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Abstract 

Background and Aim: Thermal related problems with prostheses are common complaints of 

amputee people. This paper aims to introduce a thermoregulatory technique as a potential 

solution for those problems in prostheses wearers. 

Technique: A smart thermoregulatory system was designed, manufactured, and installed on 

a phantom model of a prosthetic socket. It captured temperature data from sixteen sensors 

positioned at the interface between the phantom model and a silicone liner, and used their 

average for comparison with a defined set temperature to select required heating or cooling 

functions for thermal equilibrium. A thin layer of Aluminum was used to transfer temperature 

between thermal pump and different sites around the phantom model. 

Discussion: The feasibility of this thermoregulatory technique confirmed by its ability to 

provide thermal equilibrium. Further investigations to improve the design of thermoregulatory 

system are necessary including temperature transfer element and power consumption based 

on thermal capacity and thermal inertia of the residual limb.  

 

 

 

Clinical Relevance 

The smart thermoregulatory system by providing thermal equilibrium between two sides of a 

prosthetic silicone liner can control residual limb skin temperature and sweating. 

Consequently, it can improve quality of life in amputee people.  
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Background and Aim 

Considering prosthesis as a machine, the prosthetic socket is a simple type of human-

machine interface that transfers loads and motions between the prosthesis and residual 

limb. A comfortable prosthetic socket can promote an amputee to use prosthesis more but 

on the other hand, a poor fitting one can decrease prosthesis use and affect the quality of life 

of an amputee. In spite of great advancement in technology and material science, prosthesis 

related complaints are still high. The osseo-integration approach that aim to exclude the 

socket and suspension components from the prostheses, due to its high associated risks of 

infection, loosening, bone loss, bone fracture and high cost, has not been globally accepted. 

Therefore, using socket is still the most common method for prosthetic connection to 

residual limb. 

 

Human body has a thermoregulatory system that regulates skin temperature by controlling 

the blood flow in skin vessels by vasoconstriction and vasodilation in cold and hot 

environments, respectively. Metabolic heat production and shivering are secondary 

mechanisms to increase body temperature in cold environment. On the other hand, 

evaporating moisture produced by skin sweat glands is secondary mechanism to decrease 

body temperature in hot environment 1.  

 

Due to the low thermal conductivity and moisture permeability, the prosthetic socket acts as 

a barrier to decrease of skin temperature of the residual limb 2, 3. In addition, prosthetic liner 

due to high flexibility and shape adaptability attaches snugly to the skin of the residual limb 

that exacerbates thermal discomfort by covering perspiration holes, limiting air circulation at 

skin-prosthesis interface, and promoting pressure-sweating reflex. Based on pressure-

sweating reflex, applied pressure on sweating and blood vessels of skin may prevent 

perspiration and blood perfusion 4. In a routine manner of weight bearing prostheses, the 

applied load on skin during activity can decrease skin temperature that will be reversed by 
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load removal. Therefore, even with little physical activity, e.g. 10 minutes walking, a 

prosthesis wearer can deal with thermal discomfort 5, 6. Complaints of heat buildup and 

sweating inside prosthetic sockets are common and their prevalence is nearly 53% in an 

amputee population 7. In contrast, cold feeling complaints at the residual limb have been 

reported by amputees with vascular insufficiency or those who live in cold climate countries, 

especially during the winter months 8. 

 

This paper briefly reports a technique to design and fabricate of a thermoregulatory system 

to monitor and control temperature inside prosthetic sockets. 

 

Technique  

Design and fabrication of the thermoregulatory system 

The thermoregulatory system was a smart system that sensed and controlled temperature to 

actuate a thermal pump. It consisted of a mechano-electrical combination of sixteen 

temperature sensors, a microcontroller board, a thermal pump, a temperature transfer layer 

of Aluminum, and a power supply. 

 

To sense temperature, sixteen digital temperature sensors (TMP275, Texas Instruments 

Incorporated, USA), with 0.5° C accuracy and 0.0625°C resolution, were used in this project. 

Each temperature sensor was mounted on a small amplifier board (1x1.5cm) in series with a 

pull-up resistance of 2.2 KΩ and a 0.1 μF bypass capacitor. The microcontroller board was 

an Arduino Duemilanove (Arduino, Italy) prototyping platform that was equipped with 

supplementary shields for actuation of thermal pump and data logging. 

 

For thermoregulation inside prosthetic socket both heating and cooling functions are 

required. Therefore, a thermal pump was structured by combination of a thermoelectric 

Peltier effect module (40x40x3.9mm, Welfare Electronic Component Ltd, Hong Kong), a heat 
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sink, and a fan. In addition, a thin layer of thermal grease used at interface between the 

thermoelectric module and the heat sink to increase the amount of temperature transfer. The 

thermal pump actuation for heating or cooling was controlled based on the polarity of its 

thermoelectric module. Moreover, two pulse width modulators were used to provide efficient 

bidirectional current flow to the thermal pump. A flexible and light layer of Aluminum (Figure 

1), 1100-O with 0.4mm thickness, was attached to the thermal pump for temperature 

distribution to/from different distances around the thermal pump. Although some other 

materials are usable instead of Aluminum for this application but in addition to thermal 

conductivity the price, mass, biocompatibility, and flexibility of the selected material should 

be considered. As a comparison, although Copper may be another potential material that its 

thermal conductivity is 69% higher than Aluminum, but Copper is 230% heavier than 

Aluminum. The thermal conductivity to density ratio of Aluminum is almost two times higher 

(96%) than Copper. Moreover, Copper is 70% stiffer than Aluminum 9. 

 

Programming of microcontroller was based on C/C++ language using IDE software (version 

1.5.7). It was a closed-loop control program based on PID (Proportional-Integral-Derivative) 

algorithm that tuned manually to capture temperature data from sensors to compare their 

average to a defined set temperature, and then actuate the thermal pump. The required 

power for activation of the thermoregulatory system was supplied by a 7V and 2A lithium ion 

battery with nominal capacity of 2.2 Ah. The longevity of battery life depends on temperature 

difference between measured and set temperatures, as well as the required time span for 

activity of thermal pump to provide thermal equilibrium.  

 

Procedure 

In order to install the prototype of the thermoregulatory system and to conduct preliminary 

experiments, a phantom model of a prosthetic socket was fabricated. A silicone liner (Parasil 

Cushion Silicone Liner, ST&G Corporation, South Korea) was hanged in space by 
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mechanical holders and clamps and filled with nearly two liters of water. Thereafter, it was 

wrapped by plaster bandage to simulate a total contact socket. The negative impression was 

subsequently used to prepare a positive model with the dummies of the thermal pump and 

the microprocessor board for the lamination process. The real components were attached to 

the laminated phantom socket afterward. 

 

The sensors were arranged in two vertical U-shaped loops, with eight sensors on each loop, 

and adhered to the inside wall of the phantom model using double-sided tapes.  A thin 

Aluminum sheet was formed to follow the contour of the inside surface of the phantom 

socket and directly kept in contact with the silicone liner.  

 

The required time span to provide thermal equilibrium between both sides of silicone liner 

during heating and cooling functions of thermal pump from baseline temperature of 24C 

was measured. In addition, to investigate the amount of temperature transfer through the 

Aluminum layer, the temperature change from baseline to five minutes after thermal pump 

activation was measured on both the outside and inside surfaces of the silicone liner. These 

measurements were done at different distances to the center of thermal pump using a K-

type thermocouple. 

 

Discussion 

Heat and perspiration discomfort with prostheses are common complaints of amputee 

patients regardless of level and cause of amputation 7. This study confirms the feasibility of 

measuring and controlling the skin temperature inside a prosthetic socket using a 

thermoregulatory system. Conceptually, it is possible to control sweating by controlling the 

skin temperature inside the prosthetic socket 11. Moreover, a proper thermoregulatory 

system could also provide heating to increase skin temperature for those amputees with cold 

skin problem.  
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The thermoregulatory system (Figure 2) captured temperature data with a frequency of 1 Hz 

from sixteen sensors, transferred data to the microcontroller board, compared their average 

with a set-temperature of 31°C based on the findings of a previous study 6, actuated required 

cooling or heating functions to provide thermal equilibrium, and transferred temperature to 

different sites around the phantom model using a thin layer of Aluminum.  

 

The benefit of skin temperature control using conduction from outside surface of silicone 

liner was no dependability to skin blood flow. This feature permits thermoregulation even in 

vascular insufficient patients. Although tolerable temperature changes can be ranged from 

above freezing to nearly 45°C 10, but for safety use of thermoregulatory system especially in 

patients with insensate limbs, an activation range based on temperature of thermal pump 

can be defined to alert patient when temperature is close to the limits.  

 

Although thermal conductivity of silicon liners are low, around 0.181-0.266 W/m.K 2, but in a 

fraction of time the temperature change outside the liner could be conducted to the inside of 

liner. Measuring thermal conductivity for selected liner material was beyond the scope of this 

note, however the required time to provide thermal equilibrium between outside and inside 

surfaces of silicone liner, exactly at the center of thermal pump, during heating and cooling 

functions of thermal pump from a baseline temperature of 24°C was measured and 

presented in Table 1. 

 

Hence the phantom model was related to transtibial residual limb, and expected range of 

temperature change during rest and activity in transtibial prostheses is about 1-2°C 5, 6, five 

minutes activation of thermal pump seemed reasonable to investigate temperature transfer 

using Aluminum layer. The results of temperature measurements on inside and outside 
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surfaces of the silicone liner, from baseline to five minutes after thermal pump activation, are 

presented in Table 2.  

 

The results showed that by increasing distance from thermal pump, the amount of 

temperature difference between both sides of silicone liner drops rapidly that may suggest 

that design may not be all that effective, but considering the required small temperature 

change to provide thermal comfort inside prostheses, it can be suggested that preliminary 

tests of the thermoregulatory system provide promising results.  

 

The pattern of temperature distribution on skin surface of the residual limb follows an 

asymmetry pattern due to its heterogeneous structure of different body tissues with different 

thermal characteristics. To some extent, this pattern may be related to muscle thickness 12. 

Moreover, the proximal part of the residual limb has higher temperature comparing to its 

distal part 5, 6. The thermography map, thermal capacity, and thermal inertia of residual limb 

need further investigations. In addition, the material and pattern of temperature transfer 

element, and best attachment site of thermal pump need more investigations. These issues 

should be considered to improve the design of thermoregulatory system, its power 

consumption, and total weight 6. A modular-based design of thermoregulatory system with 

smaller amplifier and control boards can be suggested to decrease its current weight of 550 

g, as well as more wearing comfort for its final design.  

 

The limitations of this technical note were no thermal capacity and thermal inertia 

evaluations that could help with determining the required time span for activation of thermal 

pump in real situation, and use of a symmetric pattern for temperature transfer element in 

contrast to realistic thermography map of residual limb. Further investigations to improve the 

design of thermoregulatory system and its application in clinical set up are necessary.  
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Key Points 

 The prototype of a thermoregulatory system was designed, fabricated and installed 

on a phantom model with preliminary investigations. 

 This system aimed to keep a thermal equilibrium between the inside and outside 

surfaces of a silicone liner at a defined range of temperature. 

 A thin layer of Aluminum was used for temperature transfer between the thermal 

pump and different sites around the phantom model. 

 Cooling or heating temperature changes could be conducted from the outside 

surface to the inside surface of a silicone liner in a fraction of time. 
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Figure 1. The Aluminum temperature transfer layer 
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Figure 2. The prototype of thermoregulatory system 
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Table 1. Time span required for thermal equilibrium between outside and inside surfaces 

of silicone liner during heating and cooling functions from baseline temperature of 24C  

Temperature outside 
liner 

Temperature inside 
liner 

Time (Min) 
Thermal Pump 

Activation 

30 30 3.4 

Heating 

29 29 2.9 

28 28 2.5 

27 27 2.2 

26 26 1.7 

25 25 1.3 

Baseline Temperature: 24°C 

23 23 2.4 

Cooling 

22 22 4.6 

21 21 7.5 

20 20 9.5 

19 19 11 

18 18 15.3 
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Table 2.Temperature difference from baseline to five minutes after thermal pump 
activation at different distances from the center of thermal pump 

Distance to Center of 
Thermal Pump (cm) 

Temperature Difference 
Outside Liner (°C) 

Temperature Difference 
Inside Liner (°C) 

0 10.2 9.9 

9 1.8 1.7 

14 1.6 1.4 

19 0.4 0.3 

23 0.4 0.3 
 


