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Abstract. Precise localization is crucial for the safety-critical factor and
effective navigation of autonomous vehicles. This applied research
examines machine learning models' use to estimate, predict and correct
errors in Global Positioning System (GPS)/ Inertial Measurement Unit (IMU)
localization for autonomous vehicles indoors and outdoors applications.
This ongoing development aims to improve localization accuracy by
utilizing exploratory data analysis (EDA) and implementing models such as
linear regression, random forest regressor, and decision tree regressor. The
assessment is performed with the mean squared error (MSE) metric, yielding
values of 1.7069427028104143e %5 for the decision tree, linear regression,
and random forest models. The results showed that the model with the
highest performance is determined by evaluating the Mean Squared Error
(MSE) values.

1 Introduction

Research in integrating predictive machine learning-based error correction into GPS/IMU
localization for autonomous vehicles is focused on improving the accuracy and reliability of
autonomous vehicle navigation systems. As autonomous vehicles become more integrated into
our transportation networks, it is increasingly important to ensure that these vehicles can
accurately perceive and recognize their surroundings to navigate safely and efficiently.
Reinforcement learning (RL) is a viable paradigm for creating adaptive control systems for
autonomous vehicles [1]. Furthermore, recent advancements in computational methodologies,
such as compressive sensing and machine learning have demonstrated promise in improving
the spectrum resolution of devices and rectifying mistakes in GPS/IMU localization systems
[2]. Moreover, there has been a growing trend in robotics literature to utilize learning-based
techniques to tackle the difficulties of perceiving and understanding the environment for
autonomous navigation in unorganized surroundings [3].

Deep learning has garnered interest in autonomous driving for its application in radar data
analysis. Specifically, it has been recognized for its ability to correct errors and enhance
localization accuracy in GPS/IMU systems of autonomous vehicles [4]. Furthermore,
incorporating communication-enabling technology and machine learning in autonomous
vehicles has been recognized as a crucial factor in delivering connectivity and precise vehicle
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location [5]. The importance of machine learning in solving the issues related to errors and or
mistake correction and localization in autonomous vehicles is highlighted by these
achievements.

Moreover, the utilization of machine learning in several domains, including medical
informatics and radiation, showed the possibility of employing predictive machine learning-
based error correction in GPS/IMU localization for autonomous vehicles (AV). Machine
learning techniques have been employed to assist and automate the diagnostic and treatment
processes in radiotherapy with great precision. This suggests that similar applications can be
explored in autonomous vehicle localization systems [6]. Furthermore, the application of
machine learning in combining sensor data for autonomous vehicles is predicted to modify
ground transportation significantly, highlighting the significant influence of machine learning
in this field of applications [7].

It is evident that incorporating predictive machine learning-based error correction into
GPS/IMU localization for autonomous vehicles shows excellent potential in improving the
precision and dependability of autonomous vehicle navigation systems. Thus, it is possible to
tackle the difficulties of error correction and localization by utilizing the progress made in
machine learning, specifically in reinforcement learning, deep learning, and sensor fusion. It
will also greatly aid in the connectivity security and effective implementation of autonomous
vehicles.

2 Autonomous vehicle localization technology state of the ART

[8] introduced a new method that uses Convolutional Neural Networks (CNN) to solve the
error correction problem in inertial sensors, in the field of autonomous vehicle localization.
The proposed CNN-based technique accomplishes near real-time error correction by utilizing
the responses of an inertial sensor and accounting for intrinsic noise flaws. The authors employ
a time-division approach to preprocess IMU output data, facilitating compatibility with the
input format of CNN. The CNN technique is specifically designed to achieve superior
performance and reduced complexity, making it suitable for use on energy-efficient hardware
such as microcontrollers. The experimental results show substantial reductions in errors, with
a maximum improvement of 32.5% in straight-path motion and up to 38.69% improvement in
oval motion compared to the ground truth data.

[9] introduced an innovative method for dealing with the problem of precise vehicle
positioning when faced with unreliable Global Navigation Satellite System (GNSS)
information. The proposed method efficiently mitigates the imperfections in the GNSS data
by utilizing a multi-step correction filter. Furthermore, incorporating data from many sensors
enables compensation for the particular limitations of each sensor, hence improving the overall
dependability of the localization system. Moreover, implementing Generalizable Deep Visual
Inertial Odometry (GD-VIO) provides a reliable method for accurately determining the
vehicle's position, especially when there is a lack of GNSS signal. Real-world experiments
confirm the effectiveness of the suggested algorithms and show their capacity to deliver
precise and reliable vehicle posture prediction.

[10] presented a comprehensive analysis of the latest map-based localization approaches.
The authors categorize, describe, and evaluate these techniques in order to assess their
strengths and weaknesses. The research introduced methods and strategies that align pre-
existing maps with observations collected from different sensor modalities on-board. It
examines approaches that consider localization as a probabilistic issue, providing
understanding into the management of uncertainty and the utilization of Bayesian inference
methods. In addition, it examined the developing field of deep-learning localization algorithms,
specifically in relation to autonomous vehicles' potential and consequences.

[11] presented a new method to improve the accuracy of GPS localization for autonomous
vehicles using a reinforcement learning framework. This methodology differs from traditional
methods by not making inflexible assumptions about the hardware specifications of GPS
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devices or motion models, and it does not depend on reference locations provided by the
infrastructure. Instead, it utilized a reinforcement learning model to learn the best method for
improving raw GPS observations. It does this by using a reward mechanism based on
confidence, which is not dependent on geolocation. This improved the ability to apply the
model in different locations. Moreover, incorporating a map matching-based regularisation
term assisted in reducing reward variance. The implementation of the reinforcement learning
model utilized the asynchronous advantage actor-critic (A3C) method, which allowed for
simultaneous training and supported shorter training sessions to enhance robustness. The
suggested approach has been evaluated against an extended Kalman filter benchmark,
showing its effectiveness in improving the accuracy of GPS localization for autonomous
vehicles.

[12] provided a comprehensive analysis of modern methods designed to improve the
effectiveness of autonomous vehicle (AV) systems in close-range or localized contexts. This
text explored new research efforts that utilize advanced deep-learning sensor fusion algorithms.
The focus was on how these algorithms are applied in important tasks such as perception,
localization, and mapping, which are critical for the operation of autonomous vehicles. The
research highlights the need to use advanced approaches to improve the performance of
autonomous vehicles by combining information from several investigations. Moreover, it
outlines developing patterns in the domain and proposes new paths for future investigation,
thereby offering significant perspectives into the continuous development of AV technology.
[13] The initial work examined the application of computational methods, such as machine
learning, to improve the spectrum resolution of devices and rectify mistakes and faults. It
demonstrated the promise of these techniques in enhancing localization accuracy. Furthermore,
[14] emphasized the capacity of machine learning in rectifying techniques for underwater
hyperspectral image processing, demonstrating its suitability in various fields. These
preliminary investigations showcase the extensive applicability of machine learning in mistake
correction tasks and its capacity to improve localization accuracy in diverse situations. In
addition, the third publication [15] highlighted the significance of employing reinforcement
learning, a framework within machine learning, for developing adaptive control systems for
autonomous vehicles, emphasizing its relevance in this specific situation. This approach
signified a divergence from conventional procedures and proposed a transition towards more
flexible and adjustable control mechanisms. The fourth research [16] comprehensively
examined machine and deep learning techniques for recognizing sport-specific movements
utilizing IMU data inputs. This study showcased the practicality of machine learning in
analyzing movements, which is relevant to the localization of autonomous vehicles. These
works demonstrate the adaptability of machine learning techniques in addressing various
elements of autonomous vehicle operation, including control systems and movement
identification. Although machine learning showed potential in enhancing localization
accuracy, [17] warned about its limitations in comprehending fundamental ideas, which must
be considered when addressing error correction in autonomous vehicle localization. This
observation highlights the significance of combining the advantages of machine learning with
a more profound comprehension of the fundamental principles that govern localization
processes. [18] examined the application of machine learning in lidars for object detection, a
crucial component for precise localization in autonomous vehicles. This work emphasizes the
practical uses of machine learning in solving important problems related to autonomous
vehicle localization by specifically focusing on object recognition.

3 Introduction CAD model of predictive machine learning-based
error correction for autonomous vehicles

This architectural framework outlines the essential elements involved in using predictive
machine learning for error and mistake correction in GPS/IMU localization in autonomous
vehicles. The framework (see figure 1 below) consists of interconnected components that are
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essential for achieving precise and dependable localization in dynamic situations. The
methodology starts with data acquisition and preprocessing, which involves collecting and
initially processing sensor data from GPS and IMU units. Afterwards, the data goes through
feature extraction and selection, where important information is condensed to aid in efficient
model training. The learned predictive models are the foundation of the error correction
system. It uses machine learning algorithms to predict and correct IMU drift as time passes.
Ultimately, rigorous evaluation and validation methods ensure the error correction system's
robustness and effectiveness in enhancing the localization performance of autonomous
vehicles.
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Fig. 1. CAD Model of ML-Based Error Correction System Architecture

A. Sensor Data: Diverse sensors are employed to gather data on the vehicle's
environment and internal condition. The following items are included:

GPS Receiver: Offers worldwide positioning data.

An IMU, or Inertial Measurement Unit, is a device that measures a vehicle's acceleration,
angular rate, and, occasionally, its magnetic field. It provides valuable information on the
vehicle's movement and orientation.

B. Sensor Fusion Unit: The Kalman Filter is a computational algorithm that combines
information from several sensors, such as GPS and IMU, to enhance the precision of
determining the vehicle's position and orientation. It aids in minimizing mistakes and
enhancing dependability.

C. Data Preprocessing: This task entails identifying and rectifying faults or
discrepancies in the sensor data. For instance, outliers or inaccurate measurements can be
eliminated or rectified in GPS data. IMU data can be effectively denoised by employing
median or Kalman filtering techniques.

Data normalization ensures that each characteristic in the sensor data contributes equally
to the learning process and prevents particular features from dominating the process due to
their scale. For example, GPS coordinates and IMU measurements may vary in terms of their
scales. Normalization approaches, such as min-max scaling or z-score normalization, can
standardize all features to a uniform scale.

D. Feature Selection: Feature selection entails determining the most pertinent features
from the sensor data that provide a major contribution to the localization task, while
simultaneously minimizing the number of dimensions and computing complexity.

To choose pertinent features, methods such as correlation analysis, feature importance
ratings derived from machine learning models, or domain expertise can be employed.

In the context of autonomous vehicle localization, potential features for selection include
GPS coordinates, IMU acceleration, angular rate, and data from supplementary sensors such
as LiDAR or cameras.

After identifying the pertinent characteristics, they are then transferred to the
machine/deep learning module for additional analysis.
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E. Model Training: Various strategies are utilized to record and rectify IMU's drift over
time while training machine learning models for Predictive Machine Learning-Based Error
Correction in GPS/IMU Localization for Autonomous Vehicles. By employing libraries such
as scikit-learn, it is possible to train models like Linear Regression, Random Forest Regressor,
and Decision Tree Regressor on past sensor data to identify drift patterns and predict future
errors. These models are essential to error correction methods, allowing autonomous vehicles
to accurately determine their location even when trustworthy GPS signals are unavailable.

F. Localization Output: The final output from the system, providing the vehicle's
accurate position and orientation (pose)

4 Testing and validation: results and discussions

This section focuses on the utilization of machine Learning algorithms for predictive
Machine Learning-based Error Correction in GPS/IMU Localization for Autonomous
Vehicles. The process comprises two distinct phases: exploratory data analysis and
implementing three key machine learning algorithms. These algorithmes including Linear
Regression, Random Forest Regressor, and Decision Tree Regressor from scikit-learn, are
integral in capturing IMU drift patterns and facilitating error correction, thereby ensuring
precise vehicle localization in autonomous navigation scenarios.

A. Exploratory data analysis

The exploratory data analysis (EDA) provided valuable insights into the properties and
linkages present in the dataset. Summary statistics offer a thorough summary of each feature's
primary tendencies and variability, which helps in comprehending the distribution of the
dataset. The utilization of visualization tools, such as time series plots (see figure 3 below),
aided probable trends within the dataset. Furthermore, the correlation matrix (See figure 2)
revealed noteworthy connections among many variables, guiding subsequent research and
modelling choices. It can be claimed that the EDA approach revealed important dataset
characteristics, providing a solid basis for future tasks such as predictive modelling and error
correction in GPS/IMU localization for autonomous vehicles.
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Fig. 2. Correlation Matrix. Fig. 3. Time Series data of each feature
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B. Machine learning algorithms

The study employed three machine learning algorithms for predicting localization for
autonomous vehicles. These are:
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a. Linear Regression

The linear regression model offers a direct method for predicting longitude and latitude using
the information provided. Nevertheless, it assumes a linear correlation between the input
characteristics and the goal variables. In this scenario, while it may successfully identify
certain straightforward patterns in the data, it may encounter difficulties in detecting more
intricate connections, particularly when there are non-linear interdependencies. Consequently,
the model's performance, as measured by the Mean Squared Error (MSE), could be greater
compared to more adaptable models such as the Random Forest Regressor and Decision Tree
Regressor.

Table 1 below shows a sample (first 5 rows of the dataset) comparison between the Actual
and predicted vehicle positions when a simple Linear regression algorithm is employed.

Table 1. Actual values vs predicted values for linear regression for the first five rows

latitude longitude predicted_latitude predicted_longitude
0 51.027833 13.730935 51.024790 13.734908
1 51.026803 13.737911 51.025017 13.735114
2 51.021957 13.734974 51.025143 13.735137
3 51.023659 13.732241 51.024941 13.735181
4 51.023638 13.734061 51.024963 13.735029

b. Random forest regressor

The Random Forest Regressor model offers a more flexible approach by using a collective of
decision trees to make predictions. It can capture nonlinear relationships and interactions
between features, leading to better performance, especially when dealing with complex
datasets like those encountered in GPS/IMU localization for autonomous vehicles. As a result,
the Random Forest Regressor may achieve a lower MSE compared to the Linear Regression
model, indicating improved prediction accuracy. Table 2 shows Random Forest regressors
tracking smaller changes in predicted positions as they move from one point to another.

Table 2. Actual values vs predicted values for random forest regressor for the first five rows

latitude longitude predicted_latitude predicted_longitude

0 51.027833 13.730935 51.024715 13.734640
1 51.026803 13.737911 51.025520 13.735094
2 51.021957 13.734974 51.025547 13.734580
3 51.023659 13.732241 51.024899 13.734481
4 51.023638 13.734061 51.025229 13.735313

c. Decision tree regressor

The Decision Tree Regressor model is an algorithm that effectively divides the feature space
into distinct areas according to the input feature values. Although decision trees can identify
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intricate relationships within the data, they are susceptible to overfitting, particularly when
dealing with noisy or high-dimensional data. Consequently, the Decision Tree Regressor may
demonstrate increased variability and may not effectively apply to new data compared to the
Random Forest Regressor. Table 3 below shows actual and predicted position co-ordinates
when a stand-alone decision tree algorithm is employed on the same dataset.

Table 3. Actual values vs predicted values for decision tree

latitude longitude predicted_latitude predicted_longitude
0 51.027833 13.730935 51.020921 13.733100
1 51.026803 13.737911 51.029283 13.730275
2 51.021957 13.734974 51.026344 13.737986
3 51.023659 13.732241 51.029798 13.738259
4 51.023638 13.734061 51.025614 13.735306

d. Actual and predicted position co-ordinates

Figures 4 and 5 below shows a scatter plot comparing predicted longitude and latitudes of all
three algorithms explored in this experiment. Notice the Random forest algorithm and Linear
regressor producing similar clusters, this is owing to their very similar MSE (see figure 6 in

next section)
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e. Evaluation of model performance using mean square error

By comparing the MSE values and examining the scatter plots between actual and predicted
values for longitude and latitude, enable to assess the performance and interpretability of each
model. A lower MSE and tighter clustering of points around the diagonal line in the scatter
plot indicate better model performance and accuracy in predicting the target variables. [19][20]
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Fig. 6. Mean Square Error

f.  Deployment to web

The best model was deployed to an online web application for continuous, close-to-real-time
prediction of localization for autonomous vehicles. A CAD simulation was carried out to
generate sensor values, which were passed to the model to predict the longitude and latitude
values. Figure 7 shows an example of the data sensor, values, and latitude and longitude
values.
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Simulation

Input Sensors Values Latitude Longitude

ax 0.8048132509974618 [51.02967588 46.42161776)
ay 0.573378561064359 [51.02967588 46.42161776)
az 0.5089042952476182 [51.02967588 46.42161776)
rollrate 0.8396889534148467 [51.02967588 46.42161776]
pitchrate 0.6080387092937535 [51.02967588 46.42161776)
yawrate 0.6408039627117047 [51.02967588 46.42161776)
roll 0.17082341920407185 [51.02967588 46.42161776)
pitch 0.12734147413364627 [51.02967588 46.42161776)
yaw 0.5674539459194237 [51.02967588 46.42161776]
speed 0.6014334913840683 [51.02967588 46.42161776)
course 0.3537628436300264 [51.02967588 46.42161776)
altitude 0.9264551726524797 [51.02967588 46.42161776)

Fig. 7. Web interface with predicted localization

Conclusion

This ongoing applied research programme has developed a predictive machine learning-based
error correction model for GPS/IMU localization for autonomous vehicles. The exploratory
data analysis and evaluation of various models have shown that the decision tree, linear
regression, and random forest models are the most effective in forecasting GPS/IMU
localization errors. These models have achieved a mean squared error of
1.7069427028104143e-05. The testing and validation results of various cases have showed
the effectiveness of machine learning models in enhancing the precision of determining the
location for autonomous vehicles (i.e., self-driving vehicles). The results also emphasize the
capability of error correction mechanisms based on machine learning to improve the
dependability and accuracy of autonomous vehicle navigation systems, thus facilitating a safer
and more efficient mobility in smart cities applications and beyond. [21][22][23]
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