RMI happens when the material interfaces are impulsively accelerated which leads to the 

misalignment between the density and pressure gradients (Richtmyer, 1960; Meshkov, 1969). This 

misalignment causes a baroclinic deposition of the vorticity which deforms the bubble surface 

resulting in air/helium mixing and transition to turbulence at late times. Following clarifications 

provided by Tomkins et al. (2003) regarding the manifestation of a secondary instability, i.e., the KH 

instability, they also explained that these instabilities could combine to evolve the flow into a state 

of turbulence. It has been shown above that the shock bubble interaction process entails a wide 

range of complicated characteristics, from shock wave refraction and reflection, generation and 

transport of vorticity, to the air-jet (𝑎𝑗) penetrating through the severely distorted bubble and the 

formation of vortex filament. Nevertheless, to the best knowledge of this research, there are rarely 

any previous experimental and numerical studies that have addressed one very important aspect 

of the shock cylindrical bubble interaction process – turbulence generation and development. Fig. 

5.17 shows contours of turbulence intensity, and it can be seen from Fig. 5.17(a) that turbulence 

starts to be generated initially in a small region at the bubble interface at a quite early stage (𝑡=0.51). 

As time progresses, the bubble interface is deformed, as shown in Figs. 5.17(b) and (c) at 𝑡=1.02 

and 𝑡=2.11 respectively. The upstream edge has caved in through the middle under the influence 

and penetration of the 𝑎𝑗, but turbulence is still concentrated in a narrow region around the bubble 

interface with the maximum turbulence intensity reaching about 15% at 𝑡=3.88, as shown in Fig. 

5.17(d). Afterwards, the turbulence region starts to expand as the 𝑎𝑗 has pierced the bubble and a 

Figure 5.17: Contours of turbulence intensity on the central x-y plane at: (a) 𝑡=0.51; (b) 𝑡=1.02; (c) 

𝑡=2.11; (d) 𝑡=3.88; (e) 𝑡=4.56; (f) 𝑡=5.74; (g) 𝑡=6.92; and (h) 𝑡=8.44. 
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pair of 𝑣𝑓 has formed, leading to an increase of the maximum turbulence level to about 16% around 

the 𝑣𝑓 pair regions, as shown in Fig. 5.17(e) at 𝑡=4.56. These vortical filaments are transported 

downstream leading to an increased region of high turbulence intensity. Subsequently, it can be 

seen from Figs. 5.17(f-h) that the turbulence region continues to expand gradually with the 

turbulence level increasing steadily up to the maximum turbulence intensity (around 20%) as shown 

in Fig. 5.17(h) at 𝑡=8.44. Figs. 5.17(e-h) also show that the highest turbulence intensity areas are 

within the 𝑣𝑓. 

5.4.  Conclusions 

The mechanism of bubble distortion and compression from an interaction with a supersonic (𝑀𝑎 = 

1.22) incident shock has been investigated via a numerical study. The URANS computational 

approach is adopted with a coupled level set and VOF method to capture the helium bubble and air 

interface accurately. 2D and 3D simulations have been performed and this research proved that the 

3D predictions are much closer to the experimentally measured data, with an excellent concordance 

observed between the predicted velocities of the incident wave, refracted wave, transmitted wave, 

upstream interface, downstream interface, jet, vortex filament and the corresponding measured 

values. The predicted dimensionless upstream interface and jet velocities were also compared to both 

the Rayleigh Taylor (R-T) Theory, for estimating the growth rate of small sinusoidal perturbations, and 

past experimental results as presented in Section 5.3.3. Similarly, the predicted dimensionless 

downstream interface velocity was also compared to both the R-T Theory and past experimental 

results as presented in Section 5.3.4. Our 2D and 3D results show a good agreement with the 

theoretical predictions and experiments. As in the previous comparisons, the 3D predictions are much 

closer to the theoretical estimations and experimental measurements. The final quantitative 

assessment that was conducted involved comparing the predicted temporal variations of the interfacial 

characteristic scales, i.e., the length and width of the evolving interface to that measured in past 

experimental works. There was a good agreement between the 2D/3D predictions and the 

experimental data, but the 3D estimations were more representative of the early shock acceleration 

and bubble distortion as they showed shorter lengths (hence more compression) during the early SBI 

phases. A similar trend is noticed for the width of the developing interface where the 3D widths were 

predicted to be greater than 2D widths at early SBI times which proved that an increased compression 

would cause the deforming bubble to become vertically elongated hence the greater 3D widths 

compared to the 2D predictions. 

The flow visualisation revealed several salient flow characteristics that have been experimentally 

observed, i.e., the simulated images generally agree with the experimental shadowgraphs. The 

simulated images have evidently illustrated the early deformation and compression of the upstream 

edge of the helium filled cylinder. This is then followed by the air-jet formation that evolves and 

encroaches the downstream bubble end. Wave pattern evolution, i.e., incident, transmitted wave, 

refracted wave, internally reflected wave, etc., is also clearly shown. From a fundamental standpoint, 

baroclinicity is the only source for generation of vorticity as the SBI flow field evolves. During flow field 

evolution, vorticity is deposited and transported while the planar incident wave impulsively accelerates 

the air/helium interface. As the shock wave propagates through the cylindrical bubble (acting as a 

divergent acoustic lens), the RMI is induced evident as small undulating perturbations that grow 

linearly with time. This is followed by the evolution of a nonlinear regime where a mushroom-shaped 

spike appears. Excellent results are also obtained as regards air/helium turbulent mixing and vortex 

filament evolution with a comprehensive development of the vortex filaments from formation to a full 

distinctive structure illustrated using flow visualisation. The current study clearly reveals that 

turbulence is generated at the early phase of the shock cylindrical bubble interaction process in the 

bubble upstream interface region, well before the formation of vortex filaments and even before the 

air-jet is formed. After a pair of distinctive vortex filaments is formed, turbulence is mainly generated 

around the vortex filament regions with the maximum turbulence intensity reaching around 20%. To 
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our best knowledge, turbulence generation and development has not been presented/discussed in 

any of the previous relevant studies. 
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6. Shock/Liquid Bubble Interaction 

6.1. Introduction 

The unsteady interaction of liquid bubbles with high-speed gas flows results in their disintegration. In 

this research, the breakup pattern of a water bubble subjected to shock wave loading is investigated 

under conditions that are typical of the stripping-type bubble disintegration. This breakup mechanism, 

which takes place for Weber numbers (𝑊𝑒) in the mathematical range, 100 ≤ 𝑊𝑒 ≤ 20,000, was 

reported by Wierzba and Takayama (1987). As the computed 𝑊𝑒 for this research falls within this 

range, the objective of this chapter is to accurately perform two-dimensional (2D) and three-

dimensional (3D) computational fluid dynamics (CFD) simulations to investigate the stripping-type 

breakup model involving the complex interaction of a supersonic shock wave (Ma = 1.47) with a 

cylindrical water bubble. To do this, a finite volume method (FVM) is used to solve the governing 

integral equations for the conservation of mass and momentum i.e., the Unsteady Reynolds-Averaged 

Navier-Stokes (URANS) mathematical model. This mathematical model combined with the coupled 

Level Set (LS) and Volume of Fluids (VOF) method, also referred to as the CLSVOF scheme, have 

been applied within the commercial CFD code, ANSYS FLUENT, to advance the current 

understanding of the complex SBI process.  

The simulations are evaluated by comparing the: displacement/drift of the bubble with time, 

acceleration of the bubble with time, drag coefficient of the bubble, and variation of bubble area due 

to bubble distortion with related existing experimental data. Comparisons are also shown between the 

predicted bubble length/width and the experimentally measured results to elucidate changes in the 

shape and size of the 2D and 3D bubbles. Comprehensive flow visualization has been used to explain 

the shock-bubble interaction (SBI) process i.e., the onset of bubble compression, formation of the 

vortices, production and distribution of vorticity, separation point (SP) and boundary layer stripping 

point (BLSP) as well as the merging of these points. The generation and development of turbulence 

at the later stages of SBI as well as late-stage circulation of vortices have not been previously 

investigated. Therefore, turbulence was investigated to elucidate the appearance of small flow 

structures as well as the production and circulation of the vortices. Also, 2D SBI simulations are directly 

compared against 3D SBI numerical simulations and previous experimental data to evaluate their 

accuracy. Generally, this research has captured and discussed a wide range of complex interface 

dynamics across the range of physical conditions investigated.  

 

6.2. Methodology 

6.2.1.  Governing equations and numerical methods 

The interaction between supersonic air and a cylindrical water bubble at the air-water interface as 

well as the subsequent shock wave travel and bubble deformation were simulated using a pressure-

based FVM to solve the URANS equations. SBI is predominantly unsteady, and turbulence is 

generated at the later stage of SBI with usually large-scale unsteady flow structures. It was 

demonstrated by Onwuegbu and Yang (2022) that for this kind of flow, the URANS approach could 

predict the flow accurately at a significantly reduced cost so that there was no need using two other 

more accurate approaches, i.e., LES or DNS. The URANS equations are derived by averaging the 

instantaneous Navier-Stokes equations with some extra terms called Reynolds stresses being 

generated during the averaging process. These terms need to be approximated/modelled using a 

turbulence model. There are many turbulence models available and the selection of an appropriate 

turbulence model for this research will be presented in Section 6.2.5. As this kind of computational 

problem involves the generation of vortices and stripping of materials at the bubble interface, it is 

important to efficiently capture the bubble deformation. As such, an accurate interface tracking 
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technique is required to capture the bubble deformation properly. There are different techniques 

that are available to track the interface but most of them often fail to achieve pressure equilibrium 

for grid cells close to the interface. They also struggle to handle large interface distortions, i.e., 

disintegration and fronts fusing (Shyue, 1998). From a numerical investigation of SBI viewpoint, 

various researchers (e.g., Niederhaus et al., 2008; Taniguchi et al. 2014) had investigated the 

subject using VOF with varied success. Due to the high-density variation between air and water, it 

is expedient that an appropriate scheme which can describe the air-water interface without 

smearing the density jump across the interface is selected. To achieve this, the CLSVOF scheme 

was applied. A third order MUSCL scheme was employed to discretize both the momentum and 

continuity equations spatially. This scheme is built into ANSYS FLUENT under spatial discretization 

schemes. The compressive scheme, which is a second order reconstruction scheme, was also 

adopted for spatial discretization of the volume fraction equations. With respect to the compressive 

scheme, the sharp/dispersed interface regime was applied. A first-order implicit scheme was used 

for the temporal discretization of the 2D and 3D URANS equations.  To achieve numerical stability 

and accuracy, the Courant Friedrichs Lewy number was set as 0.5 and a very small-time step of 

4 × 10−7 seconds was used to accurately capture detailed flow developments. These equations, 

models and schemes have been elaborately discussed in Chapter 3.  

 

6.2.2.  Physical model 

During aerodynamic bubble disintegration, the breakup pattern is controlled by inertial, viscous, and 

capillary forces. Inertial forces lead to bubble distortion, finally resulting in fragmentation. Viscous 

forces delay bubble distortion while capillary forces ensure that the bubble maintains its original 

shape (Kaiser et al., 2020). With respect to the process of bubble breakup, two non-dimensional 

numbers describe bubble disintegration. These numbers are the 𝑊𝑒 and the Ohnesorge number 

(𝑂𝑛). 𝑊𝑒 denotes the ratio of the inertial (aerodynamic) force to the capillary (surface tension) force 

while 𝑂𝑛 represents the ratio of the liquid viscous force to the surface tension force. 𝑊𝑒 is shown 

below: 

𝑊𝑒 =
𝜌𝑔,2𝑈𝑔,2

2d

𝜎𝑙
                                                                                                                                                          (6.1) 

where  𝜌𝑔,2, 𝑈𝑔,2, d, and 𝜎𝑙 denote the post-shock gas (air) density, post-shock gas (air) velocity, 

initial liquid bubble diameter, and surface tension coefficient of the liquid respectively. 

𝑂𝑛 =
𝜇𝑙

(𝜌𝑙d𝜎𝑙)
1 2⁄
                                                                                                                                                           (6.2) 

where 𝜇𝑙 and 𝜌𝑙 denote the liquid dynamic viscosity and density respectively.  

The Reynolds number (𝑅𝑒) represents another non-dimensional number utilized to quantify 

secondary atomization and is very essential for liquid-droplet breakup (Chen, 2008; Kaiser et al., 

2020). 𝑅𝑒, which represents the ratio of the inertial force to viscous force, is given below: 

𝑅𝑒 =
𝜌𝑔,2𝑈𝑔,2d

𝜇𝑔
                                                                                                                                                              (6.3) 

where 𝜇𝑔 denotes the gas (air) dynamic viscosity. 

Re describes the ambient flow field, shock Ma which initiates the bubble disintegration process and 

the ratio of 𝜌𝑙 to 𝜌𝑔,2, denoted by 𝜀.  

The calculations for 𝑊𝑒 and 𝑅𝑒 for an incident shock 𝑀𝑎 = 1.47 are presented in Table 6.1 following 

the experiments conducted by Igra & Takayama (2001) and Igra et al. (2002). These values are 

obtained using the corresponding fluid characteristics and original bubble diameter (=4.8mm).  
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Table 6.1: Comparison of Experimental and numerical 𝑊𝑒 and 𝑅𝑒 for 𝑀𝑎 = 1.47. 

Condition Bubble Fluid Ambient Gas 𝑴𝒂 𝑾𝒆 𝑹𝒆 

Experimental Water Air 1.47 6.9 𝑥 103 1.12 𝑥 105 

Numerical Water Air 1.47 7.3 𝑥 103 1.30 𝑥 105 
 

From Table 6.1, it is shown that the computed non-dimensional parameters are close to the 

corresponding parameters derived from past experimental studies. The computed values show that 

surface tension is negligible as both dimensionless parameters have relatively high values. This 

proves that the inertial forces control the flow above the surface tension and viscous forces. 

Similarly, this research computed 𝑂𝑛, which represents the ratio of the viscous force to the surface 

tension force, as 0.00169. This further proves that surface tension and viscous forces are negligible 

compared to the inertial force. It may therefore be justified to neglect the effects of surface tension 

and viscosity as seen in past numerical works (e.g., Chen, 2008; Terashima and Tryggvason, 2009; 

Igra and Sun, 2010; Shukla, 2010; Terashima and Tryggvason, 2010; Meng and Colonius, 2015; 

Nonomura et al., 2014; Shukla, 2014; Sembian et al., 2016; Xiang and Wang, 2017; Meng and 

Colonius, 2018)  because the physical mechanisms of breakup are predominantly driven by inertia. 

This research has then made a reasonable first approximation to neglect surface tension effects. 

This research has highlighted two justifications for doing this in addition to the analysis previously 

provided. Firstly, Garrick et al. (2017) explained that neglecting surface tension and boosting grid 

resolution results in the growth of interfacial instabilities which develop with time. These instabilities 

are not captured with surface tension as it provides a restoring force that resists high interface 

curvature. Secondly, Garrick et al. (2019) pointed out that accounting for surface tension and 

particularly interface sharpening decreases the amount of liquid material stripped from the interface 

where the distorted liquid column would have otherwise been characterized by an extremely chaotic 

wake area thus limiting the contribution to unsteady liquid acceleration estimations. As this research 

intends to effectively capture the: flow instabilities, process of material stripping from the liquid 

bubble peripheries, and evolution of turbulence from onset of SBI to its late stages, surface tension 

effects have been ignored while the influence of viscosity has been taken into consideration. 

Viscosity effects are particularly important at late-times when the flow becomes very unstable and 

turbulent. It is then understandable that the previously highlighted numerical publications, which 

involved the compressible simulations of droplet disintegration, investigated just the early stages of 

the shock liquid bubble interaction and distortion for a cylindrical water column. 

 

6.2.3.  Computational details 
 

The computational set-up replicates the experiments carried out by Igra & Takayama (2001) and 

Igra et al. (2002). This research has adopted a 2D and 3D cylindrical bubble configuration because 

both Igra & Takayama (2001) and Igra et al. (2002) used cylindrical bubbles in their experiments. 

Fig. 6.1(a) shows the 2D representation of the computational domain (half of the domain) detailing 

the initial conditions within the domain and boundary conditions for the computations. This research 

simulated this 2D cross-section using cartesian coordinates where the 𝑥-axis is horizontal, and the 

𝑦-axis is vertical. The dimensions of the 2D computational domain (2.75𝑑 × (𝐿𝑥 + 1.27𝑑) are 

provided as a function of the bubble diameter, 𝑑 (= 4.8mm or 22mm as in the experimental 

demonstrations of Igra & Takayama (2001)/Igra et al. (2002) or Sembian et al. (2016) respectively) 

while 𝐿𝑥 varies and is selected to provide enough room to hold the shocked bubble propagation 

throughout the monitored time. The smaller diameter i.e., 4.8mm was used to allow direct 

comparison to the experimental findings of Igra & Takayama (2001)/Igra et al. (2002) while the 

larger diameter i.e., 22mm was selected in reference to the experimental procedures of Sembian et 

al. (2016) who pointed out that a greater diameter was essential for comprehensive studies of wave 

motions within the water bubble.  The computations are performed only on the upper half as it is a 
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mirror image of the lower half. The lower boundary of the grid (Edge RS) represents the shock-tube 

axis while the upper boundary of the computational grid (Edge PQ) is treated as a solid wall with 

the no-slip wall boundary condition applied. The left boundary is the inlet, which is shown as Edge 

PR, while the right boundary corresponds to the outlet, which is shown as Edge QS. The incident 

shock propagates from left to right and the left boundary cells comprise of parameter values, i.e., 

𝜌2, 𝑃2, 𝑣𝑥 = 𝑉2, 𝑣𝑦 = 0 , which is equivalent to the area behind the supersonic planar shock. As 

revealed from within the computational domain, identical values are utilised as initial conditions 

behind the shock which are located at a few cells within the computational grid. The values of these 

parameters also denote the post-shock properties of the ambient gas utilised in the initialisation and 

are calculated from the Rankine-Hugonoit relationships (Houghton and Brock, 1993). The left 

boundary condition allows the smooth outflow of reflected waves created by the SBI. The right 

boundary condition equivalently allows the smooth outflow of any rightward-moving waves, 

including the distorted incident shock. Fig. 6.1(a) also reveals that the right boundary condition is 

achieved by sustaining a ‘zero gradient’ for all fluid variables, i.e., ∇𝑢 = 0, ∇𝑃 = 0, ∇𝜌 = 0. Fig. 6.1(a) 

also shows the equator which will be used to explain material stripping from the deforming bubble. 

For both 2D and 3D cases, the upstream end (shown as the windward edge on Fig. 6.1(a)) of the 

bubble is kept at some distance from the incident shock. This is because a shock has an expected 

tendency to spread to its usual profile given an ‘exact discontinuity’ as initial conditions (Hillier, 1991) 

which could lead to errors that adversely delay the SBI process. Similarly, the downstream end is 

shown as leeward edge in Fig. 6.1(a).  

 

For the 3D simulations (see Fig. 6.1(b)), a coordinate system is described, where the x-axis is 

coincident with the shock-tube long axis in the direction of shock-wave travel. The y-axis and z-axis 

are along the traverse directions. The incident shock wave and the free stream flow propagate in 

the x direction.  The computational geometry represents a physical region (shown as a cuboid) with 

dimensions 5.5𝑑 × (𝐿𝑥 + 1.27𝑑)  ×  5.5𝑑, where 𝑑 is the bubble diameter and 𝐿𝑥 is flexible and just 

as in the 2D case, has been selected to enable complete propagation of the shocked bubble for the 

required times. Similar boundary conditions as in the 2D case are applied for the 3D case and a no-

slip boundary condition is employed on the top, bottom, and side walls. As in the 2D case, the outlet 

condition has adopted a zeroth-order extrapolation to the boundary whereby the outermost data 

plane is transferred into the boundary such that the gradients across the boundary equate zero 

(∇𝑣 = 0, ∇𝑃 = 0, ∇𝜌 = 0). This technique ensures that the shock reflections are then significantly 

reduced even though they are not totally eradicated for strong shock waves.  
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Figure 6.1: (a) The upper half of the shock tube revealed by the surrounding heavy black line and 

boundary/initial conditions for the 2D case; and (b) Computational domain for the 3D case. 
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The 2D (Fig. 6.2(a)) and 3D computational grids (Figs. 6.2(b) and (c)) consist mainly of structured 

meshes in the main flow region while the region in the vicinity of the bubble (both inside and outside) 

has been discretised into unstructured grids, i.e., both hybrid grids. The unstructured cells used in 

the bubble vicinity for both 2D and 3D cases enable the local alignment of the grid orientation to the 

dominant flow direction due to their flexible nature thus lessening numerical diffusion (Holleman et 

al., 2013) and have been validated by the works of previous researchers (e.g., Holleman et al., 

2013; Zubair et al., 2013). These unstructured grids make it easy to dynamically adapt the grid to 

the local structures of interest. As seen from Figs. 6.2(b) and (c), the 3D mesh is a hybrid grid 

consisting of uniform hexahedral meshes in most of the main flow region and smaller uniform 

hexahedral meshes within the bubble while the bubble vicinity (just outside and inside) is discretised 

into ‘smaller-cell’ unstructured triangular prisms. The cartesian cut-cell method, previously applied 

by Ingram et al. (2013), Berger et al. (2012), and Johnson (2013), has been used to generate this 

mesh. This method proved very useful to preserve the decoupling between the volume hexahedral 

mesh resolution and the surface triangulation in the bubble vicinity whilst focusing on resolution 

requirements close to the boundaries and reducing mesh irregularities in the cut cells (Berger et al., 

2012). 

Prior to the application of AMR, the cells inside the bubble and in its vicinity were made to be finer 

than the cells in the main flow region and the wall. AMR helps to generate a more robust high-

resolution grid capable of reproducing a sharp representation of discontinuities as well as can 

sufficiently resolve the various flow structures to be investigated. With respect to AMR, several 

authors (Berger and Oliger, 1984; Henderson et al., 1991; Bell et al., 1994; Klein et al., 1994; Quirk 

and Karni, 1996; Nourgaliev et al., 2006; Nierderhaus et al., 2008, etc.) had extensively applied it 

Figure 6.2: (a) 2D hybrid mesh; (b) 3D unstructured mesh; and (c) Close view of fine mesh around 

bubble from Adaptive Mesh Refinement (AMR). 
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to SBI computations. The AMR settings are selected to ensure the maximum refinements in all 

areas having a non-zero bubble fluid volume fraction and close to any regions with strong density 

gradients (Nierderhaus et al., 2008). AMR thus ensures that the mesh is refined inside the bubble 

and its vicinity (including the primary shock wave) guaranteeing that the fine cells surround and 

travel with the bubble to provide for the strong interaction between the incident shock waves and 

the bubble. 

 

6.2.4.  Initialization of the computational problem 

This research initialised the water within the bubble and the unshocked surrounding air i.e., area 

between initial diaphragm and outlet at atmospheric conditions. The initialisation assumed that the 

bubble and the unshocked surrounding air are originally in a state of rest as well as in thermal and 

mechanical equilibrium thus implying that any original buoyant movement of the bubble is ignored.  

The JANAF data (Gordon and McBride, 1976) is used to derive the ratio of specific heats, 𝛾, for air 

utilising the original, unshocked pressure and temperature with this value kept constant throughout 

the computation. 

This research adopted the Rankine-Hugonoit relationships (Houghton and Brock, 1993) to calculate 

the post-shock characteristics of the surrounding air, as shown on the left-hand side of Fig. 6.1(a). 

The post-shock 𝑀𝑎, pressure and density are computed using the following mathematical relations 

respectively: 

𝑀𝑎2
2 =

(𝛾 − 1)𝑀𝑎1
2 + 2

2𝛾𝑀𝑎1
2 − (𝛾 − 1)

,                                                                                                                                      (6.4) 

𝑃2
𝑃1
=

2𝛾

𝛾 + 1
𝑀𝑎1

2 −
𝛾 − 1

𝛾 + 1
,                                                                                                                                          (6.5) 

𝜌2
𝜌1
=

𝛾 + 1
𝛾 − 1

(
𝑃2
𝑃1
) − 1

𝛾 + 1
𝛾 − 1

(
𝑃2
𝑃1
)
,                                                                                                                                                   (6.6) 

where 𝑀𝑎1 = 1.47, 𝑃1 and 𝜌1 represent the initial Mach number, pressure and density of the ambient 

air respectively, as shown on the right-hand side of Fig. 6.1(a). 

 

6.2.5.  Mesh independence study 
 

A mesh independence study has been performed with three mesh qualities for both 2D case (0.24, 

0.40, and 0.50 x 106 cells) and 3D case (6.9, 10.8, and 13.6 x 106 cells) to determine the best grid 

resolution that will yield the most optimal computational results in comparison to the experimental 

works of Igra and Takayama (2001)/Igra et al. (2002). Figs. 6.3(a) and (b) show the changes in the 

distorted bubble drift, ∆xL with time. The bubble drift provides a clear history of the bubble motion 

as it is deformed. The bubble leading edge (xL) is essential in determining the bubble drift. As such, 

∆xL is derived as the distance between the current position of xL and its previous location. From the 

descriptions provided within Fig. 6.3(a) and (b), xL is shown as the location of the middle of the 

windward end of the deforming water bubble. At the onset of shock liquid bubble interaction, xL, is 

represented by the first position (at the centre of the upstream end) that comes in contact with the 

incident shock wave. The descriptions also reveal the dimensionless times, 𝜏, when these drifts are 

estimated and the shape of the distorted bubbles corresponding to 𝜏. 𝜏 represents a normalisation 

of simulation time, T, using 𝜌𝑔,2, 𝑈𝑔,2 and 𝜀. For emphasis, xL,τ=0.79, xL,τ=1.30, and xL,τ=1.54 represent 

the leading-edge position of the distorted bubble at 𝜏 = 0.79, 𝜏 = 1.30, and 𝜏 = 1.54 respectively. 

Panchal et al. (2023) usefully pointed out that quantitative estimations for shock liquid bubble 
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interaction are calculated from the simulation flow-fields utilising a threshold volume fraction  𝛼𝑇
(2)

 

as long as 𝛼(2) > 𝛼𝑇
(2)

 denotes the bubble shape whose geometrical parameters have to be 

established. As a result, they stated that due to the ambiguity in the experimental measurements, it 

was uncertain what value for 𝛼𝑇
(2)

 could be used to attain the best concordance with experimental 

data. They explained that this uncertainty mainly stemmed from the fact that gas/liquid interface 

may look diffused due to the tiny, stripped particles in the vicinity of the ‘parent’ bubble surface, 

depending on the measurement method, even though it should stay sharp realistically. Chen (2008) 

similarly explained that there is an associated difficulty with defining the ‘exact’ profile of the 

distorted water bubble. Therefore, this research has defined the shape of the distorted bubble by 

𝛼𝑤 = 0.9 as in the numerical investigations of Chen (2008) and Panchal et al. (2023). 

For the 2D case represented by Fig. 6.3(a), the results show little disparity when the mesh is refined 

from 0.40 to 0.50 x 106 cells, and hence there is no need to refine the mesh further. As such, the 

remaining 2D simulations are carried out using 0.50 x 106 cells. Similarly, for the 3D case 

represented by Fig. 6.3(b), the derived results from the mesh with 10.8 x 106 cells show little 

variation from the results obtained from the mesh with 13.6 x 106 cells and hence there is no need 

to further refine the mesh.  Following this analysis, all 3D computations are performed using 13.6 x 

106 cells. 

6.2.6.  Turbulence model selection 
 

Lawson and Barakos (2011) explained that the associated flow fields for a SBI will be characterised 

by the strong acoustic effects, unsteadiness, and turbulence. This means that the SBI process 

between the supersonic shock wave and the bubble will yield more complex turbulent features. 

Also, SBI shows structures that are preliminarily turbulent (Haas and Sturtevant, 1987) and there is 

a fundamental variation in the behaviour of 2D and 3D turbulence which is due to the lack of the 

vortex-stretching mechanism in 2D (Pope, 2000). Several authors (e.g., Chen, 2008; Terashima 

and Tryggvason, 2009; Igra and Sun, 2010; Shukla, 2010; Terashima and Tryggvason, 2010; 

Nonomura et al., 2014; Shukla, 2014; Meng and Colonius, 2015; Sembian et al., 2016; Xiang and 

Wang, 2017; Meng and Colonius, 2018) had numerically investigated SBI using the compressible 

Euler equations which govern the adiabatic and inviscid flows (Toro, 2009). But if the late-stage 

turbulence involving small-scale structures and full bubble disintegration are to be discussed, 

physical viscosity should be considered. This then necessitates the use of turbulence models to 

Figure 6.3: (a) Coarse, fine, and finer meshes in 2D case; and (b) Coarse, fine and finer meshes 

in 3D case 
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effectively study the SBI phenomenon as there is hardly any knowledge acquired till date concerning 

the performance of turbulence models for shock liquid bubble interaction simulations. This research 

thus stands as a new research dimension to studying SBI. There are several turbulence models 

and there is no general agreement which model is most superior as their individual performance is 

very case dependent. Based on this, this research has adopted three extensively applied and highly 

rated turbulence models: the realizable k-ε, the shear stress transport (SST) k-ω, and a Reynolds 

stress model (RSM). These three turbulence models have been examined to evaluate their 

performance for the 3D case. Fig. 6.4 shows the comparison between the predicted bubble drift 

with time versus the experimental measurements for the three turbulence models. It is clearly seen 

in Fig. 6.4 that the predictions using all three turbulence models show little disparity but the results 

from the RSM are slightly closer to the experimental data. Therefore, RSM is adopted in this 

research. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5 presents the predicted (2D and 3D) and experimentally measured bubble drift with time. It 

can be seen clearly that the 3D predictions match the experimental data of Igra et al. (2002) 

extremely well in comparison to the 2D predictions. It is evident from this comparison that the 3D 

simulations have captured the complex shock liquid bubble interaction more accurately and all the 

following analysis will be based on the 3D results as there was no need to present the 2D results. 

The CPU times per 50 iterations are 308 seconds and 5,184 seconds for the performed 2D and 3D 

simulations respectively using the best 2D and 3D grids as detailed in Section 6.2.5. 

 

Figure 6.4: Comparison of numerical results between different turbulence models and experimental 

data. 
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6.3. Results and discussion 

6.3.1.  Trajectory of the water bubble 

The dimensionless drift, ∆xL
∗  against dimensionless time, t, for the deforming water bubble is shown 

in Fig. 6.6. The dimensionless drift, ∆xL
∗  against dimensionless time, t, for the deforming water 

bubble served as the most fundamental method to compare the numerical predictions of this 

research to past experimental measurements. It is similar to Figs. 4.3 & 4.7 (spherical helium bubble 

case) and 5.3 & 5.8 (cylindrical helium bubble case) which show the changes in the bubble location 

with respect to the positions of the jet, upstream and downstream interface. Hence, there was no 

need to introduce ∆xL
∗  against t in previous examples and Chapters (4 & 5).  

 

 

 

 

 

 

 

 

 

 

∆xL
∗  is given as: 

∆xL
∗ =

∆xL
d
                                                                                                                                                                      (6.7) 

while t is given as: 

Figure 6.5: Comparison of the 2D and 3D predictions against the experimental data. 

Figure 6.6: Comparison between numerical and experimental dimensionless displacements of the 

bubble against time. 

 



157 
 

t =
T𝑈𝑔,2

d
                                                                                                                                                                        (6.8) 

For this research, the position of the water bubble is defined based on the upstream end of the 

bubble This is illustrated by the lines positioned at the middle of front edge of the deforming bubble 

provided in the descriptions within Fig. 6.6. The experimental measurements of Igra et al. (2002) 

are also presented in Fig. 6.6. The trend of our current study is congruent with the experimental 

data and fits a similar curve. This is because our estimations are close to and show a good 

concordance with the experimental measurements. It is also worth stating that our estimated drifts 

are higher than those provided by the experimental measurements. This research attributes this 

difference to the influence of drag force existent between the side walls of the shock tube and the 

boundaries of the water bubble in the conducted experiments of Igra et al. (2002) but such drag 

force is lower from our numerical estimations as revealed in Section 6.3.3. This lower drag force 

results in a greater velocity behind the shock wave. Fig. 6.6 also presents the comparison of our 

work to the numerical study of Meng and Colonius (2014). They selected a threshold liquid volume 

fraction, 𝛼𝑇, to constrain the cylindrical bubble such that any computational cell having a liquid 

volume fraction, 𝛼𝑙, and satisfies the mathematical relation, 𝛼𝑙 ≥ 𝛼𝑇 can be considered a component 

of the deforming cylinder. They did this to deal with the uncertainty inherent in the experimental 

measurements which has already been discussed in Section 6.2.5. They then chose a range 

(0.25 ≤ 𝛼𝑇 ≤ 0.99) but for the sake of comparison, we have just selected the upper and lower limits 

of that range. From Fig. 6.6, it is seen that their numerical predictions for 𝛼𝑇 = 0.99 agree with both 

the experimental data and our current estimations from the onset of SBI up to t ≈ 13.2 after which 

it starts deviating away. The reverse is noticed for their estimations at 𝛼𝑇 = 0.25 which starts 

deviating from the onset of SBI away from both our current predictions and the experimental 

measurements up till t ≈ 15.6 and t ≈ 19.2 respectively after which it starts getting closer.  

 

6.3.2.  Acceleration of water bubble  
 

Fig. 6.7 shows the acceleration history of the water bubble as material stripping and bubble 

disintegration progresses.  

Acceleration is very important as it is serves as a ‘driver’ for bubble deformation and disintegration. 

(Theofanous et al., 2012). From Fig. 6.7(a), it is shown that the trend of the current numerical study 

mostly matches the experimental measurements except at the early stages when acceleration is 

Figure 6.7: (a) Acceleration history of deforming water bubble in dimensional form (b) Acceleration 

history of deforming water bubble in non-dimensional form. 
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not constant. Similarly, in the dimensionless form, Fig. 6.7 (b) shows that our numerical estimations 

mostly coincide well with experimental data except in early phases of SBI when material stripping 

has not developed significantly and a complex, chaotic wake has not formed from unsteady vortex 

shedding. Material stripping involves the continuous removal of liquid sheets and microdrops from 

the surface of the bubble until the parent bubble is completely compressed (Ranger and Nicholls, 

1969; Wierzba and Takayama, 1988; Chou et al., 1997; Xu et al., 2022). From Fig. 6.7 (b), a∗, is 

given as: 

 

a∗ =
ad

𝑈𝑔,2
2                                                                                                                                                                       (6.9) 

where a stands for the acceleration in m/s2. From Fig. 6.7(a) and (b), a and a∗ rise with time from 

the onset of SBI up to T ≈ 56μsec and t ≈ 2.4 respectively before dipping swiftly up to T ≈ 154μsec 

and t ≈ 7.2 respectively. This is followed by a steeper drop in a and a∗ up to T ≈ 294μsec and t ≈

13.8 respectively. Both a and a∗ continue to decrease but at a rate that is less steep compared to 

the previous period. This continues up till T ≈ 350μsec and t ≈ 16.2 respectively. Afterwards, there 

is an oscillating decrease in a and a∗ up to T ≈ 490μsec and t ≈ 22.8. It is safe to assume that 

between T ≈ 490μsec and t ≈ 22.8 up till T ≈ 700μsec and t ≈ 33 respectively, a and a∗ are fairly 

constant as shown from Fig. 6.7(a) and (b). Generally, it can be concluded that Fig. 6.7(a) and (b) 

show that higher acceleration is induced at the early stage of bubble breakup before a decrease to 

an almost constant value. Following from this, Igra et al. (2002) explained that an empirical curve-

fit for later times yields a constant acceleration shown in dimensional and non-dimensional forms 

by Eq. (6.10) and Eq. (6.11) respectively. 

 

∆xL = 
1

2
aT2                                                                                                                                                                (6.10) 

 

∆xL
∗ =

1

2
a∗t2                                                                                                                                                                 (6.11) 

 
Using values for ∆xL, T, ∆xL

∗  and t to plot Eq. (6.10) and Eq. (6.11) yield Fig. 6.8(a) and Fig. 6.8(b) 

respectively. 

Eq. (6.10) resembles the equation of a straight line i.e., 𝑦 = 𝑚𝑥 + 𝑐, where 𝑚 and 𝑐 denote the 

gradient and intercept of the straight line respectively. ∆xL is then plotted on the y-axis and T2 plotted 

Figure 6.8: (a) Dimensional acceleration approximation (b) Non-dimensional acceleration 

approximation. 
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on the x-axis. This is shown in Fig. 6.8(a). As Eq. (6.10) has no intercept i.e., 𝑐 = 0, the drawn 

trendline that defines the curve in Fig. 6.8(a), will pass through the origin with a gradient equivalent 

to a/2. Similarly, Eq. (6.11) resembles the equation of a straight line i.e., 𝑦 = 𝑚𝑥 + 𝑐, with ∆xL
∗  plotted 

on the y-axis and t2 plotted on the x-axis. This is shown in Fig. 6.8(b). Similarly, as Eq. (6.11) has 

no intercept, the drawn trendline in Fig. 6.8(b) will pass through the origin with a gradient of a∗/2. 

Following from this, the drawn trendline that defines the curve in Fig. 6.8(a) has the equation; ∆xL =

1.8073 𝑥 10−5T2 and the gradient is 1.8073 𝑥 10−5mm/(μsec )2. The unit is converted to m/s2 by 

multiplying the gradient by 109. The gradient then becomes 1.8073 𝑥 104 m/s2 =  18,073 m/s2. 

Equating this gradient to the gradient of Eq. (6.10) (i.e., a/2) gives a = 36,146 m/s2. Following the 

same procedure, a trendline with equation ∆xL
∗ = 1.6981 𝑥 10−3t2 and gradient of 1.6981 𝑥 10−3 can 

be drawn for the curve in Fig. 6.8(b). Equating this gradient to the gradient of Eq. (6.11) (i.e., a∗/2) 

yields a∗ = 3.3962 𝑥 10−3. The deformed water bubble dimensional and non-dimensional 

acceleration are compared with experimental measurements as shown in Table 6.2. 

Table 6.2: Comparison of dimensional and non-dimensional numerical acceleration to experimental 

measurements 

 

 

 

 

From Table 6.2, we see that the numerical predictions for a and a∗ are very close to the experimental 

measurements. As previously pointed out in Section 6.3.1, the difference is caused by the 

experimental drag force generated by the contact which the side walls of the shock tube make with 

the water bubble. This drag force offers resistance to the force induced by the high-speed air behind 

the shock wave.  

 

6.3.3.  Approximations for the drag coefficient of the water bubble 
 

The drag coefficient (𝐶𝐷) plays an essential role in bubble disintegration. The magnitude of 𝐶𝐷 is 

dependent on the velocity and acceleration of the bubble. For this research, 𝐶𝐷 plays an important 

role in controlling the penetration of the deformed bubble, which has been impacted by the shock, 

into the ambient air. Ranger & Nicholls (1969) and Pilch & Erdman (1987) suggested a simplistic 

approach to determine the drag coefficient of a bubble. Ranger and Nicholls (1969) assumed that 

the bubble shape, mass and acceleration do not change and derived the equation of motion 

provided in Eq. (6.12). 

 
1

2
𝐶𝐷𝜌𝑔,2𝑈𝑔,2

2𝑆 = 𝑚𝑙a                                                                                                                                               (6.12) 

where  𝐶𝐷,  𝑆, and 𝑚𝑙 denote the drag coefficient, frontal area and bubble mass. Fig. 6.1(a) shows 

that 𝑆 (represented by the bubble surface area which is first impacted by the incident shock wave) 

takes the shape of a square bounded, on a pair of opposite sides, by the diameter of the circular 

portion of the cylinder. The other pair of opposite sides is bounded by the height of the cylinder 

which is equal to the diameter of the circular portion of the cylinder. We can then express S as d2. 

𝑚𝑙 can be expressed as a product of 𝜌𝑙 and volume of the liquid bubble, 𝑉𝑙. The volume of a cylinder, 

V, is given as: 

V = 𝜋𝑟2ℎ = 𝜋(𝑑 2⁄ )
2ℎ = 𝜋 𝑑

2

4⁄ ℎ                                                                                                                        (6.13) 

Condition 
Water bubble 

diameter (mm) 
𝑴𝒂   𝐚 (𝐦/𝐬𝟐) 𝐚∗  

Experimental 4.8 1.47 3.4035 𝑥 104 3.3754 𝑥 10−3 

Numerical 4.8 1.47 3.6146 𝑥 104 3.3962 𝑥 10−3 
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where 𝑟, 𝑑,  and h represent the cylinder’s radius, diameter and height respectively. In our case, 

since the cylindrical liquid bubble’s height is the same as the diameter. We can then adopt Eq. 

(6.13) and express 𝑉𝑙 as: 

𝑉𝑙 =  𝜋
d3
4⁄                                                                                                                                                                  (6.14) 

𝑚𝑙 can then be expressed as: 

𝑚𝑙 = 𝜌𝑙 . 𝜋
d3
4⁄                                                                                                                                                            (6.15) 

Placing Eq. (6.15) and 𝑆 = d2 into Eq. (6.12) and making a the subject of the equation yields: 

a =
2

𝜋

𝐶𝐷
d

𝜌𝑔,2

𝜌𝑙
𝑈𝑔,2

2                                                                                                                                                      (6.16) 

 

Rewriting Eq. (6.10) using Eq (6.16) yields  

 

∆xL = 
𝐶𝐷
𝜋

𝜌𝑔,2

𝜌𝑙

𝑈𝑔,2
2

d
. T2                                                                                                                                            (6.17) 

 

If we divide both sides of Eq (6.17) by d yields  

∆xL
d
=  
𝐶𝐷
𝜋

𝜌𝑔,2

𝜌𝑙

𝑈𝑔,2
2

d2
. T2                                                                                                                                            (6.18) 

 

The left-hand side of Eq. (6.18) is equal to Eq. (6.7) We can then rewrite Eq. (6.18) as  

∆xL
∗ =

𝐶𝐷
𝜋
𝜏2                                                                                                                                                                 (6.19) 

 

where 𝜏2 represents: 

𝜏2 =
𝜌𝑔,2

𝜌𝑙

𝑈𝑔,2
2

d2
. T2                                                                                                                                                     (6.20) 

𝜏 represents another dimensionless time which takes into consideration 𝜌𝑔,2 and 𝜌𝑙. It is defined as: 

𝜏 =
T. 𝑈𝑔,2

d
√
𝜌𝑔,2

𝜌𝑙
                                                                                                                                                        (6.21) 

Fig. 6.9(a) shows the water trajectory using 𝜏 while Fig. 6.9(b) estimates the drag coefficient using 

Eq. (6.19). 
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Fig. 6.9(a) compared the current study to the numerical analysis of Meng & Colonius (2014) and 

the experimental measurements of Igra et al. (2002). The trend of our current study is congruent 

with the experimental data and fits a similar curve. This is because our estimations are close to and 

show a good concordance with the experimental measurements. From Fig. 6.9(a), it is seen that 

their numerical predictions for 𝛼𝑇 = 0.99 agree with both the experimental data and our current 

estimations from the onset of SBI up to 𝜏 ≈ 0.6 after which it starts diverging away. The reverse is 

noticed for their estimations at 𝛼𝑇 = 0.25 which starts diverging from the onset of SBI away from 

both our current predictions and the experimental measurements up till 𝜏 ≈ 0.68 and 𝜏 ≈ 0.88 

respectively after which it starts getting closer. 

As demonstrated in Section 6.3.2, Eq. (6.19) resembles the equation of a straight line i.e., 𝑦 = 𝑚𝑥 +

𝑐, where 𝑚 and 𝑐 denote the gradient and intercept of the straight line respectively. ∆xL
∗  is plotted 

on the y-axis and 𝜏2 is plotted on the x-axis. This is shown in Fig. 6.9(b). As Eq. (6.19) has no 

intercept, i.e., 𝑐 = 0, the drawn trendline that defines the curve in Fig. 6.9(b) will pass through the 

origin with a gradient equivalent to 𝐶𝐷/𝜋. Following from this, the trendline on Fig. 6.8(a) has the 

equation; ∆xL
∗ = 7.790 𝑥 10−1𝜏2. From this equation, it is seen that the gradient is 7.790 𝑥 10−1. 

Equating this gradient to the gradient of Eq. (6.19) (i.e., 𝐶𝐷/𝜋) and solving for 𝐶𝐷 yields 𝐶𝐷 = 2.4473. 

The drag coefficient of the bubble as estimated from Eq. (6.19) is compared to that obtained from 

the experimental measurements of Igra et al. (2002) as shown in Table 6.3. 

 

Table 6.3: Comparison of numerical prediction of drag coefficient to experimental data 

 

 

 

 

From Table 6.3, our predicted 𝐶𝐷 is close to the experimental 𝐶𝐷 but the difference owes to the drag 

force induced by the contact between the water column and the shock tube in the experiments 

which can impede the force generated by the high-speed airflow. Table 6.3 shows that 𝐶𝐷 for the 

current study and experiments are assumed as constants. This is valid because such an 

assumption could be made by recognizing that 𝐶𝐷 computations should consider the altering 

spanwise diameter such that 𝐶𝐷 can be recomputed utilizing the deformed diameter. 𝐶𝐷, as 

predicted from this research, has been done using the trajectory of the deforming bubble and has 

Condition 
Water bubble 

diameter (mm) 
𝑴𝒂  𝑪𝑫 

Experimental 4.8 1.47 2.9140 

Numerical 4.8 1.47 2.4473 

Figure 6.9: (a) Comparison between numerical and experimental dimensionless bubble drift against 

time (b) Non-dimensional drag coefficient approximation. 
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incorporated its changing spanwise diameter. This ensured that the predicted 𝐶𝐷 is physically more 

accurate than that based on just the bubble’s original diameter and could help simplify the modeling 

of bubble dynamics. This approximation is consistent with the works of Meng and Colonius (2014) 

who explained that unsteady  𝐶𝐷 can be estimated as a constant over the early times of bubble 

disintegration. 

 

6.3.4.  Numerical measurements of the temporal changes of the interfacial 

characteristic scales 
 

Temporal changes in the centerline width (w) and spanwise height (h) of the deforming cylindrical 

bubble are plotted in Figs. 6.10(a) & (b) and Figs. 6.11(a) & (b) respectively. These measurements 

were made using the series of images derived from the numerical simulations. w  is derived by 

measuring the width of the deforming cylindrical bubble in the x-direction while h is obtained by 

measuring its height in the y-direction. The description of these interfacial characteristic scales is 

enclosed in Figs. 6.10(a) & (b) and Figs. 6.11(a) & (b). w and h of the evolving interface have been 

normalised using d i.e., w∗ = w d⁄  and h∗ = h d⁄  respectively. This section also investigates changes 

in the area (A) of the deforming bubble as it is moved by the highspeed airstream and as material 

stripping takes place along its peripheries (Figs. 6.12(a) & (b)). A has also been normalised using 

the original area of the cylindrical water bubble (Ao) before it is impacted by the incident shock wave 

i.e., A∗ = A Ao⁄ . Figs. 6.10(a) and (b) show the changes in bubble width with time. 

Figs. 6.10(a) and (b) show that the bubble width reduces with time as SBI progresses. This is 

attributable to bubble compression and material stripping from the bubble peripheries. The predicted 

temporal changes in bubble width (with respect to value and trend) matches well against the 

experimental measurements. The numerical findings of Meng and Colonius (2014) are also shown 

in Figs. 6.10(a) and (b). Their predictions for 𝛼𝑇 = 0.25 are congruent with both current numerical 

predictions and experimental measurements while those for 𝛼𝑇 = 0.99 are noticed to deviate from 

onset of SBI to the end of considered timeframe i.e., their values for 𝛼𝑇 = 0.99 are slightly 

underpredicted but still capture the same trend as both the current predictions and experimental 

data.  

 

Figure 6.10: (a) Deformation of the water bubble in the x-direction against dimensionless time, t (b) 

Deformation of the water bubble in the x-direction against dimensionless time, 𝜏. 
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Figs. 6.11(a) and (b) show the time variation of bubble distortion in the y-direction i.e., changes in 

bubble height with time 

 

Figs. 6.11(a) and (b) show that the bubble height increases with time as SBI progresses. This is 

consistent with the lateral stretching of the deforming bubble from its top and bottom ends (the 

equator) as its centerline width decreases due to bubble compression and material stripping. The 

predicted temporal changes in bubble height (with respect to value and trend) conforms well with 

the experimental measurements. The numerical findings of Meng and Colonius (2014) are also 

shown in Figs. 6.11(a) and (b). Their predictions for 𝛼𝑇 = 0.99 are comparable to both current 

numerical predictions and experimental measurements up to 𝑡 ≈ 9 or 𝜏 ≈ 0.45 after which they start 

to slightly deviate. This slight deviation continues till 𝑡 ≈ 15 or 𝜏 ≈ 0.75. Afterwards, they become 

overpredicted up till the end of the studied timeframe. For 𝛼𝑇 = 0.25, their estimations are 

significantly overpredicted from onset of SBI to the end of the investigated timeframe. 𝛼𝑇 is as 

defined in Section 6.3.1. 

Figs. 6.12 shows the time variation of the cross-sectional area of the deforming cylindrical water 

bubble.  

 

 

 

 

 

 

 

Figure 6.11: (a) Deformation of the water bubble in the y-direction against dimensionless time, t (b) 

Deformation of the water bubble in the y-direction against dimensionless time, 𝜏. 
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Figs. 6.12(a) and (b) show the: predictions from the current study, predictions from Chen (2008), 

predictions from Meng and Colonius (2014) for 𝛼𝑇 = 0.25 and 𝛼𝑇 = 0.99 as well as experimental 

measurements. Figs. 6.12 (a) and (b) also prove that the bubble area should decrease with time as 

SBI progresses because of the stripping of small-sized fragments. The only exception from Figs. 

6.12(a) and (b) is the case of 𝛼𝑇 = 0.25 (Meng and Colonius, 2014) where the estimated values are 

significantly overpredicted and do not follow the trends of the current predictions, Chen (2008), 

Meng and Colonius (2014; at 𝛼𝑇 = 0.99) and the experimental measurements. The predicted 

temporal changes in bubble area (with respect to value and trend) for this research are in good 

agreement with the experimental data. The predictions of Meng and Colonius (2014) at 𝛼𝑇 = 0.99 

differ to both current numerical predictions and experimental measurements until  𝑡 ≈ 19 (𝜏 ≈ 0.9) 

after which their estimated values become closer and converge. Similarly for Chen (2008), their 

predictions are underpredicted compared to our current study and the experimental data until  𝑡 ≈

22 (𝜏 ≈ 1.025)  after which their estimated values become closer and converge. Figs. 6.11(a) & (b) 

and 6.12(a) & (b) show that the current numerical solutions are much better than those of Meng & 

Colonius (2014) and Chen (2008). This is because they both used Euler equations for a 2D inviscid 

flow while the current study has incorporated the effects of viscosity using a turbulence model to 

approximate the Reynold Stresses generated during the averaging of the fundamental 3D governing 

equations. 

Figs. 6.10(a) & (b), 6.11(a) & (b) and 6.12(a) & (b) usefully point out that the slopes of our profiles 

vary. Chen (2008) attributes this slope variation to the more intense nature of the stripping breakup 

at later periods compared to the early phase of SBI. This slope variation and the wavy nature of our 

predicted curves is also indicative of the change in shape of the water bubble as SBI and stripping 

progresses. Generally, after the incident shock wave impinges on and passes through the windward 

end of the cylindrically water column, the bubble’s distortion is typified by flattening in the 

streamwise direction. This is measured as a rise in the lateral bubble height and a drop in the 

centerline width. As material and tiny fragments of bubble masses are stripped off the deforming 

cylinder’s periphery due to the high-speed flow behind the incident shock wave, the area of the 

cylinder is continuously reduced. Finally, the quantitative validations provided from Section 6.3.1 to 

Section 6.3.4 show that our numerical model is sufficiently reliable and accurate. 

 

 

Figure 6.12: (a) Evolution of the bubble area against dimensionless time, t (b) Evolution of the 

bubble area against dimensionless time, 𝜏. 
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6.3.5.  Visualization of shock/liquid bubble interaction morphology 
 

The intricate and crucial processes involved in liquid bubble deformation, generation and evolution 

of vortices, growth of air-jet, material stripping from the bubble peripheries and the overall late-time 

development of the SBI process will be further investigated in this section. A direct qualitative 

comparison of our numerical study to the experimental works of Igra & Takayama (2001) and Igra 

et al. (2002) is shown in Figure 6.13. 

 

Fig. 6.13 presents three (3) snapshots of the numerically simulated images (bottom), represented 

by the pressure contours, and shadow-photographs (top) captured in the experiments of Igra & 

Takayama (2001) and Igra et al. (2002). The pressure contours clearly show all the wave patterns 

observed in the experimental shadow-photographs. Thus, both the numerical pressure contours 

and the experimental shadow-photographs are comparable. 𝜏 = 0 corresponds to the instant when 

the incidence shock impinges the windward end of the bubble. At this stage, the liquid cylinder is 

not affected by the shock propagation. Aalburg et al. (2003) explained that this is because the shock 

travel time is significantly smaller than the bubble’s relaxation time. The predictions captured the 

SBI process excellently, particularly the major characteristics, as the simulated images are 

considerably like the shadow-photographs at all three times. The notations used in the analysis are 

defined in the numerically simulated images. ISW, RSW, SRSW, TP, STP, MS, SMS and VP 

Figure 6.13: Snapshots of simulated images (bottom) on the central x-y plane and experimental 

shadow-photographs (top) at: (a) 𝜏 = 0.07; (b) 𝜏 = 0.18; and (c) 𝜏 = 0.26. The pressure scale is 

provided for the current numerical prediction to reveal the: pressure variation within the bubble; 

effects of the high-pressure zone on bubble compression; and pressure in the region where 

entrainment occurs. 



166 
 

represent the incident shock wave, reflected shock wave, secondary reflected shock wave, triple 

point, secondary triple point, Mach stem, secondary Mach stem and vortex pair respectively. Fig. 

6.13(a) shows that at 𝜏 = 0.07, ISW has propagated across the bubble (on the leeward side of the 

bubble) and RSW travelled in the opposite direction (on the windward side of the bubble). Prior to 

the formation of MS and Mach reflection (MR), ISW intersects the water bubble forming a regular 

reflection where the angle of attack of the ISW on the bubble is greater than a critical transition 

angle. It is this reflection pattern that is transmitted to MR. Igra and Takayama (2001) explained that 

the RSW is transformed into a MR when the angle between the ISW and the air-water interface 

surpasses a critical value. This takes place after the ISW has been partially reflected at the 

windward edge of the cylinder. The two curved MS and the RSW are thus formed by the diffraction 

of the ISW coupled with the MR. The TP is also shown in Fig. 6.13(a) which serves as the junction 

when the ISW, RSW and the MS intersect. Within the numerically simulated bubble, there are 

curved wavy lines which are indicative of a density variation as shock waves propagate through the 

cylindrical water column. There also exists a pressure variation within the numerically simulated 

water bubble (see pressure scale in Fig. 6.13) as the pressure at the air/water interface is ‘locally 

continuous’. This is shown by the interaction of the shock wave with the water column as it 

propagates through air. Fig. 6.13(b) shows that at 𝜏 = 0.18, ISW and RSW have travelled further 

away from the bubble in opposite directions. As the two MS are about to meet each other, they form 

two STP. Each STP has a SMS. Each STP serves as the confluence point where the MS meets 

both the SRSW and SMS. The presence of the secondary MR produces higher pressures on the 

downstream side which eventually leads to the compression and flattening of the numerically 

simulated deforming water bubble (see pressure scale in Fig. 6.13). Fig 6.13(b) also shows 

transmitted waves within the bubble linked with wave movements within air. These transmitted 

waves contribute to the flattening of the water column. Fig. 6.13(b) also shows the appearance of 

the VP on the leeward edge of the distorting bubble. From Fig. 6.13(c) and at 𝜏 = 0.26, the VP has 

grown. Fig. 6.13(c) also shows that the RSW and SRSW have moved further distances on the 

upstream side of the bubble with the ISW also propagating well away from the downstream end of 

the bubble. From Fig. 6.13(c), the numerically simulated bubble shows that the SMS has a higher 

pressure compared to its surrounding (see pressure scale in Fig. 6.13). Figs. 6.13(b) and 6.13(c) 

are characterised by small fluid mists dragged from the leeward side of the deforming bubble. This 

entrainment is not very clear in the experimental shadowgraphs. Very interestingly, Figs. 6.13(b) 

and 6.13(c) show that the pressure in the zone where the liquid entrainment takes place is reduced 

(in comparison to the surrounding regions) with the formation and evolution of VP (see pressure 

scale in Fig. 6.13). This leads to the emergence of the BLSP. Generally, when the two MS intersect 

after the ISW has travelled across the bubble, a secondary wave structure (STP, SMS and SRSW) 

is created as shown from the numerically simulated images of Figs. 6.13(b) and (c). This secondary 

wave system travels upstream along the cylinder’s surface leading to the compression and 

flattening of the cylindrical bubble.  
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For further investigation of the air-water interface distortion as well as elucidating certain flow 

features at late times of SBI, this research has compared the disintegration of the deforming 

cylindrical bubble to the 3D liquid column experiments of Theofanous et al. (2012). This is shown 

in Figs. 6.14(a), (b) and (c).  

 

 

From Fig. 6.14, the representative interface distortion patterns are in good qualitative concordance. 

Fig. 6.14(a) shows that at 𝜏 = 0.40, the leeward side of the bubble is flat due to the varying 

distribution of pressure along the interface. Fig. 6.14(a) also shows the developing VP on the 

leeward side of the bubble. Engel (1958) usefully explained that this VP slowly degrade the leeward 

air-water interface and fairly influence the production of fluid mist as seen in both Figs 6.14(b) and 

(c) (shown in both the current study and experiments). This VP interact with the air-water interface 

resulting in the stripping of a tiny amount of liquid from the downstream surface of the bubble. Two 

small tips are also noticed at the top and bottom of the deforming bubble close to the equator. These 

tips serve as the initiation points for the BLSP. At 𝜏 = 1.21 (Fig. 6.14(b)), these two tips have 

developed and grown longer. It is also seen that material is dragged from the BLSP at these 

locations. As time progresses, these two tips are dragged into thin filaments which eventually break 

downstream. Fig. 6.14(b) also shows the emergence and evolution of two SP on the downstream 

end of the bubble. These SP also serve as locations where material is stripped and dragged from 

the water bubble. Two smaller lips have also developed on the leeward end of the deformed bubble 

at the two SP (this is not visible in the experiments). Fig. 6.14(b) is also characterised by the 

interface waves and disturbances which in Fig. 6.14(c) are further developed to form the hat-like 

structure and the liquid sheet (𝜏 = 1.54). The downstream end of the bubble has caved in as shown 

in Fig. 6.14(c) and the SP has merged with the BLSP. As the VP continuously interact with the air-

water interface, more fluid masses are stripped from the bubble surface. These fluid masses 

coalesce into various small and fine particles which continuously travel downstream. These fine 

particles are clearly visible in the current study images and the experimental shadowgraphs (Fig. 

6.14(c)). Fig. 6.14(c) also shows three important structures and phenomena which are characteristic 

of the stripping breakup mode.  

• I represents the hat-like upstream structure bounded by two cusps;  

• II denotes the transition area between the hat-like structure and the liquid sheet while;  

• III represents the region depicting the sheet deformation in the vicinity of the deformed 

bubble’s wake. It is interesting that our simulations have detected these three structures as 

Figure 6.14: Qualitative comparison of the air-water interface distortion and water bubble breakup 

between this numerical study (left) using volume fraction contours on the central x-y plane and 

experiments (right) at: (a) 𝜏 = 0.40; (b) 𝜏 = 1.21; and (c) 𝜏 = 1.54. 
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they have only been reported in the experimental investigations of Theofanous et al. (2012) 

and the numerical study of Kaiser et al. (2020). This shows the efficacy and accuracy of our 

numerical model.  

 

6.3.6.  Main phases of liquid droplet disintegration 
 

Theofanous et al. (2004), Theofanous & Li (2008), Theofanous (2011), Theofanous et al. (2012) 

explained, through their experiments, that there are two competing regimes in the breakup of a 

liquid column subjected to a shock wave. These regimes are the Rayleigh Taylor piercing (RTP) 

and the Shear Induced Entrainment (SIE). The RTP represents a bubble disintegration regime 

controlled by the Rayleigh-Taylor instability after which the flattened bubble is penetrated by one or 

more unstable waves (Theofanous, 2011). This regime dominates low-speed flows i.e., low 𝑊𝑒. 

The SIE represents a bubble disintegration regime that involves a shedding effect resulting from a 

mixture of several Kelvin-Helmholtz (KH) instabilities. The SIE controls high-speed flows (high 𝑊𝑒) 

and is mainly due to viscous shearing as well as local disintegrations of films and filaments driven 

by surface tension (Theofanous, 2011). Liu et al. (2018) reported that for 𝑂𝑛 < 0.1, the SIE has a 

critical 𝑊𝑒 of 100. Following from this and the details provided in Section 6.2.2, the disintegration 

of the water bubble in this research is like the SIE regime. This is because the flow conditions are 

characterised by high 𝑅𝑒, high 𝑊𝑒 and low 𝑂𝑛. The disintegration of the water bubble as it is 

impacted by the propagating shock wave can be consolidated into three phases as observed in this 

research and previous experimental measurements i.e., Theofanous et al. (2004), Theofanous & Li 

(2008), Theofanous (2011), Theofanous et al. (2012). These three phases are: (a) instability of the 

bubble surface, (b) compression of the leeward side of the deforming water bubble, and (c) intense 

entrainment of small masses from liquid sheet as well as the formation of the bowl-shaped sheet. 

 

Going forward, this research has used d = 22𝑚𝑚 to allow for a detailed investigation of wave 

motions outside and within the bubble (see Sembian et al., 2016). The first phase which is typified 

by the beginning and appearance of small-scale instabilities on the bubble surface (upstream and 

downstream) of the cylindrical bubble is shown in Fig. 6.15. It is useful to point out that these small-

scale instabilities are more pronounced on the upstream side of the bubble. 
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WS and LS, as used in the images, refer to windward side and leeward side respectively. Figs. 

6.15(a), (b) and (c) show that the WS of the bubble is subjected to strong shear with this shear 

increasing from Fig. 6.15(a) to Fig. 6.15(c). This viscous shearing also induces mass loss which 

accompanies bubble deformation. As in the experimental works of Theofanous et al. (2012), the 

regions surrounding the LS stagnation point remain fairly smooth. We can then infer that the most 

clearly detectable unstable waves are close to the strongest shear points on the WS which is 

indicative that the instabilities have originated from shearing. The experimental works of 

Theofanous et al. (2012) and Jalaal & Mehravaran (2014) explained that the WS of the impacted 

bubble is under the influence of KH instability which is consistent with the findings of this research. 

This KH instability is also induced by the velocity difference between the airstream and the water 

bubble separated at the air-water interface (Theofanous, 2011). Figs. 6.15(b) and (c) show the 

appearance of an elevated unstable structure on the WS of the water bubble. Jalaal and 

Mehravaran (2014) added that the Rayleigh-Taylor (RT) instability in the radial direction has an 

effect on the formation and evolution of this elevated unstable structure. The ‘small-scale’ 

movements of this elevated unstable structure result in the lateral expansion (or stretching in the z-

direction) of the deforming water bubble coupled with the stripping of tiny materials from the equator. 

As it is a well-known argument that both the RT (Taylor, 1950) and KH (Kelvin, 1871) instabilities 

are essential to solving the liquid bubble disintegration challenge, this research intends to use 

mathematical justification to show which instability has a more dominant effect. Acceleration, a, is 

very important parameter particularly with respect to understanding the RT instability within the 

framework of shock liquid bubble interaction. This is because this research involves the impulsive 

Figure 6.15: Three-dimensional (3D) representation of the first phase of the water disintegration 

process at: (a) 𝜏 = 0.12; (b) 𝜏 = 0.17; and (c) 𝜏 = 0.22. 
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acceleration of the heavy fluid i.e., water, by the light fluid i.e., air, which will automatically result in 

the RT instability. Meng and Colonius (2018) support this claim by explaining that the WS of the 

bubble should be subject to RT instability waves produced from the acceleration of the less dense 

gas into the heavier liquid. To elucidate the contributory importance of the RT instability, we use the 

Bond number, Bo, which represents the ratio of the body force to the surface tension force ratio and 

is given as:  

Bo =
𝑎𝜌𝑙d

2

4𝜎𝑙
                                                                                                                                                                  (6.22) 

From Eq. (6.22) we obtain a 𝐵𝑜 = 2860. For this value of 𝐵𝑜, which falls in the range: 102 < 𝐵𝑜 <

105, Harper et al. (1972) described the bubble as quasi-stable. Harper et al. (1972) defined the 

quasi-stable mode as a regime where the distortion of the bubble is aerodynamically induced, and 

the impacts of shock wave acceleration on the water bubble are revealed as waves on the WS (Fig. 

6.15(a) – (c)). Similarly, Simpkins and Bales (1972) described the quasi-stable mode as a regime 

in which the bubble deformation takes place in the presence of unsteady and long-wavelength 

surface waves. We can then infer that the RT instability does not play a more significant role than 

the KH instability and is not the principal reason for bubble fragmentation in our case. This is 

supported by Theofanous et al. (2012), who claimed from their investigation of the viscous KH 

instability, that wave numbers and growth factors of KH instability are constantly more significant 

than those of the RT instability by more than one magnitude order. This KH instability, which occurs 

when there is enough velocity variance across the air-water interface, is responsible for the vortex 

shedding. Unstable vortex shedding leads to varying forces acting on the surface of the water 

bubble. This subsequently results in bubble oscillation and stripping. This further proves that the 

quasi-stable bubble is deformed by mass removal which contributes significantly to bubble breakup. 

Eventually, as smaller droplets are shed from the deformed bubble and are subjected to sudden 

acceleration as they are ejected into the bubble wake, the bubble behaviour becomes acceleration 

dominated and unstable Taylor waves pierce through the bubble such that the Rayleigh-Taylor 

instability becomes the dominant effect (ANSYS, 2018). 

As time progresses, the instability on the downstream side increases due to the interaction of the 

generated vortices with the bubble LS. This then leads to the compression (flattening) of the LS of 

the deforming bubble and is shown in Fig. 6.16. From Figs. 6.13(a) – (c), we see that there is a 

high-pressure area on the upstream side of the bubble while a low-pressure area exists on the 

downstream side. This pressure difference causes stripped materials that have been dragged 

downstream from the bubble periphery to be pulled into a jet that travels upstream to compress and 

flatten the LS of the deforming bubble. This compression as well as flattening increases as SBI 

progresses and is clearly detectable in Figs. 6.16(a)(iii), (b)(iii), (c)(iii), and (d)(iii). This flattening 

causes the caving in or hollowing of the LS of the deforming bubble with this effect increasing from 

Fig 6.16(a)(iii) to Fig 6.16(d)(iii) such that Fig 6.16(d)(iii) now looks like a sheet. The impact of 

flattening is clearer and more pronounced than material entrainment from the bubble edges. In this 

phase of bubble disintegration, the small-scale structures which were highlighted in the first stage 

accumulate at the equator as the instability of the LS of the deformed bubble is diminished because 

of flattening. The small-scale structures at the equator create a BLSP at the top and bottom of the 

bubble as shown in Figs 6.16(a)(i ii, & iii), (b)(I, ii & iii), (c)(i, ii & iii), and (d)(i, ii & iii). Similarly, as 

flattening intensifies on the LS of the deforming bubble, two lips (SP) bound the top and bottom of 

the hollow region. These lips are also clearly shown in Fig. 6.14(b)(iii), 6.14(c)(iii) and Fig. 

6.14(d)(iii). As breakup continues, material is mainly stripped from these two locations i.e., SP and 

BLSP. Fig. 6.16(d)(ii & iii) show that these two locations are almost aligned on the same plane in 

the y-direction. Fig. 6.16(d)(i) also shows that more fluid has been dragged off the edges of the 

bubble at the BLSP close to the equator obvious from its rough edges. 

The third stage coincides with an intense entrainment of materials from the edges of the deformed 

bubble after its downstream end has been completely flattened. This is shown in Fig. 6.17(i), (ii) 
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and (iii). In this stage, the LS of the bubble and SP are no longer visible as they have been pushed 

further inwards by the air-jet such that the center of the deformed bubble is extremely hollow. The 

bowl shape of the compressed liquid sheet is also a result of the high-speed gas flow. At this stage, 

the deformed bubble resembles a bowl. In comparison to the first stage, the surface instabilities are 

not obvious. This is because the influence of shear on the WS of the bubble and the impact of 

generated vortices on the LS of the bubble has become fairly subdued. As in Fig. 6.16(d)(i), Figs. 

6.17(i), (ii) and (iii) show that a substantial amount of material has been dragged off the edges of 

the bubble at the BL, clearly seen from its rough edges. 
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Figure 6.16: Three-dimensional (3D) representation of the second phase of the water 

disintegration process at: (a) 𝜏 = 0.30; (b) 𝜏 = 0.34; (b) 𝜏 = 0.41; and (d) 𝜏 = 0.47. This research 

recognises that the jet which impinges on the LS of the bubble is a collection of coalesced 

downstream fluid materials but has been termed ‘air-jet’ because it travels in air. 
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6.3.7.  Visualization of stripping from the BLSP and the SP 
 

Figs. 6.18(a)(v) to (d)(v) show how small particles (microdrops) are stripped from the BL and how a 

curved, stretched fluid sheet (FS) is entrained from the SP. Figs. 6.18(a)(i - iii) to (d)( i - iii) are the 

corresponding 3D density iso-surfaces at different orientations. Fig. 6.18(a)(v) shows the two lips 

on the LS of the bubble situated at the SP. Strong inertial forces from the ambient flow drag a FS 

from the SP. The developing air-jet is also shown as a collection of small downstream fluid particles 

that have been coalesced together by the generated vortices like the primary vortex (PV). These 

coalesced particles are transported upstream and impact the LS of the deforming bubble. This leads 

to compression and hollowing of the region between the two lips at the SP. The density iso-surfaces 

shown in Fig. 6.18(a)(iii) reveal the compression and hollowing of the LS of the deformed bubble 

due to the effects of the air-jet. The irregular structure of the distorted bubble edges on the WS and 

LS as shown in Fig. 6.18(a)(ii) prove that material particles have been drawn from the BLSP and 

SP respectively while the rough nature of the deformed bubble periphery on the WS as shown in 

Fig. 6.18(a)(i) is indicative of fluid entrainment at the BLSP. This process continues in Fig. 6.18(b)(iv) 

where the microdrops dragged from the BLSP are transported further downstream. However, the 

FS is accelerated and stretched further in the flow direction and eventually disintegrates into smaller 

sheets (likened to ligaments by Meng and Colonius (2018)). It is also observed that the coalesced 

fluid particles bounding the air-jet have spread out more laterally perhaps indicative of the greater 

impact on the LS of the distorted bubble. This then leads to a greater hollowing (compared to Fig. 

6.18(a)(iii) and Fig. 6.18(a)(iv)) of the region bounded by the two lips at the SP. This is clearly 

observable in Fig. 6.18(b)(iii). However, the larger FS drawn from the SP as shown in Fig. 6.18(b)(iv) 

appear to have shrunk as smaller particles have been stripped from it. The surface roughness of 

the deformed bubble edges on the WS and LS in Fig. 6.18(b)(ii) has also increased further 

compared to Fig. 6.18(a)(ii). This shows that more fluid particles are drawn from the BLSP and SP. 

Similarly, the deformed bubble boundaries appear more corrugated in Fig. 6.18(b)(i) compared to 

Fig. 6.18(a)(i) indicative of the greater amounts of fluid particles that are dragged from the BLSP 

and transported downstream. Fig. 6.18(c)(iv) is characterised by the continuous stripping of the 

smaller FS. The region bounded by the two lips at the SP has deepened more as shown in Fig. 

6.18(c)(iii) because the air-jet has expanded more laterally compared to what was observed in Fig. 

6.18(b)(iv). The surfaces of the deformed bubble at the LS (Figs. 6.18(c)(ii) & (iii)) and WS (Figs. 

6.18(c)(i) & (ii)) also appear to be significantly corrugated. Finally, Fig. 6.18(d)(iv) shows that the 

stripping at the BLSP and SP has intensified as the microdrops and smaller FS travel downstream 

occupying a substantial area in the deformed bubble’s wake. The region bounded by the two lips at 

the SP (Fig. 6.18(d)(iii)) appear to be at its deepest compared to the previous set of images because 

the air-jet has expanded more laterally compared to what was observed in the previous set of 

images. The surfaces of the deformed bubble at the LS (Figs. 6.18(d)(ii) & (iii)) and WS (Figs. 

6.18(d)(i) & (ii)) also appear to be substantially jagged compared to the previous set of images.  

Figure 6.17: Three-dimensional (3D) representation of the third phase of the water disintegration 

process at 𝜏 = 0.51. 
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Figure 6.18: (i) – (iii) density iso-surface illustrating BLSP and SP stripping at (a) 𝜏 = 0.42; (b) 𝜏 =

0.43; (c) 𝜏 = 0.44; and (d) 𝜏 = 0.45; (iv) volume fraction contours on the central x-y plane revealing 

BLSP and SP stripping at (a) 𝜏 = 0.42; (b) 𝜏 = 0.43; (c) 𝜏 = 0.44; and (d) 𝜏 = 0.45. 
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Fig. 6.18(a)(iv) show how the two tips close to the equator and two lips bounding the LS, at the top 

and bottom of the deformed bubble, are entrained downstream into thin filaments. This entrainment 

continues through Figs. 6.18(b)(iv) and Figs. 6.18(c)(iv) until the filaments appear to be broken in 

Figs. 6.18(d)(iv). The disintegration of the water bubble via stripping from the onset of SBI is shown 

in Fig. 6.19. 

Fig. 6.19(a) (𝜏 = 0.12) shows the formation of the PVP which are clearly visible at the LS. This PVP 

are induced by the separation at the BLSP. More fluid materials are stripped from the LS close to 

the equator to form the TV while the SVP is also seen emerging slightly above the LS stagnation 

point as seen in Fig. 6.19(b) (𝜏 = 0.17). Fig. 6.19(c) (𝜏 = 0.22) shows the continuous growth and 

rotation of these three vortices (PV and TV rotate in the same direction while SV rotates in the 

reverse direction, see Section 6.3.8). The LS is already flat at this stage. Fig. 6.19(d) (𝜏 = 0.30) 

shows the appearance of two lips on the SP. The PV is now enclosed by a FS which has been 

stripped from the SP. The region between the two lips on the LS already appears hollow. The FS 

continues to rotate in Fig. 6.19(e) (𝜏 = 0.34) and in Fig. 6.19(f) (𝜏 = 0.41). The FS in Fig. 6.19(f) 

Figure 6.19: Snapshots of volume fraction contours on the central x-y plane at: (a) 𝜏 = 0.12; (b) 𝜏 =

0.17; (c) 𝜏 = 0.22; (d) 𝜏 = 0.30; (e) 𝜏 = 0.34; (f) 𝜏 = 0.41; (g) 𝜏 = 0.47; and (h) 𝜏 = 0.51. 
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looks slenderer in comparison to that in Fig. 6.19(d) and Fig. 6.19(e) as more fluid particles have 

been drawn from it. A link can then be made between Fig. 6.19(f) and Fig. 6.18(d)(iv) where the FS 

in Fig. 6.18(d)(iv) appears smaller compared to Fig. 6.19(f) as a substantial amount of fluid material 

has been entrained from it. Fig. 6.19(g) and (h) (𝜏 = 0.47 & 𝜏 = 0.51 respectively) show that the FS 

in Fig. 6.18(d)(iv) has further broken up and fragmented into a smaller FS and several microdrops 

which keep travelling downstream. The SP has also merged with the BLSP in Fig. 6.19(h) with most 

of the stripping occurring at the BL where microdrops can be seen to be drawn away. 

 

6.3.8.  Dynamics of vorticity generation 
 

One of the most essential phases of SBI is the vorticity generation and deposition due to the 

disparity between pressure and density gradients i.e., baroclinity. As the shock waves propagate 

through the bubble, vorticity is generated and transported in the flow. Vorticity is so essential in SBI 

as it, together with aerodynamic forces, principally influences the motion and structure of the bubble 

(Layes et al., 2003). The vorticity contours are shown in Fig. 6.20.  

Figure 6.20: Snapshots of vorticity contours on the central x-y plane at: (a) 𝜏 = 0.12; (b) 𝜏 = 0.17; 

(c) 𝜏 = 0.22; (d) 𝜏 = 0.30; (e) 𝜏 = 0.34; (f) 𝜏 = 0.41; (g) 𝜏 = 0.47; and (h) 𝜏 = 0.51. 
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Within Fig. 6.20, the notations SVP, PVP, TV, FDSVP, WRZ, DERZ, UERZ and SRZ denote, 

secondary vortex pair, primary vortex pair, third vortex, fully developed secondary vortex pair, wake 

recirculation zone, downstream equatorial recirculation zone, upstream equatorial recirculation 

zone and sheet recirculation zone respectively. Fig. 6.20 (a) – (h) show the presence of several 

recirculation zones around the air/water interface mainly concentrated in the wake and equator of 

the deforming bubble. These zones perform a significant function during the bubble deformation 

and sheet-stripping process. They are driven by the unsteady vortex shedding at the equator of the 

deforming bubble. The baroclinic mechanism is responsible for the production of the two vortices 

(PVP) which are rotating in different directions shown in Fig. 6.20(a). Fig. 6.20(a) (𝜏 = 0.12) also 

shows the SVP with each SV rotating in the reverse direction to the opposite PV. This unsteady 

vortex pair (PVP), which has been shed after shock propagation, lead to the formation of the WRZ. 

Fig. 6.20(b) shows the appearance of TV which rotates in the same direction as PV and has 

emerged from the equator. As the PV was shed first, it keeps travelling until it is redirected at the 

LS stagnation point to travel back upstream thus initiating an interaction with another vorticity stream 

in the vicinity of the equator i.e., TV. This leads to the formation of the DERZ shown in Figs. 6.20(b) 

and (c) (𝜏 = 0.17 and 𝜏 = 0.22). In Figs. 6.20(d), (e) and (f) (𝜏 = 0.30,  𝜏 = 0.34, and 𝜏 = 0.41), the 

UERZ is detected at the top and bottom of WS close to the equator. This is due to the local unsteady 

vortex shedding at the WS which has now been substantially deformed. This deformation of the WS 

has already been discussed in Section 6.3.6 and the unsteady vortex shedding is linked to the 

strong shear which is a source of the KH instability. As a result, we can infer that the UERZ formed 

on the upstream end of bubble in the vicinity of the equator (at 𝜏 = 0.30,  𝜏 = 0.34, and 𝜏 = 0.41) is 

a result of the interface perturbations on the WS of the deforming bubble. The UERZ can also be 

seen between the hat-like structure on the WS of the bubble and the evolving liquid sheet at these 

three times. Figs. 6.20(d), (e) and (f) also show that the position of the UERZ coincide with high 

vorticity values. As SBI progresses, more vortices are shed leading to the chaotic outlook of the 

wake as shown in Figs. 6.20(g) and (h). Figs. 6.20(g) and (h) (𝜏 = 0.47 and 𝜏 = 0.51) also reveal 

the emergence of a SRZ at the tip of the water sheet. This recirculation zone is formed from the 

interaction of the several shed vortices in this region which then causes the tip of the water sheet 

to flap in the wake of the deformed bubble. The difference between this Section and Section 6.3.11 

is that the latter describes the generation and development of turbulence: around the air/water 

interface, within the evolving vortices; and in the chaotic wake region while this Section presents 

the emergence and evolution of the produced vortices and recirculation zones.  

 

To understand the direction of rotation of the identified vortices, Fig. 6.21 is presented. The arrows 

in Fig. 6.21 have been used to indicate the direction of rotation for the generated vortices. Fig. 

6.21(a) shows the PVP with the top PV rotating in the clockwise direction while the bottom one 

rotates in the reverse direction. Fig. 6.21(a) (𝜏 = 0.12) also shows the SVP with the top SV rotating 

anticlockwise while the bottom one rotates in the clockwise direction. Fig. 6.21(b) (𝜏 = 0.17) shows 

the emergence of the TV which rotates in the same direction as the PV. As such, we deduced that 

the SV has a direction of rotation different from that of the PV and TV. As previously stated, 

detached flow from the interface in the vicinity of the equator, due to the high-speed air flow on the 

bubble’s WS, develops into PV and TV. SV evolves from the re-circulated flow that has been 

detached from the LS of the deforming water bubble. The complex interaction between the PVP or 

between the PV and the other vortices (TV and SV) leads to the formation of different re-circulation 

zones which have been previously discussed. All three different vortices maintain their direction of 

rotation as seen in Figs. 6.21(c), (d), (e) and (f) (at 𝜏 = 0.22,  𝜏 = 0.30, 𝜏 = 0.34, and 𝜏 = 0.41). Figs. 

6.21(g) and (h) (𝜏 = 0.47 and 𝜏 = 0.51) show more vortices have been shed. These newly shed 

vortices are created when the SV and TV collide thus contributing to the chaotic vortex structure in 

the wake of the deformed liquid sheet. The Figs. 6.21(g) and (h) show the PV, SV and TV which 

have been transported further downstream. At the end of the frames for both Figs 6.21(g) and (h), 

two small vortices (at the top and bottom), which have been produced from further stripping at the 

BLSP, are observed.  
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Figure 6.21: Representation of the three principal vortices on the central x-y plane using streamlines at: (a) 𝜏 =

0.12; (b) 𝜏 = 0.17; (c) 𝜏 = 0.22; (d) 𝜏 = 0.30; (e) 𝜏 = 0.34; (f) 𝜏 = 0.41; (g) 𝜏 = 0.47; and (h) 𝜏 = 0.51. 
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6.3.9.  Pressure distribution within and outside the bubble  
 

A shock wave induced flowfield surrounds the bubble after it is impacted by the ISW. This leads to 

a disturbance of the water bubble surface. Fig. 6.22 shows the unsteady pressure distribution in the 

vicinity of the bubble.  

SID and RPF as seen on the images represent start of interface perturbation and region of pressure 

fluctuation respectively. The black isolines seen in Figs. 6.22(d), (e), (f), (g), and (h) surround the 

region where 𝛼𝑤 ≥ 0.9. These isolines have not been used in Figs. 6.22(a), (b) and (c) because the 

shape of the distorted bubble is already clearly described in these images. Fig. 6.22(a) (𝜏 = 0.12) 

shows that the distortion of the water bubble is initiated by the unsteady pressure distribution within 

and around the bubble. Fig. 6.22(b) shows that the LS of the distorted bubble has started to flatten 

at 𝜏 = 0.17. Similar interface flattening is noticed in Fig. 6.22(c) at 𝜏 = 0.22 caused by the non-

unform pressure field across the air-water interface. A look at Fig. 6.22(a) also reveals that wavy 

Figure 6.22: Snapshots of pressure contours on the central x-y plane at: (a) 𝜏 = 0.12; (b) 𝜏 = 0.17; 

(c) 𝜏 = 0.22; (d) 𝜏 = 0.30; (e) 𝜏 = 0.34; (f) 𝜏 = 0.41; (g) 𝜏 = 0.47; and (h) 𝜏 = 0.51. 
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interface perturbations emerge and develop on the WS of the bubble close to the equator. This 

marks the inception of the SID as shown in Fig. 6.22(a) surrounded by the RPF also shown in Fig. 

6.22(a). These perturbations are linked to the pressure fluctuations at the air-water interface which 

are seen close to the equator on the WS. As described in Section 6.3.6, the WS of the deforming 

bubble represents the region where the interface instabilities develop and as such, can be inferred 

that the pressure fluctuations match the period during which the interface waves emerge. These 

interface waves or disturbances are thus initiated by the interaction of the pressure waves (from 

shock propagation) with the density gradient at the air-water interface. This pressure fluctuations 

outside and within the bubble continues from when the region between the two SP becomes hollow 

(Fig. 6.22(d), (e), (f) and (g) at 𝜏 = 0.30, 𝜏 = 0.34, 𝜏 = 0.41 and 𝜏 = 0.47 respectively) up to when 

the water sheet is formed (Fig. 6.22(h) at 𝜏 = 0.51). The stagnation pressure contours are also 

displayed in Fig. 6.23.  

Figure 6.23: Snapshots of stagnation pressure contours on the central x-y plane at: (a) 𝜏 = 0.12; 

(b) 𝜏 = 0.17; (c) 𝜏 = 0.22; (d) 𝜏 = 0.30; (e) 𝜏 = 0.34; (f) 𝜏 = 0.41; (g) 𝜏 = 0.47; and (h) 𝜏 = 0.51. 
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The pressure fluctuations, within and outside the bubble, observed for the contours of static 

pressure are also seen for the stagnation pressure contours. Similarly, SID is also shown in Fig. 

6.23(a) (𝜏 = 0.12). The stagnation pressure contours also show the pressure distribution around the 

air-jet observable in Figs. 6.23(c), (d), (e), and (f). This is linked to the convergence of the Mach 

stems in the LS of the cylinder resulting in the formation of the secondary wave system (already 

discussed in Section 6.3.5). This secondary wave system then produces high pressures. These 

pressures are continuous along the symmetry of the bubble and acts at the downstream stagnation 

point leading to bubble flattening. This bubble flattening is noticed in Figs. 6.23(b) and (c) (at 𝜏 =

0.17 and 𝜏 = 0.22) before the deepening of the region between the two SP (Fig. 6.23(d), (e), (f) and 

(g) at 𝜏 = 0.30, 𝜏 = 0.34, 𝜏 = 0.41 and 𝜏 = 0.47 respectively). The water sheet is then formed as 

seen in Fig. 6.22(h) (𝜏 = 0.51). Fig. 6.22 and Fig. 6.23 show that for all the displayed images, the 

high-pressure regions are at the upstream area and far downstream area of the deformed bubble’s 

wake. This far downstream area also represents the zone after the shed vortices. The high-pressure 

regions are responsible for the compression and flattening of the bubble in the flow direction. The 

low-pressure regions are situated only slightly above and below the top and bottom of the deformed 

bubble respectively and close to the equator (see Figs. 6.22(a), (b), (c), (d), and (e) and Figs. 

6.23(a), (b), (c), (d), and (e)). These low-pressure regions are responsible for the elongation of the 

bubble in the lateral direction hence the increase in the bubble height as SBI progresses. However, 

at 𝜏 = 0.41, 𝜏 = 0.47 and 𝜏 = 0.51, corresponding to Figs. 6.22(f), (g), & (h) and Figs. 6.23(f), (g), & 

(h) respectively, the pressure just outside the top and bottom of the deformed bubble has increased 

thus impeding the rate at which the bubble elongates. This is confirmed by Fig. 6.11 where the 

incremental rate of bubble height begins to decline towards the end of the revealed SBI timeframe. 

 

6.3.10. Velocity distribution within and outside the bubble 
 

The conservation of momentum demands that the tangential viscous stresses be equal in the 

interface between two immiscible fluids (Meng and Colonius, 2018). This results in the continuity of 

velocity (Meng and Colonius, 2018). As our study has included the influence of viscosity, the velocity 

is continuous. This continuous velocity results in the shearing of WS of the bubble as well as the 

emergence of interfacial instabilities on the same surface. The velocity distribution during the SBI 

is shown in Fig. 6.24. As explained in Section 6.3.9, the black isolines seen in Figs. 6.24(d), (e), (f), 

(g), and (h) surround the region where 𝛼𝑤 ≥ 0.9. These isolines have not been used in Figs. 6.24(a), 

(b) and (c) because the shape of the distorted bubble is already clearly described in these images. 

As seen from Figs. 6.24(a) to (h), the high-speed regions are mainly at the top and bottom of the 

deformed bubble. Fig. 6.24(a), at 𝜏 = 0.12, show that the low-speed regions are seen on the left 

and right of the bubble as well as within the bubble. However, from Figs. 6.24(b) to (h) (from 𝜏 =

0.17 to 𝜏 = 0.51), there are high-speed zones which are situated between the bubble (including its 

immediate low-speed environs on the LS) and the far flowfield region i.e., towards the end of the 

wake region. This middle high-speed region grows in both lateral and streamwise extent as SBI 

continues. The high-speed regions, at the top and bottom of the deformed bubble, travel 

downstream as SBI progresses as shown by how the red zones spread from Figs. 6.24(a) to (h) 

(from 𝜏 = 0.12 to 𝜏 = 0.51). The high-speed regions at the top and bottom of the bubble are 

responsible for the lateral stretching of the bubble from Figs. 6.24(a) to (h). Figs. 6.24(d) to (h) (from 

𝜏 = 0.30 to 𝜏 = 0.51) show that the fluid particles that are entrained downstream and jet back 

upstream to impact on the LS of the bubble travel at a low speed compared to the velocity at the 

top and bottom of the deformed water bubble. 
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6.3.11. Generation and development of turbulence 

Tomkins et al. (2003) explained that the KH instabilities could combine to evolve the flow into a 

state of turbulence. It has been shown that the shock bubble interaction process entails a wide 

range of complicated characteristics, from transition of regular reflection to Mach reflection, 

generation and transport of vortices, to the air-jet impacting the LS and the subsequent formation 

of the water sheet. Nevertheless, to the best knowledge of this research, there are rarely any 

previous experimental and numerical studies that have addressed one very important aspect of the 

shock liquid bubble interaction process – turbulence generation and development. Fig. 6.25 shows 

contours of turbulence intensity. It can be seen from Fig. 6.25(a) that turbulence starts to be 

generated initially in a small region in the LS extending from the equator to the location of the PV at 

a quite early stage (𝜏 = 0.12) with the maximum turbulence intensity starting at 13%. As time 

progresses, the bubble interface is deformed, as shown in Figs. 6.25(b) and (c) at 𝜏 = 0.17 and 𝜏 =

0.22 respectively. At both times, interfacial instabilities are observable on the WS while the LS is 

gradually becoming flat due to the interaction between the produced vortices. The maximum 

turbulence intensity values that match these two figures are 14% and 16% respectively and are 

observed around the SVP, TV and DERZ. Fig. 6.25(d) shows the region bounded by two lips (at the 

Figure 6.24: Velocity contours on the central x-y plane at: (a) 𝜏 = 0.12; (b) 𝜏 = 0.17; (c) 𝜏 = 0.22; 

(d) 𝜏 = 0.30; (e) 𝜏 = 0.34; (f) 𝜏 = 0.41; (g) 𝜏 = 0.47; and (h) 𝜏 = 0.51. 
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SP). This region caves in as seen in Figs. 6.25(d), (e) and (f) due to the impact of the air-jet. The 

maximum values of turbulence intensity corresponding to these three times (i.e., 𝜏 = 0.30, 𝜏 = 0.34, 

and 𝜏 = 0.41) are 17%, 18% and 19% respectively and are situated around the UERZ, TVP, FDSVP, 

SVP and wake region. Figs. 6.25(b),(c) and (d) show that turbulence is concentrated along the path 

of fluid stripped from the BLSP close to the equator. Figs. 6.25(e) and (f) (𝜏 = 0.34, and 𝜏 = 0.41) 

also show that turbulence is also concentrated in the path of fluid mass (FS) entrained from the SP. 

This persists till high turbulence areas continue to travel downstream along the path of entrained 

fluid materials from the BLSP and SP. This is shown in Fig. 6.25(g) (𝜏 = 0.47) where the maximum 

intensity reaches 20% around the SRZ and wake region. Fig. 6.25(h), which takes place at 𝜏 = 0.51, 

shows that the SP has merged with the BLSP with maximum turbulence regions travelling along 

the path of entrained particles from the BLSP. The maximum turbulence is 22% around the SRZ, 

wake region and diametral plane. Figs. 6.25(f), (g) and (h) also show high turbulence areas along 

the diametral plane indicative of the entrained downstream fluid that have been jet back upstream.  

 
Figure 6.25: Contours of turbulence intensity on the central x-y plane at: (a) 𝜏 = 0.12; (b) 𝜏 = 0.17; 

(c) 𝜏 = 0.22; (d) 𝜏 = 0.30; (e) 𝜏 = 0.34; (f) 𝜏 = 0.41; (g) 𝜏 = 0.47; and (h) 𝜏 = 0.51. 
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This research also observed that the turbulence intensity values within the PV, for Figs. 6.25(f) (g) 

and (h), was lower compared to the turbulence intensity values in the other vortices at previous 

times. This observation was explained using the contours of volume fraction in Fig. 6.19. At the 

earlier times i.e., 𝜏 = 0.12, 0.17, 0.22, 0.30 and 0.34, the turbulence intensity values of PV, SV and 

TV are close to the maximum turbulent values in the respective frames because 𝛼𝑤 ≥ 0.5 (which 

means that microdrops of water exist within these vortices. However, within the PV at 𝜏 = 0.41, 0.47, 

and 0.51, 𝛼𝑤 ≈ 0, which means little or no microdrops of water exist in the vicinity of PV hence the 

smaller turbulence intensity values. For these times, the microdrops of water are entrained from the 

BLSP (Figs. 6.25(f) (g) & (h)) and SP (Figs. 6.25(f) & (g)). The difference between this Section and 

Section 6.3.8 is that the latter details the inception and evolution of the produced vortices and 

recirculation zones while this Section presents the generation and development of turbulence: 

around the air/water interface, within the evolving vortices; and in the chaotic wake region.   

With respect to the development of the air-jet, Figs. 6.26(a) & (b) (i), (ii), (iii), (iv) and (v) reveal the 

position of the air-jet using contours of vorticity, turbulence intensity, stagnation pressure, velocity, 

and the density iso-surfaces at 𝜏 = 0.38 and 0.39 respectively. Figs. 6.26(a) (i), (ii), (iii) and (iv) show 

that after the PV, SV and TV have been shed, this vortical setup draws downstream fluid particles 

into a jet which is redirected upstream so that it impacts the LS of the deformed bubble. Fig. 

6.26(a)(v) show the caved in region bounded by the SP after it is impinged by the air-jet. A similar 

level of detail is shown in Figs. 6.26(b) (i), (ii), (iii) and (iv) with Fig. 6.26(b)(v) showing a greater 

level of compression compared to Fig. 6.26(a)(v). 
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Figure 6.26: (a) Air-jet visualisation using: (i) contours of vorticity; (ii) turbulence intensity; (iii) 

stagnation pressure; (iv) velocity; and (v) density iso-surfaces at 𝜏 = 0.38; (b) Air-jet visualisation 

using: (i) contours of vorticity; (ii) turbulence intensity; (iii) stagnation pressure; (iv) velocity; and (v) 

density iso-surfaces at 𝜏 = 0.39. Figs. 6.26 (a)(i)-(iv) and (b)(i)-(iv) have been plotted on the central 

x-y plane.  
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6.3.12. Late-time stripping at the BLSP 
 

Fishburn (1974) and Wierzba & Takayama (1988) used the term ‘boundary-layer separation’ or 

boundary layer stripping’ to describe the entrainment of materials or microdrops from the BLSP on 

the WS of the deformed bubble close to the equator. Fig. 6.27 show how fluid materials are 

continuously stripped from the boundary layer which has now flapped.  

Fig. 6.27(a)(iv) shows that in the LS of the deformed bubble, more unsteady vortex shedding yields 

a more chaotic and complex wake compared to Fig. 6.19(h). Fig. 6.27(a)(iii) reveals that the water 

sheet has become significantly hollow while the jagged edges of the bubble in Figs 6.27(a)(i) and 

(ii) is proof that a substantial amount of microdrops has been drawn away from BLSP. The thin FS 

seen travelling downstream in Fig. 6.19(h) is advected further downstream when it is acted upon by 

strongly fluctuating forces in the wake of the deformed cylinder. This small FS eventually breaks up 

to yield smaller fluid particles. There is an increase in the compression of the bubble as SBI 

progresses such that Fig. 6.27(b)(iii) and Fig. 6.27(c)(iii) are significantly more deepened than Fig. 

6.27(a)(iii) due to the persistent effect of the air-jet. Similarly, the corrugations of the bubble 

Figure 6.27: (i) – (iii) density iso-surfaces illustrating late time BLSP stripping at (a) 𝜏 = 0.60; (b) 

𝜏 = 0.64; and (c) 𝜏 = 0.68; (iv) volume fraction contours on the central x-y plane revealing late time 

stripping at BLSP at (a) 𝜏 = 0.60; (b) 𝜏 = 0.64; and (c) 𝜏 = 0.68. 
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periphery in Figs. 6.27(b)(i)(ii) & (iii) and Figs. 6.27(c)(i)(ii) & (iii) appear to be at its most in 

comparison to the observed border waviness in Figs. 6.27(a)(i)(ii) & (iii).  

6.3.13. Analysis of bubble breakup time 

Pilch and Erdman (1987) explained that for sheet stripping, the first indication of a sheet being 

drawn downstream from the bubble denotes breakup initiation. They suggested a simple empirical 

correlation which sufficiently denotes the required time to induce breakup for viscous and non-

viscous bubbles i.e., dimensionless breakup initiation time, 𝜏𝑖. This is shown in Eq. (6.23).  

𝜏𝑖 = 1.9(𝑊𝑒 − 12)
−0.25(1 + 2.2. 𝑂𝑛1.6)                                                                                                              (6.23) 

Using Eq. (6.23) yields 𝜏𝑖 = 0.14. For this research, the first indication of fluid materials being drawn 

from the bubble surface is observed in Fig. 6.19(a) at 𝜏 = 0.12. This is close to the computed 𝜏𝑖 

derived from Eq. (6.23). This shows the accuracy of the current numerical model.  

Liu et al. (2018) defined the non-dimensional breakup time as: 

𝜏𝑏 =
T𝑏 . 𝑈𝑔,2

d
√
𝜌𝑔,2

𝜌𝑙
                                                                                                                                                    (6.24) 

where T𝑏 and 𝜏𝑏 denotes the dimensional and dimensionless total breakup time respectively. Pilch 

and Erdman (1987) described the total breakup time as the time when the bubble (if a ‘coherent’ 

one continues downstream) and all its fragments do not suffer any more breakup. Breakup results 

and definitions vary from one experiment to another depending on the visualization technique 

employed (see Engel, 1958; Nicholls and Ranger, 1968; Pilch and Erdman, 1987; and Theofanous, 

2011). For some of these experiments and depending on the experimental instruments used, it was 

difficult to differentiate the remaining portion of the liquid bubble from mists which yielded a greater 

breakup time taking into consideration the streamwise diameter of the deformed bubble. For 

example, the works of Engel (1958) and Nicholls & Ranger (1968) estimated 𝜏𝑏 to be roughly 5 

while Theofanous et al. (2012), who defined the total breakup time as the total loss of the bubble’s 

physical coherence using laser-induced fluorescence (LIF), stated that 𝜏𝑏 varied from 0.6 to 2 in 

SIE breakup regime under various conditions. From a numerical perspective, Liu et al. (2018), who 

defined Eq. 6.24, stated that 𝜏𝑏 is approximately 1. To determine 𝜏𝑏 for this numerical research, it 

is seen that the material fragments that are drawn from the bubble periphery (either at the BLSP 

and SP) continue to undergo further disintegration and fragmentation as they travel downstream for 

all the displayed contours of volume fraction (Fig. 6.19). However, at 𝜏 = 0.68, it appears like the 

coherent water sheet and the fragments which have been drawn from the BLSP no longer undergo 

further breakup i.e., there is little difference between the wake regions observed in Fig. 6.27(b)(iv) 

and Fig. 6.27(c)(iv). Also, there is little or no difference in the morphology of the deformed bubble 

observed in Fig. 6.27(b)(i)(ii) & (iii) and Fig. 6.27(c)(i)(ii) & (iii). However, both images (Fig. 

6.27(b)(iii) and Fig. 6.27(c)(iii)) show more compression of the LS and waviness of bubble 

peripheries in comparison to Fig. 6.27(a)(iii). This research then concludes that total breakup occurs 

at around 𝜏 = 0.68. This value for 𝜏𝑏 falls within the range which Theofanous et al. (2012) obtained 

for the SIE regime under various conditions. This section confirms the thoughts of Liu et al. (2018) 

who explained that the results for 𝜏𝑏 are not exact in past experimental measurements or numerical 

simulations and that the reason for defining 𝜏𝑏 is to typically evaluate the bubble disintegration time 

even though various definitions yield slightly conflicting results. In summary, the bubble breakup 

procedure has been effectively represented in Figs. 6.15, 6.16, 6.17, 6.18, 6.19 and 6.27. It is also 

very useful to point out that since the bubble distortion can be characterized as quasi-stable based 

on the Bo (see Section 6.3.6), there will not be an unstable shattering of the WS. This is supported 

by the research of Harper et al. (1972) who explained that the unstable shattering of the WS only 

takes place beyond the quasi-stable regime i.e., Bo > 105, where the acceleration effect controls 

the disintegration of the water bubble. Lastly all the qualitative results presented are 3D as Fig. 6.5 
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revealed that the 3D simulations have captured the complex shock water bubble interaction more 

accurately and there was no need to present the 2D results. 

6.4. Conclusions 

The stripping type breakup regime which is of key interest in this research has been examined using 

numerical simulations. This breakup mechanism is typified by a distortion of the water bubble into a 

sheet-like shape. After the shape of the deformed bubble has changed, fluid particles are observed to 

be dragged away from the bubble’s edges at the BLSP close to the equator by the high-speed 

surrounding air flow. This led to an instability of the BLSP at the distorted bubble’s equator where two 

tips are formed at the top and bottom of the bubble. These tips are dragged into thin filaments which 

then break as they are advected downstream. Baroclinic mechanism also leads to the production of 

two counter-rotating vortices after which more vortices are shed. The deformed bubble is then flattened 

by the pressure gradient between the stagnation points (at the WS and LS of the bubble) and the 

equator. The emergence of two lips at the SP is also observed after the deformed bubble is flattened. 

Afterwards, strong inertial forces from the ambient flow drag a thin sheet of fluid (FS) from the edges 

of the LS of the bubble at the SP. This sheet is accelerated, stretched, and curved in the flow direction 

and eventually disintegrates into smaller sheets (likened to ligaments by Meng and Colonius (2018)). 

These sheets then eventually break up and fragments into smaller particles or microdrops. This 

research also likened the stripping type breakup model to the SIE disintegration regime which 

Theofanous (2008) described as a mixture of shear-propelled radial movements that lead to 

compression and flattening as well as instabilities on the elongated liquid sheet. This research also 

showed that turbulence is relevant when it comes to the breakup of the liquid sheet as well as the 

subsequent disintegration of the fluid fragments that are entrained from the liquid sheet’s periphery.  

 

With respect to quantitative numerical estimations, the predicted displacement/drift, acceleration, 

distortion in the lateral direction, distortion in flow direction, area variation from bubble distortion, and 

drag coefficient agree well with experimental data. Qualitative images for pressure, velocity, phase 

distribution, turbulence intensity and vorticity are also presented. The time dependent mechanisms 

portrayed by these images are very consistent with process of bubble stripping and breakup available 

in previous literature. This research summarized the bubble distortion and breakup process into three 

stages: instability of the bubble surface, compression of the leeward side of the deforming water 

bubble, and intense entrainment of small masses from liquid sheet as well as the formation of the 

bowl-shaped sheet. The bubble was also believed to attain total breakup at 𝜏 = 0.68 as it appeared 

like the coherent water sheet and the fragments which had been drawn from the BL no longer 

underwent further breakup or fragmentation. Generally, this research was able to resolve the terminal 

disintegration and fragmentation of the thin FS drawn from the SP. Also, the flow structure and 

evolution of the chaotic wake are also well resolved. Finally, our numerical method and AMR 

application have reproduced the most resolution dependent features like the fine-scale interfacial 

instabilities (interface structure) on the WS, entrainment of small-scale liquid structures from bubble 

periphery, recirculation zones as well as the formation of the hat-like structure at the WS and a water 

sheet at the LS.  
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7. Conclusions and Future Work 

7.1. Summary and conclusions 

This project has investigated pressure gain using shock-bubble (gas and liquid bubble) interaction 

(SBI). When vorticity is deposited on a bubble surface by a shock wave due to SBI, the bubble surface 

is distorted which leads to changes in its surface area. As this deformation increases due to shock 

refraction of any perturbation previously present in the gas interface, the Richtmyer–Meshkov 

instability (RMI) is formed. This RMI with growing interface distortion leads to secondary instabilities 

like the Kelvin–Helmholtz shear instability which further evolves to improve mixing and turbulence 

(Batley et al., 1996). This research has then studied and understood shock wave interaction (with a 

gas/liquid bubble) via a detailed computational fluid dynamics (CFD) investigation. From a SBI 

perspective, positive impacts can be achieved for gas turbine engines particularly with respect to a 

rise in bubble pressure and an increase in turbulence intensity. Increase in bubble stagnation pressure 

has been presented in Fig. 6.23 where the stagnation pressure within the bubble has been shown to 

rise across the bubble, from the WS, upon shock impact and propagation (see Fig. 6.23(a) to Fig. 

6.23(h). Similarly, increase in turbulence intensity has also been achieved as shown in Figs 4.19, 5.17 

and 6.25. The CFD investigations involve the performance of numerical simulations using the 

Unsteady Reynolds-Averaged Navier-Stokes (URANS) mathematical model and the coupled level set 

and VOF method within the commercial CFD code, ANSYS FLUENT. A finite volume method (FVM) 

is employed in FLUENT to solve the governing equations.  

These simulations show that the physical mechanisms taking place during the SBI process are very 

complicated and elucidated certain aspects of SBI which have not been fully researched in previous 

studies. These areas are the generation and development of turbulence at the SBI later stages as well 

as the evolution of vortex filaments/vortex rings/vortices from inception to the later phases. From the 

presented numerical predictions, this research has plugged the knowledge gaps present in these 

areas. The numerical simulations have been performed in 2D and 3D representations of the shock 

tube to depict the interaction of a planar shock wave with distinct gas and liquid inhomogeneities. The 

three scenarios considered cover the interaction of a planar shock wave with: spherical helium bubble; 

cylindrical helium bubble and cylindrical water bubble. The gas in the spherical (Mach number, Ma = 

1.25) and cylindrical gas bubbles (Ma = 1.22) is helium with air serving as the ambient gas. This is in 

accordance with the experimental work of Haas and Sturtevant (1987). The surrounding gas employed 

in the cylindrical water bubble (Ma = 1.47) case is air in accordance with the experimental work of Igra 

et al. (2002).  

For the shock spherical helium bubble interaction scenario, the predicted velocities of refracted wave, 

transmitted wave, upstream interface, downstream interface, jet and vortex ring agree very well with 

the relevant available experimental data. The predicted non-dimensional bubble and vortex velocities 

are also in much better agreement with the experiment data than values computed from a simple 

model of shock-induced Rayleigh-Taylor instability (the Richtmyer–Meshkov instability). Generally, the 

2D and 3D results show a good agreement with the theoretical predictions and experiments, but the 

3D predictions are much closer to the theoretical estimations and experimental measurements. This 

strongly indicates that 3D simulations are necessary in order to capture SBI process accurately. Other 

quantitative assessment conducted involved comparing the predicted temporal variations of the 

bubble length and width as well as the produced vortex sizes and vortex pair spacing with that 

measured in past experimental works. A good agreement between the predictions of the current study 

and the experimental data has been obtained. It is also noticed in this research that the bubble length 

initially decreases due to bubble compression before increasing due to an increase in the bubble 

length in the lateral direction after the air-jet pierces the downstream interface and the downstream 

ring emerges. The upstream ring height initially increases corresponding to the bubble compression 

which resulted in bubble elongation in the vertical direction. This is followed by a very gradual rise in 
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this parameter after which it dropped in connection to the increasing height of the downstream ring. 

The height of the downstream ring continuously increases albeit at different incremental rates. Finally, 

these sets of comparisons revealed that the upstream ring height, downstream ring height, horizontal 

upstream ring size, vertical upstream ring size, upstream vortex pair spacing and downstream vortex 

pair spacing tend towards a constant value. The final quantitative assessment conducted involved 

comparing the predicted piston and vortex ring circulations to the experimentally measured ones. This 

research’s estimations show a very good agreement with the experimental measurements with the 

order of the computed Reynolds number i.e., 105, proving that the generated vortex rings are turbulent. 

For the shock cylindrical helium bubble case, 2D and 3D simulations have been conducted, and this 

research showed that the 3D predictions are much closer to the experimentally measured data, with 

an excellent concordance observed between the predicted velocities of the incident wave, refracted 

wave, transmitted wave, upstream interface, downstream interface, jet, vortex filament and the 

corresponding measured values. The predicted dimensionless jet interface velocity is also compared 

with both the Rayleigh Taylor Theory, for estimating the growth rate of small sinusoidal perturbations, 

and past experimental results. Both the 2D and 3D results show a good agreement with the theoretical 

predictions and experiments. As in the previous comparisons, the 3D predictions are much closer to 

the theoretical estimations and experimental measurements. The final quantitative assessment 

conducted involved comparing the predicted temporal variations of the interfacial characteristic scales, 

i.e., the length and width of the evolving interface with that measured in past experimental works. 

There is a good agreement between the 2D/3D predictions and the experimental data, but the 3D 

estimations are more representative of the early shock acceleration and bubble distortion as they show 

shorter lengths (hence more compression) during the early SBI phases. A similar trend is noticed for 

the width of the developing interface where the 3D predictions are greater than the 2D predictions at 

early SBI times. This indicated that an increased compression would cause the deforming bubble to 

become vertically elongated hence the greater 3D predictions compared with the 2D predictions. 

For the shock cylindrical water bubble interaction case, the predicted displacement/drift, acceleration, 

distortion in the lateral direction, distortion in flow direction, area variation from bubble distortion, and 

drag coefficient agree well with experimental data. Qualitative images for pressure, velocity, phase 

distribution, turbulence intensity and vorticity are also presented. The time dependent mechanisms 

portrayed by these images are very consistent with the process of bubble stripping and breakup 

available in previous literature. In summary, the shock/water bubble interaction case shows that the 

water bubble is preliminarily compressed in the streamwise direction with this compression visible on 

the downstream (leeward) end of the bubble. The deformed bubble extends along the equator with 

tips created at the top and bottom of cylinder’s edge which are dragged downstream by the ambient 

air flow. Lips are also formed on the downstream edge of the deforming bubble. This research 

designated these tips and lips as BLSP and SP respectively. This research also attributes the stripping 

of material at the liquid column’s edge to the presence of recirculation regions at the equator shown 

clearly on the qualitative images for phase distribution. These recirculation regions are believed to 

result from interaction of two oppositely directed streams of vorticity created by the effects of baroclinity 

on the deforming water surface. Finally, this research demonstrates that the bubble distortion can be 

divided into three phases: instability of the bubble surface; flattening of water bubble; and entrainment 

of small droplets from the edge of the water sheet up till the total breakup of the bubble.  

Finally, this research explores the positive impacts of SBI particularly with respect to a rise in 

turbulence intensity. To do this, comprehensive flow visualization has been used to explain the shock-

bubble interaction (SBI) process i.e., onset of bubble compression, formation of the vortex filaments 

or vortex rings (for the cylindrical or spherical helium bubble cases respectively), as well as production 

and distribution of vorticity. For the water bubble case, flow visualisation helps to explain the SBI 

process i.e., start of bubble compression, entrainment of small subsize droplets from the bubble 

periphery and total fragmentation of the water bubble. The visualization of turbulence generation and 

development provides further intricate details of the SBI flowfield such as small flow structures and 
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turbulent mixing between the helium bubble and air at the later stage of SBI for the spherical and 

cylindrical helium bubble cases. A comprehensive development of the vortex filaments/vortex rings 

(for the cylindrical or spherical bubble case respectively) from formation to a full distinctive structure is 

also illustrated using flow visualisation. In particular, it is demonstrated for the first time that turbulence 

is generated at the early phase of the shock bubble interaction process before the air jet is formed in 

all three cases, with the maximum turbulence intensity reaching about 20%, around the vortex 

filaments/vortex rings regions, and 22% for the water bubble scenario at the later phase of the 

interaction process. 

 

7.2. Future work 
 

The good agreement levels between the numerical findings presented in this research and previous 

experimental measurements show that the employed numerical model represent a reliable and 

effective method to characterise the shock-bubble interaction process. As a result, in the future, an 

interesting extension of this research would be to perform similar SBI simulations using other readily 

available hydrocarbon fuels like kerosene that can be utilised in gas turbines. Shock flame interactions 

(SFI), which represent a sustainable and hugely beneficial technique for achieving pressure gain 

combustion in gas turbines, is another area that the current research can be extended to. Such 

research will provide valuable insight into the interaction between a shock wave and a pre-mixed 

flame. Very limited research exists in this field particularly with respect to the repeated interaction of a 

shock wave with an already deformed flame which possesses the potential to considerably boost 

thermodynamic pressure rise. Also, there is a significant variation between the interaction of travelling 

shock waves with dispersed reactive mixture in comparison to the SFI process involved in pre-mixed 

combustion. Thus, this necessitates further research which the employed numerical method is capable 

of handling. Finally, this research can be extended to investigate the impacts of the chemical reactivity 

of the mixture components on flame structure, development, and distortion as SFI progresses. This 

could potentially yield beneficial results particularly with respect to the variability of the reactive mixture 

adopted for SFI. 
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