Impact of biodiversity-climate futures on primary production and metabolism in a model benthic estuarine system

Journal article


Hicks, Natalie, Bulling, Mark T., Solan, Martin, Raffaelli, D., White, Piran C. L. and Paterson, David M. 2013. Impact of biodiversity-climate futures on primary production and metabolism in a model benthic estuarine system. BMC Ecology. https://doi.org/10.1186/1472-6785-11-7
AuthorsHicks, Natalie, Bulling, Mark T., Solan, Martin, Raffaelli, D., White, Piran C. L. and Paterson, David M.
Abstract

Background: Understanding the effects of anthropogenically-driven changes in global temperature, atmospheric carbon dioxide and biodiversity on the functionality of marine ecosystems is crucial for predicting and managing the associated impacts. Coastal ecosystems are important sources of carbon (primary production) to shelf waters and play a vital role in global nutrient cycling. These systems are especially vulnerable to the effects of human activities and will be the first areas impacted by rising sea levels. Within these coastal ecosystems, microalgal assemblages (microphytobenthos: MPB) are vital for autochthonous carbon fixation. The level of in situ production by MPB mediates the net carbon cycling of transitional ecosystems between net heterotrophic or autotrophic metabolism. In this study, we examine the interactive effects of elevated atmospheric CO 2 concentrations (370, 600, and 1000 ppmv), temperature (6°C, 12°C, and 18°C) and invertebrate biodiversity on MPB biomass in experimental systems. We assembled communities of three common grazing invertebrates ( Hydrobia ulvae, Corophium volutator and Hediste diversicolor) in monoculture and in all possible multispecies combinations. This experimental design specifically addresses interactions between the selected climate change variables and any ecological consequences caused by changes in species composition or richness. Results: The effects of elevated CO 2 concentration, temperature and invertebrate diversity were not additive, rather they interacted to determine MPB biomass, and overall this effect was negative. Diversity effects were underpinned by strong species composition effects, illustrating the importance of individual species identity. Conclusions: Overall, our findings suggest that in natural systems, the complex interactions between changing environmental conditions and any associated changes in invertebrate assemblage structure are likely to reduce MPB biomass. Furthermore, these effects would be sufficient to affect the net metabolic balance of the coastal ecosystem, with important implications for system ecology and sustainable exploitation.

Background:
Understanding the effects of anthropogenically-driven changes in global temperature, atmospheric
carbon dioxide and biodiversity on the functionality of marine ecosystems is crucial for predicting and managing
the associated impacts. Coastal ecosystems are important sources of carbon (primary production) to shelf waters
and play a vital role in global nutrient cycling. These systems are especially vulnerable to the effects of human
activities and will be the first areas impacted by rising sea levels. Within these coastal ecosystems, microalgal
assemblages (microphytobenthos: MPB) are vital for autochthonous carbon fixation. The level of
in situ
production
by MPB mediates the net carbon cycling of transitional ecosystems between net heterotrophic or autotrophic
metabolism. In this study, we examine the interactive effects of elevated atmospheric CO
2
concentrations (370, 600,
and 1000 ppmv), temperature (6°C, 12°C, and 18°C) and invertebrate biodiversity on MPB biomass in experimental
systems. We assembled communities of three common grazing invertebrates (
Hydrobia ulvae, Corophium volutator
and
Hediste diversicolor)
in monoculture and in all possible multispecies combinations. This experimental design
specifically addresses interactions between the selected climate change variables and any ecological consequences
caused by changes in species composition or richness.
Results:
The effects of elevated CO
2
concentration, temperature and invertebrate diversity were not additive, rather
they interacted to determine MPB biomass, and overall this effect was negative. Diversity effects were underpinned
by strong species composition effects, illustrating the importance of individual species identity.
Conclusions:
Overall, our findings suggest that in natural systems, the complex interactions between changing
environmental conditions and any associated changes in invertebrate assemblage structure are likely to reduce
MPB biomass. Furthermore, these effects would be sufficient to affect the net metabolic balance of the coastal
ecosystem, with important implications for system ecology and sustainable exploitation.

Year2013
JournalBMC Ecology
ISSN1472-6785
Digital Object Identifier (DOI)https://doi.org/10.1186/1472-6785-11-7
Web address (URL)http://hdl.handle.net/10545/292736
hdl:10545/292736
Publication dates24 May 2013
Publication process dates
Deposited24 May 2013, 14:21
Rights

Archived with thanks to BMC Ecology

File
File Access Level
Open
File
File Access Level
Open
File
File Access Level
Open
File
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/9293v/impact-of-biodiversity-climate-futures-on-primary-production-and-metabolism-in-a-model-benthic-estuarine-system

Download files

  • 20
    total views
  • 3
    total downloads
  • 2
    views this month
  • 1
    downloads this month

Export as

Related outputs

Biodiversity–production feedback effects lead to intensification traps in agricultural landscapes
Burian, A., Kremen, C., Shyan-Tau Wu, J., Beckmann, M., Bulling, M., Garibaldi, L., Krisztin, T., Mehrabi, Z., Ramankutty, N. and Seppelt, R. 2024. Biodiversity–production feedback effects lead to intensification traps in agricultural landscapes. Nature Ecology and Evolution. pp. 1-18. https://doi.org/10.1038/s41559-024-02349-0
The Effect of Pollen on Coral Health
Barker, T., Bulling, M., Thomas, V. and Sweet, M. 2023. The Effect of Pollen on Coral Health. Biology. 12 (12), pp. 1-12. https://doi.org/10.3390/biology12121469
Predation increases multiple components of microbial diversity in activated sludge communities.
Burian, A., Pinn, D., Peralta-Maraver, I., Sweet, M., Mauvisseau, Q., Eyice, O., Bulling, M., Röthig, T. and Kratina, P. 2022. Predation increases multiple components of microbial diversity in activated sludge communities. ISME. 16, p. 1086–1094. https://doi.org/10.1038/s41396-021-01145-z
Improving the reliability of eDNA data interpretation
Burian, Alfred, Mauvisseau, Quentin, Bulling, Mark, Domisch, Sami, Qian, Song and Sweet, Michael 2021. Improving the reliability of eDNA data interpretation. Molecular Ecology Resources. 21, p. 1422–1433.. https://doi.org/10.1111/1755-0998.13367
Species-Specific Variations in the Metabolomic Profiles of Acropora hyacinthus and Acropora millepora Mask Acute Temperature Stress Effects in Adult Coral Colonies
Sweet, Michael, Bulling, Mark, Varshavi, Dorsa, Lloyd, Gavin R., Jankevics, Andris, Najdekr, Lukáš, Weber, Ralf J. M., Viant, Mark R. and Craggs, J. 2021. Species-Specific Variations in the Metabolomic Profiles of Acropora hyacinthus and Acropora millepora Mask Acute Temperature Stress Effects in Adult Coral Colonies. Frontiers in Marine Science. 8. https://doi.org/10.3389/fmars.2021.574292
Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept
Michael Sweet, Mark Bulling and Burian, A. 2021. Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept. Elsevier BV. https://doi.org/10.31219/osf.io/gv6s7
Improving detection capabilities of a critically endangered freshwater invertebrate with environmental DNA using digital droplet PCR
Mauvisseau, Q., John Davy-Bowker, Mark Bulling, Rein Brys, Sabrina Neyrinck, Christopher Troth and Michael Sweet 2019. Improving detection capabilities of a critically endangered freshwater invertebrate with environmental DNA using digital droplet PCR. https://doi.org/10.1101/661447
Untangling the origin of ghost gear within the Maldivian archipelago and its impact on olive ridley (Lepidochelys olivacea) populations
Stelfox, M., Bulling, M and Sweet, M 2019. Untangling the origin of ghost gear within the Maldivian archipelago and its impact on olive ridley (Lepidochelys olivacea) populations. Endangered Species Research. 40, pp. 309-320. https://doi.org/10.3354/esr00990
Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease
Sweet, Michael, Burian, Alfred, Fifer, James, Bulling, Mark, Elliott, D. and Raymundo, Laurie 2019. Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease. Microbiome. 7 (1), pp. 1-14. https://doi.org/10.1186/s40168-019-0759-6
Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship
Craggs, Jamie, Guest, James, Bulling, Mark and Sweet, Michael 2019. Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship. Scientific Reports. 9 (12984), pp. 1-12. https://doi.org/10.1038/s41598-019-49447-9
Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate
Mauvisseau, Quentin, Davy-Bowker, John, Bulling, Mark, Brys, Rein, Neyrinck, Sabrina, Troth, Christopher and Sweet, Michael 2019. Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate. Scientific Reports. 9 (14064), pp. 1-9. https://doi.org/10.1038/s41598-019-50571-9
Post-feeding activity of Lucilia sericata (Diptera: Calliphoridae) on common domestic indoor surfaces and its effect on development.
Robinson, Louise, Bryson, David, Bulling, Mark T., Sparks, N. and Wellard, K. S. 2018. Post-feeding activity of Lucilia sericata (Diptera: Calliphoridae) on common domestic indoor surfaces and its effect on development. Forensic Science International. https://doi.org/10.1016/j.forsciint.2018.03.010
Effects of environmental temperature on oviposition behavior in three blow fly species of forensic importance
Ody, Helen, Bulling, Mark T. and Barnes, Kate M. 2017. Effects of environmental temperature on oviposition behavior in three blow fly species of forensic importance. Forensic Science International. https://doi.org/10.1016/j.forsciint.2017.03.001
Nocturnal oviposition behavior of forensically important Diptera in Central England
Barnes, Kate M., Grace, Karon A. and Bulling, Mark T. 2015. Nocturnal oviposition behavior of forensically important Diptera in Central England. Journal of Forensic Sciences. https://doi.org/10.1111/1556-4029.12841
Microbial effects on the development of forensically important blow fly species
Crooks, Esther R., Bulling, Mark T. and Barnes, Kate M. 2016. Microbial effects on the development of forensically important blow fly species. Forensic Science International. https://doi.org/10.1016/j.forsciint.2016.05.026
Designer reefs and coral probiotics; great concepts but are they good practice?
Sweet, M., Ramsey, A. and Bulling, M. 2017. Designer reefs and coral probiotics; great concepts but are they good practice? Biodiversity. https://doi.org/10.1080/14888386.2017.1307786
Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera
Sweet, Michael J., Brown, Barbara E., Dunne, Richard P., Singleton, Ian and Bulling, Mark T. 2017. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs. https://doi.org/10.1007/s00338-017-1572-y
On the importance of the microbiome and pathobiome in coral health and disease
Sweet, M. and Bulling, M. 2017. On the importance of the microbiome and pathobiome in coral health and disease. Frontiers in Marine Sciences. https://doi.org/10.3389/fmars.2017.00009
New disease outbreak affects two dominant sea urchin species associated with Australian temperate reefs
Sweet, M. and Bulling, M. 2016. New disease outbreak affects two dominant sea urchin species associated with Australian temperate reefs. Marine Ecological Progress Series. https://doi.org/10.3354/meps11750
Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes
Joseph M Cook, Arwyn Edwards, Bulling, M., Luis A J Mur, Sophie Cook, Jarishma K Gokul, Karen A Cameron, Sweet, M. and Tristram D L Irvine-Fynn 2016. Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. Environmental Microbiology. https://doi.org/10.1111/1462-2920.13349
Using model systems to address the biodiversity-ecosystem functioning process
Bulling, Mark T., White, Piran C. L., Raffaelli, D. and Pierce, Graham J. 2013. Using model systems to address the biodiversity-ecosystem functioning process.
How biodiversity affects ecosystem processes: implications for ecological revolutions and benthic ecosystem function
Solan, Martin, Batty, P., Bulling, Mark T. and Godbold, J. A. 2013. How biodiversity affects ecosystem processes: implications for ecological revolutions and benthic ecosystem function. Aquatic Biology. https://doi.org/10.3354/ab00058
Global patterns of bioturbation intensity and mixed depth of marine soft sediments
Teal, L. R., Bulling, Mark T., Parker, E. R. and Solan, Martin 2013. Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology. https://doi.org/10.3354/ab00052
Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity
Langenheder, Silke, Bulling, Mark T., Solan, Martin, Prosser, James I. and Bell, Thomas 2013. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLos ONE. https://doi.org/10.1371/journal.pone.0010834
Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity
Langenheder, Silke, Bulling, Mark T., Prosser, James I. and Solan, Martin 2013. Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity. BMC Ecology. https://doi.org/10.1186/1472-6785-12-14
Funding begets biodiversity
Ahrends, Antje, Burgess, Neil D., Gereau, Roy E., Marchant, Rob, Bulling, Mark T., Lovett, Jon C., Platts, Philip J., Kindemba, Victoria Wilkins, Owen, Nisha, Fanning, Eibleis and Rahbek, Carsten 2013. Funding begets biodiversity. Diversity and Distributions. https://doi.org/10.1111/j.1472-4642.2010.00737.x
Conservation and the botanist effect
Ahrends, Antje, Rahbek, Carsten, Bulling, Mark T., Burgess, Neil D., Platts, Philip J., Lovett, Jon C., Kindemba, Victoria Wilkins, Owen, Nisha, Sallu, Albert Ntemi and Marshall, Andrew R. 2013. Conservation and the botanist effect. Biological Conservation. https://doi.org/10.1016/j.biocon.2010.08.008
Habitat structure mediates biodiversity effects on ecosystem properties
Godbold, J. A., Bulling, Mark T. and Solan, Martin 2013. Habitat structure mediates biodiversity effects on ecosystem properties. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2010.2414
Permeability of intertidal sandflats: impact of temporal variability on sediment metabolism
Zetzche, E., Bulling, Mark T. and Witte, U. 2013. Permeability of intertidal sandflats: impact of temporal variability on sediment metabolism.
Modelling the impact of vaccination on tuberculosis in badgers.
Hardstaff, Joanne L., Bulling, Mark T., Marion, Glenn, Hutchings, Michael R. and White, Piran C. L. 2013. Modelling the impact of vaccination on tuberculosis in badgers. Epidemiology and infection. https://doi.org/10.1017/S0950268813000642
Indirect effects of non-lethal predation on bivalve activity and sediment reworking
Maire, O., Merchant, J. N., Bulling, Mark T., Teal, L. R., Grémare, A., Duchêne, J. C. and Solan, Martin 2013. Indirect effects of non-lethal predation on bivalve activity and sediment reworking. Journal of Experimental Marine Biology and Ecology. https://doi.org/10.1016/j.jembe.2010.08.004
Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city
Ahrends, Antje, Burgess, Neil D., Milledge, Simon A. H., Bulling, Mark T., Fisher, Brendan, Smart, James C. R., Clarke, G. P., Mhoro, Boniface E. and Lewis, Simon L. 2013. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0914471107
Geographical variation in the response to nitrogen deposition in Arabidopsis lyrata petraea.
Vergeer, Philippine, van den Berg, Leon L. J., Bulling, Mark T., Ashmore, Mike R. and Kunin, William E. 2008. Geographical variation in the response to nitrogen deposition in Arabidopsis lyrata petraea. The new phytologist. https://doi.org/10.1111/j.1469-8137.2008.02445.x
Marine biodiversity-ecosystem functions under uncertain environmental futures
Bulling, Mark T., Hicks, Natalie, Murray, L., Paterson, David M., Raffaelli, D., White, Piran C. L. and Solan, Martin 2013. Marine biodiversity-ecosystem functions under uncertain environmental futures. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2010.0022
Species effects on ecosystem processes are modified by faunal responses to habitat composition.
Bulling, Mark T., Solan, Martin, Dyson, Kirstie E., Hernandez-Milian, Gema, Luque, Patricia, Pierce, Graham J., Raffaelli, D., Paterson, David M. and White, Piran C. L. 2008. Species effects on ecosystem processes are modified by faunal responses to habitat composition. Oecologia. https://doi.org/10.1007/s00442-008-1160-5
Influence of macrofaunal assemblages and environmental heterogeneity on microphytobenthic production in experimental systems
Dyson, Kirstie E., Bulling, Mark T., Solan, Martin, Hernandez-Milian, Gema, Raffaelli, D., White, Piran C. L. and Paterson, David M. 2013. Influence of macrofaunal assemblages and environmental heterogeneity on microphytobenthic production in experimental systems. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2007.0922
Quantifying individual feeding variability: implications for mollusc feeding experiments
Hanley, M. E., Bulling, Mark T. and Fenner, M. 2013. Quantifying individual feeding variability: implications for mollusc feeding experiments.
Dirichlet neighbours: revisiting Dirichlet tessellation for neighbourhood analysis
Halls, P. J., Bulling, Mark T., White, Piran C. L., Garland, Lynette and Harris, S. 2013. Dirichlet neighbours: revisiting Dirichlet tessellation for neighbourhood analysis.
Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations
Hardstaff, Joanne L., Bulling, Mark T., Marion, Glenn, Hutchings, Michael R. and White, Piran C. L. 2013. Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations. BMC Veterinary Research. https://doi.org/10.1186/1746-6148-8-92