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Utilizing Artificial intelligence to identify an Optimal Machine learning 
model for predicting fuel consumption in Diesel engines 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• An optimal ML model was identified to 
predict fuel consumptions in diesel 
engines. 

• Various parameters were determined to 
reflect fuel consumptions using sensi-
tivity analysis. 

• Different ML models were performed to 
consider the complexity of fuel con-
sumption prediction. 

• ML models demonstrated good predic-
tion performance for both flow and heat 
transfer characteristics of fuel 
combustion.  
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A B S T R A C T   

This paper describes the utilization of artificial intelligence (AI) techniques to identify an optimal machine 
learning (ML) model for predicting dodecane fuel consumption in diesel combustion. The study incorporates 
sensitivity analysis to assess the impact levels of various parameters on fuel consumption, thereby highlighting 
the most influential factors. In addition, this study addresses the impact of noise and implements data cleaning 
techniques to ensure the reliability of the obtained results. To validate the accuracy of the predictions, the study 
performs several metrics and validation process, including comparisons with computational fluid dynamics 
(CFD) results and experimental data. Comprehensive comparisons are made among neural networks (NN), 
random forest regression (RFR), and Gaussian process regression (GPR) models, taking into account the 
complexity associated with fuel consumption predictions. The findings demonstrate that the GPR model out-
performs the others in terms of accuracy, as evidenced by metrics such as mean absolute error (MAE), mean 
squared error (MSE), Pearson coefficient (PC), and R-squared (R2). The GPR model exhibits superior predictive 
ability, accurately detecting and predicting even individual data points that deviate from the overall trend. The 
significantly lower absolute error values also consistently indicate its higher accuracy compared with the NN and 
RFR models. Furthermore, the GPR model shows a remarkable speedup, approximately 1.7 times faster than 
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traditional CFD solvers, and physically captures the momentum and thermal characteristics in a surface field 
prediction. Finally, the target optimization is assessed using the Euclidean distance as a fitness function, ensuring 
the reliability of predicted data.   

1. Introduction 

Diesel combustion is a critical process in internal combustion en-
gines, and optimizing its performance is of great importance to achieve 
high fuel efficiency, less emissions and improved overall thermal per-
formance. Traditional approaches to fuel consumption predictions 
mainly rely on semi-empirical formulas or physical models. However, 
these methods often lack accuracy and are limited in their ability to 
capture complex relations between engine parameters and fuel con-
sumption [1–7]. To address these limitations, ML models have emerged 
as a promising alternative for fuel consumption predictions. ML models 
can learn complex patterns and relationships from data, enabling ac-
curate predictions without relying on predefined formulas or models. 
Several studies have investigated the application of ML models in pre-
dicting fuel consumption in diesel combustion [8,24-26]. These models 
leverage various algorithms and techniques to learn patterns and re-
lationships from input data. A comparative study of these models can 
provide insights into their performance and suitability for fuel con-
sumption prediction. 

A variety of research has been reported to show progressive 
achievements in predicting the combustion process in terms of different 
ML models. Yuksel et al. [9] compared the performance of multiple ML 
models, including support vector machines (SVM), random forests (RF), 
and artificial neural networks (ANN), to predict the fuel consumption in 
a marine diesel engine. Their results showed that the SVM model was 
more capable of capturing complex relationships between engine pa-
rameters and fuel consumption. Bappon et al. [10] addressed the 
growing concern of global warming and the role of vehicle emissions, 
particularly CO2. By applying eight different ML techniques, a remark-
able accuracy of 96 % was achieved using the RF algorithm. Ruan et al. 
[11] proposed a grey box model (GBM) for predicting fuel consumption 
in wing-diesel hybrid vessels. The optimal combination, utilizing par-
allel modelling and the RF algorithm with the inclusion of wing fuel 
consumption savings, returned a remarkable 41.7 % reduction in root 
mean square error (RMSE) compared with a white box model (WBM). 
Badra et al. [12] proposed a methodological approach to optimize en-
gine combustion systems using computational fluid dynamics (CFD) and 
ML. Their research highlighted the potential of ML in predicting fuel 
consumption and optimizing engine performance. Mandal et al. [13] 
developed an artificial neural network (ANN) model to predict the 
performance and emissions of a compression ignition (CI) engine using 
biogas flow variation demonstrating a great effectiveness of ML tech-
niques in predicting fuel consumption and emissions in CI engines. Gong 
et al. [14] conducted a comparative study on fuel consumption predic-
tion methods of heavy-duty diesel trucks by considering 21 influencing 
factors, suggesting that ML algorithms, such as RF and SVR, can accu-
rately predict fuel consumption in heavy-duty vehicles. Zeng et al. [15] 
conducted a single-pulse shock tube pyrolysis study of RP-3 jet fuel and 
developed a kinetic model. Although it focuses on the jet fuel, the 
developed kinetic model can be utilized in predicting fuel consumption 
in diesel engines. Kaleli and Akolaş [16] designed an electromechanical 
EGR cooling system for a diesel engine to reduce emission and fuel 
consumption in terms of ML and genetic algorithms. Satrio et al. [17] 
analysed the effect of fuel type selection on the performance and fuel 
consumption of a steam power plant. Wen et al. [18] investigated the 
impact of input parameters on the accuracy of an AI model for predicting 
emissions produced by light diesel vehicles using a gradient boosting 
regression model. Pereira et al. [19] developed a non-invasive approach 
for fuel consumption prediction of construction trucks using dedicated 
sensors and ML. The above studies demonstrate the potential of ML 

techniques in predicting emissions and fuel consumption under 
real-world driving conditions. 

Furthermore, Wu et al. [20] further developed a deep learning-based 
framework for accurate long-term prediction of turbulent combustion in 
engines. They proposed two training techniques, namely unrolled 
training and injecting noise training, to address the issue of shifted 
distribution in autoregressive long-term prediction. Tuan et al. [21] 
compared the performance of ANN and SVM methods in predicting the 
ignition delay of a diesel engine using diesel and biodiesel fuels. Their 
results showed that the SVM model outperformed the ANN model in 
predicting the ignition delay. Park et al. [22] described the development 
of a lightweight and accurate NOx prediction model for diesel engines 
using the Explainable Artificial Intelligence (XAI). To select the domi-
nant features, they employed the Shapley Additive Explanations (SHAP) 
method and the Pearson Correlation Coefficient (PCC) method. Their 
results showed that the prediction performance in the SHAP method is 
similar to the base model but only utilizing 30 % of its data size. 
Pitchaiah et al. [23] optimized the performance of a direct inject CI 
engine fuelled with diesel-Bael biodiesel blends and dimethyl carbonate 
(DMC) additive. They concluded that the precision and certainty pro-
vided by Response Surface Methodology (RSM) and ANN models could 
help estimate the engine performance and support the Sustainable 
Development Goals (SDGs) of the United Nations. Godwin et al. [27] 
predicted the emission parameters in a dual-fuel spark ignition (SI) en-
gine using ML algorithms. They successfully implemented an Ensemble 
LS Boost ML framework to efficiently optimize the combustion perfor-
mance and predict its emission characteristics. Ramachandran et al. 
[28] investigated the Reactivity Controlled Compression Ignition (RCCI) 
combustion fuelled with microalgae biodiesel and Compressed Natural 
Gas (CNG) using two ML models, i.e., Gradient Boosting Regressor 
(GBR) and LASSO Regression, both of which achieved high accuracy. 
Sanjeevannavar et al. [29] examined the effect of different biodiesel 
blends with hydrogen peroxide additive on the performance and emis-
sions in an engine. They found that the XG Boost model provided highly 
accurate predictions and could help reduce the time and costs associated 
with traditional engine trials. 

Although the findings in previous works help make a better under-
standing of diesel combustion and fuel consumption predictions using 
ML and AI tools, there are still gaps between the existing knowledge and 
future development that need to be fully filled. The potential interests 
could be focused on applying AI techniques to evaluate and select an 
optimal ML model for an accurate prediction of fuel consumption, 
leading to improved predictions and optimized fuel efficiency in diesel 
combustion. The present study aims to fill the research gap in the 
evaluation of different ML models for predicting fuel consumption in 
diesel engines. A novel approach is taken by integrating ML techniques/ 
AI tools with computational fluid dynamics (CFD) to improve the ac-
curacy of predictions. This study also introduces the use of dodecane as a 
surrogate diesel fuel, allowing for a more comprehensive evaluation of 
ML models. Moreover, the inclusion of additional influencing factors 
such as fuel mass fraction, apparent heat release rate, spray penetration, 
and injection velocity further enriches the predictive capabilities of the 
ML models. The evaluation of ML models is conducted using various 
metrics, including Mean Absolute Error, Mean Squared Error, Pearson 
Coefficient, and R-Squared, ensuring a comprehensive assessment of 
their performance. Furthermore, the study employs a surface field model 
to visualize the predictions made by ML models. Ultimately, it hopes to 
provide a set of recommended designs through target optimization to 
support the development of more efficient and environment friendly 
diesel engines. 
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2. CFD simulations 

The CFD simulation in this study was conducted using Simcenter 
STAR-CCM+ software, specifically the In-Cylinder Solution add-on. This 
software enables accurate and efficient in-cylinder CFD simulations of 
engines, providing a critical analysis of the injection, ignition, and 
combustion processes within the engine cylinder. 

2.1. Mesh generation 

In CFD simulations, a closed-cycle analysis of a diesel compression- 
ignition engine is conducted within the interval of 680 to 800◦ using a 
45◦ sector model. The engine’s stroke is measured at 158.54 mm, while 
the connecting rod length is 270.0 mm. Operating at a constant angular 
velocity of 1100.0 rpm, displacement of 2.1, and compression ratio of 
18:1, the simulation starts at 680◦ crank angle and runs for 120◦. To 
accurately represent the engine’s geometry and flow dynamics, a fully 
automated approach within Simcenter STAR-CCM+ is employed for 
mesh generation. Trimmed meshes are utilized, which can adapt to the 
motion of both piston and valves. This approach allows for capturing the 
intricate details and complexities of the in-cylinder flow. The meshing 
process involves different techniques and considerations to maintain 
fidelity and accuracy. The mesh operation employs trimmed cell mesher, 
prism layer mesher, and triangle methods. The minimum face quality is 
set at 0.05 to ensure high-quality mesh elements. 

Figs. 1(a) and (b) illustrate the cylinder sector in both side and top 
views, showing a locally refined mesh at 50 % of the base size around the 
injection area. This refinement is necessary to capture the detailed 
physics related to droplet diameter calculations, which play a crucial 
role in fuel atomization and spray behaviour. Furthermore, the second 
locally refined mesh at 70 % of the base size is implemented in the entire 
area around the piston crown. This region experiences significant 
changes and induced turbulence due to the rotational motion of the 
piston, necessitating a finer mesh resolution. By employing these 
meshing techniques and local refinements, the simulation can accurately 
capture the intricate flow dynamics and combustion processes occurring 
within the engine cylinder. This comprehensive approach ensures that 
the CFD simulation provides reliable insights into the engine’s perfor-
mance, fuel-air mixing, and combustion characteristics. 

2.2. Computational details 

A multi-nozzle injector is positioned at the centre of the cylinder 
head, introducing dodecane (C12H26) fuel into the cylinder sector. The 
specific timing of the injection event occurs between 714.75 and 
722.65◦ of crank angles. The accurate representation of the fuel jet’s 
disintegration process is crucial, and therefore the Huh Atomization 
model is employed. This model considers the breakup of the fuel jet into 
smaller droplets, enabling the capture of spray behaviour and subse-
quent mixing with the surrounding air. To account for the heat transfer 
and boundary layer effects near the walls, constant temperature condi-
tions ranging from 400 to 450 K are applied at the cylinder walls. The 
simulations employ the Extended Coherent Flame Model with Com-
bustion Limited by Equilibrium Enthalpy (ECFM-CLEH) to accurately 
simulate the combustion process within the engine cylinder. This model 
considers the complex chemistry and equilibrium enthalpy constraints 
during combustion. Additionally, the ECFM TKI Auto-Ignition model 
enhances the accuracy of the combustion process representation. To 
promote an efficient fuel-air mixing, a swirl of 2000 rpm is implemented 
around the central axis of the cylinder’s vertical plane. This swirl is 
crucial for achieving proper combustion characteristics. The initial 
pressure and temperature within the engine cylinder are set at constant 
values of 9.87 bar and 583 K, respectively, providing the necessary 
initial conditions for the combustion process to initiate and progress 
within the cylinder. 

The In-Cylinder solution in STAR-CCM+ offers a powerful tool for 
optimizing in-cylinder properties and provides various optional models 
to simulate the combustion process, with an Automatic Composition 
Initialization feature being particularly useful. This feature determines 
the initial gas composition in the cylinder based on the equivalence ratio 
and exhaust gas recirculation (EGR) percentage, ensuring an accurate 
representation of the combustion process. The simulations consist of 
three stages, i.e., pre-processing, CFD solver, and post-processing. At the 
pre-processing stage, the engine geometry is constructed, the physics 
models are selected, and the boundary conditions are specified. The CFD 
solver stage involves discretizing the domain and iteratively solving the 
resulting algebraic systems of governing equations. Finally, at the post- 
processing stage, the simulation results are analysed and visualized 
using tabular data, 3D data, vectors (e.g., velocity), scalars (e.g., pres-
sure), and contours. 

Fig. 1. Mesh visualisation of the engine model: (a) side view and (b) top view.  
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3. ML algorithms 

The main aim of this study is to utilize ML techniques to predict fuel 
consumption in diesel combustion. To achieve this, all the necessary 
data from the CFD simulation, exported from the STAR-CCM+ software, 
are collected. The Monolith AI platform is then utilized to analyse the 
data, as well as train and evaluate the ML models. To ensure data 
quality, the collected data are first categorized and subjected to noise 
removal processes. Various tools, including sensitivity analysis, can be 
employed to identify the correlation between inputs and outputs data. 
This step helps gain insights into the key factors that affect the fuel 
consumption. The data are then split using the 80–20 % rule, where 80 
% is used for training the ML models and the remaining 20 % is reserved 
for testing and validation. This split ensures that the models are trained 
on a substantial amount of data while still having a separate dataset for 
evaluation. The ML models are trained and evaluated using various 
metrics, including Mean Absolute Error (MAE), Mean Squared Error 
(MSE), Pearson Coefficient (PC), and R-Squared (R2). These metrics 
provide a comprehensive assessment of the model’s performance, 
making insightful comparisons between different approaches. In addi-
tion to quantitative evaluation, a surface field model is employed to 
visualize the predictions retuned by deep learning (DL). DL is a subset of 
machine learning that utilizes neural networks with multiple layers to 
learn and make predictions from complex data. It is particularly effec-
tive when dealing with large amounts of data and complex patterns. The 
use of raw data (the data extracted from CFD and imported without any 
training process) and training data in the section of deep learning can be 
valid if they serve distinct purposes. This visualization technique helps 
understand the spatial distribution and patterns of fuel consumption 
within the combustion chamber. Through this iterative process of 
training, evaluation, and visualization, an optimal ML model is identi-
fied, which can accurately predict the fuel consumption in diesel com-
bustion. The selected model is then introduced as the recommended 
approach for estimating fuel consumption in similar scenarios. The 
methodology described above ensures a systematic and rigorous 
approach to harnessing ML techniques for predicting fuel consumption 

in diesel combustion (see Fig. 2). 

3.1. Data structure 

The prediction of fuel consumption in diesel engines plays a pivotal 
role in achieving enhanced performance and producing less emissions. 
In this study, a CFD simulation was conducted starting at 680◦ crank 
angle and running for 120◦. For each crank angle, a dataset was 
extracted, resulting in multiple datasets. Each dataset consisted of a 
varying number of rows, ranging from 9000 to 13,000, and 88 columns 
including all inputs and their respective subsets of dependencies. It is 
worth noting that to utilize a parameter as an input, all its dependencies 
must be taken into consideration. The variation in the number of rows 
was due to the movement of the piston from top dead centre (TDC) to 
bottom dead centre (BDC), which created more space in the cylinder. 
This increased space generated more geometrical data, which in turn led 
to more operating data. The final size of the dataset, consisting of 120 
CSV files (crank angles), each containing 9000–13,000 rows and 88 
columns, can be calculated by multiplying these values together. 
Therefore, the total dataset size is 120 (CSV files) multiplied by an 
average of 11,000 (rows) multiplied by 88 (columns), resulting in a 
dataset size of approximately 116,160,000 data points. Regarding the 
80–20 % training rule, this typically refers to the practice of splitting the 
dataset into 80 % for training the machine learning model and 20 % for 
testing the model’s performance. In the context of the given dataset, this 
would mean using 80 % of the 116,160,000 data points for training, 
which is approximately 92,928,000 data points, and the remaining 20 % 
for testing, which is approximately 23,232,000 data points. This 
approach allows for the model to be trained on a substantial portion of 
the data while still retaining a separate portion for evaluating its 
performance. 

In this study, several key parameters have been selected based on 
previous research in the field of fuel consumption and emissions in 
diesel combustion [3–7]. These parameters include Fuel Ratio (FR), Fuel 
Mass (FM), Fuel Mass Fraction Averaged (FMFA), Apparent Heat Release 
Rate (AHRR), Air/Fuel Equivalence Ratio (AFER), Spray Penetration 

Fig. 2. Schematic of the methodology integrating computational fluid dynamics (CFD) tools with artificial intelligence-machine learning (AI-ML) models: an 
example of predicting internal combustion process in diesel engines. 
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(LSP-VSP), Injection Velocity (IV), and Cylinder Volume (CV). These 
parameters have been identified as significant contributors to fuel con-
sumption in diesel engines. In the conducted ML modelling of this study, 
a set of input variables is utilized to predict specific output parameters. 
The inputs, which serve as the independent variables, include 
Liquid-vapour Spray Penetration (LSP-VSP), Injection Velocity (IV), 
Cylinder Volume (CV), Turbulent Kinetic Energy (TKE), Cylinder 
Tumble-Y (CT-Y), Cylinder Temperature (CT), Cylinder Swirl (CS), 
Cylinder Pressure (CP), Air/Fuel Equivalence Ratio (AFER), Air Mass 
Fraction Averaged (AMFA), Air Ratio (AR), and Air Equivalence Ratio 
(AER). These inputs capture various aspects of the combustion process, 
such as spray characteristics, chamber geometry, turbulence, tempera-
ture, pressure, and air-fuel mixture properties. 

In addition, the ML model aims to predict several output parameters 
that are crucial for understanding the combustion behaviour. These 
outputs include Apparent Heat Release Rate (AHRR), Fuel Mass Fraction 
Averaged (FMFA), Fuel Ratio (FR), and Fuel Mass (FM). AHRR repre-
sents the rate at which heat is released during combustion, while FMFA 
indicates the fraction of fuel mass in the combustion chamber. FR 
quantifies the ratio of actual fuel mass to the stoichiometric fuel mass, 
and FM represents the actual mass of fuel present in the combustion 
chamber. By training the ML model using a dataset that includes the 
inputs and corresponding output parameters, the model can learn and 
identify complex relationships and patterns between the input variables 
and the desired outputs. 

The selection of these parameters is crucial as they are interrelated 
and help understand the intricate relationships between the inputs and 
outputs of the predictive models. To achieve this, a sensitivity analysis 
has been conducted using the Sobol method with first-order variable 
combinations. This advanced analysis technique allows for the exami-
nation of both direct effects and interactions between the parameters on 
the model outputs [24]. This analysis visually demonstrates the effects 
of each input parameter on the respective model outputs (refer to Fig. 3). 
The correlation between the inputs and AHRR and FMFA is depicted in 
Fig. 3. The sensitivity analysis reveals that the chosen inputs have major 
impacts on the prediction of fuel consumption. Amongst the parameters, 
AMFA, CT-Y, IV, CV, and AR exhibit the most significant impact on 
AHRR, while AER, AR, CP, CT, CV, and IV emerge as the most influential 
parameters affecting FMFA. 

The dataset used for analysis was obtained in the CFD simulations, 
which can introduce various sources of noise. Noise in the data can arise 
due to computational errors, measurement errors, or other factors that 
reduce the accuracy and reliability of the collected data [8,11]. Noisy 
datasets captured from the CFD simulations may contain outliers, 

duplicate entries, or missing data, which can further impact the quality 
of the dataset. To improve the quality of the dataset, preprocessing steps 
were undertaken to remove erroneous or invalid samples. This step 
helps to ensure that the dataset used for training the models is as clean 
and reliable as possible. Fig. 4 presents a comparison of learning curves, 
which illustrate the impact of the amount of training data on the model’s 
error. The metric used in this curve is the Mean Squared Error (MSE), 
with different percentages indicating the proportion of training data. 
The blue line on the graph represents the clean data, where noise has 
been removed or reduced significantly. On the other hand, the red line 
represents the noisy data, which still contains the effects of noise. It 
clearly shows that the existence of noise in the dataset can lead to errors 
or overfitting in the trained models. Specifically, the noisy data exhibits 
fluctuations in the errors at around 25 % and 70 % of the training data. 
When using 25 % of the training data, MSE of the noisy data returns to its 
starting point. Moreover, after utilizing 100 % of the training data, MSE 
of the noisy data jumps to its maximum value again. This reveals that the 
presence of noise in the dataset can cause fluctuations and deviations in 
the errors during training. 

After cleaning the dataset, the next step is to apply the train-test split 
method. This method divides the dataset into two subsets: one is for 
training the model and the other for testing its performance. The 
commonly used rule in this split method is the 80–20 % rule, where 80 % 
of the data is allocated for training and 20 % is reserved for testing [8]. 
The increase in accuracy using a more extensive training dataset can be 
attributed to several factors. First, a larger volume of data provides the 
model with a more comprehensive representation of the underlying 
patterns and relationships within the dataset. This enables the model to 
learn more effectively and make more accurate predictions. Second, a 
more extensive dataset helps to mitigate the impact of potential outliers 
or noise in the data, leading to improved generalization and robustness 
of the model. By adhering to the 80–20 % rule, a significant portion of 
the dataset is dedicated to training the model, allowing it to learn the 
underlying patterns and relations. The remaining 20 % is then used to 
evaluate the model’s performance on unseen data, providing an estimate 
of how the model can be effectively generalized to new observations. 
This division ensures that the model is not overly reliant on the training 
data and also has the potential to perform well on unseen data. 

3.2. ML models 

This study focuses on regression analysis using supervised learning 
techniques. Specifically, the aim is to train and compare three reliable 
ML models to accurately predict the fuel consumption in diesel 

Fig. 3. Correlation coefficient heat map of selected parameters with AHRR and FMFA in diesel engines.  
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combustion. The selected ML models for this study include Random 
Forest Regression (RFR), Neural Network (NN), and Gaussian Process 
Regression (GPR). Detailed explanations of these models can be found in 
Refs. [8,30-33], which provide comprehensive insights into their ar-
chitectures and workings. Given the complexity and non-linearity 
inherent in diesel combustion, it is crucial to employ robust ML 
models that can effectively capture the intricate relationships impacting 
fuel consumption. By utilizing RFR, NN and GPR, researchers can gain 
valuable insights into the factors affecting fuel consumption in diesel 
engines. The comparative analysis of these models will provide a better 
understanding of their performance and help identify the most reliable 
model for an accurate prediction of fuel consumption. 

3.2.1. Model evaluation 
To evaluate the generalization capacity of predictive models and 

mitigate the risk of overfitting, cross-validation is employed. Cross- 
validation, belonging to the family of Monte Carlo (MC) methods 
along with the bootstrap, is a statistical technique and can be used to 
compare and assess learning algorithms [9]. It divides the data into two 
sections: one is for training the model and the other for model valida-
tion. This approach allows for a robust evaluation of the model’s per-
formance. A fundamental type of cross-validation is the k-fold 
cross-validation, which forms the basis for other variations of this 
technique. In the k-fold cross-validation, the data is initially divided into 
k segments or folds of roughly equal size. Subsequently, k iterations of 
training and validation are performed, with each iteration holding out a 
different fold for validation while utilizing the remaining k-1 folds for 
model training [31]. This process comprehensively assesses the model’s 
performance across different subsets of the data. The choice of the 
number of folds (k) typically ranges from two to ten, as this is a 
commonly applied practice in assessing model performance and avoid-
ing overfitting. By systematically varying the number of folds, it can help 
improve the stability and robustness of the models under consideration. 
The performance of the models has been evaluated using various metrics 
such as R-squared (R2), mean absolute error (MAE), mean squared error 
(MSE), and Pearson coefficient (PC). R2 measures the proportion of the 
variance in a dependant variable that can be explained by the inde-
pendent variables. A value of R2 close to 1 indicates a highly accurate 
model, which suggests that a large percentage of the variation in the 
dependant variable is captured by the model. MAE measures the average 
absolute difference between the predicted values and the actual values. 

A lower MAE indicates a more accurate model, signifying that the 
model’s predictions are closer to the actual values. MSE calculates the 
average squared difference between the predicted and actual values. 
Similar to MAE, a lower MSE indicates a more accurate model, with 
smaller differences between predicted and actual values. PC measures 
the linear correlation between two variables. It ranges from − 1 to 1, 
with values closer to 1 indicating a strong positive correlation and values 
closer to − 1 indicating a strong negative correlation. A detailed com-
parison of these metrics to highlight the model’s training process in a 
more understandable manner is presented in the discussion below. 

4. Results and discussion 

4.1. Validation of CFD results 

In the context of ML predictions, ensuring the accuracy and reli-
ability of the dataset is of paramount importance. Therefore, it becomes 
crucial to validate the results obtained in the CFD simulations of diesel 
combustion. This validation process involves comparing the outcomes of 
a selected sector with the full cylinder to assess the consistency of the 
results. Additionally, further validation is achieved through the com-
parison of in-cylinder pressure with experimental data obtained from 
previous studies. Fig. 5(a) presents comparison between the predicted 
pressure using the full cylinder and that using the sector, and also the 
experimental data [25]. It can be seen clearly that the predicted pressure 
using the full cylinder agrees extremely well with that using the sector, 
justifying the use of a sector to save computational costs. It is also 
evident from Fig. 5(a) that a good agreement is obtained between the 
predicted pressure and the experimental data [25] and the discrepancies 
could be mainly due to some difference in fuel type, ignition delay, and 
operating conditions between the experiment and the CFD simulations. 
Fig. 5(b) shows that an excellent agreement is obtained between the 
predicted temperature using the full cylinder and that using the selected 
sector, confirming the consistency and reliability of the CFD results. 
Furthermore, comparisons between the CFD predictions and the exper-
imental measurements from Sandia [26] are presented in Figs. 5(c) and 
(d), which show the liquid and vapour fuel penetration lengths, 
respectively. The liquid spray penetration initially increases with time 
and then stabilizes at a quasi-steady value, referred to as the liquid 
length. Beyond this axial distance, the presence of liquid fuel diminishes. 
On the other hand, the fuel vapour penetration continues to increase 

Fig. 4. Impact of training data on model’s accuracy: a comparison between clean and noisy data.  
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with time and plays an important role in fuel-ambient air mixing. A very 
good agreement between the CFD predictions and the experimental data 
is clearly observable, suggesting strongly that the characteristics of both 
the liquid spray and vapour fuel penetration lengths are captured 
accurately in the simulations. 

4.2. Comparison of ML models 

To evaluate the performance of different ML models, a comparison 
was conducted amongst Neural Networks (NN), Random Forest 
Regression (RFR), and Gaussian Process Regression (GPR). In order to 
facilitate this comparison, an AI tool was employed to track the pre-
dicted values against the actual results. Figs. 6(a) and (b) illustrate the 
comparison between each model’s predictions for AHRR and FMFA 
against actual AHRR and FMFA. This AI technique enables an easily 
visible comparison of model predictions on a test set, providing insights 
into their proximity to the true values. While Fig. 6 demonstrates good 
accuracy and alignment of all models with the actual values at this stage, 
further comparison with other AI techniques is necessary to determine 
the best model. To evaluate the models, various metrics are employed, as 

shown in Table 1. The results indicate that GPR outperforms the others 
in terms of accuracy, as evidenced by the metrics: MAE, MSE, PC, and 
R2. For example, in the case of AHRR, GPR achieves an MAE of 0.05124, 
MSE of 0.06514, PC of 0.99992, and R2 of 0.99982, while RFR and NN 
exhibit slightly higher values for these metrics. Similar trends are 
observed for FMFA, FM, and FR. In addition, Fig. 6(c) illustrates the 
comparison of prediction errors for FM amongst ML models. It clearly 
demonstrates that the error range for GPR is between 0 and 0.02, while 
the error range for RFR lies between 0 and 0.08, and for NN it is much 
larger and exceeds 0.1. These findings emphasize the superior accuracy 
of the GPR model in comparison with RFR and NN. 

Fig. 7 presents the comparison of the models’ performance metrics 
using a Box and Whisker plot. This plot provides insights into the me-
dian, minimum and maximum datapoints, as well as the 1st and 2nd 
quartiles for four key metrics: MAE, MSE, R2, and PC. The results 
depicted in Fig. 7 clearly demonstrate that the GPR model exhibits 
highly accurate predictions, outperforming both the RFR and NN models 
across all the evaluated metrics. The tight clustering, lower median 
values, and smaller interquartile ranges for the GPR model indicate its 
superior performance and robustness in accurately predicting fuel 
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Fig. 5. Comparison of pressure (a), temperature (b) and liquid (c) /vapour (d) spray penetration results between the full cylinder and selected sector. Experimental 
data [25,26] are also included. 
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consumption values. 
To provide a more comprehensive assessment, Figs. 8(a) and (b) 

present the comparison of the measured values for FM and AHRR against 

the predicted values by the proposed models at different crank angles. It 
is worth emphasizing that although the measured points fall within the 
uncertainty range of both NN and RFR models, relying solely on the 
uncertainty range is insufficient when it comes to predicting fuel con-
sumption in a diesel engine. While the uncertainty range provides a 
measure of the potential variability in the predictions, it cannot guar-
antee an acceptable accuracy of the model’s output. Therefore, it is 
necessary to go beyond the uncertainty range and thoroughly assess the 
model’s performance and alignment with the measured data. In this 
regard, the comparison between predicted results by RFR, GPR, and NN 
models becomes crucial. The significant deviations observed in the NN 
model’s predictions, compared with the measured data, highlight the 
limitations of relying solely on the uncertainty range as an indicator of 
model accuracy. To ensure reliable and accurate predictions of fuel 
consumption, it is imperative to select a model that can demonstrate 
both good alignment with the measured data and minimal deviations 
from the true values. This reinforces the importance of evaluating and 
comparing different ML models, such as RFR and GPR, to identify the 
most accurate and reliable model to predict the fuel consumption in 

Fig. 6. Comparison of predicted and actual values by GPR, NN and RFR models for: (a) AHRR; (b) FMFA; and (c) prediction errors for FM.  

Table 1 
Comparison of model’s performance metrics.  

Output Model MAE MSE PC R2 

AHRR GPR 0.05124 0.06514 0.99992 0.99982 
RFR 0.39811 0.15328 0.99842 0.99581 
NN 0.75616 0.99148 0.99015 0.97292 

FMFA GPR 0.0 0.0 1.0 1.0 
RFR 1.00E-05 0.0 1.0 1.0 
NN 0.00018 0.0 0.99985 0.99972 

FR GPR 0.0 0.0 1.0 1.0 
RFR 0.0 0.0 1.0 1.0 
NN 0.0 0.0 0.99992 0.99981 

FM GPR 0.0 0.0 1.0 1.0 
RFR 0.0 0.0 1.0 1.0 
NN 6.00E-05 0.0 0.9989 0.99977  
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diesel engines. The inset of results in both Figs. 8(a) and (b) highlights 
the disparity and accuracy of the models around the peak points be-
tween 720–730◦ crank angle. According to Fig. 8, while both RFR and 
GPR exhibit good alignment with the measured results, there are subtle 
differences between them when examining the results more closely. For 
instance, specifically at the peak point and slope within the 730–740◦

crank angle range in Fig. 8(b), GPR demonstrates the capability to detect 
and predict even single points that deviate from the overall trend of the 
graph. This demonstrates the superior predictive ability of the GPR 
model. The results presented in Table 1 and Figs. 7 and 8 unequivocally 
indicate that the GPR model outperforms both NN and RFR models. 

Table 2 presents a comparison of the predictions using NN, RFR, and 
GPR models against the measured values for FM at random crank angles, 
including the absolute error in each model. Upon analysis of the results, 
it is obvious that the GPR model consistently exhibits much lower ab-
solute errors compared with the NN and RFR models. The absolute error 
values in Table 2 quantify the discrepancy between the predicted values 
and measured data. Lower absolute error values indicate a good agree-
ment between the model predictions and actual measurements. It can be 
therefore concluded that the GPR model demonstrates superior accu-
racy, as evidenced by the considerably lower absolute error values 
compared with the NN and RFR models. This also indicates that the GPR 
model can more accurately predict the FM. Notably, the measured value 
for FM is 0 at a crank angle of 746.05◦, and the GPR prediction also 

aligns perfectly with this value. These findings further support the 
conclusion that the GPR model outperforms the NN and RFR models in 
accurately predicting the FM in a diesel engine. 

Furthermore, Fig. 9 illustrates comparison of the predicted temper-
ature and pressure by the GPR model against the sector CFD results at 
different crank angles, and it can be seen that an excellent agreement is 
reached. Specifically, at a crank angle of 736.5◦ in Fig. 9(a), the GPR 
model predicts a maximum temperature of 1841.49 K, while the CFD 
result is 1835.94 K. Similarly, at a crank angle of 727.3◦ in Fig. 9(b), the 
GPR model predicts a maximum pressure of 110.2 bar while the CFD 
value is 114.8 bar These results highlight the GPR model’s ability to 
precisely predict both the temperature and pressure, further substanti-
ating its selection as the most reliable and accurate model for predicting 
fuel consumption in a diesel engine. 

4.3. Surface field prediction 

This section investigates the potential of an innovative AI tool Sur-
face Field in engineering research and development. By leveraging his-
torical 3D simulation data, this approach establishes correlations 
between 3D geometries and their corresponding surface fields. It ex-
plores the prediction capacity of the ML model compared with CFD 
simulations. 

In this study, the surface field model is trained using a DL approach, 

Fig. 7. Comparison of performance metrics between different models: (a) MAE; (b) MSE; (c) R2; and (d) PC.  

A. Shateri et al.                                                                                                                                                                                                                                 



Energy and AI 16 (2024) 100360

10

Fig. 8. Comparison of predicted values against measured data for: (a) FM and (b) AHRR using NN, RFF and GPR models. The measured data is represented by white 
dots, while the predictions from NN model are shown as a red line, GPR as a blue line, and RFR as a green line. 
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specifically a NN. During training, the model learns the underlying 
patterns and relationships between the input features and the desired 
output parameters. This is typically implemented by optimizing the in-
ternal parameters of model or its weights based on a chosen loss function 
and an optimization algorithm. Once the ML model is trained and 
validated, it can be used to make predictions on new, unseen data. The 
model takes the input parameters and produces predictions for the 
surface field parameters of interest. The initial input values for the 
model are extracted from STAR CCM+ software and are saved in the 
format of vtk files. The input parameters include point coordinates X, Y, 
and Z, velocity components i, j and k. The point coordinates X, Y, and Z 
represent 3D cloud points that specify the geometry of the combustion 
chamber. In addition, pressure is added as a boundary condition to the 
model. The outputs of the surface field model are temperature and ve-
locity magnitude, which are predicted based on the given input pa-
rameters. Employing NN allows the model to learn complex 
relationships between the input parameters and the desired surface field 
outputs, enabling accurate predictions based on the given inputs. Fig. 10 
illustrates contours of the velocity magnitudes and Fig. 11 presents the 
temperature distributions on a XZ plane of the cylinder. Both ML pre-
dictions and CFD results are presented at different crank angles. 
Notably, despite differences in running time and processing resources, a 
remarkable similarity in the trend of flow patterns and the min/max 
magnitude of velocity and temperature is observed. These findings 
highlight the effectiveness of the ML approach in accurately predicting 
surface fields. The CFD simulations employed parallel computing with 8 
cores, resulting in a total CPU time of 31,613 s. In contrast, the ML model 
was trained for 50,000 steps on a single processor, significantly reducing 
computational costs. Table 3 provides a comparison of the CPUs utilized 
in both processes, with the accumulated CPU time highlighted as the key 
metric. The ML model required only 17,689 s, a remarkable speedup and 
an approximate 1.7 times faster performance compared with traditional 
CFD solvers. 

One notable advantage of the ML approach is its versatility beyond 
speed. Once the model is trained and evaluated, it can provide pre-
dictions for other desired parameters and their effects on results in real 
time. This capability underscores the potential of ML models to not only 
enhance computational efficiency but also offer instant insights into the 
impact of various parameters on surface field predictions. 

Fig. 10 displays the velocity magnitude contours at different crank 
angles, providing a comparison between the ML prediction and the re-
sults obtained in CFD simulations. The findings demonstrate the ML 
model’s exceptional accuracy in detecting and predicting flow fields, 
particularly in challenging areas like the edges and corners of the cyl-
inder sector. Notably, the contours exhibit a circular shape in some re-
gions, suggesting the presence of vortices. The ML model successfully 
captures and predicts these vortical structures, showing its ability to 
discern complex flow phenomena. Moreover, there is a remarkable 
proximity between the minimum and maximum velocity values ob-
tained from both ML and CFD predictions, underscoring the high level of 
accuracy achieved by the ML model. Fig. 11 portrays the temperature 
distribution at different crank angles. Similar to the velocity contours, 

the ML model accurately predicts the temperature distributions every-
where, encompassing the corners, margins, edges, and walls. The tem-
perature patterns captured by the ML model closely align with those 
derived from the CFD simulations. In addition, the minimum and 
maximum temperature values from both the ML model and the CFD 
predictions at different crank angles agree very well, further substanti-
ating the ML model’s precision in predicting temperature distributions. 
These results exemplify capabilities of the ML model to capture and 
replicate the momentum and thermal characteristics of diesel combus-
tion process in a diesel engine, also highlighting its potential for 
advancing surface field predictions. 

Notably, increasing the number of training steps is anticipated to 
yield consistent results having the train loss and validation loss pro-
gressively decreased. This underscores the potential of based surface 
field predictions as a cost-effective and efficient alternative to resource- 
intensive simulations, emphasizing its relevance and impact on the 
future development of combustion engineering and science. Fig. 12 
presents a comprehensive overview of a model’s training process over 
50k training steps, where the blue line represents the validation, and the 
red line indicates the training process on selected data. The inset graphs 
illustrate the temperature distribution on a XY plane of the cylinder at 
various training steps, specifically at 20k, 30k, 40k, and 50k, shedding 
light on the evolution of the accuracy of predictions with an increasing 
number of training steps. This trend suggests a positive correlation be-
tween the number of training steps and the accuracy of predictions in 
comparison with the CFD results. Thus, the findings imply that more 
training steps lead to more accurate predictions, as evidenced by the 
diminishing train loss and validation loss values. 

4.4. Targeted optimization of fuel consumption 

In the context of targeted optimization using GPR as the optimal 
model, the objective is to identify the best set of inputs that closely 
match a given list of target outputs. To achieve this, a fitness function 
that is called the Euclidean distance is used in this approach. The 
Euclidean distance is a metric method that measures the straight-line 
distance between two points in a multi-dimensional space [34]. 
Regarding the targeted optimization, it quantifies the similarity between 
the predicted outputs obtained from the GPR model and the desired 
target outputs. By minimizing the Euclidean distance, the GPR model 
can identify the inputs that result in outputs, which closely match the 
desired target outputs. The Euclidean distance is calculated by taking 
the square root of the sum of the squared differences between corre-
sponding elements of the predicted outputs and the target outputs. This 
fitness function provides a quantitative measure of how close the pre-
dicted outputs are to the target outputs [35]. Using the Euclidean dis-
tance as the fitness function offers several advantages in the targeted 
optimization. First, it enables researchers to directly assess the similarity 
between the predicted and target outputs. By minimizing the Euclidean 
distance, researchers can identify the set of inputs that produce outputs, 
which closely meet the desired performance and characteristics. Second, 
as a widely used and intuitive metric, the Euclidean distance is easy to 

Table 2 
Comparison of predicted and measured values for FM at random crank angles using NN, RFR, and GPR models.  

Crank Angle FM Measured FM in NN FM in GPR FM in RFR NN Ab. Error GPR Ab. Error RFR Ab. Error 

747.86 0.007897548 0.007855524 0.007897547 0.00789714 4.20E-05 8.00E-10 4.08E-07 
773.97 0.007019702 0.007024102 0.007019703 0.007020554 4.40E-06 6.00E-10 8.52E-07 
716.44 0.004021347 0.003914255 0.004021309 0.0040249 0.000107092 3.77E-08 3.55E-06 
784.49 0.006551227 0.006672351 0.006551228 0.006550895 0.000121124 1.00E-09 3.32E-07 
746.05 0.007971983 0.008029698 0.007971983 0.007971783 5.77E-05 0.0 2.00E-07 
714.85 3.91E-05 − 3.54E-05 3.91E-05 3.93E-05 7.45E-05 2.29E-08 1.67E-07 
752.25 0.007758151 0.00780306 0.007758151 0.007758037 4.49E-05 4.00E-10 1.14E-07 
787.89 0.006417309 0.006531842 0.006417309 0.006416862 0.000114533 2.00E-10 4.47E-07 
732.75 0.009952324 0.009964001 0.009952323 0.009951039 1.17E-05 9.00E-10 1.29E-06 
789.51 0.006354357 0.006489141 0.006354355 0.006354496 0.000134784 2.40E-09 1.39E-07  
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interpret. Its calculation is straightforward and can be efficiently 
implemented into optimization algorithms. This feature helps iteratively 
refine the inputs and converge towards the optimal solution more effi-
ciently and effectively. 

The recommended designs presented in Table 4 are an integral part 
of the predicted dataset obtained through the application of Gaussian 
Process Regression (GPR). These designs have undergone rigorous 
validation as part of this study, ensuring their reliability and accuracy. 
By utilizing the GPR model, researchers are able to make precise pre-
dictions of fuel consumption based on the given parameters and their 
values. The GPR model, known as a probabilistic approach, offers the 

robust and reliable means of approximating the unknown target func-
tion associated with fuel consumption in a diesel engine. Through an 
extensive validation, the recommended designs have demonstrated their 
efficacy in achieving the desired performance and characteristics. By 
relying on the predictions generated by the GPR model, researchers can 
confidently select these designs as reliable options to optimize the fuel 
consumption. The validation process includes a comparison of the pre-
dicted outputs from the GPR model with actual measurements or 
benchmark data. This step ensures that the recommended designs align 
closely with the expected fuel consumption levels, providing researchers 
with a reliable basis for decision-making. It is also crucial to note that 

Fig. 9. Comparison of predictions using GPR model with CFD results for: (a) temperature and (b) pressure at different crank angles.  
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while the numerical results in Table 4 provide compelling evidence of 
the efficacy of these design configurations, further experimental vali-
dation is necessary to confirm their real-world impact. Rigorous testing 
and analysis are required to fully evaluate the potential of these opti-
mized designs in practical engine applications. 

5. Conclusion 

This study employs artificial intelligence (AI) techniques to identify 
an optimal machine learning (ML) model to predict the dodecane fuel 
consumption in diesel combustion. Through sensitivity analysis, the 
impact levels of various parameters have been determined, highlighting 
the most influential ones in fuel consumption. The present work also 
addresses the impact of data noise and implements data cleaning tech-
niques to ensure the reliability of the obtained results. To validate the 

accuracy of the predictions, several metrics and validation steps have 
been conducted. The computational fluid dynamics (CFD) results are 
compared with experimental data, followed by a comparison of the ML 
model predictions with the CFD results. Comprehensive comparisons 
amongst neural networks (NN), random forest regression (RFR), and 
Gaussian process regression (GPR) models have been performed, taking 
into account the complexity of fuel consumption prediction. The find-
ings of this study demonstrate that the GPR model outperforms other 
models in terms of accuracy. Metrics such as mean absolute error (MAE), 
mean squared error (MSE), Pearson coefficient (PC), and R-squared (R2) 
consistently indicate the superior performance of the GPR model. The 
GPR model exhibits superior predictive ability by accurately detecting 
and predicting some single points that deviate from the overall trend. 
Furthermore, it consistently demonstrates superior accuracy compared 
with the NN and RFR models, as evidenced by considerably lower 

Fig. 10. Velocity magnitudes (m/s) of ML predictions and CFD simulations: (a) 695◦; (b) 700◦; (c) 713◦; (d) 724◦; (e) 725◦; (f) 740◦; (g) 744◦; (h) 748◦; (i) 753◦; and 
(j) 780◦. 
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absolute error values. Additionally, the GPR model shows a significant 
speedup, approximately 1.7 times faster than traditional CFD solvers. 
Regarding surface field prediction, the ML models demonstrate good 
prediction performance for both flow and heat transfer characteristics. 
This analysis employing ML techniques provides valuable insights into 
the underlying physics of complex processes of combustion, effectively 
showing the impacts of operating parameters on fuel consumption. 

It is also worth pointing out the limitations of the present study. The 
first limitation is the requirement for data cleaning. Employing ML 

algorithms introduce an additional step of data cleaning, including noise 
removal, duplicate data removal, and outlier detection. Running this 
extra step is time-consuming and requires manual intervention, which 
may reduce the efficiency of the prediction process. Future studies could 
focus on developing automated data cleaning techniques or exploring 
alternative approaches to minimize the preprocessing requirements. 
Another limitation is the dependency of ML model compatibility on 
specific data types. The architectures of ML models used in this study 
may not be universally compatible with all types of data. Different types 
of data may require specific preprocessing techniques or modifications 
to the model architecture, limiting the generalizability and applicability 
of ML models. To overcome these obstacles, more flexible ML models are 
hoped to handle the diverse data types without modifying the model 
architecture significantly. 
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