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Abstract 

A multiscale progressive damage modelling methodology for 3-dimensional composites is presented. The 

proposed methodology is generic and can be implemented in most finite element software to create a digital 

twin for simulation of damage response. It uses 3D solid element (reduced integration) representation of the part 

for global analysis, while the local damage response, as well as matrix nonlinearity is modelled using a 

mesoscale constitutive unit-cell model of 3D woven composite consisting of idealised regions of polymer matrix 

and impregnated yarns. The idealised unit-cell model is defined based on realistic input from X-ray tomography 

of the 3D-composite part and the micro-level constituent properties of the matrix and fibres. The damage model 

has been validated using quasi-static tensile/compression tests as well as dynamic drop-weight impact tests for 

both thermoset (epoxy) and thermoplastic (Elium) 3D composites. These simulations successfully demonstrate 

the accuracy and efficiency of the model for both 3D-textile composites. 

Keywords: Finite Element Analysis, Damage Modelling, 3D fabric composites, thermoplastic 

1. Introduction 

The 3D-FRCs are promising materials as compared to 2D-FRCs owing to their superior through-

thickness mechanical properties, excellent impact resistance and damage tolerance, due to their inherent 

safeguard against interlaminar crack propagation [1-5]. In recent years, 3D woven composites have generated 

much interest within the composite industry, due to their superior transverse properties and ease in the 

manufacturing provided by near net-shaped designs. Recently, a novel liquid thermoplastic resin system Elium® 

(a reactive Methyl-methacrylate, MMA) has been introduced by Arkema, which when used with 3D woven 

composites further improves the impact resistance and damage tolerance of 3D-FRC compared with the 

conventional thermoset counterpart [6, 7]. These thermoplastic-based 3D woven composites are likely to emerge 

as a preferred solution to meet the high-volume production demands of the composite industry. In recent 

publications by the authors [6], it was established that the observed damage mechanisms of the thermoplastic 3D 

composites are different from both the 2D-laminated  and  3D thermoset composites due to their higher ductility 

and fracture toughness.  
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The 3D woven FRCs are heterogeneous materials, which comprise of polymer matrix and 

reinforcement (impregnated yarns) typically arranged in three perpendicular directions. The polymer matrix and 

reinforcement are contemplated as isotropic and transversely isotropic materials, respectively. However, the 

composite as a whole exhibits anisotropic properties, due to differences in the reinforcement architecture.  The 

3D-FRC structures can be subjected to localized damages (particularly impact damage) in the forms of matrix 

cracking, fibre breakage, debonding and interface failure, which may accrue catastrophic failure under normal 

operating conditions [4]. Therefore, predicting such damages is a fundamental requirement for the development 

of safe and reliable composite structures and substantial efforts have been directed towards the development of 

reliable modelling tools to reduce computational time and physical testing. Multiscale modelling is one of the 

promising techniques in predicting the mechanical behaviour and damaged response of 3D FRC as it has the 

potential of being computational efficient while allowing sufficient resolution as well. Not all multiscale models 

are equally accurate and efficient, and several multiscale models have been reported in the literature to address 

the influence of complex 3D woven fabric architecture on their damage response, summarized in Table.1. 

The multiscale models reported in the literature are broadly divided into three categories, based on the 

scale-level at which the FE analysis and damage prediction were performed (see Table.1). These multiscale 

progressive damage models were based on the continuum damage mechanics (CDM) as proposed by Kachanov 

[8] and Lemaitre and Chaboche [9]. A few authors (category A in Table 1) developed the multiscale progressive 

damage models, in which a FE based micro model (fibre/matrix unit-cell model) was used to predict the damage 

response of textile composite at meso-scale or macro-scale. These models were based on a simplified maximum 

stress criterion and required amplification factors to correlate micro-macro stresses. In comparison, most of the 

multiscale models available in the literature (category B in Table 1) were based on the meso-scale; where the 

impregnated yarns and matrix regions were explicitly meshed using finite elements and modelled as a single 

domain or sub-domain within the global FE model (meso-scale model). The damage was predicted in each 

constituent to capture fibre failure, yarn debonding and matrix damage. These models have a major drawback of 

a long computational time, even for small models at the coupon level [10]. Therefore, these multiscale models 

are not suitable for drop weight impact simulation of FRC, due to their large specimen size. In contrast, a few 

authors (category C in Table 1) investigated the damage response of 3D composites based on the single 

orthotropic lamina model (macro-scale model) [11-13], where yarn/matrix regions were not modelled 

separately. In these models’ damage was predicted at macro-scale using different effective stress criteria.  These 

models are computationally efficient; however, they have limited accuracy and they cannot predict failure in 

individual yarn and matrix regions, due to homogenization assumption. In addition, most of these models were 
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developed for thermoset composites and do not necessarily capture the unique failure mechanisms observed in 

thermoplastic composites, described in our previous work [6, 7].  

In the case of impact modelling of this novel thermoplastic (Elium) based FRC, Kinvi et al. [14] and 

Kazemi et al. [15] used a homogenization technique to model the response of 2D woven composite at a macro-

scale, where each woven layer was modelled as an orthotropic material. The authors’ used maximum stress 

failure criteria and the nonlinear response was induced using pseudo-plastic law, i.e., by fitting the experimental 

shear response. However, these models were based on shell elements, which are not suitable for 3D woven 

composite and impact simulations. To the best of the authors’ knowledge, no study has been dedicated to the 

detailed impact modelling of thermoplastic-based 3D composites and more specifically the novel acrylic-based 

3D woven composites. Following these directions, a multiscale progressive model is required for 3D 

composites, which is both computationally efficient and accurate.  

The comparison of the current model with preceding multiscale models is shown in Table 1. It 

highlights two unique features of the proposed models. Firstly, it combines the benefits of models defined in 

category B and C. Thus, although the finite element analysis is performed at macro-scale the damage initiation 

was predicted at meso-scale using analytical meso-scale unit cell model of 3D woven composite Secondly 

damage evolution in impregnated yarns and matrix regions is modelled separately, using a linear softening law 

and multilinear law respectively. This approach ensures computational efficiency while providing a high level of 

accuracy. In the proposed model, each impregnated yarn in the unit-cell is treated as a unidirectional composite 

and their damage response was predicted through a modified quadratic failure criterion (Hashin failure criteria) 

[16]. The behaviour of impregnated yarns is assumed as linear elastic until damage initiation, followed by the 

linear strain-softening law during the damage evolution phase. The linear strain-softening law requires the final 

failure strain, which is determined through the characteristic length of the impregnated yarn in the unit-cell 

model. This approach is different from the multiscale progressive damage models reported in the literature (for 

example category C in Table 1), where the exponential damage evolution function was used. These exponential 

functions do not require characteristic length; however, they yield rapid damage evolution, which is undesirable 

for the stability of the FE simulation.  

Thus, this work is dedicated to developing a multiscale progressive damage model, within the explicit 

finite element formulation to predict failure and damage response of 3D FRC. The model is based on continuum 

damage mechanics, in which the macro-level stress-strain response is evaluated for each time increment using a 

solid-element based FE mesh. The strains for each element are then updated using a meso-scale analytical unit-

cell model of the 3D orthogonal woven composite that predicts failure in individual impregnated yarns and 
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matrix regions and updates the element stiffness matrix and nodal strains accordingly for the next iteration of the 

explicit analysis.  

The paper is structured as follows.  The overall modelling framework is presented in section 2. In 

section 3 we discuss the specific details of the multiscale progressive damage model component of the 

framework as applied for 3D woven composites in this study. In Section 4 we discuss the validation of the 

damage model first by comparing finite element prediction with the tensile response of polymer matrices 

(ASTM D638) and then by comparing the response of 3D composites under tensile (ASTM D3039) and 

compressive (ASTM D6641) loading. After the validation of the damage model, it was employed to simulate the 

drop weight impact test at different impact energies (10 J, 20 J, 30 J, 40 J and 50 J) to predict peak loads, peak 

deflection and damage patterns, presented in section 5. Finally, to establish the predictive capabilities of the 

damage model, finite element results have been compared with the inhouse drop weight impact test data, which 

is discussed in section 6. This work delivers a significant contribution, by developing a multiscale computational 

framework for 3D woven composites, which offers significant computational efficiency while retaining 

accuracy. The study demonstrates that the proposed model is successful in virtually investigating the damage 

response of 3D woven composite made from novel thermoplastic (Elium) and conventional thermoset (epoxy) 

matrix. Another useful aspect of the work presented in this paper is that the model is validated for both 

thermoset and thermoplastic 3D-composites which makes the model more widely applicable.  

2. Modelling framework 

2.1. Continuum damage mechanics and damage modelling 

 According to the continuum damage mechanics, the load-bearing capability of damaged material is 

decreased due to the presence of microcracks. These microcracks reduce the load-bearing area 𝐴0 to 𝐴𝐷, which 

results in high stresses in the intact area. This phenomenon leads to the concept of effective stress, which is the 

stress acting on the intact area. The effective stresses are related to the nominal stresses using Eqn. (1). 

�̂� =  
1

(1 − 𝐷)
 𝜎 

(1) 

where D is a damage variable, which defines the ratio between the original area 𝐴0 and damaged area 𝐴𝐷, given 

by Eqn. (2). 

𝐷 =  
𝐴𝐷

𝐴0
 

(2) 

For the three-dimensional stress state, the effective stress in terms of nominal stresses are given by the following 

relationship [17, 18], see Eqn. (3).  

�̂� =  𝑫: 𝝈 (3) 

𝑫 = 𝑴−1  
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where, matrix 𝑴 denotes damage factor matrix, given by Eqn. (4) 

𝑴 = 

[
 
 
 
 
 
 
(1 − 𝐷11)     0 0

0 (1 − 𝐷22) 0

 0   0 (1 − 𝐷33)  

0

sym.

(1 − 𝐷44) 0 0

0 (1 − 𝐷55) 0

0 0 (1 − 𝐷66)]
 
 
 
 
 
 

 

(4) 

Once the material is damaged, the stresses are updated based on the damaged stiffness matrix, see by Eqn. (5) 

𝝈 = 𝑪:𝑴: 𝜺 (5) 

𝝈 = 𝑪𝐷: 𝜺  

where, 𝝈, 𝜺 and 𝑪𝐷 are stress vector, strain vector and a damaged stiffness matrix, respectively. The 

damaged stiffness matrix is calculated by multiplying the stiffness matrix 𝑪 with the damage matrix 𝑴. The 

stiffness matrix in terms of elastic constants is given by Eqn. (6) 

𝑪 =

[
 
 
 
 
 
 
 
 
1 − V23V32

E22E33∆

V21 + V31V23

E22E33∆

V31 + V21V32

E22E33∆

V12 + V13V32

E11E33∆

1 − V31V13

E11E33∆

V32 − V31V12

E11E33∆

V13 + V12V23

E22E11∆

V23 + V13V21

E22E11∆

1 − V12V21

E22E11∆

0

𝑠𝑦𝑚.

G12 0 0

0 G23 0

0 0 G13]
 
 
 
 
 
 
 
 

      

(6) 

   ∆ =
1 − v12v21 − v23v32 − v31v13 − 2v12v23v31

E11E22E33
 

 

 While calculating the above, the Poisson’s ratios should also be degraded, in a similar manner after 

damage initiation to keep elastic tensor 𝑪 positive definite, according to Eqn. (7).  This Poisson’s ratios 

degradation scheme is consistent with the experimentally observed degradation in the Poisson’s ratio, which 

goes along with damage propagation in composites [19].  

𝑣𝑖𝑗,𝐷

𝐸𝑖𝑖,𝐷
=
𝑣𝑖𝑗(1 − 𝐷𝑖𝑖)

𝐸𝑖𝑖(1 − 𝐷𝑖𝑖)
=
𝑣𝑗𝑖(1 − 𝐷𝑗𝑗)

𝐸𝑗𝑗(1 − 𝐷𝑗𝑗)
=
𝑣𝑗𝑖,𝐷

𝐸𝑗𝑗,𝐷
, 𝑖, 𝑗 = 1,2,3       

(7) 

The irreversibility of the damage variables is defined based on the analysis time t, according to Eqn. (8).  

𝐷𝑖𝑖(𝑡 + ∆𝑡) = 𝑀𝑎𝑥{𝐷𝑖𝑖(𝑡), 𝐷𝑖𝑖(𝑡 + ∆𝑡)}         𝑖 =  1,2,3 (8) 

3. Multiscale modelling of 3D composites 

The overall flow chart of the proposed multiscale progressive damage model is given in Fig 1. The 

program uses an explicit dynamic scheme where explicit time marching is used to evaluate each new model 

state. The overall model consists of three main parts, i.e., a) an analytical micro-mechanics based model to 

determine elastic constants and strength parameters of impregnated yarns based on properties of dry fabric, resin 

and relevant volume fractions, b) a macro-scale finite element model of 3D woven composites to determine 

macro stresses and strains on the component being virtually tested, c) a mathematical meso-scale (unit-cell) 

model that computes the damaged state and updates the macro model for the next load/displacement increment. 
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This meso-model is at the heart of the overall model and on one hand, takes the yarn properties and matrix 

properties as input from the micro-model and on the other hand take the macro-level strains as input from the 

macro model. Using these values and after applying the appropriate transformations to evaluate stresses in each 

constituent of the meso-model, the damage response of impregnated yarns and the polymer matrix is predicted 

using relevant failure criteria. Based on this damage state the element stiffness matrix of the macro model is 

updated to allow for the correct determination of damage evolution. The process continues in a cycle until a 

final failure state is achieved. Details of each of these sub-models are presented in the following sub-sections. 

3.1. Analytical Micro-scale Model  

 The impregnated warp, fill, and z-binder yarns are treated as transversely isotropic material, which 

requires five independent elastic constants to define their elastic response. These elastic constants can be 

obtained through a micro-scale FE analysis or Chamis model [20]. In this work, Chamis model was used to 

determine the elastic constants of impregnated yarns, which is given by Eqn. (9). 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝐸11 = 𝑉𝑓𝐸11,𝑓 + (1 − 𝑉𝑓)𝐸𝑚             

𝐸22 = 𝐸33 =
𝐸𝑚

1 −√𝑉𝑓(1 −
𝐸𝑚
𝐸22,𝑓

) 
   

𝐺12 = 𝐺13 =
𝐺𝑚

1 − √𝑉𝑓(1 −
𝐺𝑚
𝐺12,𝑓

) 

𝐺23 =
𝐺𝑚

1 − √𝑉𝑓(1 −
𝐺𝑚
𝐺23,𝑓

) 
            

𝑣12 = 𝑉𝑓𝑣𝑓 + (1 − 𝑉𝑓)𝑣𝑚              

𝑣23 =
𝐸22
2𝐺23

− 1                                

 (9) 

where, “𝑉𝑓”,” 𝑣𝑓” “𝐸𝑓” and “𝐺𝑓” represent the fibre volume fraction, Poisson’s ratio, modulus of elasticity, and 

modulus of rigidity of the fibres. The constants “ 𝑣𝑚” “𝐸𝑚” and “𝐺𝑚” represent the Poisson’s ratio, modulus of 

elasticity and modulus of rigidity of the matrix and the constants “𝐸11”, “𝐸22”, “𝐸33”, “𝐺12”, “𝐺13”, “𝐺23”, 

“𝑣12”, “𝑣23” represents the effective modulus of elasticity,  modulus of rigidity, and Poisson’s ratio of the 

impregnated yarn in a local coordinate system (LCS). The strength properties of impregnated yarns depend on 

the fibre volume fraction and strength of individual constituents, i.e., fibre and matrix. For each impregnated 

yarn the strength was estimated using Chamis model [20] given by Eqn. (10). 

{
 
 
 
 
 

 
 
 
 
 
𝑋11
𝑇 = 𝑉𝑓𝑋𝑓

𝑇                                                           

𝑋11
𝐶 = 𝑉𝑓𝑋𝑓

𝐶                                                           

𝑋22
𝑇 = [1 − (√𝑉𝑓 − 𝑉𝑓) −

𝐸𝑚
𝐸22,𝑓

] 𝑇𝑚               

𝑋22
𝐶 = [1 − (√𝑉𝑓 − 𝑉𝑓) −

𝐸𝑚
𝐸22,𝑓

] 𝐶𝑚               

𝑆12 = [1 − (√𝑉𝑓 − 𝑉𝑓) − (1 −
𝐺𝑚
𝐺12,𝑓

)] 𝑆𝑚 

𝑎

 (10) 

where, 𝑋11
𝑇 , 𝑋11

𝐶 , 𝑋22
𝑇 , 𝑋22

𝐶  and 𝑆12 represents longitudinal tensile strength, longitudinal compressive strength, 

transverse tensile strength, transverse compressive strength and in-plane shear strength, respectively of the 
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impregnated yarn in LCS. 𝑋𝑓
𝑇and 𝑋𝑓

𝐶 denote tensile and compressive strength of the fibre. 𝑇𝑚, 𝐶𝑚 and 𝑆𝑚 denote 

tensile, compressive and shear strength of the matrix. 

3.2 Constitutive Meso-scale Unit-cell Model  

In the multiscale modelling, macro-scale behaviour of 3D woven composites is associated with a meso-

scale idealised constitutive unit-cell model. This constitutive model plays a crucial role in defining both the 

elastic and damage evolution behaviour of the 3D composite and is called by the macro-level explicit FE solver 

at each material integration point to update the model state. The overall algorithm for this interaction between 

the models at different levels is explained in section 3.5. Here, in this section, we explain the ideal constitutive 

unit-cell model of the 3D orthogonal woven composites used in this work.  

Fig 2(a) shows a schematic representation of this idealized unit-cell model consisting of three 

impregnated yarns (warp, fill and z-binder) and polymer matrix regions. In this work, it is assumed that in the 

ideal unit-cell model; a) impregnated yarns (warp, weft and z-binder) are perpendicular to each other, b) the 

cross-sectional area of each impregnated yarn is rectangular and constant throughout the length, c) there is no 

waviness in the impregnated yarn, d) there are no voids in the unit-cell model and e) fibre-matrix interface is not 

explicitly modelled. The idealised unit-cell model is made representative of the actual internal architecture of 

the 3D woven composite by accounting for correct volumetric proportions of each type of impregnated yarn 

(warp, weft and z-binder) and the matrix region. This is done by estimating the geometric parameters 𝑎𝑖, 𝑏𝑖 and 

𝑐𝑖 from several cross-sectional X-ray CT-scan images of the actual cured samples. Typical examples of cross-

sectional X-ray CT views used in this study are shown in Fig 2(b) to (e). These figures show the top view, warp 

yarn cross-section, fill cross-section and z-binder yarn cross-section of thermoplastic 3D woven composite, 

respectively.  

In the idealized meso-scale unit-cell model discussed above, yarn waviness and fibre-matrix interface 

were not modelled, which may accrue some inaccuracies in the predicted response. For example, the 3D fabric 

architecture used has small yarns waviness, as shown in Fig 2. Adding yarn waviness in the multiscale model 

may improve the accuracy, however, it will increase the computational cost. The fibre-matrix interface is not 

included in the model to account for yarn debonding and delamination. This assumption will not make a 

significant difference in the results, due to two reasons, a) the presence of through-thickness reinforcement in 

3D fabric architecture significantly reduces interface debonding and delaminations; therefore, the extent of 

delamination is only localized, and b) nonlinear response of polymer matrix is separately modelled, thus, to 

some extent it indirectly considers debonding and localized delamination effects. 
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3.2.1. Constitutive behaviour of yarns 

 The 3D orthogonal woven composites consist of three perpendicular impregnated yarns (warp, fill and 

z-binder), which contains both fibres and matrix. Therefore, these impregnated yarns were treated locally as a 

transversely isotropic material (unidirectional composites) and analytically modelled according to their 

orientation and volume fraction in a unit cell. Fig. 3(a) shows the unit-cell model of 3D orthogonal woven 

composites in the global coordinate system (XYZ). Meanwhile, Fig. 3(b)-(d) shows impregnated warp, weft and 

z-binder yarn in the local coordinate system (123), respectively. Figure (Fig. 3(b)-(d)) also shows the 

relationship between the global and local coordinate system of each impregnated yarn. The constitutive 

modelling of impregnated yarns was first defined in the local (L) coordinate system (123) and then transformed 

into the global (G) coordinate system (XYZ), using Eqn. (11). 

𝝈𝐺 = [𝑇𝑘/𝑙
𝐺|𝐿
]
𝑇

𝝈𝐿  
(11) 

𝜺𝐺 = [𝑇𝑘/𝑙
𝐺|𝐿
]
𝑇

𝜺𝐿 
 

𝑪𝐺 = [𝑇𝑘/𝑙
𝐺|𝐿
]
−1
[𝑪𝐿][𝑇𝑘/𝑙

𝐺|𝐿
]
−𝑇

 
 

where, 𝝈𝐿, 𝜺𝐿 and 𝑪𝐿 represents the stress vector, strain vector and stiffness matrix in the local coordinate 

system. 𝝈𝐺 , 𝜺𝐺 and 𝑪𝐺 represents the stress vector, strain vector and stiffness matrix in the global coordinate 

system. 𝑇𝑘/𝑙
𝐺|𝐿

 denotes the matrix transformation from local to the global coordinate system. The subscript k 

denotes impregnated warp yarn (WY) and fill yarn (FY), and subscript l represents impregnated z-yarn (ZY). In 

the case of 3D orthogonal woven composite, the local and global coordinate system for impregnated warp yarn 

is the same. The transformation matrix for the impregnated warp and fill yarn is given below, see Eqn. (12). 

[𝑇𝑘
𝐺|𝐿
] =

[
 
 
 
 
 

𝑐𝑜𝑠2𝜃
 𝑠𝑖𝑛2𝜃
0

𝑠𝑖𝑛2𝜃
𝑐𝑜𝑠2𝜃
0

0
0
1

0
0

−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

0
0

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

0
0
0

0
0
0

0
0
0

2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
−2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

0
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃
0

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃
0

0
0

𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃]
 
 
 
 
 

       𝑘 = 𝑊𝑌, 𝐹𝑌 

(12) 

where, theta 𝜃 is the angle of warp and fill impregnated yarns, between global and local coordinate system, 

which is 0° and 90° counter-clockwise, respectively. The transformation matrix for impregnated z-binder yarn is 

given by Eqn. (13)  

[𝑇𝑙
𝐺|𝐿
] =

[
 
 
 
 
 

𝑐𝑜𝑠2𝜑
0

𝑠𝑖𝑛2𝜑

0
1
0

𝑠𝑖𝑛2𝜑
0

𝑐𝑜𝑠2𝜑
0

−𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑
0

0
0
0

0
𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑

0

0
0
0

2𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑
0

−2𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑

0
0
0

𝑐𝑜𝑠𝜑
0

𝑠𝑖𝑛𝜑

0
𝑐𝑜𝑠2𝜑 − 𝑠𝑖𝑛2𝜑

0

−𝑠𝑖𝑛𝜑
0

𝑐𝑜𝑠𝜑 ]
 
 
 
 
 

        𝑙 = 𝑍𝑌 

(13) 

where, angle 𝜑 is the angle of impregnated z-yarn angle, between global and local coordinate systems, which in 

this case is -90° (clockwise). 
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Damage initiation criteria for impregnated yarn 

The impregnated yarns were modelled as transversely isotropic linear elastic composite up to damage 

initiation, followed by the linear damage evolution. In this work, modified three-dimensional quadratic failure 

criteria (Hashin 3D failure criteria) was used to predict damage initiation in each impregnated yarn [16]. It 

consists of six damage initiation indices to predict fibre failure under longitudinal tensile/compression, matrix 

failure under in-plane transverse tensile/compression and matrix failure under out-of-plane transverse 

tensile/compression. Two additional damage modes were considered to predict damage along the out-of-plane 

transverse direction (or direction 3 in a local coordinate system). The forms of these indices are similar to the in-

plane transverse direction. The six damage initiation functions considered in this work are given by Eqn. (14)-

(19).  

𝐹1,𝑇 = (
〈�̂�11〉

𝑋𝑇
)

2

+
�̂�12
2

𝑆12
2 +

�̂�31
2

𝑆31
2  

(14) 

𝐹1,𝐶 = (
−�̂�11
𝑋𝐶

)
2

 
(15) 

𝐹2,𝑇 = (
〈�̂�22〉

𝑌𝑇
)

2

+ (
�̂�12
𝑆12
)
2

+ (
�̂�23
𝑆23
)
2

    
(16) 

𝐹2,𝐶 = (
〈−�̂�22〉

2𝑆23
)

2

+ [(
𝑌𝐶
2𝑆23

)
2

− 1]
�̂�22
𝑌𝐶

+ (
�̂�12
𝑆12
)
2

 
(17) 

𝐹3,𝑇 = (
〈�̂�33〉

𝑍𝑇
)

2

+ (
�̂�31
𝑆31
)
2

+ (
�̂�23
𝑆23

)
2

 
(18) 

𝐹3,𝐶 = (
〈−�̂�33〉

2𝑆23
)

2

+ [(
𝑍𝐶
2𝑆23

)
2

− 1]
�̂�33
𝑍𝐶

+ (
�̂�31
𝑆31
)
2

   
(19) 

where, 𝐹1,𝑇 and 𝐹1,𝐶 denote fibre failure under tension and compression; 𝐹2,𝑇 and 𝐹2,𝐶 denote matrix in-plane 

transverse tension and compression failure; 𝐹3,𝑇 and 𝐹3,𝐶 denotes matrix out-of-plane transverse tension and 

compression failure. 𝑋𝑇, 𝑌𝑇  and 𝑍𝑇  represent longitudinal, in-plane transverse and out-of-plane transverse 

tensile strength, respectively. 𝑋𝐶, 𝑌𝐶  and 𝑍𝐶  represent longitudinal, in-plane transverse and out-of-plane 

transverse compressive strength, respectively. 𝑆12, 𝑆13 and 𝑆23 are shear strength in respective planes. All the 

strength values used above are for equivalent unidirectional composite with same volume fraction as assumed in 

the unit cell of the impregnated yarn sub-cell being modelled, i.e. warp, fill or z-binder.  

 Damage evolution criteria for impregnated yarns 

Once the damage initiation index exceeded the value of one for any damage mode in a yarn, the 

corresponding stiffnesses were degraded according to the linear damage evolution law. Thus, the behaviour of 

each impregnated yarn was considered as bilinear. The strain-based linear softening evolution law used is, given 

by Eqn. (20). 
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𝑑
𝑖,
𝑇
𝐶
= (

𝜀
𝑖,
𝑇
𝐶

𝑚𝑎𝑥

𝜀
𝑖,
𝑇
𝐶

𝑚𝑎𝑥  −  𝜀
𝑖,
𝑇
𝐶

𝑖𝑛𝑖
)(

𝜀
𝑖,
𝑇
𝐶
 − 
𝜀
𝑖,
𝑇
𝐶

𝑖𝑛𝑖

𝜀
𝑖,
𝑇
𝐶
  

)     

(20) 

where, 𝜀
𝑖,
𝑇

𝐶

𝑖𝑛𝑖
, 𝜀
𝑖,
𝑇

𝐶
  
and 𝜀

𝑖,
𝑇

𝐶

𝑚𝑎𝑥
  represent the strain at damage initiation, current (driving) strain and fully damage 

strain, respectively. The subscript i can take the values 1, 2 or 3 and represents the longitudinal (i = 1), in-plane 

transverse (i = 2) and out-of-plane transverse direction (i = 3). T and C denote tension and compression, 

respectively. The schematic diagram of a linear damage evolution is shown in Fig. 4(a).  The linear damage 

evolution law is defined in Eqn. 20 prescribed the evolution of damage variables with their respective driving 

strains 𝜀
𝑖,
𝑇

𝐶
  
and 𝑑

𝑖,
𝑇

𝐶

 varies from zero at damage initiation (𝜀
𝑖,
𝑇

𝐶
 =
𝜀
𝑖,
𝑇

𝐶

𝑖𝑛𝑖) to one for final failure (𝜀
𝑖,
𝑇

𝐶
  
= 𝜀

𝑖,
𝑇

𝐶

𝑚𝑎𝑥). 

The strain at failure initiation is not known in advance, as it is recorded by the subroutine for each damage mode 

once the respective threshold is reached (using Equation 12 to 17). Whereas, the strain at final failure (strain at 

which the fracture across the element occurs) is determined for each damage mode of the impregnated yarn, 

using their respective characteristic length  𝐿𝑐,𝑖 in the unit-cell model, the energy release rate of the damage 

mode 𝐺𝑓,𝑖 and ultimate strength of the damage mode  𝜎
𝑖,
𝑇

𝐶

𝑖𝑛𝑖, given by Eqn. (21) [21]. 

𝜀
𝑖,
𝑇
𝐶

𝑚𝑎𝑥 =
2 𝐺𝑓,𝑖

𝜎
𝑖,
𝑇
𝐶

𝑖𝑛𝑖 𝐿𝑐,𝑖
     

(21) 

 The characteristic length for each damage mode of the impregnated yarn was determined using their 

respective dimensions and orientation in the unit-cell (shown in Fig. 2(a)), in the local coordinate system. It is 

assumed that the size of each element is equal to the size of UC of 3D-FRC, consisting of impregnated yarns 

(warp, fill and z-binder) and matrix region. The characteristic lengths of constituents were selected for each 

damage mode, according to their orientation in the UC model, is given in Table 2. The variables (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) 

defining the characteristic length of each impregnated yarn are shown in Fig. 2(a). Once the damage is initiated 

in impregnated yarns, the respective stiffness is reduced according to Eqn. (22).  

𝑪𝐷,𝑓 = 𝑪𝑓  𝑴𝑓      (22) 

𝑴𝑓  = 

[
 
 
 
 
 
 
 
 
 (1 −𝐷11

𝑓
)     0 0

0 (1 −𝐷22
𝑓
) 0

 0   0 (1 −𝐷33
𝑓
)  

0

𝑠𝑦𝑚.

(1 −𝐷44
𝑓
) 0 0

0 (1 −𝐷55
𝑓
) 0

0 0 (1 −𝐷66
𝑓
)]
 
 
 
 
 
 
 
 
 

               

 

where, 𝑪𝐷,𝑓, 𝑪𝑓  and 𝑴𝑓   represent the damage stiffness matrix, undamaged stiffness matrix and damage factor 

matrix of impregnated yarns. The superscripts  “f” represents impregnated yarns. It is worth noticing that more 
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than one damage mode may also occur in an impregnated yarn during multiaxial loading conditions; therefore, 

six combined damage variables were defined, which are given by Eqn (23)-(28). 

𝐷11
𝑓
= 1 − (1 − 𝑑1,𝑇)(1 − 𝑑1,𝐶) (23) 

𝐷22
𝑓
= 1 − (1 − 𝑑2,𝑇)(1 − 𝑑2,𝐶) (24) 

𝐷33
𝑓
= 1 − (1 − 𝑑3,𝑇)(1 − 𝑑3,𝐶) (25) 

𝐷44
𝑓
= 1 − (1 − 𝐷𝑓,11)(1 − 𝐷𝑓,22) (26) 

𝐷55
𝑓
= 1 − (1 − 𝐷𝑓,22)(1 − 𝐷𝑓,33) (27) 

𝐷66
𝑓
= 1 − (1 − 𝐷𝑓,33)(1 − 𝐷𝑓,11) (28) 

where the damage variables 𝐷11
𝑓

, 𝐷22
𝑓

 and 𝐷33
𝑓

, represent normal damage modes (in the fibre direction in a yarn); 

𝐷44
𝑓

 and 𝐷66
𝑓

 represent the combination of fibre fracture and matrix transverse (out-of-plane) failure and  𝐷55
𝑓

 

denotes matrix transverse (in-plane and out-of-plane) failure. It is postulated that the damage variables 𝐷44
𝑓

, 𝐷55
𝑓

 

and 𝐷66
𝑓

 are not independent and can be expressed as a combination of in-plane damage variables 𝐷11
𝑓

, 𝐷22
𝑓

 and 

𝐷33
𝑓

 [16]. The micro-stresses 𝝈𝑓 in individual yarns were updated based on the damage stiffness matrix and 

global strains 𝜺, given by Eqn. (29) 

𝝈𝑓 = 𝑪𝐷,𝑓𝜺    (29) 

3.2.2 Constitutive behaviour of polymer matrix 

The behaviour of the pure polymer matrix is considered to be linear elastic prior to failure initiation, 

followed by the elastoplastic deformation due to damage growth. The elastic tensor of isotropic material 𝑪 is a 

function of elastic modulus 𝐸𝑚 and Poisson's ratio 𝑣𝑚, given by Eqn. (30).  

𝝈 = 𝑪 𝜺   (30) 

Matrix failure initiation criteria 

The polymer matrix is considered isotropic in terms of its stiffness however, the tensile and 

compressive yield strength of the polymer matrix may be different due to the dependency of yielding on the 

hydrostatic components of the applied stress state. Therefore, a modified von Mises failure criteria in terms of 

compressive and tensile strength is used [22], given by Eqn. (31). 

𝜎𝑣
2

𝐶𝑚𝑇𝑚
+ (

1

𝑇𝑚
−
1

𝐶𝑚
) 𝐼1 = 1          

(31) 

where, 𝐶𝑚 and 𝑇𝑚 represent the compressive and tensile strength of the polymer matrix; 𝜎𝑣 and 𝐼1 represent von 

Mises stress and first stress invariant, which can be calculated from stress components 𝜎𝑖𝑗
𝑚, given by Eqn. (32) 

𝜎𝑣 = √
1

2
[(𝜎11

𝑚 − 𝜎22
𝑚)2 + (𝜎22

𝑚 − 𝜎33
𝑚)2 + (𝜎33

𝑚 − 𝜎11
𝑚)2 + 6(𝜎12

𝑚2 + 𝜎23
𝑚2

+ 𝜎31
𝑚2
)]     

(32) 

𝐼1 = 𝜎11
𝑚 + 𝜎22

𝑚 + 𝜎33
𝑚  
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Eqn. 32 can be written in terms of equivalent stress 𝜎𝑒𝑞 , see Eqn. (33). 

𝜎𝑒𝑞 =
(𝛽 − 1)𝐼1 +√((𝛽 − 1)𝐼1)

2 + 4𝛽𝜎𝑣
2

2𝛽
   

(33) 

where 𝛽 represents the ratio between compressive strength and tensile of the polymer matrix, i.e. 𝛽 = 𝐶𝑚/𝑇𝑚. 

The equivalent stress can be represented in terms of equivalent strain 𝜀𝑒𝑞, given by Eqn. (34). 

𝜀𝑒𝑞 =
(𝛽 − 1)𝐽1 + √((𝛽 − 1)𝐽1)

2 + (
2 − 4𝑣𝑚

1 + 𝑣𝑚
)𝛽𝜎𝑣

2

2𝛽(1 − 2𝑣𝑚)
        

(34) 

where, 𝑣𝑚 and 𝐽1 represent Poisson's ratio and first strain invariant. 

Matrix damage evolution 

 The matrix behaviour prior to failure initiation (elastic limit) is governed by the linear elastic law. Once 

the failure is initiated the polymer matrix undergoes hardening during damage evolution. The matrix damage 

evolution used in this work is based on the multi-linear damage evolution law proposed by Xu et al. [23], as 

shown in Fig. 4(b). The damage evolution 𝑑𝑚
𝑘  is calculated based on the yield stress and equivalent strain 

relationship for each step, given by Eqn. (35). 

𝑑𝑚
𝑘 =

𝜎𝑦
𝑘−1(𝜀𝑦

𝑘 − 𝜀𝑒𝑞) + 𝜎𝑦
𝑘(𝜀𝑒𝑞 − 𝜀𝑦

𝑘−1)

𝐸𝑚,0𝜀𝑒𝑞(𝜀𝑦
𝑘 − 𝜀𝑦

𝑘−1)
      

(35) 

where, 𝜀𝑦
𝑘 and 𝜀𝑦

𝑘−1 represent yield strain at damage stage k and k-1. 𝜎𝑦
𝑘 and 𝜎𝑦

𝑘−1 represent yield stress at the 

damage stage k and k-1. 𝜀𝑒𝑞 is the equivalent strain in kth damage stage (𝜀𝑦
𝑘−1 < 𝜀𝑒𝑞 ≤ 𝜀𝑦

𝑘). 𝐸𝑚,0 is the 

undamaged stiffness of a polymer matrix. The final matrix damage𝐷𝑚 at each integration, a point is evaluated 

for each step, based on the maximum matrix damage calculated for that step based on the Eqn. (36). 

𝐷𝑚 = 𝑀𝑎𝑥(1 − 𝑑𝑚
𝑘 )    (36) 

 Once the maximum damage is achieved in the pure matrix region of the unit-cell, then the stiffness of 

the matrix region is reduced according to the matrix damage variable given by Eqn (37). 

𝑪𝐷,𝑚 = 𝑪𝑚 𝑴𝑚 (37) 

𝑴𝑚 = (1 − 𝐷𝑚) 

[
 
 
 
 
 
1     0 0
0 1 0
 0   0 1  

0

𝑠𝑦𝑚.
1 0 0
0 1 0
0 0 1]

 
 
 
 
 

 

 

where, 𝑪𝐷,𝑚, 𝑪𝑚 and 𝑴𝑚 represent the damage stiffness matrix, undamaged stiffness matrix and inverse of 

damage matrix of a pure matrix region in the unit-cell. The superscripts  “m” represents polymer matrix. The 

micro-stresses 𝝈𝑚 in the polymer, matrix regions are updated based on Eqn. (38) 

𝝈𝑚 = 𝑪𝐷,𝑚 𝜺    (38) 
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  3.3. Macro-scale modelling 

The FE analysis was performed at macro-scale in Abaqus/Explicit software, to determine macro-strains 

due to applied load. In this work we used the mesh size equal to the size of a unit-cell of 3D orthogonal woven 

composites; therefore each integration point in the macro-scale model represents one unit-cell. The 

homogenized macro stresses at each integration point were determined using a volume averaging method. 

According to the volume averaging approach, it is assumed that the homogenized macro stresses in the GCS of 

the element are evaluated by adding the contributions of individual constituents according to their volume 

proportion in the unit cell, using Eqn. (39).    

�̅� =  𝝈𝑚𝑉𝑚 + 𝝈𝑤𝑎𝑟𝑝𝑉𝑤𝑎𝑟𝑝  +  𝝈𝑓𝑖𝑙𝑙𝑉𝑓𝑖𝑙𝑙 + 𝝈𝑧−𝑏𝑖𝑛𝑑𝑒𝑟𝑉𝑧−𝑏𝑖𝑛𝑑𝑒𝑟              (39) 

where �̅� represents the macro stresses in the global coordinate system; 𝝈𝑚 represents the micro stresses 

in the matrix region; 𝝈𝑤𝑎𝑟𝑝, 𝝈𝑓𝑖𝑙𝑙  and 𝝈𝑧−𝑏𝑖𝑛𝑑𝑒𝑟  represents the micro stresses in the impregnated warp, fill and 

z-binder yarn, respectively, in the GCS of the unit cell. 𝑉𝑚, 𝑉𝑤𝑎𝑟𝑝, 𝑉𝑓𝑖𝑙𝑙  and 𝑉𝑧−𝑏𝑖𝑛𝑑𝑒𝑟  are the corresponding 

volume fraction of pure matrix, warp yarn, fill yarn and z-binder phases, respectively in the idealised unit-cell 

and estimated on the basis of cross-sectional X-ray CT-scans as explained earlier in section 3.2.  

3.4. Damage variable thresholds 

 In the progressive damage model, the final component is the definition of the threshold value of 

damage variables 𝑑𝑖,𝑚𝑎𝑥  for each impregnated yarns in the unit-cell (warp, weft and z-yarn) and 𝑑𝑚,𝑚𝑎𝑥 for 

matrix. This threshold value represents the maximum degradation of the engineering stiffness of impregnated 

yarn and must be specified for each damage mode, to avoid numerical instability which can arise due to 

excessive element distortion. Based on the degradation factors reported in the literature by Camanho and 

Matthews [24] and Warren et al. [25], the maximum thresholds were defined for each damage mode. The 

threshold values for tensile and compressive damage mode were considered independently for longitudinal, in-

plane transverse and out-of-plane transverse direction; these threshold values are defined in Table. 3. In the case 

of tensile failure, the stiffness was reduced to the maximum value, as load-carrying capacity is almost zero due 

to crack opening. However, in compression, some residual stiffness remains and once the failure has occurred 

the crushed material and debris is still capable of transmitting the load, as reported by Iannucci and Willows 

[26]. The threshold values for the shear damage modes are the combination of longitudinal and transverse 

damage modes thresholds; therefore, the damage threshold depends on the material degradation factor for each. 

With the definition of a unit-cell model,  damage initiation criterion for impregnated yarns and matrix, damage 

evolution laws for impregnated yarns and matrix, and degradation factors, the multiscale progressive damage 

model was completed. The following section discusses the numerical implementation of the proposed multiscale 

damage model, its validation and implementation to a dynamic drop weight impact simulation.  
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3.5. Numerical implementation of a damage model 

The overall algorithm of the multiscale progressive damage model is shown in Fig. 5. The inputs in the 

damage model are elastic constants of fibres and matrix, strength parameters of fibres and matrix and the 

parameters defining the unit-cell model of 3D woven composites (UC parameters and volume proportions). The 

analytical micro-model to predict the effective properties of impregnated yarns (section 3.1), and the 

constitutive unit-cell model to determine the macro-scale response of 3D composites (section 3.2), was defined 

in a user-defined subroutine (VUMAT). The finite element simulation was performed at macro-scale in 

Abaqus/Explicit. At the start of the simulation, VUMAT generates elastic stiffness matrix of each constituent, 

i.e., 𝑪𝑤𝑎𝑟𝑝,𝑡, 𝑪𝑓𝑖𝑙𝑙,𝑡, 𝑪𝑧−𝑏𝑖𝑛𝑑𝑒𝑟,𝑡 and 𝑪𝑚,𝑡, in global coordinate systems (XYZ) of a unit-cell. At each time 

increment (∆𝑡) the sub-routine receives strain increment (∆�̅�𝑛
 𝑡) due to the applied load and state variables for all 

the damage variables from the previous increment (𝑡 − 1), at integration point (n) of the finite element model. 

In the first step, VUMAT evaluates the global strains (�̅�𝑛
 𝑡) by adding macro-strains from the previous time 

increment (�̅�𝑛
 𝑡−1) and current strain increment (∆�̅�𝑛

 𝑡), at integration point (n) in the global coordinate system. It 

is assumed that the macro-strains (�̅�𝑛
 𝑡) at the integration point of the macro-scale model and meso-strains (𝜺𝑛

𝑡 ) in 

each constituent of the unit-cell are identical through an iso-strain assumption (�̅�𝑛
 𝑡 = 𝜺𝑛

𝑡 ). In the following step, 

the meso-stresses (𝝈𝑛
𝑓,𝑡

, 𝝈𝑛
𝑚,𝑡

) in each constituent were determined using meso-strains (𝜺𝑛
𝑡 ) and stiffness matrix 

of each constituent in the global coordinate system. These meso-stresses were then transformed with respect to 

their orientation in the unit-cell to get meso-stresses (𝝈𝑛
𝑓,𝑡

) of impregnated yarns in the local coordinate system 

of the unit-cell. Whereas, in the case of the matrix, no transformation was used as the meso-stresses (𝝈𝑛
𝑚,𝑡

) in the 

local and global coordinate systems are the same due to their isotropic nature. The meso-stresses in the local 

coordinate system are used to evaluate the damage initiation function of each constituent, using Eqn. (14)-(19). 

Once, the damage is initiated the damage variables (𝑫𝑛
𝑓,𝑡

, 𝐷𝑛
𝑚,𝑡) were determined using Eqn. (23)-(28) and Eqn. 

(36). Damage variables at a time (t) were compared with the damage variable at the previous time increment (t-

∆𝑡) and updated based on the maximum value, using Eqn. 8. These damage variables are used to update the 

meso-stresses at the end of time (t) and to evaluate the damage stiffness matrix for the next time increment 

(t+∆𝑡). The updated meso-stresses in the local coordinate system are transformed back into the global 

coordinate system, using Eqn. 11. Finally, the homogenized macro-stresses (�̅�𝑛
 𝑡) at integration point (n) were 

calculated using meso-stresses in the global coordinate system and volume fraction of each constituent in the 

unit cell (𝑉𝑖), using Eqn. (39). The same process is repeated for the next integration point (n) and the process 

continues until the updated macro-stresses are determined for all the integration points in the model. These 
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macro-stresses are returned to the solver to evaluate strain increment for the next time increment (∆𝑡). The 

simulation ends, when the total time (𝑡𝑡) becomes equal to the maximum time set for the simulation.  

4. Validation methodology 

4.1. Materials and method 

 In this research work, 3D orthogonal E-glass woven fabric (3D-9871) obtained from TexTech® 

Industries, USA, was used to manufacture 3D fibre reinforced composites. The fabric consists of three warp 

layers and four weft layers held together by the z-binder, which travels along the warp direction. The overall 

thickness of the fabric is 4.3 mm. The fabric consists of 49% fibres along the warp and weft direction and 2% 

fibres along the thickness direction. The warp and fill count of the fabric is 2.8 EPCM and 1.9 PPCM, 

respectively. Two different resin systems were used to fabricate 3D-FRC, i.e., thermoplastic resin Elium® 188x0 

supplied by Arkema and thermoset resin Epolam® 5015/5015 supplied by Axson [27, 28]. Both types of 3D-

FRC were manufactured using vacuum assisted resin infusion process (VARI). The resin Elium® is liquid at 

room temperature which allows us to fabricate thermoplastic-based 3D-FRC using the VARI process as well. 

More details on the fabrication process can be found in reference [6]. The average thickness and fibre volume 

fraction of both types of the 3D composite are 4 mm and 52%, respectively.  

4.2. Validation of multiscale progressive damage model 

 The proposed multiscale progressive damage model has been validated using the quasi-static test on 

polymer matrix and 3D composite; and dynamic low-velocity impact test on 3D composite.  

4.2.1. Quasi-static (tensile) tests on polymer matrix 

 The tensile response of both polymer matrix available in the literature for Elium® 188 and Elopam® 

5015/5015 was used to validate the behaviour of polymer matrix predicted by the model, i.e., tensile coupon test 

performed by Kazemi et al. [29] on Elium® 188 and Zhang et al. [30] on Epolam® 5015/5015. The tests were 

performed using a dog-done specimen according to ASTM standard D638. The geometry of the dog-bone 

specimen along with the dimensions is shown in Fig. 6(a). 

4.2.2. Quasi-static (tensile/compression) tests on 3D composites  

 To validate the tensile/compression response of 3D composites, the uniaxial (tensile and compression) 

tests were performed on both types of 3D composites along with warp and weft directions. The tensile and 

compressions tests were performed according to ASTM D3039 [31] and ASTM D6641 [32], respectively. The 

geometry of the tensile and compression specimen along with the dimensions, boundary and mesh is shown in 

Fig 6(d) – (f) and Fig. 6(g) – (i), respectively.  
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4.2.3. Dynamic low-velocity impact tests 

 The drop weight impact test has been performed at different impact energies (10 J, 20 J, 30 J, 40 J and 

50 J, which corresponds to the impact velocity of 1.9 ms-1, 2.7 ms-1, 3.3 ms-1, 3.9 ms-1 and 4.4 ms-1) according to 

ASTM D7136. The tests were conducted on a rectangular specimen 150 mm x 100 mm x 4 mm in dimension, 

using a 16 mm diameter hemispherical impactor. The mass of the impactor is 5.1 kg. The schematic diagram of 

the drop weight impact test is shown in Fig. 7(a). More details on the drop weight impact tests can be found in 

our earlier publication [6]. The summary of the drop weight impact test in terms of damage severity at different 

impact energies is summarized in Table 4. 

4.3. Finite element analysis  

4.3.1. Finite element analysis for quasi-static tests on polymer matrix 

 The validation finite element analysis was carried using the same overall methodology and subroutine 

as outlined earlier in Fig. 5. This was achieved by setting the volume proportions of the yarn, 𝑉𝑤𝑎𝑟𝑝 = 𝑉𝑓𝑖𝑙𝑙 =

𝑉𝑧−𝑏𝑖𝑛𝑑𝑒𝑟 = 0  and 𝑉𝑚 = 1, and thus effectively deactivating the part related to the 3D-fabric yarns and only 

activating the matrix related parts of the code. The dog-bone specimen along with the boundary conditions 

(according to ASTM D638), as shown in Fig. 6(b), was used for the FE simulation of tensile behaviour of both 

polymer matrices. The specimen was meshed with reduced integration of 3D solid elements (C3D8R), as shown 

in Fig. 6(c). The elastic constants and strength properties of thermoplastic and thermoset matrix are given in 

Table. 5. The predicted tensile response in terms of the stress/strain curve was compared with the experimental 

stress/strain curves reported in the literature for both the matrices [29, 30]. 

4.3.2. Finite element model for quasi-static tests on 3D composite 

 In the second case of validation, the multiscale progressive damage model was used to predict the 

tensile and compressive response of both 3D composites. The tensile and compressive coupon simulation 

boundary and loading conditions were specified such that the test condition of ASTM standard D3039 [31] and 

D6641 [32], respectively are reproduced. The geometry along with the boundary conditions used in the finite 

element analysis of the tensile and compression coupon is shown in Fig 6(e) and Fig. 6(h), while the finite 

element mesh is shown in Fig. 6(f) and Fig. 6(i), respectively. The finite element model was meshed with 

reduced integration of solid elements (C3D8R). The C3D8R is a reduced integration element, which has one 

integration/Gauss point at the centre. The uniaxial tests were simulated under displacement control. The elastic 

constants and strengths properties of E-Glass fibre and polymer matrix used as input in the multiscale analysis 

are given in Table 5. Table 6 shows the critical energy release rate of impregnated yarns under different damage 

modes in thermoplastic and thermoset 3D composites. 
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4.3.3. Finite element model for dynamic low-velocity impact tests 

The drop weight impact test has been simulated in Abaqus/Explicit according to ASTM D7136 [33]. 

Due to symmetric geometry, the only quarter model of the rectangular plate (150 mm x 100 mm) was modelled 

using symmetry boundary conditions. To further reduce the computation time, the gripped region (12.5 mm 

from each side) of the rectangular plate was also excluded and instead displacement boundary conditions as 

shown in Fig. 7(b) were applied. The hemispherical projectile with a tup diameter of 16 mm was modelled as an 

analytical rigid body. A 1.27 kg of a point mass was also attached to the tup to balance the weight.  

 The simulations were performed at five different impact velocities, i.e., 1.9 ms-1, 2.7 ms-1, 3.3 ms-1, 3.9 

ms-1 and 4.4 ms-1, which corresponds with the velocity just before impact in the drop weight impact experiments 

for 10 J, 20 J, 30 J, 40 J and 50 J cases respectively. In the FE simulation,  these impact velocity was assigned 

directly to the centre of mass of indentor as an initial condition and no external force field (such as gravity) was 

applied. The contact between tup and plate was defined using the penalty method and the co-efficient of friction 

between them was taken as 0.31. The drop weight impact velocity range used in the work falls under low to 

medium velocity impact and therefore the strain rate effects, which are important for high-velocity impact can 

be neglected.  Thus, no viscoelastic behaviour was considered in the finite element simulations.    

5. Results and discussion 

5.1. Mesh convergence study 

The model consists of a C3D8R reduced integration element. The element size was selected as (2.1 

mm, 2.85 mm, 0.46 mm); this is equal to the actual size of a unit cell of the 3D composite. To ascertain the 

effect of mesh size on the impact performance, a mesh sensitivity study was performed. Four different levels of 

mesh size were used, i.e., case-a (mesh size < UC size), case-b (mesh size = UC size), case-c and case-d (mesh 

size > UC size), as shown in Fig. 8(a). In each case, the LVI simulation was performed at 10 J (1.9 ms-1) and the 

corresponding force/time and displacement/time response was compared, as shown in Fig. 8(b) and (c). It 

elucidates that, when the mesh size is less than or equal to the UC size, the force/time and displacement/time 

response shows good correspondence with the experiments. However, in case-c and case-d when the mesh size 

is greater than the UC size, the force/time response shows a higher deviation from experiments. For each case, 

the percentage difference from experiments is shown in Fig. 8(d). It highlights that the case-b shows the most 

accurate results among all cases. 

These graphs indicate that the mesh is reasonably converged for the mesh size equal to the unit-cell 

size. Although in literature one can find examples [16], where, researchers have used smaller element size than 

the analytically defined meso scale unit-cell size (in context of a related approach used for 2D composites), we 

argue that when modelling using this approach it is important to keep the element size the same as the meso 
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level unit-cell size for a realistic macro-to-meso strain transformation as well as the correct interpretation of 

volume proportions used for meso-to-macro transformation of the stresses. Having the element size the same as 

the unit cell automatically gets the correct average elemental strains for the meso level model corresponding to 

each integration point of the FE mesh. If in a particular case an element size smaller than the UC-size must be 

chosen for convergence requirements, then averaged values from the elements corresponding to the unit-cell 

size will be required. Since, the meso-scale unit cell, in this case, is small enough we get a good strain resolution 

from the global (macro) model for an element size equal to the unit cell size. The multiscale model is 

implemented using reduced integration procedures, due to the nonlinear behaviour of polymer composite 

materials and to reduce computational time. Using a full integration procedure may improve the simulation 

accuracy, due to an increase in the integration points; however, it will significantly increase the computational 

cost. 

5.2. Quasi-static tests on polymer matrix 

 Fig. 9(a) shows the comparison of tensile stress/strain response predicted by the damage model with 

the experimentally determined stress/strain curves. The thermoplastic matrix shows higher peak strength (70 

MPa) as compared to the thermoset matrix (65 MPa) and this is captured reasonably well by the damage model, 

within 1.9% and 2.7% deviation, respectively. The tensile stress/strain responses of both matrix after the initial 

linear regime, exhibit nonlinear behaviour with thermoplastic showing a higher degree of non-linearity and 

significantly larger final failure strain. The thermoplastic matrix exhibits almost two times higher failure strains 

due to higher matrix ductility and fracture toughness. This higher strain to failure and ductility of the 

thermoplastic matrix is beneficial for a composite as it decreases the damage severity by giving extra stability to 

the 3D composites once they are damaged. Fig 9(b) depicts the location of damage predicted by the FE 

simulation. The simulation shows that the failure occurred in the narrow gauge section, which is according to 

the standard ASTM standard D638. 

5.3. Quasi-static tests on 3D composites 

 The uniaxial tensile and compression tests were simulated using the multiscale damage model 

presented in section 3. The results are summarized in Table 7. In thermoplastic 3D composite, the predicted 

tensile strength along the warp and weft directions were within 3.9% and 7.3% deviations respectively, of their 

average experimental value. Whereas, the predicted compressive strengths for the thermoplastic 3D composite 

along the warp and weft directions were within 16% (within 10% for maximum limit) and 2.1% deviations with 

their experimental average value, respectively. Overall the predicted tensile/compressive strength of 

thermoplastic 3D composites shows good agreement with the experimental data. In the case of thermoset 3D 

composites, the predicted tensile strengths along warp and weft directions were 8.5% higher than the maximum 
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value recorded in the corresponding experiments. In contrast, the predicted compressive strengths along the 

warp and weft directions were within 17% of the maximum value recorded in corresponding experiments and 

within 7.3% of the maximum experimental value. The model overpredicts the compressive strength of thermoset 

composite, this can be due to a number of reasons, for example, the model does not account for voids; change in 

the orientation of fibre and failure of fibre/matrix interface. 

 The comparison of predicted tensile and compressive stress/strain response of thermoplastic composite 

with experimentally determined stress/strain curves is shown in Fig. 10(a)-(d). In all the cases, the predicted 

stress/strain response lies inside the experimental variation. Also, the predicted tensile/compressive strength 

along the warp and fill direction is close to each other due to the similar fibre content in both directions,i.e., 49% 

fibres along the warp and fill direction. In the case of tensile loaded specimens, the damage model successfully 

captured the initial linear region followed by the nonlinear region, which starts from ~ 0.75% strain, see Fig. 

10(a) and (b). This transition of the linear region into the nonlinear region corresponds to the damage initiation 

strain, afterwards, the stiffness starts to decrease, which is primarily due to matrix micro damages. Such a 

nonlinear region in the tensile stress/strain curves has also been reported in the experimental study of thermoset 

3D composites by Callus et al. [34]  and Warren et al. [35]. However, the prediction of such mechanisms has not 

been demonstrated for the resin-infused thermoplastic 3D composites. The predicted compressive strength along 

the fill loaded specimens corresponds well with the experimental variations; however, in the case of warp loaded 

specimens the model slightly over predicts (see Fig. 10(c)). This may be due to material and manufacturing 

defects such as voids, resin-rich pockets, yarn waviness etc., which were not considered in the unit cell model. 

 The comparison of predicted tensile and compressive stress/strain curves of thermoset composites 

along with the experimental variation in the stress/strain curves is shown in Fig. 10(e)-(h). Similar to the 

thermoplastic composites, the predicted tensile stress/strain curve shows the linear region followed by the 

nonlinear response, due to damage initiation as discussed earlier. The damage initiation strain limit of the tensile 

stress/strain curve is (transition of linear to nonlinear region) ~ 0.45% strain, which corresponds with the 

experimental limits i.e. ~ 0.5% strain (see Fig. 10(e) and (f)). In the case of the compressive stress/strain curve, 

the model slightly overpredicted compressive strength (see Fig. 10(g) and (h)). Overall the damage model 

slightly over predicts the tensile and compressive behaviour of thermoset 3D composites. As before, this may be 

due to effects of defects (voids, resin-rich pockets, yarn waviness etc.) and the week fibre/matrix interface 

(observed experimentally), which may contribute to the reduction of tensile/compressive strength as these 

factors were not considered in the damage model. 

 Fig. 11 shows the comparison of predicted and experimental damage patterns in the thermoplastic and 

thermoset 3D composites subjected to tensile and compressive load. The multiscale model successfully captured 
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the desired damage patterns, i.e., fibre and matrix failure in the gauge section of the specimen. The 3D 

orthogonal woven fabric used has 98% fibres along the warp (0°) and fill (90°) direction; therefore, major failure 

is expected to occur upon fibre failure. Also, the predicted damage pattern would be similar along both 

directions, due to the ideal unit-cell model (yarn waviness and voids were not considered). Fig. 11(a) and (b) 

show the fibre failure in the thermoplastic and thermoset 3D composite, respectively under compressive load. In 

both cases, failure occurred near the tabs due to fibre micro-buckling. Fig. 11(c) and (d) show fibre failure in the 

thermoplastic and thermoset composite, respectively under tensile load. The thermoplastic 3D composites show 

ductile failure due to nonlinear deformation in the matrix followed by the extensive fibre pull-out (see Fig. 

11(c)). In comparison, the thermoset 3D composites show brittle failure due to brittle failure in the thermoset 

matrix and in fibres (see Fig. 11(d)).  

5.4. Dynamic low-velocity test on 3D composites 

  The damage model successfully reproduced the drop weight impact response of both thermoplastic 

and thermoset 3D-FRC in the whole range of impact energies, i.e., 10 J to 50 J. In addition to this, the model 

demonstrated improved performance of thermoplastic 3D composites in terms of lower damage area and higher 

peak force, in comparison with the thermoset counterpart, as observed experimentally. 

5.4.1. Comparison of elastic and damage response in 3D-FRC 

 The preliminary FE simulation to determine the elastic response of thermoplastic and thermoset 3D 

composites at 50 J (4.4 ms-1) is shown in Fig. 12. The elastic simulation indicates that in the absence of  

progressive damage sub-routine the simulation shows significant higher peak force, less displacement and 

higher rebounding velocity. Thus, the elastic simulation demonstrates the necessity to consider different types of 

damages mechanisms, observed experimentally in the finite element simulation to accurately predict the damage 

response of 3D composites under drop weight impact.  

5.4.2. Comparison of damage response under LVI (experiment vs. simulation) 

 Fig. 13 shows the comparison of predicted force/displacement response of thermoplastic and thermoset 

3D composites at different impact energies (i.e., 10 J (1.9 ms-1) to 50 J (4.4 ms-1) with the experimentally 

determined force/ displacement response. As the indentor comes in contact with the specimens, the contact force 

between them increases linearly, followed by the slight load drop due to micro-damages in the matrix. This was 

supplanted by the damage propagation process, which completely stopped the indentor at the peak load. The 

figure indicates that as the impact energy increases from 10 J to 50 J the corresponding maximum displacement 

and peak force experienced by the specimens increases, as a result, the energy dissipated by the specimen 

increases. At all impact energies, the finite element simulation demonstrates an excellent correlation of the 
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material response in terms of damage propagation process, peak load experienced by the specimen and 

rebounding process of the indentor, which was physically observed in the drop weight impact test (see Fig. 13). 

After reaching the peak displacement, there is a slight difference between experimental and simulation results, 

during the rebounding phase. This may be due to a difference in the rebounding velocity of the indentor, as the 

gravitational effects were ignored during the finite element simulation (see Fig. 13). The area enclosed within 

the loading and unloading curves represents the amount of energy dissipated by the 3D composite, during the 

damage process. The dissipated energy evaluated from the FE analysis is slightly less than the experimental 

dissipated energy.  

 Fig.14 shows the comparison of predicted velocity-time curves with experiments at different impact 

velocities. As the tup come in contact with the specimen, the velocity of the tup decreases until it was reduced to 

zero, where the tup experienced maximum force and peak displacement, as shown in Fig. 13. At this point, both 

experimental and simulation results show excellent correlation. Afterwards, the rebounding phase starts due to 

the elastic energy stored in the specimen. In both types of 3D composites, during the rebounding phase, the 

velocity in simulation is slightly higher than in experiments in all cases. This difference in the predicted and 

experimental rebound velocity is may be due to the gravitational effect, which was not considered in the finite 

element simulation. 

5.4.3 Comparison of computation time 

One of the key benefits of the proposed multiscale progressive damage model is significantly less 

computational time. This benefit becomes a major concern in the case of large scale dynamic simulations. For 

example, to perform the dynamic drop weight impact simulation discussed above; the simulation takes around 

16 min to complete (4 CPU cores), which is much faster than the former multiscale models ( reported in Table 

1, category B). For example, the meso-scale model proposed by Turner et al. [36] takes around 8 hours run time 

(8 CPU cores); whereas, Chu et al. [37] reported 15 hours run time (32 CPU cores) to complete dynamic impact 

simulation. The more detailed comparison of computational time with other models have been summarized in 

Table 8. 

5.4.4. Comparison of damage severity: Thermoset 3D-FRC vs. thermoplastic 3D-FRC 

 Fig. 15 shows the comparison of damage predicted by the FE simulation in the thermoplastic and 

thermoset 3D composites. Overall the thermoset 3D composites show higher damages at all impact energies, 

which is consistent with the experimental observation. Fig. 15(a) shows the comparison of predicted 

tensile/compression failure in polymer matrix region in both 3D composites. Several aspects of the damage 

process in both 3D composites can be understood and compared to this. Firstly, in both cases, the matrix fails 

due to tensile damage which starts from the bottom (back face) and propagates upward (impact face); whereas, 
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the matrix compression damage occurs at the top surface (impact face) by the tup. Secondly, the matrix tensile 

damage is much more pronounced than matrix compressive damage in both cases. In addition, the damage 

severity increases with the increase in the impact energy. Thirdly, the thermoset matrix experienced higher 

damage in the thermoset 3D composite as compared to the thermoplastic counterpart. The higher damage in the 

thermoset composite is due to the brittle nature of the epoxy matrix that undergoes matrix cracking in resin-rich 

pockets and failed earlier due to its lower strain to failure. In contrast, the thermoplastic matrix undergoes plastic 

deformation in the resin-rich pockets resulting in reduced damage at all impact energies, due to their higher 

strains to failure. 

  Fig. 15(b) shows the combined longitudinal tensile/compressive failure in all three yarns (warp, weft 

and z-yarn). The tensile failure occurred at the bottom surface and compressive failure occurs at the top surface, 

due to global deformation in the specimen and compressive failure due to indentor, respectively. Similarly, in 

this fibre tensile damage at the bottom surface is higher than at the top surface due to fibre compression damage. 

The thermoset 3D composites exhibit higher damage than thermoplastic composites. However, the fibre failure 

predicted by the damage model in the thermoplastic 3D composite is slightly higher.  

 Fig 15(c) shows the comparison of combined in-plane transverse tensile/compressive failure; whereas, 

Fig. 15(d) shows the comparison of out-of-plane transverse tensile/compressive failure, in the warp and fill 

impregnated yarn. In this case of the out-of-plane transverse direction, the main failure occurred due to localised 

crushing under the indentor. However, in both cases, thermoset 3D composite shows higher damage severity, 

which corresponds to matrix cracking and shear failure. In comparison, the thermoplastic 3D composites show 

significantly reduce damages, due to plastic deformation. The transverse failure in both composites is governed 

by the matrix properties, as the thermoset matrix has a brittle behaviour due to its lower strains to failure, which 

accrue higher damage. In contrast, the thermoplastic matrix has a ductile behaviour and higher strain to failure, 

which is beneficial in improving the performance of thermoplastic-based 3D composites under drop weight 

impact loads, as predicted by the damage model. 

5.4.5. Comparison of damage area in both 3D-FRC: Experiment vs. Simulation 

 Fig. 16 shows the comparison of damage area predicted by the FE simulations and through experiments 

at different impact energies. The predicted damage area shown in Fig. 16 is a cumulative damage area in 3D 

composites, due to nonlinear deformation of matrix, longitudinal fibre failure, shear failure in the in-plane 

transverse direction and shear failure in out-of-plane transverse damage. This allows us to get the total extent of 

the damage which can then be compared with the damaged area measured in experiments (please see detailed 

experimental results of damage area and calculation method for a damaged area in our previous publication [6]) 

The red and black dashed line represents damage area determined through experiments in thermoplastic and 
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thermoset 3D composites, respectively. The predicted and experimental damaged areas were superimposed to 

make a clear comparison. The proposed multiscale progressive damage model successfully demonstrates the 

damage severity (footprints) in both 3D composites, at all impact energies. In both 3D composites, the predicted 

damage area increases with impact energy and the damage severity is much more pronounced in thermoset 

composite as observed experimentally. This was mainly due to, a) higher matrix damage in thermoset 

composites in the form of matrix cracking and yarn debonding and b) fibre failure at the bottom surface of the 

specimens due to tensile damage observed experimentally. These results establish that the impact response and 

damage severity predicted by the proposed multiscale progressive damage model corroborates well with the 

experimental results. It also confirms that the resin-infused thermoplastic-based 3D composite reduces the 

damage severity caused by the impact, thereby enhancing the damage resistance.  

6. Conclusion 

This work presents a novel multiscale progressive damage model developed to predict the damage 

response of 3D textile composites. The proposed progressive damage model was implemented in a user-defined 

subroutine (VUMAT) and simulated in commercially available finite element software, Abaqus/Explicit.  The 

methodology, however, is generic and can be easily used with most dynamic FE solvers that allow for user 

material definition and reduced integration solid elements. The predictive capability of the damaged model was 

first demonstrated by simulating the uniaxial test (polymer matrix and 3D-FRC) and then the drop weight 

impact test of 3D-FRC at different impact energies. A good correlation was achieved between numerical 

predictions and experimental results. The proposed multiscale progressive damage model successfully captured 

the uniaxial response of polymer matrix and 3D textile composite in terms of ultimate strength, modulus and 

failure strain in the case of quasi-static simulations. Whereas dynamic (drop weight impact) simulations 

accurately predicted the impact response in terms of peak load, maximum displacement and damage severity in 

both 3D textile composites. The study demonstrates that the proposed multiscale progressive damage model is 

computationally efficient and successful in virtually investigating the damage response of 3D textile composite 

made from novel thermoplastic (Elium) and conventional thermoset (epoxy) matrix. The multiscale approach 

presented here makes it easy to create digital twins for realistic damage simulations because of low 

computational cost, good accuracy and simple model setup. With the growing interest in using easy to recycle 

thermoplastic 3D composites and in using digital twins for simulation, the work presented is timely and should 

benefit a wide audience. 
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 Figures and Captions 

Figure 1. Overall flowchart of multi-scale modelling of 3D composites 

Figure 2. CT-scan images and unit-cell of 3D woven composite. (a) schematic diagram of the unit-cell model 

for 3D composites, (b) CT-scan images of the top view, (c) CT-scan image of warp cross-section, (d) CT-scan 

image of fill cross-section, (e) CT-scan image of z-binder cross-section. 

Figure 3. Schematic diagram of a unit-cell model for 3D composites in the global coordinate system (GCS) and 

the local coordinate system (LCS). (a) unit-cell model of 3D composite in GCS (XYZ), (b) relationship between 

LCS(123) and GCS(XYZ) of impregnated warp yarn, (c) relationship between LCS(123) and GCS(XYZ) of 

impregnated fill yarn and (d) ) relationship between LCS(123) and GCS(XYZ) of impregnated z-binder yarn. 

Figure 4. The schematic diagram of the damage model for impregnated yarns and matrix regions. The 

superscripts  “f” and “m” represents impregnated yarns and polymer matrix, respectively. (a) bilinear damage 

evolution law for impregnated yarns and (b) multilinear damage model for polymer matrix.  

Figure 5. Overall algorithm for damage prediction in 3D composite using the multiscale method. The 

superscripts  “f” and “m” represents impregnated yarns and polymer matrix, respectively. 

Figure 6. Schematic diagram of geometry and boundary conditions of (a) – (c) dog-bone, (d) – (f) tensile and 

(g) – (i) compression test simulation. (a), (d), (g) specimen geometry with dimensions; (b), (e), (h) boundary 

conditions for the FE analysis; (c), (f), (i) shows finite element Mesh of the specimen in each case. 

Figure 7. Schematic diagram of a drop-weight impact test setup and FE model. (a) schematic diagram of a drop-

weight impact test setup and (b) finite element model used for numerical simulation 

Figure 8. Mesh sensitivity study. (a) mesh refinement cases, (b) force/time response, (c) displacement/time, and 

(d) % difference between experiments and different mesh refinement cases. 

Figure 9. Comparison of thermoplastic and thermoset neat matrix under tensile loading. (a)  nonlinear 

behaviour of thermoplastic and thermoset neat matrix under tensile loading and (b) predicted damage in the 

Dog-bone specimen. The state variable SDV7 represents tensile/compressive failure in the matrix.  

Figure 10. Comparison of stress/strain curves of thermoplastic (TP) and thermoset (TS) 3D composites 

(experimental vs. simulation). (a) TP warp loaded tensile test, (b) TP fill loaded tensile test, (c) TP warp loaded 

compressive test, (d) TP fill loaded compressive test, (e) TS warp loaded tensile test, (f) TS fill loaded tensile 

test, (g) TS warp loaded compressive test and (h) TS fill loaded compressive test. 

Figure 11. Comparison of damage morphologies in 3D composites (experimental vs. simulation). (a) 

compressive failure in thermoplastic specimens, (b) compressive failure in thermoset specimens, (c) tensile 

failure in thermoplastic specimens and (d) tensile failure in thermoset specimens 

Figure 12. Comparison of elastic and damage response of thermoplastic and thermoset 3D composites at 50 J. 

(a) force/displacement response of TP composite, (b) velocity/time response of TP composite, (a) 

force/displacement response of TS composite and (b) velocity/time response of TS composite 

Figure 13. Comparison (experimental vs. simulation results) of the force-time response of 3D thermoplastic 

composite at different impact energies. 

Figure 14. Comparison (experimental vs. simulation results) of the velocity-time response of 3D thermoplastic 

composite at different impact energies.  

Figure 15. Comparison of predicted damage in thermoplastic and thermoset 3D composites at 40 J. (a) matrix 

failure (represented by SVD25), (b) longitudinal tensile/compressive fibre failure (represented by SVD26), (c) 

in-plane transverse tensile/compressive matrix failure (represented by SVD27) and (d) out-of-plane transverse 

tensile/compressive matrix failure (represented by SVD28). 

Figure 16. Comparison of damage area (experimental vs. simulation) in thermoplastic and thermoset 3D 

composites at 10 J, 20 J, 30 J, 40 J and 50 J. The figure shows combined damage due to pure matrix failure, 

longitudinal damage, in-plane transverse damage and out-of-plane transverse damage. The red and black dashed 

line represents damage area obtained from experiments in thermoplastic and thermoset 3D composites, 

respectively. The state variable SDV29 represents combined fibre fracture and matrix failure (in-plane and out-

of-plane transverse direction). 
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Tables 
Table 1. Summary of multiscale progressive damage models available in the literature (MiS = Micro-scale, MeS = Meso-scale, MaS = 

Macro-scale) 

Cat. Reference & year Fabric architecture 
FE mesh - 

scale-level 

Damage initiation in 

fibre/yarns - scale-level 

Damage initiation in 

matrix 
Damage evolution 

A 

Wang et al. [38] 2017 2D woven  MeS Max stress (MiS) Strain invariant criteria Linear  

Xu et al. [23] 2014 2D braided  MeS Max stress (MiS) Strain invariant criteria None 

Jia et al. [39] 2013 3D orthogonal  MaS Max stress (MiS) None None 

B 

Yang et al. [40] 2020 2D woven MeS Maximum stress (MeS) Strain invariant criteria Linear 

Xu et al. [16] 2020 2D woven  MaS Hashin failure criteria (MeS) Nonlinear model Exponential 

He et al. [41] 2019 3D braided MeS Hashin failure criteria (MeS) Parabolic yield criteria Exponential 

Madke et al. [42] 2019 2D and 3D woven MeS Hashin failure criteria (MeS) None Linear 

Liu et al. [10] 2019 3D angle-interlock  MeS Puck failure criteria (MeS) Parabolic yield criteria Exponential 

Ren et al. [43] 2018 3D angle-interlock  MeS Hill failure criteria (MeS) von Mises yield criteria Linear 

Pibo et al. [44] 2018 3D angle-interlock  MeS Maximum stress (MeS) Maximum stress None 

Said et al. [45] 2018 3D orthogonal MeS Puck failure criteria (MeS) von Mises criteria Linear 

Turner et al. [46] 2016 3D orthogonal  MeS Hashin failure criteria (MeS) None Linear 

Warren et al. [25] 2016 3D angle-interlock  MeS Hashin failure criteria (MeS) None Exponential  

Dai et al. [47] 2016 3D orthogonal  MeS Puck failure criteria (MeS) Maximum stress criteria Linear 

Zhong et al. [48] 2015 3D angle-interlock  MeS Puck failure criteria (MeS) Parabolic yield criteria Exponential 

Zhang et al. [49] 2015 2D braided  MeS Hashin failure criteria (MeS) None Linear 

Greens et al. [50] 2014 3D orthogonal MeS Maximum stress (MeS) von Mises yield criteria None 

C 

Kazemi et al. [15] 2020 2D woven MaS Maximum stress (MaS) None None 

Kinvi et al. [14] 2018 2D woven MaS Maximum stress (MaS) None None 

Bandaru et al. [11] 2016 3D woven MaS Chang-Chang model (MaS) None None 

Munoz et al. [13] 2015 3D orthogonal  MaS Maximum stress (MaS) None Exponential 

Sun et al. [51] 2009 3D orthogonal  MaS Critical damage area (MaS) None None 

Hao et al. [52]  2008 3D orthogonal  MaS Critical damage area (MaS) None None 

B&C Current model 3D orthogonal MaS Hashin failure criteria (MeS) Strain invariant criteria 
Yarns=Linear 

Matrix=Multilinear 

 

Table 2. Characteristic length for impregnated warp, fill and z-binder yarn for each damage mode. 

Damage modes (LCS) Warp yarn Fill yarn Z-binder yarn 

Longitudinal tensile/compressive  𝐿𝑐,1 = 𝑏2 𝐿𝑐,1 = 𝑎2 𝐿𝑐,1 = 𝑎1 

In-plane transverse tensile/compressive  𝐿𝑐,2 = 𝑎1 + 𝑎2 𝐿𝑐,2 = 𝑏1 + 𝑏2 𝐿𝑐,2 = 𝑐1 + 𝑐2 

Out-of-plane transverse  tensile/compressive  𝐿𝑐,3 = 𝑎1 + 𝑎2 𝐿𝑐,3 = 𝑏1 + 𝑏2 𝐿𝑐,3 = 𝑐1 + 𝑐2 

 

Table 3. Damage variable thresholds for each damage mode. 

Damage modes Damage variable threshold 

Pure matrix regions 𝑑𝑚,𝑚𝑎𝑥 = 0.98 

Longitudinal damage mode 
𝑑1,𝑚𝑎𝑥 = {

0.95                    𝑡𝑒𝑛𝑠𝑖𝑜𝑛
0.8        𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

 

The in-plane transverse damage mode 
𝑑2,𝑚𝑎𝑥 = {

0.9                    𝑡𝑒𝑛𝑠𝑖𝑜𝑛
0.8        𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

 

The out-of-plane transverse damage mode 
𝑑3,𝑚𝑎𝑥 = {

0.9                    𝑡𝑒𝑛𝑠𝑖𝑜𝑛
0.8        𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

 

 

Table 4. The relative severity of damage mechanisms for different velocity (single low-velocity impact event) 
Material Damage 

scale 

Damage 

mechanisms 

Case-1 

(10 J/1.9 ms-1) 

Case-2 

(20 J/2.7 ms-1) 

Case-3 

(30 J/3.3 ms-1) 

Case-4 

(40 J/3.9 ms-1) 

Case-5 

(50 J/4.4 ms-1) 

3D-TP-
FRC 

Micro 

damage 

Fibre breakage None Some Some Moderate Moderate 

Plasticization Some Dominant Dominant Significant Significant 

Matrix cracking None None Some Moderate Moderate 

Macro-

damage 

Yarn debonding None Some Some Moderate Moderate 

Z-crown failure None None Some Moderate Moderate 

Surface VID None BV CV CV (>Case 3) CV (>Case 4) 

3D-TS-
FRC 

Micro 

damage 

Fibre breakage None Some Some Significant Significant 

Plasticization None None None None None 

Matrix cracking Some Dominant Dominant Significant Significant 

Macro-

damage 

Yarn debonding Some Dominant Dominant Significant Significant 

Z-crown failure None Some Some Moderate Moderate 

Surface VID None BV BV CV CV 

VID = Visible impact damage, BV = Barely visible, CV = Clearly visible 
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Table 5. Elastic constants and strength of E-Glass fibre and polymer matrix. 

Properties Material/Material property 
TP matrix (Elium) TS matrix (Epolam) E-glass 

Symbol Value Symbol Value Symbol Value 

Elastic 

constants 

Modulus of Elasticity (GPa) 𝐸𝑚
 c 3.10 𝐸𝑚 b 3.3 𝐸𝑓

 b 73 

Modulus of Rigidity (GPa) 𝐺𝑚 1.13 𝐺𝑚 1.26 𝐺𝑓
 b 30 

Poisson’s Ratio  𝑣𝑚
 a 0.37 𝑣𝑚

 d 0.3 𝑣𝑓
 b 0.22 

Strength 

properties 

Tensile strength (MPa) 𝑇𝑚 c 70 𝑇𝑚
 b 65 𝑇𝑓

 d 2000 

Compressive strength (MPa) 𝐶𝑚 c 130 𝐶𝑚
 d 120 𝐶𝑓

 d 1350 

Shear strength (MPa) 𝑆𝑚 42 𝑆𝑚 52   
a Reported in literature [14], b Reported in literature [30], c Reported in literature [29], d Reported in literature 

[53] 

 

Table 6. The critical energy release rate of impregnated yarns in tension and compression along longitudinal 

(direction 1), in-plane transverse (direction 2) and out-of-plane transverse (direction 3) direction. 

Critical energy 

release rate 
𝑮𝟏𝒄
𝟏+ 

(N/mm) 

𝑮𝟏𝒄
𝟏− 

(N/mm) 

𝑮𝟐𝒄
𝟐+= 𝑮𝟑𝒄

𝟑+ 
(N/mm) 

𝑮𝟐𝒄
𝟐−= 𝑮𝟑𝒄

𝟑− 
(N/mm) 

E-Glass/Epoxy [53] 60 39.15 1.5 4 

E-Glass/Elium 60 39.15 1.5 4 

 

Table 7. Comparison of uniaxial results in thermoplastic and thermoset composites for tension and 

compression. The value in parenthesis represents an average of three samples.  
Property/Material Thermoplastic 3D composites Thermoset 3D composites 

Experiment Simulation % Difference Experiment Simulation % Difference 

Longitudinal tensile strength (MPa) 487 (±2.7) 507 3.9 461 (±16.5) 505 8.7 

Transverse tensile strength (MPa) 465 (±4.5) 502 7.3 444 (±8.5) 495 10.3 

Longitudinal comp. strength (MPa) 309 (±23) 369 16 272 (±20) 357 23 
Transverse compressive strength (MPa) 362 (±5.2) 367 2.1 315 (±14) 355 11 

 

Table 8. Comparison of computational time with other models 
Studies compared Run time (min) CPU cores Element type Contact properties No of Ele. 

Turner et al. [36] 480 8 Shell element S4R Penalty based contact 

Cohesive contact 

210,000 

Chu et al. [37] 900  32 Shell element S4R Penalty based contact ----- 

Current model 16 4 3D Solid Continuum 

C3D8R 

Penalty based contact 3744 

Figure 1 
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Figure 2 
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