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Abstract It is well-known that all local minimum points of a semistrictly quasi-
convex real-valued function are global minimum points. Also, any local maximum
point of an explicitly quasiconvex real-valued function is a global minimum point,
provided that it belongs to the intrinsic core of the function’s domain. The aim
of this paper is to show that these “local min - global min” and “local max -
global min” type properties can be extended and unified by a single general local-
global extremality principle for certain generalized convex vector-valued functions
with respect to two proper subsets of the outcome space. For particular choices
of these two sets, we recover and refine several local-global properties known in
the literature, concerning unified vector optimization (where optimality is defined
with respect to an arbitrary set, not necessarily a convex cone) and, in particular,
classical vector/multicriteria optimization.
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1 Introduction

Generalized convex functions play an important role in optimization, variational
inequalities, equilibrium problems, game theory, and other variational problems
(see, e.g., Luc [23], Göpfert et al. [16], Cambini and Martein [8] and Jahn [20]).

Among many types of generalized convex functions known in the literature,
the semistrictly quasiconvex functions and, in particular, the explicitly quasiconvex
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ones are of special interest, as they preserve some fundamental properties of convex
functions. For real-valued functions it is known that:

• the semistrict quasiconvexity ensures the “local min - global min” property,
i.e., every local minimum point is a global minimum point (see, e.g., Ponstein [25]);

• the explicit quasiconvexity ensures a “local max - global min” property, namely
every local maximum point is a global minimum point if it belongs to the intrinsic
core of the function’s domain (see, e.g., Bagdasar and Popovici [2]).

The “local min - global min” property has been extended for different classes
of generalized convex vector-valued functions, with respect to a convex cone C of
the outcome space Y , in the context of vector optimization (see, e.g., Jahn and
Sachs [21], Luc and Schaible [24], Cambini and Martein [8], Jahn [20], Bagdasar
and Popovici [3]). A more general “local min - global min” type property was
obtained by Flores-Bazán and Vera [15] for semistrictly (K)-quasiconvex vector
functions in the framework of unified vector optimization, where the optimality is
defined with respect to any proper subset K of Y (not necessarily a cone).

Some vectorial counterparts of the “local max - global min” property have been
obtained by us in [3] for componentwise explicitly quasiconvex functions taking
values in the Euclidean space Rm, partially ordered by the standard cone C = Rm

+ ,
in terms of (ideal; weak) minimality. A natural question is whether the “local max
- global min” property can be extended for certain classes of generalized convex
functions taking values in a real topological linear space Y , with respect to a
convex cone C or an arbitrary set K.

In this paper we give a positive answer to this question and, even more, we show
that all “local min - global min” type and “local max - global min” type properties
can be unified into a single general local-global extremality principle. To this aim,
we consider algebraic (and, in particular, topological) local extremal points and we
introduce novel concepts of generalized convexity for vector-valued functions, with
respect to two arbitrary sets K1,K2 ⊆ Y . In particular, when K1 = ±K2 = K, we
recover or refine several local-global extremal properties known in the literature.

The paper is organized as follows. In Section 2, after recalling some notions
and results of convex analysis, we introduce the new concept of algebraic local
K-extremality for vector functions with respect to a set K, which represents an
algebraic counterpart of a similar (topological) concept introduced by Flores-Bazán
and Hernández [13] within unified vector optimization. Then we review several
important classes of generalized convex scalar or vector functions, known to possess
“local min - global min” and/or “local max - global min” type properties in scalar
optimization (Propositions 2 and 3), in unified vector optimization with respect
to a set K (Proposition 4), and in vector/multicriteria optimization with respect
to a convex cone C (Propositions 5, 6, 7 and 8).

In order to generalize and unify these local-global extremality properties, in
Section 3 we introduce new concepts of generalized convexity for vector-valued
functions with respect to two arbitrary sets K1,K2 ⊆ Y , namely: the semistrict
and explicit (K1,K2)-quasiconvexity, the unidirectional (K1,K2)-quasiconvexity
(in particular the unidirectional (K)-quasiconvexity, obtained for K = K1 = −K2),
and the bidirectional (K1,K2)-quasiconvexity. Among other results, we establish
relationships between these new concepts and also illustrate how are they related
to those presented in the previous section or to other known concepts, as for
instance the (P,Q)-quasiconvexity proposed by Cambini, Luc and Martein [7].
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Section 4 contains our main results. Theorem 9 represents a general local-
global extremality principle for bidirectional (K1,K2)-quasiconvex vector-valued
functions, which encompasses both “local min - global min” type properties (when
K1 = K2) and “local max - global min” type properties (when K1 = −K2). Two
of its consequences, namely Theorems 10 and 11, also provide general local-global
extremality properties, for unidirectional (K1,K2)-quasiconvex and semistrictly
(K1,K2)-quasiconvex functions, respectively. These general results can be applied
to unified vector optimization, letting K1 = ±K2 = K. Indeed, we derive “local
min - global min” type properties (Theorems 12 and 13) and “local max - global
min” type properties (Theorems 14 and 15). In particular, when Y is partially
ordered by a solid convex cone, C, which is not a linear subspace, by letting
K ∈ {−Cc, C \ `(C), corC} we obtain new “local min - global min” type properties
(Corollaries 6 and 7) and “local max - global min” type properties (Corollaries 8,
9, 10 and 11).

Section 5 contains concluding remarks concerning further possible extensions
of our results to appropriate classes of generalized convex set-valued functions with
respect to variable ordering structures.

2 Preliminaries

2.1 Generalized interiority concepts

Given a real topological linear space E, we represent its origin by 0E . For any points
u, v ∈ E, we denote [u, v] = {u+ t(v− u) | t ∈ [0, 1]}, ]u, v] = [v, u[ = [u, v] \ {u} and
]u, v[ = ]u, v] \ {v}. Also, for any sets A,B ⊆ E and T ⊆ R, we use the notations
A ± B = {x ± y | (x, y) ∈ A × B}, v ± A = {v} ± A, T · A = {tx | (t, x) ∈ T × A},
T ·v = T ·{v} and −A = {−1}·A. By Ac, spanA and intA we denote the complement
(w.r.t. E), the linear hull and the (topological) interior of A, respectively. Recall
that the core (algebraic interior) and the intrinsic core (relative algebraic interior)
of A are defined by (see, e.g., Holmes [19]):

corA = {x ∈ A | ∀ y ∈ E, ∃ δ > 0 : [x, x+ δy] ⊆ A},
icrA = {x ∈ A | ∀ y ∈ span(A−A), ∃ δ > 0 : [x, x+ δy] ⊆ A}.

Following Adán and Novo [1], we say that a set A is solid if corA 6= ∅, and
relatively solid if icrA 6= ∅, respectively.

Remark 1 a) We always have

intA ⊆ corA ⊆ icrA.

b) If A is solid, then span(A−A) = E hence corA = icrA (cf. Zălinescu [28, p. 3]).

Whenever A is convex, i.e., [x, y] ⊆ A for all x, y ∈ A, more interesting properties
hold. We recall two of them in the next result.

Proposition 1 (Support Theorem in [19] and Thm. 1.1.2 (v) in [28]) Let A ⊆ E
be a convex set. The following assertions hold:

1◦ If A is relatively solid and v ∈ (icrA)c, then there exists a linear functional

` : E → R such that `(u) > `(v) for all u ∈ icrA.

2◦ If intA 6= ∅, then intA = corA.
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For any point x ∈ E, we denote the family of its neighborhoods by

V(x) = {V ⊆ E | x ∈ intV }.

Usually in both scalar and vector optimization, local optimal solutions are defined
by means of neighborhoods. However, it is also possible to define local optimality
by an algebraic approach (see, e.g., Jahn [20]). In order to adapt this approach for
unified vector optimization, it will be convenient to consider the family

U(x) = {U ⊆ E | x ∈ corU}.

By a classical argument in functional analysis we have

V(x) = {x+ V | V ∈ V(0E)} ⊆ U(x). (1)

Also, it is easily seen that

U1 ∩ U2 ∈ U(x), ∀U1, U2 ∈ U(x). (2)

2.2 K-extremal points

A very interesting topic in vector optimization is to unify several classical concepts
of optimality (usually defined by means of an ordering cone) via a general notion
of optimality (see, e.g., Flores-Bazán and Hernández [13], Gutiérrez, Jiménez and
Novo [17], and Gutiérrez et al. [18]).

Let X and Y be two real topological linear spaces, Y 6= {0Y }. Following the
unifying approach proposed by Flores-Bazán and Hernández [13], we introduce
some concepts of generalized optimality for functions defined on a nonempty set
D ⊆ X with values in Y , with respect to a proper set K ⊆ Y , i.e., ∅ 6= K 6= Y .

Definition 1 Given a function f : D → Y , for any nonempty set S ⊆ D we denote

K-Ext(f | S) = {x0 ∈ S | @x ∈ S \ {x0} : f(x0)− f(x) ∈ K}. (3)

An element x0 ∈ D is called:

• global K-extremal point of f , if x0 ∈ K-Ext(f | D);
• topological local K-extremal point of f , if there exists a neighborhood V ∈ V(x0)

such that x0 ∈ K-Ext(f | V ∩D);
• algebraic local K-extremal point of f , if there exists a set U ∈ U(x0) such that
x0 ∈ K-Ext(f | U ∩D).

Remark 2 a) The terminology proposed by us in Definition 1 is slightly different
from the one introduced by Flores-Bazán and Hernández in [13]. More precisely,
since (3) can be rewritten as

K-Ext(f | S) = {x0 ∈ S | f(x)− f(x0) ∈ −Kc, ∀x ∈ S \ {x0}},

the global K-extremal points and topological local K-extremal points correspond
to the “global −Kc-minimizers” and “local −Kc-minimizers”, respectively, while
algebraic local K-extremal points have no correspondent in [13].
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b) If 0Y /∈ K, then (3) reduces to

K-Ext(f | S) = {x0 ∈ S | f(x)− f(x0) ∈ −Kc, ∀x ∈ S},

= {x0 ∈ S | @x ∈ S : f(x0)− f(x) ∈ K}.

c) If S ⊆ S̃ ⊆ D and K ⊆ K̃ ⊆ Y are nonempty sets, with K̃ 6= Y , then we have

K̃-Ext(f | S̃) ∩ S ⊆ K-Ext(f | S).

d) If K1 and K2 are proper subsets of Y , such that K1 ∪K2 6= Y , then

K1-Ext(f | S) ∩K2-Ext(f | S) = (K1 ∪K2)-Ext(f | S).

In particular, if K1 ∪K2 = Y \ {0Y }, i.e., Kc
1 ∩Kc

2 = {0Y }, it follows by b) that
for any x0 ∈ S the following equivalence holds true:

x0 ∈ K1-Ext(f | S) ∩K2-Ext(f | S) ⇔ f is constant on S.

The following two examples illustrate classical optimality concepts which can
be recovered from Definition 1 for particular choices of K, in scalar and vector
optimization, respectively.

Example 1 In the framework of scalar optimization, where Y = R, we obtain the
classical notions of optimality as follows. Consider a function f : D → R.

a) If K = R∗+ = ]0,∞[, then for any set S ⊆ D relation (3) becomes

K-Ext(f | S) = argmin
x∈S

f(x) := {x0 ∈ S | f(x0) ≤ f(x), ∀x ∈ S},

hence an element x0 ∈ D is a (global, topological/algebraic local) K-extremal point
if and only if x0 is a (global, topological local, algebraic local) minimum point.

b) If K = R∗− = ]−∞, 0[, then for any set S ⊆ D we have

K-Ext(f | S) = argmax
x∈S

f(x) := {x0 ∈ S | f(x0) ≥ f(x), ∀x ∈ S},

hence x0 ∈ D is a (global, topological/algebraic local) K-extremal point if and
only if x0 is a (global, topological local, algebraic local) maximum point.

Example 2 In the framework of vector optimization (see, e.g., Luc [23] and Jahn
[20]), the real topological linear space Y is partially ordered by a convex cone
C ⊆ Y (i.e., 0Y ∈ C = R+ · C = C + C). More precisely, C induces on Y an order
relation 5C defined for any y′, y′′ ∈ Y by

y′ 5C y′′ ⇔ y′′ − y′ ∈ C.

When C 6= `(C) := C ∩ (−C), we also consider the binary relation ≤C given by

y′ ≤C y′′ ⇔ y′′ − y′ ∈ C \ `(C).

In particular, if C 6= `(C) is solid, a third binary relation <C is usually defined by

y′ <C y′′ ⇔ y′′ − y′ ∈ corC.

Consider a vector-valued function f : D → Y .
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a) By choosing K ∈ {Cc, (−C) \ `(C),−corC}, we recover from K-extremality
three well-known concepts of minimality, as follows.
• Letting K = (−C)c, for any S ⊆ D relation (3) becomes

K-Ext(f | S) = {x0 ∈ S | f(x0) 5C f(x), ∀x ∈ S},

hence x0 ∈ D is a (global, topological/algebraic local) K-extremal point of f if
and only if it is a (global, topological/algebraic local) ideal C-minimal point of f .
• Assume that C 6= `(C) and let K = C \ `(C). Then, for any S ⊆ D, we have

K-Ext(f | S) = {x0 ∈ S | @x ∈ S : f(x) ≤C f(x0)},

hence x0 ∈ D is a (global, topological/algebraic local) K-extremal point of f if
and only if it is a (global, topological/algebraic local) C-minimal point of f .
• Assume that C 6= `(C) is solid and let K = corC. Then, for any S ⊆ D,

K-Ext(f | S) = {x0 ∈ S | @x ∈ S : f(x) <C f(x0)},

hence x0 ∈ D is a (global, topological/algebraic local) K-extremal point of f if
and only if it is (global, topological/algebraic local) weakly C-minimal point of f .

b) By choosing K ∈ {Cc, (−C)\`(C),−corC}, i.e., by letting −C in the role of C
in a), we recover the corresponding concepts of ideal C-maximality, C-maximality,
and weak C-maximality, currently used in vector optimization.

Remark 3 a) Besides the concepts of C-minimality and C-maximality presented in
Example 2, some other optimality notions can be also defined for suitable choices
of K, as shown by Flores-Bazán and Hernández [13], Gutiérrez, Jiménez and Novo
[17], and Gutiérrez et al. [18].

b) Weakly C-minimal points, as well as weakly C-maximal points, may also be
defined by means of icrC instead of corC, when C is relatively solid but not solid
(see, e.g., Adán and Novo [1]) or by other generalized interiors (see, e.g., Borwein
and Lewis [5], or Boţ and Csetnek [6]).

Remark 4 a) Global K-extremality implies topological local K-extremality. Note
also that, in the particular case when X is endowed with the indiscrete topology
{∅, X}, the concepts of topological local K-extremality and global K-extremality
actually coincide.

b) By (1), topological localK-extremality implies algebraic localK-extremality.
However, the converse is not true, as shown by the following example.

Example 3 Let X = R2 be endowed with the Euclidean topology, let Y = R be
equipped with the usual topology and K = R∗+. Define f : D = R2 → R as

f(x) =

{
1 if x ∈ U
0 if x /∈ U,

i.e., the indicator function of the set

U = R2 \
{
x = (x1, x2) ∈ R2 | x1 > 0, (x1)2 > x2 > 0

}
.

Observe that x0 = (0, 0) ∈ argminx∈U∩D f(x). Since x0 ∈ corU , i.e., U ∈ U(x0),
it follows that x0 is an algebraic local minimum point of f . However, for every
V ∈ V(x0) we have minx∈V ∩D f(x) = 0 < f(x0), hence x0 /∈ argminx∈V ∩D f(x).
Therefore, x0 is not a topological local minimum point of f .
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We end this section with a technical result, which will be used in Section 4.

Lemma 1 Let K1 and K2 be proper subsets of Y , such that K1 ∪K2 6= Y . For any

x0 ∈ D the following assertions are equivalent:

1◦ x0 is an algebraic local Ki-extremal point of f , for both i ∈ {1, 2}.
2◦ x0 is an algebraic local (K1 ∪K2)-extremal point of f .

In particular, when K1 ∪K2 = Y \ {0Y }, these assertions are also equivalent to:

3◦ There exists U ∈ U(x0) such that f is constant on U ∩D.

Proof Assuming that 1◦ holds, we can find two sets U1, U2 ∈ U(x0) such that
x0 ∈ K1-Ext(f | U1∩D)∩K2-Ext(f | U2∩D). Letting U := U1∩U2, by (2) we have
U ∈ U(x0). Since x0 ∈ U ∩D ⊆ Ui ∩D, we can deduce by Remark 2 c) and d) that
x0 ∈ (K1 ∪K2)-Ext(f | U ∩D), hence x0 is an algebraic local (K1 ∪K2)-extremal
point of f . Thus 1◦ implies 2◦.

Conversely, assume that 2◦ holds. Then, there exists a set U ∈ U(x0) such that
x0 ∈ (K1 ∪ K2)-Ext(f | U ∩ D). Since Ki ⊆ K1 ∪ K2, it follows by Remark 2 c),
that x0 ∈ Ki-Ext(f | U ∩D) for any i ∈ {1, 2}, hence 1◦ holds.

Now, consider the particular case when K1 ∪K2 = Y \ {0Y }.
If 2◦ holds, then there is U ∈ U(x0) such that x0 ∈ (K1 ∪K2)-Ext(f | U ∩D),

hence f is constant on U ∩D, by Remark 2 d). Thus 2◦ implies 3◦.

Conversely, if 3◦ holds, then there is U ∈ U(x0) such that f(x) = f(x0), i.e.,
f(x0)−f(x) = 0Y /∈ K1∪K2, for any x ∈ U∩D. Hence x0 ∈ (K1∪K2)-Ext(f | U∩D),
and therefore 2◦ holds. ut

2.3 Semistrict/explicit quasiconvex real-valued functions

Let X be a real topological linear space and D ⊆ X a nonempty set. The following
definition recalls classical concepts of convex analysis.

Definition 2 Assuming that D is convex, a scalar function f : D → R is called:

• convex, if f(x′+ t(x′′−x′)) ≤ f(x′) + t[f(x′′)− f(x′)] for all x′, x′′ ∈ D, t ∈ [0,1];
• quasiconvex, if f(x) ≤ max{f(x′), f(x′′)} for any x′, x′′ ∈ D and x ∈ [x′, x′′];
• semistrictly quasiconvex, if f(x) < max{f(x′), f(x′′)} for any x′, x′′ ∈ D with
f(x′) 6= f(x′′) and x ∈ ]x′, x′′[.

• explicitly quasiconvex, if f is both quasiconvex and semistrictly quasiconvex.

Remark 5 The following properties concern scalar functions:

a) f is quasiconvex if and only if for any distinct points x′, x′′ ∈ D such that
f(x′) ≤ f(x′′) and any x ∈]x′, x′′[ we have f(x) ≤ f(x′′).

b) f is semistrictly quasiconvex if and only if for any distinct points x′, x′′ ∈ D
such that f(x′) < f(x′′) and any x ∈]x′, x′′[ we have f(x) < f(x′′).

c) Convex functions, as well as lower semicontinuous semistrictly quasiconvex
functions are explicitly quasiconvex.

d) There are quasiconvex functions which are not semistrictly quasiconvex
(see Example 4). Also, there are semistrictly quasiconvex functions which are not
quasiconvex (see Example 5).
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Example 4 Consider the function f : D = R→ R, defined for any x ∈ R by

f(x) = min{x, 0}.

This function is quasiconvex, as being monotone. However, it is not semistrictly
quasiconvex, since for x′ = −1 < x = 0 < x′′ = 1 we have f(x′) < f(x′′), but
f(x) ≥ f(x′′).

Remark 6 It is easily seen that every point x0 > 0 is a topological local minimum
point for function f defined in Example 4, but is not a global minimum point.
This happens because f is not semistrictly quasiconvex, as shown by the following
classical “local min - global min” property, due to Ponstein [25].

Proposition 2 (Thm. 2 in [25]) Let f : D → R be a semistrictly quasiconvex

function. A point x0 ∈ D is a topological local minimum point of f if and only if it is

a global minimum point.

Example 5 Let f : D = R→ R be defined by

f(x) =

{
1 if x = 0
0 if x 6= 0.

Function f is semistrictly quasiconvex, since whenever f(x′) < f(x′′) we actually
have x′ 6= 0 and x′′ = 0, hence f(x) < f(x′′) for any x ∈ ]x′, x′′[. However, f is not
quasiconvex, because f(0) 6≤ max{f(−1), f(1)}.

Remark 7 It is easily seen that x0 = 0 is a global maximum point for each of the
functions considered in Examples 4 and 5 (which are not explicitly quasiconvex!),
but is not a local minimum point. This phenomenon is explained by the following
“local max - global min” property, established by us in [2].

Proposition 3 (Thm. 3.1 in [2]) Assume that D is convex. Let f : D → R be an

explicitly quasiconvex function and let x0 ∈ icrD. If x0 is a topological local maximum

point of f , then x0 is a global minimum point.

2.4 Semistrictly/explicitly (K)-quasiconvex vector functions

Let X and Y be real topological linear spaces and let D ⊆ X and K ⊆ Y be
nonempty sets.

The following notions were proposed by Flores-Bazán and Vera [15] (where X
and Y were assumed to be real normed spaces) and also by Flores-Bazán in [12]
(in finite-dimensional spaces).

Definition 3 (Defs. 4.1 and 4.3 in [15]) Assume that D is convex and let x0 ∈ D.
A function f : D → Y is called:

• semistrictly (K)-quasiconvex at x0 if for any x′ ∈ D\{x0} with f(x0)−f(x′) ∈ K,
we have f(x0)− f(x) ∈ K for all x ∈ ]x0, x′[ ;

• explicitly (K)-quasiconvex at x0 if f is both semistrictly (K)-quasiconvex at x0

and semistrictly (−Kc)-quasiconvex at x0;
• semistrictly/explicitly (K)-quasiconvex on D if function f is semistrictly/explicitly

(K)-quasiconvex at every point of D.
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Remark 8 Since (−K)c = −Kc, a function f is explicitly (K)-quasiconvex at x0 if
and only if it is explicitly (−Kc)-quasiconvex at x0.

Example 6 a) When K is a convex cone, the semistrict (K)-quasiconvexity reduces
to the quasiconvexity (w.r.t. K) in the sense of Borwein [4, Def. 9] (see also Jahn
and Sachs [21, Def. 2.1]).

b) As shown by Flores-Bazán [12], for Y = R, the semistrict (K)-quasiconvexity
reduces to classical notions of generalized convexity for real-valued functions (see
Definition 2), namely quasiconvexity when K = R+, and semistrict quasiconvexity
when K = R∗+. On the other hand, the explicit (K)-quasiconvexity coincides with
the classical notion of explicit quasiconvexity for K = R∗+ as well as for K = R+.

Definition 4 Assume that D is convex. A function f = (f1, . . . , fm) : D → Rm is
called componentwise convex (quasiconvex ; semistrictly quasiconvex ; explicitly quasi-

convex) if f1, . . . , fm are convex (quasiconvex; semistrictly quasiconvex; explicitly
quasiconvex) in the sense of Definition 2.

In what follows we point out the relationship between the componentwise
semistrict/explicit quasiconvexity and the semistrict/explicit (K)-quasiconvexity.

Lemma 2 Assume that D is convex. If function f = (f1, . . . , fm) : D → Rm is

componentwise semistrictly quasiconvex, then it is semistrictly (K)-quasiconvex on D

for K ∈
{

(−Rm
+ )c, intRm

+

}
.

Proof When K = intRm
+ , the result was obtained by Flores-Bazán [12, p. 142] for

X = Rn, the proof being still valid for any real topological linear space X.
Now let K = (−Rm

+ )c. Consider any point x0 ∈ D. Let x′ ∈ D \ {x0} with
f(x0)− f(x′) ∈ (−Rm

+ )c and let x ∈ ]x0, x′[. Then, there is i ∈ {1, . . . ,m} such that
fi(x

′) < fi(x
0). As fi is semistrictly quasiconvex, we have fi(x) < fi(x

0), hence
f(x0)− f(x) ∈ (−Rm

+ )c. Thus f is semistrictly (K)-quasiconvex at x0. ut

Remark 9 For m ≥ 2 the converse of Lemma 2 does not hold, as shown by the
following two examples.

Example 7 Let f = (f1, f2) : D = [0, 1]→ R2 be defined by

f1(x) =

{
x if x ∈ [0, 1[
0 if x = 1,

f2(x) =

{
−x if x ∈ [0, 1[
1 if x = 1.

It is a simple exercise to show that function f is semistrictly (K)-quasiconvex on
D for K = (−R2

+)c. However, f is not componentwise semistrictly quasiconvex,
because f1 is not semistrictly quasiconvex.

Example 8 Let the function f : R→ R2 be defined by

f(x) = (x,min{0,−x}).

It was noticed by Flores-Bazán in [12, p. 142], that f is semistrictly (K)-quasiconvex
on D for K = intR2

+. However, f is not componentwise semistrictly quasiconvex,
since f2 is not semistrictly quasiconvex.
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Remark 10 For K = Rm
+ \ {0} and m ≥ 2, the semistrict (K)-quasiconvexity on D

and the componentwise semistrict quasiconvexity do not imply each other.
Indeed, it is easily seen that the function defined in Example 8 is semistrictly

(R2
+ \ {0})-quasiconvex on D, but not componentwise semistrictly quasiconvex.

A function which is componentwise semistrictly quasiconvex but not semistrictly
(R2

+ \ {0})-quasiconvex on D is provided in the example below.

Example 9 Let f = (f1, f2) : D = R→ R2 be defined by

f1(x) = x, f2(x) =

{
0 if x 6= 0
1 if x = 0.

Clearly, f is componentwise semistrictly quasiconvex. However, f is not semistrictly
(R2

+\{0})-quasiconvex at x0 = 1. Indeed, for x′ = −1 ∈ D\{x0} and x = 0 ∈ ]x0, x′[,
we have f(x0)− f(x′) = (2, 0) ∈ R2

+ \ {0} while f(x0)− f(x) = (1,−1) 6∈ R2
+ \ {0}.

Remark 11 A characterization of componentwise explicitly quasiconvex functions
was obtained by Popovici [27, Thm. 3.1] by means of an alternative concept of
explicit quasiconvexity for vector functions, which is not considered in our paper.

Theorem 1 Assume that D is convex. If function f = (f1, . . . , fm) : D → Rm is

componentwise explicitly quasiconvex, then it is explicitly (K)-quasiconvex on D for

every K ∈
{

(−Rm
+ )c, Rm

+ \ {0}, intRm
+

}
.

Proof Assume that f is componentwise explicitly quasiconvex and let x0 ∈ D.
For K = (−Rm

+ )c the semistrict (K)-quasiconvexity of f at x0 follows from
Lemma 2. In order to prove that f is semistrictly (−Kc)-quasiconvex at x0, observe
that (−K)c = Rm

+ and let x′ ∈ D \ {x0} with f(x0) − f(x′) ∈ Rm
+ and x ∈ ]x0, x′[.

Then, for any i ∈ {1, . . . ,m} we have fi(x
0) ≥ fi(x

′), which yields fi(x
0) ≥ fi(x),

by quasiconvexity of fi. This shows that f(x0)−f(x) ∈ Rm
+ . Hence, f is semistrictly

(−Kc)-quasiconvex at x0.
For K = Rm

+ \ {0} one has (−K)c = (−Rm
+ )c ∪ {0}. First we prove that f is

semistrictly (K)-quasiconvex at x0. Let x′ ∈ D \ {x0} with f(x0)− f(x′) ∈ K and
let x ∈ ]x0, x′[. We have fi(x

0) ≥ fi(x′) for all i ∈ {1, . . . ,m} and fj(x
0) > fj(x

′) for
some j ∈ {1, . . . ,m}. As fj is semistrictly quasiconvex we have fj(x

0) > fj(x). Also,
for all i ∈ {1, . . . ,m} we have fi(x

0) ≥ fi(x) by quasiconvexity of fi. Therefore we
have f(x0)− f(x) ∈ K. We conclude that f is semistrictly (K)-quasiconvex at x0.

Now we show that function f is semistrictly (−Kc)-quasiconvex at x0. Let
x′ ∈ D \ {x0} with f(x0)− f(x′) ∈ (−Rm

+ )c ∪{0} and let x ∈ ]x0, x′[. We distinguish
two cases. First, if f(x0) − f(x′) ∈ (−Rm

+ )c, then there is i ∈ {1, . . . ,m} such
that fi(x

0) > fi(x
′). As fi is semistrictly quasiconvex, we have fi(x

0) > fi(x),
so f(x0) − f(x) ∈ (−Rm

+ )c ⊆ (−K)c. Second, if f(x0) − f(x′) = 0, then for any
i ∈ {1, . . . ,m} we have fi(x

0) = fi(x
′), hence fi(x

0) ≥ fi(x) by quasiconvexity of
fi. This shows that f(x0)−f(x) ∈ Rm

+ ⊆ (−Rm
+ )c∪{0} = (−K)c. We conclude that

f is semistrictly (−Kc)-quasiconvex at x0.
For K = intRm

+ the result was established by Flores-Bazán when X = Rn in
[12, Thm. 5.3 (3)], the proof being valid for any real topological linear space X. ut

We now present a “local min - global min” type property for vector functions
obtained by Flores-Bazán and Hernández [14]. Here we reformulate it in the spirit
of Remark 2 a).
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Proposition 4 (Prop. 3.4 in [14]) Assume that D is convex. Let x0 ∈ D be a

topological local K-extremal point of a function f : D → Y . Then, x0 is a global

K-extremal point if and only if f is semistrictly (K)-quasiconvex at x0.

2.5 K-quasiconvex vector functions

An important concept of generalized convexity, which plays a key role in “local
min - global min” type properties, can be found in the monograph of Jahn [20]
(see also the earlier work of Jahn and Sachs [21]). We reformulate these properties
by adopting the terminology used in Remark 2 a) and Example 2 a). Let X and
Y be real topological linear spaces, and let D ⊆ X and K ⊆ Y be nonempty sets.

Definition 5 (Def. 7.11 in [20]) A vector-valued function f : D → Y is called
K-quasiconvex at x0 ∈ D if for any x′ ∈ D \ {x0} with f(x0) − f(x′) ∈ K there
is some x′′ ∈ D \ {x0} satisfying the following two conditions: ]x0, x′′] ⊆ D and
f(x0)−f(x) ∈ K for all x ∈ ]x0, x′′] (the first condition being superfluous, whenever
D is convex). We say that f is K-quasiconvex on D if it is K-quasiconvex at every
point of D.

Proposition 5 (Thm. 7.15 in [20]) Let C ⊆ Y be a convex cone, C 6= `(C). Assume

that x0 ∈ D is an algebraic local C-minimal point of a function f : D → Y . The

following assertions are equivalent:

1◦ x0 is a global C-minimal point of f .

2◦ f is C \ `(C)-quasiconvex at x0.

Proposition 6 (Thm. 7.16 in [20]) Let C ⊆ Y be a solid convex cone. Assume that

x0 ∈ D is an algebraic local weakly C-minimal point of a function f : D → Y . The

following assertions are equivalent:

1◦ x0 is a global weakly C-minimal point of f .

2◦ f is corC-quasiconvex at x0.

For ideal C-minimal points, we have established the following result.

Proposition 7 (Prop. 4.3 in [3] ) Let Y = Rm be endowed with the usual ordering

cone C = Rm
+ . Let x0 ∈ D be a topological local ideal C-minimal point of a function

f : D → Rm. The following assertions are equivalent:

1◦ x0 is a global ideal C-minimal point of f .

2◦ f is −Cc-quasiconvex at x0.

The following result summarizes three “local max - global min” type properties
for vector functions.

Proposition 8 (Thms. 4.6, 4.12 and 4.17 in [3]) Assume that D is convex. Let

Y = Rm be endowed with the usual ordering cone C = Rm
+ . Consider a componentwise

explicitly quasiconvex function f : D → Y and let x0 ∈ icrD. If x0 is a topological

local ideal C-maximal point of f (resp. topological local C-maximal, topological local

weakly C-maximal point of f), then it is a global ideal C-minimal point (resp. global

C-minimal, global weakly C-minimal point of f).
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3 New concepts of generalized convexity for vector functions

In this section we extend several notions of generalized convexity for vector-
valued functions that are known to play an important role in vector optimization.
Throughout we assume that X and Y are real topological linear spaces, while
D ⊆ X and K,K1,K2 ⊆ Y are nonempty sets.

3.1 Semistrictly/explicitly (K1,K2)-quasiconvex vector functions

Definition 6 We say that a function f : D → Y is semistrictly (K1,K2)-quasiconvex

at a point x0 ∈ D if its domain D is convex and for any x′ ∈ D \ {x0} with
f(x0)− f(x′) ∈ K1, we have f(x0)− f(x) ∈ K2 for all x ∈ ]x0, x′[ . If f satisfies this
property for every x0 ∈ D, then f is called semistrictly (K1,K2)-quasiconvex on D.

Remark 12 LettingK1 = K2 := K, the notion of semistrict (K1,K2)-quasiconvexity
recovers the semistrict (K)-quasiconvexity in the sense of Definition 3.

Besides the semistrictly (K)-quasiconvex functions, another class of generalized
convex vector functions known in the literature can be recovered from Definition 6,
as shown below.

Example 10 Consider the particular case when X = Rn and Y = Rm is partially
ordered by a solid closed convex cone C, such that C 6= `(C). By choosing K1 := P

and K2 := Q from among the sets C, intC and C \ l(C), we recover the concept of
(P,Q)-quasiconvexity (on D) introduced by Cambini, Luc and Martein [7].

Remark 13 Function f is semistrictly (K1,K2)-quasiconvex on D if and only if for
any distinct points x′, x′′ ∈ D and x0 ∈ ]x′, x′′[ we have

f(x′)− f(x′′) ∈ K1 ⇒ f(x′)− f(x0) ∈ K2.

Lemma 3 Let K1, K2 and K′1, K′2 be nonempty subsets of Y such that K1 ⊆ K′1 and

K′2 ⊆ K2. If D is convex and f : D → Y is semistrictly (K′1,K
′
2)-quasiconvex at some

point x0 ∈ D, then f is also semistrictly (K1,K2)-quasiconvex at x0.

Proof Assume that f is semistrictly (K′1,K
′
2)-quasiconvex at x0. Consider any point

x′ ∈ D \ {x0} such that f(x0) − f(x′) ∈ K1. Then f(x0) − f(x′) ∈ K′1, since
K1 ⊆ K′1. As the function is semistrictly (K′1,K

′
2)-quasiconvex at x0, we have

f(x0) − f(x) ∈ K′2 ⊆ K2 for all x ∈ ]x0, x′[ . Therefore, function f is semistrictly
(K1,K2)-quasiconvex at x0. ut

Definition 7 Assume that D is convex and let x0 ∈ D. We say that f : D → Y is
explicitly (K1,K2)-quasiconvex at x0 if f is both semistrictly (K1,K2)-quasiconvex
and semistrictly (−Kc

2,−Kc
1)-quasiconvex at x0. When this property holds for

every x0 ∈ D we say that f is explicitly (K1,K2)-quasiconvex on D.

Remark 14 Clearly, a function f is explicitly (K1,K2)-quasiconvex at x0 if and
only if it is explicitly (−Kc

2,−Kc
1)-quasiconvex at x0.

The next example shows that two well-known generalized convexity concepts
can be seen as particular instances of Definition 7.
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Example 11 a) By considering K1 = K2 = K we recover the notion of explicit
(K)-quasiconvexity (see Definition 3).

b) For Y = R and K1 = K2 = R+ (or alternatively, K1 = K2 = R∗+) we obtain
the classical notion of explicit quasiconvexity of scalar functions (see Definition 2).

Remark 15 Function f is semistrictly (−Kc
2,−Kc

1)-quasiconvex on D if and only if
for any distinct points x′, x′′ ∈ D and x0 ∈ ]x′, x′′[ we have

f(x0)− f(x′) ∈ K1 ⇒ f(x′′)− f(x′) ∈ K2.

Proposition 9 Let K2 ⊆ K ⊆ K1 be nonempty subsets of Y . Assume that D is convex

and let f : D → Y . The following assertions hold:

1◦ If function f is semistrictly (K)-quasiconvex at x0, then it is also semistrictly

(K2,K1)-quasiconvex at x0.

2◦ If function f is semistrictly (K1,K2)-quasiconvex at x0, then it is semistrictly

(K)-quasiconvex at x0, hence semistrictly (K2,K1)-quasiconvex at x0.

3◦ If f is explicitly (K1,K2)-quasiconvex at x0, then it is explicitly (K)-quasiconvex

at x0, hence also explicitly (K2,K1)-quasiconvex at x0.

Proof 1◦ and 2◦ follow from Lemma 3, while the proof of 3◦ is based on the
inclusions −Kc

1 ⊆ −Kc ⊆ −Kc
2. ut

Theorem 2 Let f : D → Y be a function defined on the nonempty convex set D.

Assume that one of the following three conditions is fulfilled:

(A1) f is explicitly (K1,K2)-quasiconvex and semistrictly (K2)-quasiconvex on D;

(A2) K2 ⊆ K1 and f is explicitly (K1,K2)-quasiconvex on D;

(A3) K1 ⊆ K2 and f is explicitly K2-quasiconvex on D.

Then, for any distinct points x′, x′′ ∈ D and x0 ∈ ]x′, x′′[ such that f(x0)−f(x′) ∈ K1,

the following two relations hold:

f(x0)− f(u) ∈ K2 for all u ∈ ]x′, x0[ ;

f(x0)− f(v) ∈ −K2 for all v ∈ ]x0, x′′[.

Proof First notice that (A2)⇒ (A1) and (A3)⇒ (A1) by Proposition 9. Therefore
it suffices to assume that (A1) holds.

Let x′, x′′ ∈ D, x′ 6= x′′, and let x0 ∈ ]x′, x′′[ such that f(x0) − f(x′) ∈ K1.
Consider u ∈ ]x′, x0[ and v ∈ ]x0, x′′[ . The relation f(x0) − f(u) ∈ K2 follows by
the semistrict (K1,K2)-quasiconvexity of f at x0. We then prove that

f(x′)− f(v) ∈ −K2. (4)

Suppose to the contrary that this is not true, i.e., f(x′) − f(v) ∈ −Kc
2. Since

x0 ∈ ]x′, v[ and f is semistrictly (−Kc
2,−Kc

1)-quasiconvex at x′, it follows that
f(x′)−f(x0) ∈ −Kc

1. Equivalently, this writes as f(x0)−f(x′) ∈ Kc
1, a contradiction.

Hence, (4) holds, which means that f(v)−f(x′) ∈ K2. As function f is semistrictly
(K2)-quasiconvex at v and x0 ∈ ]x′, v[, we conclude that f(v) − f(x0) ∈ K2, i.e.,
f(x0)− f(v) ∈ −K2. ut



14 Ovidiu Bagdasar, Nicolae Popovici

Corollary 1 Let f : D → Y be a function defined on the nonempty convex set D.

Assume that one of the following three conditions is fulfilled:

(B1)f is explicitly (K1,K2)-quasiconvex and semistrictly (−K1
c)-quasiconvex on D;

(B2) K2 ⊆ K1 and f is explicitly (K1,K2)-quasiconvex on D;

(B3) K1 ⊆ K2 and f is explicitly (K1)-quasiconvex on D.

Then, for any distinct points x′, x′′ ∈ D and x0 ∈ ]x′, x′′[ with f(x0) − f(x′) ∈ −Kc
2,

the following two relations hold:

f(x0)− f(u) ∈ −Kc
1 for all u ∈ ]x′, x0[ ;

f(x0)− f(v) ∈ Kc
1 for all v ∈ ]x0, x′′[.

Proof Follows by Theorem 2, for the sets −Kc
2 and −Kc

1 in the role K1 and K2, in
view of Remark 14. ut

Corollary 2 Assume that D is convex. If f : D → Y is explicitly (K)-quasiconvex on

D, then for any distinct points x′, x′′ ∈ D and x0 ∈ ]x′, x′′[ the following hold:

1◦ If f(x0)− f(x′) ∈ K, then we have

f(x0)− f(u) ∈ K for all u ∈ ]x′, x0[ ;

f(x0)− f(v) ∈ −K for all v ∈ ]x0, x′′[.

2◦ If f(x0)− f(x′) ∈ −Kc, then we have

f(x0)− f(u) ∈ −Kc for all u ∈ ]x′, x0[ ;

f(x0)− f(v) ∈ Kc for all v ∈ ]x0, x′′[.

Proof Letting K1 = K2 = K, assertion 1◦ follows by Theorem 2, while assertion
2◦ follows by Corollary 1. ut

Remark 16 Consider the particular framework where Y = R and K = R∗+. Let
f : D → R be explicitly quasiconvex and let x′, x0, x′′ be distinct points in D with
x0 ∈ ]x′, x′′[. For any u ∈ ]x′, x0[ and v ∈ ]x0, x′′[ the following implications hold

f(x′) < f(x0)⇒ f(u) < f(x0) < f(v),

f(x′) = f(x0)⇒ f(u) ≤ f(x0) ≤ f(v),

according to assertions 1◦ and 2◦ in Corollary 2, respectively.

3.2 Unidirectional (K1,K2)-quasiconvex vector functions

Definition 8 We say that function f : D → Y is unidirectional (K1,K2)-quasiconvex

at a point x0 ∈ D if for any x′, x′′ ∈ D \ {x0} with x0 ∈ ]x′, x′′[, f(x0)− f(x′) ∈ K1

entails f(x0) − f(x′′) ∈ K2. If f satisfies this property for all x0 ∈ D, then f is
called unidirectional (K1,K2)-quasiconvex on D.
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Remark 17 a) f is unidirectional (K1,K2)-quasiconvex at x0 if and only if it is
unidirectional (Kc

2,K
c
1)-quasiconvex at x0. Indeed, for all distinct points x′, x′′ ∈ D

with x0 ∈ ]x′, x′′[, the implication
[
f(x0) − f(x′) ∈ K1 ⇒ f(x0) − f(x′′) ∈ K2

]
is

equivalent to the following one:
[
f(x0)− f(x′′) ∈ Kc

2 ⇒ f(x0)− f(x′) ∈ Kc
1

]
.

b) f is unidirectional (K1,K2)-quasiconvex on D if and only if for any distinct
points x′, x′′ ∈ D and x0 ∈ ]x′, x′′[ we have

f(x0)− f(x′) ∈ K1 ⇒ f(x0)− f(x′′) ∈ K2.

Theorem 3 Assume that D is convex and K2 ⊆ K1. If f : D → Y is explicitly

(K1,K2)-quasiconvex on D, then it is unidirectional (K1,−K2)-quasiconvex on D.

Proof Follows from Theorem 2 under the assumption (A2). Indeed, let x0 ∈ D.
Then, for any x′, x′′ ∈ D \ {x0} such that x0 ∈ ]x′, x′′[ and f(x0) − f(x′) ∈ K1 we
have f(x0) − f(v) ∈ −K2, for all v ∈ ]x0, x′′]. In particular, for v = x′′ we infer
f(x0)− f(x′′) ∈ −K2. ut

Theorem 4 Assume that D is convex and K2 + K1 ⊆ K2. If a function f : D → Y

is unidirectional (K1,−K2)-quasiconvex on D, then it is semistrictly (−Kc
2,−Kc

1)-

quasiconvex on D. Also, if f is both semistrictly (K1,K2)-quasiconvex and unidirec-

tional (K1,−K2)-quasiconvex on D, then it is explicitly (K1,K2)-quasiconvex on D.

Proof Let x′, x′′ ∈ D be distinct points and x0 ∈ ]x′, x′′[ with f(x0) − f(x′) ∈ K1.
By Remark 15, we just have to prove that f(x′′)−f(x′) ∈ K2. To this end, in view
of Remark 17 b), by the unidirectional (K1,−K2)-quasiconvexity of f at x0, one
obtains f(x′′)− f(x0) ∈ K2. Since K2 +K1 ⊆ K2, we deduce that

f(x′′)− f(x′) =
[
f(x′′)− f(x0)

]
+
[
f(x0)− f(x′)

]
∈ K2,

hence f is semistrictly (−Kc
2,−Kc

1)-quasiconvex. If in addition, f is also semistrictly
(K1,K2)-quasiconvex, then it is explicitly (K1,K2)-quasiconvex. ut

3.3 Unidirectional (K)-quasiconvex vector functions

Definition 9 A function f : D → Y is unidirectional (K)-quasiconvex at a point

x0 ∈ D if it is unidirectional (K,−K)-quasiconvex at x0, i.e., for any distinct points
x′, x′′ ∈ D such that x0 ∈ ]x′, x′′[, f(x0) − f(x′) ∈ K entails f(x0) − f(x′′) ∈ −K.
We call f unidirectional (K)-quasiconvex on D if this property holds for all x0 ∈ D.

Theorem 5 A function f : D → Y is unidirectional (K)-quasiconvex at x0 if and

only if it is unidirectional (−Kc)-quasiconvex at x0.

Proof Indeed, for any distinct points x′, x′′ ∈ D with x0 ∈ ]x′, x′′[, the implication

f(x0)− f(x′) ∈ K ⇒ f(x0)− f(x′′) ∈ −K

is equivalent to the following one:

f(x0)− f(x′′) ∈ −Kc ⇒ f(x0)− f(x′) ∈ −(−Kc),

hence the conclusion is straightforward. ut
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Proposition 10 Assume that D is convex and consider a function f : D → Y . The

following characterizations hold:

1◦ f is semistrictly (K)-quasiconvex on D if and only if for all distinct points

x′, x′′ ∈D and x0 ∈ ]x′, x′′[ we have

f(x′)− f(x′′) ∈ K ⇒ f(x′)− f(x0) ∈ K.

2◦ f is semistrictly (−Kc)-quasiconvex on D if and only if for any distinct points

x′, x′′ ∈ D and x0 ∈ ]x′, x′′[ we have

f(x0)− f(x′) ∈ K ⇒ f(x′′)− f(x′) ∈ K.

3◦ f is unidirectional (K)-quasiconvex on D if and only if for any distinct points

x′, x′′ ∈ D and x0 ∈ ]x′, x′′[ we have

f(x0)− f(x′) ∈ K ⇒ f(x′′)− f(x0) ∈ K.

Proof Assertion 1◦ actually states that f is semistrictly (K)-quasiconvex on D if
and only if it is semistrictly (K)-quasiconvex at any point x′ ∈ D.

In order to prove 2◦ one can use 1◦ for −Kc in the role of K and thereafter
the logical equivalence (p⇒ q)⇔ (¬q ⇒ ¬p).

Assertion 3◦ follows from the definition. ut

Corollary 3 Assume that D is convex. If f : D → Y is explicitly (K)-quasiconvex

on D, then it is unidirectional (K)-quasiconvex on D.

Proof Letting K1 = K2 := K, the conclusion follows by Theorem 3, in view of
Example 11 a). ut

Remark 18 The converse of Corollary 3 is false, as the following example shows.

Example 12 Let f : D = [0, 1]→ R2 be the function defined in Example 7. Consider
the ordering cone K = R2

+. Observe that f is unidirectional (K)-quasiconvex at
any x0 ∈ D. Indeed, if x0 ∈ {0, 1}, then there are no distinct points x′, x′′ ∈ D

such that x0 ∈ ]x′, x′′[. Otherwise, if x0 ∈ ]0, 1[, then there is no x′ ∈ D \ {x0}
satisfying f(x0)− f(x′) ∈ K, hence the property holds trivially. However, f is not
even semistrictly (K)-quasiconvex. Indeed, for x0 = 1, x′ = 0 and x = 1/2 ∈ ]x′, x0[
we have f(x0)− f(x′) = (0, 1) ∈ K, but f(x0)− f(x) = (−1/2, 3/2) /∈ K.

The next result gives a characterization of real-valued explicitly quasiconvex
functions in terms of unidirectional (K)-quasiconvexity.

Theorem 6 Assume that D is convex and let f : D → R be a function. The following

assertions are equivalent:

1◦ f is explicitly quasiconvex.

2◦ f is unidirectional (R∗+)-quasiconvex on D.

3◦ f is unidirectional (R+)-quasiconvex on D.

Proof First observe that 1◦ means that f is explicitly (R∗+)-quasiconvex on D, in
view of Example 11 b). Therefore, 1◦ implies 2◦ by Corollary 3. The equivalence
between 2◦ and 3◦ holds in view of Theorem 5.

To prove that 2◦ implies 1◦, assume that f is unidirectional (R∗+)-quasiconvex
on D. Suppose by the contrary that f is not quasiconvex. Then, by Remark 5 a),
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there exist distinct points x′, x′′ ∈ D with f(x′) ≤ f(x′′) and x0 ∈ ]x′, x′′[ , such
that f(x0) > f(x′′). Since f is unidirectional (R∗+)-quasiconvex at x0, it follows
that f(x0) < f(x′). We deduce that f(x0) ≤ f(x′′), a contradiction.

Now suppose by the contrary that f is not semistrictly quasiconvex. Then, by
Remark 5 b), there are x′, x′′ ∈ D with f(x′) < f(x′′) and x0 ∈]x′, x′′[ such that
f(x0) ≥ f(x′′). Since 2◦ and 3◦ are equivalent, f is unidirectional (R+)-quasiconvex
at x0, hence f(x0) ≤ f(x′). We obtain f(x′) ≥ f(x0) ≥ f(x′′), a contradiction. ut

Remark 19 There exist functions which are semistrictly/explicitly/unidirectional
(K)-quasiconvex at certain points, but not at every point of their domain, as shown
by the following example.

Example 13 Let Y = R, K = R∗+ and f : D = R→ R, given by

f(x) =

{
x+ 1 if x < 0
x if x ≥ 0.

It is easy to check that function f is semistrictly (R∗+)-quasiconvex, even explicitly
(R∗+)-quasiconvex, and unidirectional (R∗+)-quasiconvex at the point x0 = 2.

However, f has none of these properties at another point, namely x0 = −1/2.
Indeed, letting x′ = 0 we have f(x0) − f(x′) ∈ R∗+, i.e., f(x0) > f(x′). Clearly,
for x = −1/4 ∈]x0, x′[ one obtains f(x0) − f(x) = −1/4 /∈ R∗+, hence f is not
semistrictly (hence not explicitly) (R∗+)-quasiconvex at x0 = −1/2. By setting
x′′ = −2, one has x0 ∈]x′′, x′[ and f(x0) − f(x′′) = 3/2 /∈ −R∗+, therefore f is not
unidirectional (R∗+)-quasiconvex at x0 = −1/2.

Remark 20 The explicit (K)-quasiconvexity and unidirectional (K)-quasiconvexity
at a given point do not imply each other. Indeed, let Y = R, K = R∗+ and x0 = 0.
The function f defined in Example 5 is explicitly (K)-quasiconvex at x0, but
not unidirectional (K)-quasiconvex at x0. Also, the function f in Example 13 is
unidirectional (K)-quasiconvex at x0, but not explicitly (K)-quasiconvex at x0.

Corollary 4 Assume that D is convex and K + K ⊆ K. If function f : D → Y

is unidirectional (K)-quasiconvex on D, then it is semistrictly (−Kc)-quasiconvex on

D. Consequently, if function f is both semistrictly (K)-quasiconvex and unidirectional

(K)-quasiconvex on D, then it is explicitly (K)-quasiconvex on D.

Proof Follows by Theorem 4, for K1 = K2 = K. ut

Remark 21 The notions of unidirectional (K)-quasiconvexity on D and semistrict
(−Kc)-quasiconvexity on D are not identical, as the following example shows.

Example 14 Let D = [0, 1] ⊆ X = R, let K = [0, 1[⊆ Y = R and let f : [0, 1] → R
be defined for all x ∈ [0, 1] by

f(x) = x.

Function f is unidirectional (K)-quasiconvex on D, by Proposition 10 (3◦).
Indeed, for any distinct points x′, x′′ ∈ D and x0 ∈ ]x′, x′′[ such f(x0)− f(x′) ∈ K,
we have 0 ≤ x′ < x0 < x′′ ≤ 1, hence f(x′′)− f(x0) ∈ K.

Moreover, function f is semistrictly (K)-quasiconvex on D. This follows by
Proposition 10 (1◦), since for any distinct points x′, x′′ ∈ D and x0 ∈ ]x′, x′′[ such
that f(x′)− f(x′′) ∈ K, we have x′′ < x0 < x′, hence f(x′)− f(x0) ∈ K.
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However, function f is not semistrictly (−Kc)-quasiconvex on D, as shown by
Proposition 10 (2◦). Indeed, letting x′ = 0, x′′ = 1 and any x0 ∈ ]x′, x′′[ we have
f(x0)− f(x′) ∈ K, but f(x′′)− f(x′) = 1 /∈ K.

Notice that Corollary 4 does not apply in this example, because K +K 6⊆ K.

3.4 Bidirectional (K1,K2)-quasiconvex vector functions

Definition 10 We say that a function f : D → Y is bidirectional (K1,K2)-quasiconvex

at a point x0 ∈ D if for any x′ ∈ D \ {x0} with f(x0) − f(x′) ∈ K1 there exists
x′′ ∈ D \ {x0} such that [x0, x′′] ⊆ D and f(x0) − f(x) ∈ K2 for all x ∈ ]x0, x′′].
If f satisfies this property for every x0 ∈ D, then f is said to be bidirectional

(K1,K2)-quasiconvex on D.

Remark 22 Letting K1 = K2 := K, the bidirectional (K1,K2)-quasiconvexity at a
point x0 ∈ D recovers the K-quasiconvexity at x0 in the sense of Definition 5.

Theorem 7 If f : D → Y is unidirectional (K1,K2)-quasiconvex at x0 ∈ icrD, then

f is bidirectional (K1,K2)-quasiconvex at x0.

Proof Let x′ ∈ D \ {x0} be such that f(x0) − f(x′) ∈ K1. Since x0 ∈ icrD and
x0 − x′ ∈ D−D ⊆ span(D−D), there is δ > 0 such that [x0, x0 + δ(x0 − x′)] ⊆ D.
Letting x′′ := x0 + δ(x0−x′), we get x′′ ∈ D \ {x0} and [x0, x′′] ⊆ D. Moreover, for
any x ∈ ]x0, x′′] there is t ∈ ]0, 1] such that

x = x0 + t(x′′ − x0) = x0 + tδ(x0 − x′),

hence x0 = x′ + (1 + tδ)−1(x − x′) ∈ ]x′, x[. As f is unidirectional (K1,K2)-
quasiconvex at x0, we infer that f(x0)− f(x) ∈ K2, which ends the proof. ut

Theorem 8 Assume that D is convex. If function f : D → Y is semistrictly (K1,K2)-

quasiconvex at x0 ∈ D, then it is bidirectional (K1,K2)-quasiconvex at x0.

Proof Follows by Definition 6 and Definition 10 (by choosing x′′ = x′). ut

Corollary 5 Assume that D is convex. If f : D → Y is semistrictly (K)-quasiconvex

at x0 ∈ D, then it is K-quasiconvex at x0.

Proof It is a direct consequence of Theorem 8, in view of Remark 22. ut

Remark 23 In particular, Corollary 5 shows that if f is semistrictly (K)-quasiconvex
on D, then it is K-quasiconvex on D. However, the converse is not true, as shown
by the following example.

Example 15 Consider Y = R, K = R∗+ and define f : D = R→ Y by

f(x) =

{
1 if x ∈ {0, 1},
0 if x ∈ R \ {0, 1}.

Function f is R∗+-quasiconvex at every point x0 ∈ D, but it is not semistrictly
(R∗+)-quasiconvex on D.

Indeed, if x0 and x′ are two distinct points chosen such that f(x0)−f(x′) ∈ R∗+,
then x0 ∈ {0, 1} and x′ /∈ {0, 1}. By choosing any x′′ ∈ [x0−1/2, x0 + 1/2], we have
f(x0)− f(x) ∈ R∗+ for all x ∈]x0, x′′]. Hence, f is R∗+-quasiconvex at x0.

However, f is not semistrictly (R∗+)-quasiconvex at x0 = 0, since for x′ = 2 and
x = 1, we have f(x0)− f(x′) ∈ R∗+, but f(x0)− f(x) /∈ R∗+.
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4 Local-global extremality properties

Throughout this section we assume that X and Y are real topological linear spaces
and f : D → Y is a function defined on a nonempty set D ⊆ X.

4.1 A general local-global extremality principle

Let K1 and K2 be two proper subsets of Y . We first present a technical result.

Lemma 4 Assume that x0 ∈ D is a global K1-extremal point of f . Then we have:

1◦ f is bidirectional (K1,K2)-quasiconvex at x0.

2◦ f is unidirectional (K1,K2)-quasiconvex at x0.

Moreover, when D is convex, we also have:

3◦ f is semistrictly (K1,K2)-quasiconvex at x0.

Proof Since x0 is a global K1-extremal point of f , i.e., x0 ∈ K1-Ext(f | D), no point
x′ ∈ D \ {x0} satisfies f(x0) − f(x′) ∈ K1, according to Definition 1. Therefore,
assertions 1◦, 2◦ and 3◦ follow by Definitions 10, 8 and 6, respectively. ut

We now state the main result of this paper. This can be seen as a general
local-global extremality principle, which encompasses all “local min - global min”
type properties (when K1 = K2) and “local max - global min” type properties
(when K1 = −K2), as we will see in Section 4.2.

Theorem 9 If x0 ∈ D is an algebraic local K2-extremal point of f , then the following

assertions are equivalent:

1◦ x0 is a global K1-extremal point of f .

2◦ f is bidirectional (K1,K2)-quasiconvex at x0.

Proof Let U ∈ U(x0) be such that x0 ∈ K2-Ext(f | U ∩D).
If x0 is a global K1-extremal point of f , then function f is bidirectional

(K1,K2)-quasiconvex at x0, according to Lemma 4.
Conversely, assume that function f is bidirectional (K1,K2)-quasiconvex at x0

and suppose to the contrary that x0 /∈ K1-Ext(f | D). Then there is x′ ∈ D \ {x0}
with f(x0) − f(x′) ∈ K1. Since f is bidirectional (K1,K2)-quasiconvex at x0, we
can find x′′ ∈ D \ {x0} such that [x0, x′′] ⊆ D and

f(x0)− f(x) ∈ K2, ∀x ∈ ]x0, x′′]. (5)

As x0 ∈ corU , there is δ > 0 such that [x0, x0 + δ(x′′−x0)] ⊆ U . For t = min{δ, 1}
we obtain a point x∗ := x0 + t(x′′−x0) ∈ U∩ ]x0, x′′], which in view of (5) satisfies

f(x0)− f(x∗) ∈ K2.

Since x∗ ∈ (U ∩ D) \ {x0}, the above relation entails x0 /∈ K2-Ext(f | U ∩ D), a
contradiction. Thus x0 ∈ K1-Ext(f | D). ut

Theorem 10 Let x0 ∈ D be an algebraic local K2-extremal point of f . If x0 ∈ icrD,

then the following assertions are equivalent:

1◦ x0 is a global K1-extremal point of f .

2◦ f is unidirectional (K1,K2)-quasiconvex at x0.
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Proof If x0 is a global K1-extremal point of f , then function f is unidirectional
(K1,K2)-quasiconvex at x0, according to Lemma 4.

The converse follows by Theorems 7 and 9. ut

Theorem 11 Assume that D is convex. If x0 ∈ D is an algebraic local K2-extremal

point of f , then the following assertions are equivalent:

1◦ x0 is a global K1-extremal point of f .

2◦ f is semistrictly (K1,K2)-quasiconvex at x0.

Proof If x0 is a global K1-extremal point of f , then function f is semistrictly
(K1,K2)-quasiconvex at x0, by Lemma 4.

The converse follows by Theorem 8 and Theorem 9. ut

Remark 24 Theorems 9, 10 and 11 show that under appropriate hypotheses, if
function f possesses an algebraic local K2-extremal point x0 ∈ D, then x0 is also
a global (hence local) K1-extremal point of f . In particular, when

K1 ∪K2 = Y \ {0Y },

we can conclude by Lemma 1 that f is constant on U ∩D for some set U ∈ U(x0).

4.2 Local-global properties in unified vector optimization

In order to apply the general results from the previous section to unified vector
optimization problems, in what follows we consider a proper subset K of Y .

We first present some “local min - global min” type properties for unified vector
optimization.

Theorem 12 If x0 ∈ D is an algebraic local K-extremal point of f , then the following

assertions are equivalent:

1◦ x0 is a global K-extremal point of f .

2◦ f is K-quasiconvex at x0.

Proof Follows by Theorem 9, for K1 = K2 = K, in view of Remark 22. ut

Theorem 13 Assume that D is convex. If x0 ∈ D is an algebraic local K-extremal

point of f , then the following assertions are equivalent:

1◦ x0 is a global K-extremal point of f .

2◦ f is semistrictly (K)-quasiconvex at x0.

Proof Follows by Theorem 11, for K1 = K2 = K, in view of Remark 12. ut

Remark 25 Theorem 13 extends a well-known result obtained by Flores-Bazán and
Hernández, reformulated by us in Proposition 4.

Next we present “local max - global min” type properties for unified vector
optimization.

Theorem 14 If x0 ∈ D is an algebraic local −K-extremal point of function f , such

that x0 ∈ icrD, then the following assertions are equivalent:

1◦ x0 is a global K-extremal point of f .

2◦ f is unidirectional (K)-quasiconvex at x0.
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Proof Assume that x0 is a global K-extremal point of f . By Lemma 4, applied for
K1 = K and K2 = −K, it follows that f is unidirectional (K,−K)-quasiconvex at
x0, i.e., f is unidirectional (K)-quasiconvex at x0.

The converse can be deduced by Theorems 7 and 9. ut

Theorem 15 Assume that D is convex. If function f is explicitly (K)-quasiconvex on

D, then its algebraic local −K-extremal points, located in the intrinsic core of D, are

global K-extremal points.

Proof Follows by Theorem 14 in view of Corollary 3. ut

Remark 26 The “local max - global min” type properties given by Theorems 14
and 15 show that, under the corresponding generalized convexity assumptions, if
function f has an algebraic local −K-extremal point x0 ∈ icrD, then x0 is also a
global (hence local) K-extremal point of f . In particular, when

K ∪ (−K) = Y \ {0Y }, i.e., Kc ∩ −Kc = {0Y }, (6)

by applying Lemma 1 for K1 = K and K2 = −K, we conclude that there is a set
U ∈ U(x0) such that f is constant on U ∩D.

4.3 Local-global properties in vector optimization

Throughout this section we assume that

C ⊆ Y is a solid convex cone, such that C 6= `(C). (7)

Before stating our local-global properties for vector optimization, we present a
technical result.

Lemma 5 Under the assumption (7) the following assertions hold:

1◦ 0Y /∈ corC.

2◦ corC ⊆ C \ `(C) ⊆ −Cc.

3◦ There exists a linear functional ` : Y → R such that `(x) > 0 for all x ∈ corC.

Proof Assertion 1◦ holds as otherwise we have C = Y (see, e.g., Jahn [20, p. 12]),
which contradicts (7).

In order to prove assertion 2◦, notice first that C \ `(C) = C \ (−C). Now
suppose by the contrary that corC 6⊆ C \ `(C), i.e., there exists x ∈ (corC)∩ (−C).
Then we should have (see, e.g., Jahn [20, Lemma 1.12])

0Y = x+ (−x) ∈ corC + C = corC,

which contradicts 1◦. Thus the first inclusion in 2◦ holds true. The second one is
obvious, since C \ `(C) = C \ (−C) ⊆ Y \ (−C) = (−C)c = −Cc.

In what concerns assertion 3◦, note that corC = icrC, in view of Remark 1 b),
since C is solid. Therefore assertion 1◦ reads as 0Y ∈ (icrC)c. By applying Propo-
sition 1 for E = Y , A = C and v = 0Y , we infer the existence of a linear functional
` : Y → R such that `(x) > 0 for all x ∈ corC. ut
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By particularizing K ∈ {−Cc, C \`(C), corC} in Theorems 12 and 13, we derive
the following two results, representing “local min - global min” type properties for
vector optimization.

Corollary 6 Let x0 ∈ D. The following assertions hold:

1◦ If x0 is an algebraic local ideal C-minimal point of f , then x0 is a global ideal

C-minimal point of f if and only if f is −Cc-quasiconvex at x0.

2◦ If x0 is an algebraic local C-minimal point of f , then x0 is a global C-minimal

point of f if and only if f is C \ `(C)-quasiconvex at x0.

3◦ If x0 is an algebraic local weakly C-minimal point of f , then x0 is a global weakly

C-minimal point of f if and only if f is corC-quasiconvex at x0.

Corollary 7 Assume that D is convex and let x0 ∈ D. The following assertions hold:

1◦ If x0 is an algebraic local ideal C-minimal point of f , then x0 is a global ideal

C-minimal point of f if and only if f is semistrictly (−Cc)-quasiconvex at x0.

2◦ If x0 is an algebraic local C-minimal point of f , then x0 is a global C-minimal

point of f if and only if f is semistrictly (C \ `(C))-quasiconvex at x0.

3◦ If x0 is an algebraic local weakly C-minimal point of f , then x0 is a global weakly

C-minimal point of f if and only if f is semistrictly (corC)-quasiconvex at x0.

Remark 27 Assertion 1◦ of Corollary 6 extends Proposition 7, while assertions 2◦

and 3◦ recover two well-known results obtained by Jahn and Sachs, reformulated
by us in Propositions 5 and 6.

The next three results represent “local max - global min” type properties for
vector optimization, derived from Theorem 15 when K ∈ {−Cc, C \ `(C), corC}.
Moreover, they show that, in contrast to scalar optimization (where a point is
both local minimum and local maximum if and only if the objective function is
locally constant), in vector optimization condition (6) pointed out in Remark 26
is rather restrictive, being fulfilled only for specific classes of convex cones.

Corollary 8 Assume that f is explicitly (−Cc)-quasiconvex on the convex set D. If

x0 ∈ D is an algebraic local ideal C-maximal point of f , such that x0 ∈ icrD, then x0

is a global ideal C-minimal point. In addition, when C is pointed, i.e.,

(−Cc) ∪ Cc = Y \ {0Y }, (8)

there exists U ∈ U(x0) such that f is constant on U ∩D.

Corollary 9 Assume that f is explicitly (C \ `(C))-quasiconvex on the convex set D.

If x0 ∈ D is an algebraic local C-maximal point of f , such that x0 ∈ icrD, then x0 is

a global C-minimal point. In addition, when C satisfies the property

(C \ `(C)) ∪ (−C \ `(C)) = Y \ {0Y }, (9)

there exists U ∈ U(x0) such that f is constant on U ∩D.

Corollary 10 Assume that f is explicitly (corC)-quasiconvex on the convex set D. If

x0 ∈ D is an algebraic local weakly C-maximal point of f , such that x0 ∈ icrD, then

x0 is a global weakly C-minimal point. In addition, when C satisfies the property

(corC) ∪ (−corC) = Y \ {0Y }, (10)

there exists U ∈ U(x0) such that f is constant on U ∩D.
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Remark 28 a) In view of Lemma 5 (2◦), the following implications hold:

(10)⇒ (9)⇒ (8).

Therefore, the least restrictive condition imposed on the cone in Corollaries 8, 9
and 10 is (8), which means that C is pointed.

b) It is easily seen that condition (9) implies

C ∪ −C = Y, (11)

which means that the ordering induced by C on Y is total, i.e., any two points of Y
are comparable. Conversely, if C is pointed and satisfies (11), then (9) is fulfilled.
This is the case of the lexicographic cone of Rm defined as the set of all vectors
whose first nonzero coordinate (if any) is positive:

C lex := {0} ∪ {(x1, . . . , xm) ∈ Rm | ∃ i ∈ I : xi > 0, @ j ∈ I, j < i : xj 6= 0},

where I := {1, . . . ,m} (see, e.g., Popovici [26]). Notice that (9) and (11) are not
equivalent in the absence of the pointedness assumption. For example, consider
C = cl(C lex) = R+ ×R× · · · × R in Y = Rm, with m ≥ 2.

c) The most restrictive condition on C is (10), which is satisfied only when
dimY = 1. Actually, we can prove that for any given point e ∈ corC, we have

Y = span {e}.

Indeed, by Lemma 5 (3◦) there is a linear functional ` : Y → R with

`(x) > 0, ∀x ∈ corC. (12)

Consider any v ∈ corC. Since ` is linear, the function ϕ : [0, 1]→ R, defined by

ϕ(t) := `((1− t)e+ t(−v)), ∀ t ∈ [0, 1],

is affine, hence continuous. We also have ϕ(0) = `(e) > 0 and ϕ(1) = −`(v) < 0
by (12). By the Darboux property we infer the existence of t0 ∈ ]0, 1[ such that
ϕ(t0) = 0. Consider the point

x0 := (1− t0)e+ t0(−v). (13)

It is easily seen that x0 ∈ ]e,−v[ and `(x0) = ϕ(t0) = 0. By (12) it follows that
x0 /∈ (corC) ∪ (−corC), which actually means that x0 = 0Y , in view of (10).
Consequently, relation (13) shows that v = 1−t0

t0
e ∈ R∗+ · e. Since v was arbitrarily

chosen in corC, we deduce that corC ⊆ R∗+ · e, hence (corC) ∪ (−corC) ⊆ R∗ · e.
Finally, (10) yields Y = R · e = span {e}.

We conclude this section with a result that summarizes “local min - global
min” and “local max - global min” type properties for multicriteria optimization.
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Corollary 11 Assume that D is convex and let f : D → Rm be a componentwise

explicitly quasiconvex function. The following assertions hold:

1◦ If x0 ∈ D is an algebraic local ideal Rm
+ -minimal point of f (resp. an algebraic

local Rm
+ -minimal point, algebraic local weakly Rm

+ -minimal point of f), then it is a

global ideal Rm
+ -minimal point point of f (resp. a global Rm

+ -minimal point, global weakly

Rm
+ -minimal point point of f).

2◦ If x0 ∈ D is an algebraic local ideal Rm
+ -maximal point of f (resp. an algebraic

local Rm
+ -maximal point, algebraic local weakly Rm

+ -maximal point of f), such that

x0 ∈ icrD, then it is a global ideal Rm
+ -minimal point point of f (resp. a global Rm

+ -

minimal point, global weakly Rm
+ -minimal point of f). Actually, when x0 is an algebraic

local ideal Rm
+ -maximal point of f , there exists U ∈ U(x0) such that f is constant on

U ∩D.

Proof 1◦ follows by Theorem 1 and Corollary 7, while 2◦ follows by Theorem 1
and Corollaries 8, 9 and 10, applied for C = Rm

+ . ut

Remark 29 a) Corollary 11 (2◦) extends Proposition 8.
b) When m = 1, Corollary 11 (2◦) actually shows that every algebraic local

maximum point x0 ∈ D of an explicitly quasiconvex function f : D → R, such that
x0 ∈ icrD, is a global minimum point of f , hence there is U ∈ U(x0) such that f
is constant on U ∩ D. Notice that for real-valued functions the three concepts of
ideal maximality, maximality and weak maximality coincide.

c) In contrast to b), when m ≥ 2 there exist componentwise explicitly quasi-
convex (even linear) functions, which possess an algebraic local Rm

+ -maximal point
x0 ∈ icrD, but are not constant on U ∩ D for any U ∈ U(x0). For instance, the
function f : D = R → R2 defined by f(x) = (x,−x) is componentwise explicitly
quasiconvex and any x0 ∈ R = icrD is an algebraic local (even global) R2

+-maximal
point of f . However, there is no U ∈ U(x0) such that f is constant on U ∩D. This
is because function f has no algebraic local ideal R2

+-maximal points.
d) Corollary 11 is relevant for multicriteria linear fractional optimization prob-

lems, which have many practical applications (see, e.g., Cambini and Martein [8],
Göpfert et al. [16, Sect. 4.4]). Since the linear fractional functions as well as their
opposites are explicitly quasiconvex, we can revert our “local min - global min” and
“local max - global min” properties into new “local max - global max” and “local

min - global max” type properties, as shown by us in [3, Sect. 5]. Following this
approach, we can deduce that all Rm

+ -minimal points (resp. weakly Rm
+ -minimal

points, ideal Rm
+ -minimal points) of a componentwise linear fractional function

f : D ⊆ Rn → Rm, located in icrD, coincide with the Rm
+ -maximal points (resp.

weakly Rm
+ -maximal points, ideal Rm

+ -minimal points) of f , the objective function
f being constant on D if and only if it possesses an ideal Rm

+ -minimal/maximal
point in icrD.

5 Conclusions

By introducing appropriate concepts of generalized convexity, we have established
general local-global extremality properties for vector functions, with respect to two
proper subsets of the outcome space (K1,K2 ⊆ Y ). In particular, our Theorems
9, 10 and 11 are of special interest for unified vector optimization, since they
encompass the “local min - global min” type properties (when K1 = K2), as well
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as the “local max - global min” type properties (when K1 = −K2). An interesting
topic for further research would be to establish similar local-global extremality
properties for set-valued functions with respect to variable ordering structures
(see, e.g., Durea, Strugariu and Tammer [9], Eichfelder and Pilecka [10]-[11], and
Köbis [22]).
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