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Abstract 
27 
28 The targeting and discovery of epithermal porphyry mineral deposits can be enhanced using 
29 

30 a structured quantitative methodology to analyse the distribution of ore deposits and model 
31 

32 their spatial association with exploration evidence providing improved understanding on the 
33 

34 controls of ore deposition. A novel exploration tool integrating field and ASTER SWIR and 
35 

36 TIR satellite imagery has been developed which provides an enhanced means of resolving 
37 

38 surface expressions of the residual silica core of the lithocap. The alteration zones were 

39 clearly resolved by the remote sensing data and an intimate spatial relationship between high- 

41 
grade altered rocks and topographic highs was identified at a number of locations. A Mineral 

42 
43 Prospectivity Modelling (MPM) approach, parameterized by the results of the remote sensing 
44 
45 study, using a GIS-based weighted linear combination implementation of a Multi-Criteria 
46 

47 Evaluation approach and utilising a fuzzy Analytical Hierarchy Process to elucidate expert 
48 

49 knowledge has been implemented to target high sulfidation epithermal porphyry deposits on 
50 

51 the Island of Lesvos, Greece. The results from this integrated altitudinal-compositional 
52 

53 modelling approach closely matched the hydrothermal alteration mapped in the field 
54 

55 supporting the accuracy of this MPM approach. 

56 

57 

58 
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Analysis of the spatial associations of known occurrences of mineral deposits with 

specific geological features provides insight into the controls on mineral deposit occurrence 

(de Palomera et al., 2015). Geomorphological features within volcanic terrains provides 

evidence on both the volcanological and structural evolution and also constrain the potential 

locations of mineral deposits (Anguita et al., 2001; Aydar et al., 2003; Froger et al., 1998; 

Lipman, 1992; Milesi et al., 1999; Rytuba, 1994; Saintot et al., 1999; Szekely and Karatson, 

2004; Ulusoy et al., 2004). In the case of epithermal porphyry alteration the uppermost 

silicified-potassic altered zones are relatively resistant to weathering and produce large 

positive topography anomalies (lithocaps) which are indicative of potential epithermal and/or 

porphyry mineralization nearby (Chang et al., 2011; Sillitoe, 1994; 2010; Sillitoe and 

Hedenquist, 2003; White and Hedenquist, 1995). 

The identification of these geomorphological features in the field is hampered by the large 

spatial scale, inaccessible terrain and most significantly because of erosion and tectonism 

which significantly reduces the amount and clarity of surface expressions of these features 

(Kouli and St Seymour, 2006; Vamvoukakis et al., 2005). Remote sensing methodologies 

offer the potential of accurately mapping the diagnostic mineralogical assemblages of the 

alteration minerals associated with epithermal deposits at landscape scales (e.g. Pour and 

Hashim, 2012; Rockwell and Hofstra, 2008; Van der Meer et al., 2012). A significant 

limitation of these remote sensing studies is that the remotely mapped surface expressions of 

mineralogy are not translated into a clear geological model of ore prospectivity. 

This study seeks to develop an enhanced tool for epithermal porphyry alteration mapping 

integrating remotely mapped mineralogical maps with high spatial resolution topographic 

data using the results to parameterise a spatial ore prospectivity model of a epithermal 

porphyry deposit on the Island of Lesvos, Greece. 
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Magmatic–hydrothermal systems associated with arc-type magmatism commonly include a 

deep magmatic system related to an intermediate composition intrusion that evolves upwards 

to a more shallow hydrothermal (epithermal) system associated with hot-spring and 

fumarolic activity (Hedenquist and Lowenstern, 1994). High-sulphidation (HS) is one of two 

principal types of epithermal deposits (e.g. White and Hedenquist, 1995) and maybe 

separated from the underlying porphyry environment by several hundred vertical metres or 

may be juxtaposed or even superimposed on it (Sillitoe and Hedenquist, 2003; Sillitoe, 2010). 

Porphyry mineralization develops in the deeper, magmatic part of this system, whereas 

epithermal base- or precious-metal mineralization forms in the more shallow parts of the 

system (Sillitoe and Hedenquist, 2003; Sillitoe, 2010). Juxtaposition and superimposition of 

porphyry and HS mineralisation results from telescoping, generally in response to profound 

surface degradation by uplift-induced erosion or, perphaps less commonly, volcanic collapse 

during the hydrothermal lifespans of systems (Sillitoe, 1994; 2010; Sillitoe and Hedenquist, 

2003). The zones of alteration grade with increasing depth typically from a shallow silic zone 

through advanced argillic, argillic and finally into a sericitic or phyllic zone (Arribas, 1995). 

This alteration sequence occurs over a vertical interval that can range from a few hundred 

to more than 1000m (Arribas, 1995). There is also a lateral alteration zoning characteristic of 

HS deposits ranging from an innermost zone of vuggy or massive silica which grades into 

advanced argillic, argillic and finally propylitic. The alteration processes and the location of 

the HS deposits are intimately spatially associated with the interaction between magmatic 

processes and structural controls (Hedenquist et al., 1998; Sillitoe and Hedenquist, 2003; 

Todsal and Richards, 2001). Heald et al., 1987 found the most common regional structural 

setting was the caldera. Calderas form zones of weakness above a magma chamber providing 

an excellent pathway for hydrothermal fluids. Association with silicic domes was also 

identified as being significant (Heald et al., 1987). The nature and extent of this relationship 

varies  markedly  between  deposits  however  there  are  a  number  of  distinct  structural, 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/magmatism
https://www.sciencedirect.com/science/article/pii/S0375674212002610#bb0100
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/precious-metal
https://www.sciencedirect.com/science/article/pii/S0375674212002610#bb0250
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geomorphological and morphological settings which are highly conducive to the formation 

of epithermal porphyry deposits (Lipman, 1992; Milesi et al., 1999; Rytuba, 1994; White and 

Hedenquist, 1990). 

 

2.2 Regional Geological Setting of the Study Area 

The island of Lesvos is located in the East-central Aegean Sea, close to Turkey and occupies 

an area of 1630 km2 (Fig.1). Lesvos is divided into two distinct geological areas with the 

northern part composed of thick Miocene post-collisional calc-alkaline volcanic rocks that 

form stratovolcanoes that extend SW–NE across the centre of the island (Fig. 1) (Pe-Piper., 

1980a; 1980b; Pe-Piper and Piper, 1993; Pe-Piper et al., 2014). The volcanic sequence 

according to Pe-Piper (1980a; 1980b) is: (a) Lower lava unit: andesites, basalts, dacites, zones 

of intense hydrothermal alteration; (b) Acidic volcanics: pyroclastics, ignimbrites and 

rhyolites; (c) Upper lava unit: basalts, andesites and dacites; (d) Intrusions: dacite plugs. The 

southern part of the island hosts the oldest rocks on the island and consists of low-grade 

metamorphic rocks (mainly schists) with intercalations of marbles, limestones, quartzites and 

metamorphosed volcanic rocks (Kontas et al., 1994). The age of these rocks is Early 

Carboniferous to Triassic and they are metamorphosed to pumpellyite-actinolite and 

greenschist grade (Kontas et al., 1994). Six caldera have been identified in the northern part 

of Lesvos (Fig. 1), (Kouli and St Seymour, 2006). In the western part of the study area a 

major elliptical caldera, Sigri, is bordered by smaller satellite calderas of Mesotopos, Agra 

and Skalohori (Kouli and St Seymour, 2006). The potential locations for mineral 

prospectivity are associated with the volcanic rocks therefore this study will be focused on 

the northern part of Lesvos. 

 

3. Materials and Method 

 

 
While most of the available spatial datasets are limited to surface expressions of the 

mineral systems, topography, and geological features the combination of these datasets with 

expert knowledge and spatial analysis methods can provide insights into the ore-forming 
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processes. Mineral Prospectivity Mapping (MPM) provides a structured quantitative 

methodology to integrate these multiple spatial datasets to analyse the distribution of mineral 

deposits and model their spatial association providing insights into the controls on ore 

deposition e.g. (de Palomera et al., 2015; Bonham-Carter et al., 1988; Carranza, 2009; 

Carranza and Sadeghi, 2010; Listin, 2015; Zhang et al., 2017; Zuo et al., 2015). MPM can 

utilise either a data- and knowledge-driven approach or some combination of both (Brown et 

al., 2003). There are a number of methods available for the integration of evidence in data- 

driven approaches including logisitic regression (Chung and Agterberg, 1980), weights of 

evidence (Bonham-Carter et al., 1989) and neural networks (Porwal et al., 2003) while 

knowledge-based approaches utilise methods such as analytical hierarchy process (Harris et 

al., 2001) and fuzzy logic (An et al., 1991). A number of GIS-based Multi-Criteria Evaluation 

(MCE) methods are available that can be used in MPM including Boolean overlay and 

weighted linear combination (WLC) (Gorsevski et al., 2012). Fuzzy set theory (Zadeh, 1965) 

when combined with WLC methods e.g. (Zhang et al., 2017; Gorsevski et al., 2012) 

provides an approach for overcoming the limitation of using threshold values in standard 

Analytical Hierarchy Process (AHP) approaches (Saaty, 1987). 

A WLC MCE approach has been implemented in this study to map prospectivity for 

epithermal deposits. Based on previous studies and expert knowledge the key criteria for 

identifying epithermal deposits on Lesvos were identified as being the lithology, radial 

faulting the presence and type of alteration and the spatial association with volcanological- 

related structures at the landscape and site scales. Analogue maps of the lithology, 

hydrothermal alteration and faulting were digitized and geo-registered using ArcGISTM. A 

fuzzy AHP approach was used to elicit knowledge on the distances and the relative 

importance (weighting) of the spatial associations of epithermal mineralization with 

lithology, hydrothermal alteration and volcanological-related structures. This knowledge was 

used to produce fuzzy maps of the spatial influence of these different criteria and to combine 

them using the allocated weights in ArcGISTM. 
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Lithological evidence was extracted from the Greek Geological Survey mapping service 

1:50,000 geological maps supported by additional mapping information from published 

research (e.g. Pe-Piper., 1980a; 1980b; Pe-Piper and Piper, 1993; Pe-Piper et al., 2014; 

Vamvoukakis et al., 2001). Using a Digital Elevation Model (DEM) generated from 

1:50000 contour map and the results of previous published research (Kouli and St Seymour, 

2006) the presence and location of faults associated with the caldera (ring and radial) were 

identified. A slope layer was generated from the DEM. The slope and contour layers were 

used with cross-sectional analysis to resolve the location and dimension of lava domes within 

the calderas and presence of potential unidentified caldera. Volcanic lithologies were 

considered favourable for mineralisation. 

 

3.2 Hydrothermal Alteration 

An extensive field spectral mapping campaign was carried out in May 2010 and a 

representative set of rock hand specimens was acquired. An Analytical Spectral Devices 

(ASD) FieldSpec Pro FR spectroradiometer was used to collect field and laboratory spectra. 

The ASD has a spectral range of 0.35–2.5 µm with sampling intervals of 1.4 nm at 0.35–1.0 

µm and 2 nm at 1.0–2.5 µm and full width half maximum spectral resolutions of 6 nm at 

VNIR wavelengths and 11 nm at SWIR wavelengths. Absolute reflectance values were 

calculated by calibrating each batch of ~20 repeat measurements against a Spectralon white 

reference panel. The effect of compositional heterogeneity on sample spectrum was mitigated 

by averaging evenly spaced repeat measurements taken from across sample surfaces. 

 

3.3 ASTER data processing 

 

 
ASTER Short Wave InfraRed (SWIR) surface reflectance (AST-07XT) and ASTER 

spectral emittance (AST_05) data (Abrams, 2000, Rowan et al, 2006) were used in this study. 

The spectral emittance data were co-registered with the SWIR data by applying a 6× pixel 
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duplication of the TIR data. The sea, vegetated and Quaternary cover areas were masked out. 

A Minimum Noise Function (MNF) transformation followed by a Pixel Purity Index (PPI) 

analysis was applied, using the functionality implemented in ENVI 5.1TM, which extracted 

the image endmembers and their spatial distribution (Boardman, 1993; 1998). Spatial 

mapping and abundance estimates for specific alteration zones was carried out using the 

Mixture Tuned Matched Filtering (MTMF) technique on the SWIR and Spectral Emittance 

ASTER images separately (Green et al., 1988). 

 

3.4 MPM Implementation 

 

 
Table 2 shows the pairwise comparison matrix of relative importance and weights 

associated with the geological criteria. The hydrothermal alteration layer, comprising only 

the higher grade advanced argillic and silicified layers was multiplied by the assigned 

weighting. The highest weights were assigned to the hydrothermal alteration and the in- 

caldera domes which are the most important criteria. The Consistency Ratio (CR) is < 0.1 

which indicates a good consistency of the judgements used for the comparison. 

 

4. Results 

 

 
4.1 Analysis of Topographic Data 

 

 
An analysis of the DEM resolved the six caldera and the numerous felsic post-collapse 

volcanic domes bordering the Mesotopos and Stipsi calderas identified in previous studies 

(Figs.2 and 3), (Kouli and St Seymour, 2006; Vamvoukakis et., 2001). Two circular features 

to the east of the Vatoussa caldera at Anemotia and Parakia were identified (Fig. 3). Cross 

sections of these circular features illustrate similar topographic profiles to the Agra and 

Mesotopos calderas with steep outward facing slopes at the edges and the presence of dome 

structures on the caldera floor (Figs. 3 and 4). The circular features at Anemotia and Parakia 

generally have steep inward facing walls but are breached towards the Bay of Kalloni on their 
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southwestern edges. Analysis of the slope and DEM layers strongly suggests that these two 

circular features are also calderas however a detailed field study is required to confirm this. 

 

4.2 Analysis of Field Spectral Dataset 

 

 
The field spectra displays the diagnostic spectral features characteristic of alteration 

zones of epithermal deposits (Fig. 5). Spectrum 1 (39o 08.25; 26o 01.51) from the advanced 

argillic zone exhibits very strong absorption features indicative of a very high concentration 

of alunite whereas spectrum 2 (39o 08.15; 26o 02.17) from the argillic zone exhibits very 

strong absorption features indicative of a high concentration of kaolinite. Spectrum 3 (39o 

18.24; 26o 13.29) located at the edge of the argillic altered zone exhibits much less distinct 

absorption doublets at 2160 and 2200 nm indicative of a lower concentration of kaolinite 

while spectrum 4 (39o 08.15; 26o 02.17) exhibiting weaker absorption doublet at 2160 and 

2200 nm indicating an presence of montmorillonite with decreasing kaolinite content. The 

wavelength location of the alunite 1480nm absorption feature was constant at 1480nm in all 

the spectra indicating a consistent pure K-alunite composition (Bishop, 2005). 

 

4.3 Analysis of ASTER Datasets 

 

 
To resolve the presence and relative proportion of vegetation in the study area an NDVI 

image was generated using the ASTER VNIR imagery (Fig. 6). A significant proportion of 

the study area is covered in extensive vegetation ranging from pine forests, Mediterranean 

scrub to farmland with Mesotopos and the western part of the Stipsi calderas having the least 

vegetation cover. The presence of this dense vegetation cover has a critical effect on the 

utility of remote sensing geological mapping approaches as only locations where there are 

significant gaps in the vegetation cover allow the underlying geology to be resolved as 

demonstrated by the main and the inset images in Figure 5 where the highly altered rocks 

(shaded white) are very distinct. 
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The field spectra resampled to the ASTER wavelengths retain definition of the most 

intense absorption features particularly the intense absorption feature centered near 2205 nm 

(Fig. 7). The different alteration zones and the intensity gradation within an individual 

alteration zone are differentiable despite the significant decrease in spectral resolution. The 

highest intensity advanced argillic spectrum has a single differentiable feature centered on 

2165 nm. With decreasing intensity, shown by the loss of alunite in the mineral assemblage 

the spectrum exhibits a pronounced doublet absorption feature which extends from 2165 to 

2205 nm. With decreasing intensity within the argillic zone the absorption feature centered 

at 2205 nm initially becomes narrower and more pronounced while in the lowest intensity 

spectra the absorption feature has weakened significantly. 

Only three spectral endmembers were identified from the MNF and PPI analysis of the 

ASTER TIR imagery representing the silicified (quartz), advanced argillic (alunite-kaolinite) 

and country rock (Fig. 8). The spectra representative of the silicified alteration zone shows 

the distinctive, intense, broad emissivity minimum between bands 10 and 12 characteristic 

of a very high quartz content. The spectra representative of the advanced argillic alteration 

zone shows a distinctive emissivity minimum in band 12 but with higher values in bands 10 

and 11. The spectra representative of the country rock showed a relatively flat emissivity 

profile. Spectral endmembers representing the argillic and propylitic alteration zones were 

not identifiable. 

The results of the MTMF analysis of the SWIR imagery are shown in Figs. 9 and 10 

where the degree of match is indicated by higher numbers representing good matches and 

vice versa (Boardman, 1993; 1998). Pixels corresponding to the highest degree of match for 

each class were transferred digitally to the aerial photography mosaic and assigned a colour. 

Determination of the threshold range to represent each class was based on the coherence of 

the spatial distribution of pixels and lack of widely scattered pixels. Pixels that are not colour- 

coded were not classified to a specific landcover or rock type. Despite the significant 

reduction in spectral resolution in the ASTER SWIR data compared to the ASD data a clear 

gradation within the advanced argillic altered rocks was clearly identifiable because of the 

high alunite concentrations and the excellent rock exposure. The argillic alteration zones are 
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usually smaller in extent and are often found peripheral to the advanced argillic outcrops. 

The ASTER TIR data identified the silicified zones clearly. 

To investigate the spatial and topographic relationship of the alteration zones mapped 

from the ASTER SWIR and TIR datasets cross-sections across the Mesotopos and Stipsi 

calderas with the values from the MTMF analysis plotted with the topographic profile were 

(Figs. 9,10,11,12). In the Mesotopos caldera (Figs. 9 and 10) a transect north-to-south across 

the caldera shows a number of distinct topographic highs mapped as lava domes by Kouli 

and St Seymour, 2006. The plot of the MTMF scores for the silicified and higher grade 

advanced argillic zones and the topography along this transect are shown in Fig. 9. The 

silicified zone MF scores are very closely associated with the topographic highs at 2440 m 

and 5230 m while the higher grade advanced argillic MF scores are similarly associated with 

the topographic highs at 2440 m and 5230 m but extend further out than the silicified zone 

peaks. The distribution of the alteration zones in the Stipsi and Mesotopos calderas are 

significantly different (Fig. 11). In the northwest of the Stipsi caldera a large discrete outcrop 

of advanced argillic altered rock is present with no associated silicified or lower grade 

advanced argillic or argillic. A transect (labelled C – D) in Fig. 12 shows a very clear 

association of the advanced argillic outcrop with a topographic high within the caldera (Fig. 

12a). In the southeast of the Caldera a large discrete outcrop of silicified altered rock is 

present with no associated advanced argillic or argillic zone outcrops. A transect (labelled E 

– F) in Fig. 11 again shows a very clear association of the silicified outcrop with a topographic 

high (Fig. 12b). 

 

4.4 Integration of the MPM modelling with Field-based studies 

 

 
The distribution of the field mapped alteration zones as mapped by the Greek Geological 

Survey (Bitzios, 1998) is intimately associated with the volcanological-related structures 

(Fig. 13). The Mesotopos and Vatoussa calderas have the clearest association with almost all 

the altered rocks contained within the caldera rims. The Stipsi caldera has been only partially 

mapped on the western side where again there is a very close association with the caldera 
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rim. The Agra caldera is largely made up of low grade Kaolinite-alunite altered rock whereas 

the Skalohori caldera has no surface expression of the altered rock. The area of altered rock 

east of Vatoussa is located within the rims of the two proposed calderas at Anemotia and 

Parakia (Fig. 13). 

The Stipsi area is characterized by intense hydrothermal alteration, ranging from 

propylitic to argillic and locally to silic (Kelepertsis and Esson, 1987). A dacitic andesite 

porphyry body in the western part has been altered to kaolinite, illite and smectite (Voudouris 

and Alfieris, 2005). Late-stage milky to amesthystine quartz and platy calcite veins with 

pyrite and galena were formed along the major NNE-SSW trending fault zone, and have 

overprinted earlier-formed alteration and mineralisation. Barren jasperiod silic alteration 

which overlies altered volcanic is well exposed at higher elevations to the north. Rokos et al., 

2000 identified a full alteration sequence at Stipsi (Table 3). Kontis et al., 1994 studied an 

active geothermal system at Megala Therma area on the northern coast of Lesvos. This 

location displayed the complete alteration sequence from silicification to phyllic associated 

with quartz veins up to 10m wide. 

 

The integration of the results of the MPM modelling with the field mapping results showed 

a very good spatial correlation in the Mesotopos and Stipsi calderas. In the Mesotopos caldera 

the highest model values are almost all within silicified zone areas with the lower model 

values extending out in into the high Grade Kaolinite and some into the low grade kaolinite- 

alunite field-mapped zone (Figs. 14 and 15). In the Stipsi caldera again the highest model 

values fit completely within the silicified and high grade kaolinite zones. 

The presence of extensive vegetation cover over most of the study area limits the use of 

the results of remote sensing based mineralogical mapping. To implement the MPM 

modelling over the rest of the study area means utilising the field mapped hydrothermal 

alteration zones. The results of the modelling using the field mapped alteration zones show 

that distinct areas of high mineral prospectivity are located across a large continuous area in 

the centre of the study and in smaller, discrete areas in the Stipsi and Mesotopos calderas 

(Fig. 16). 
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Epithermal porphyry deposits are often characterized by having a complex horizontal 

and vertical pattern of alteration zones (Arribas, 1995; White and Hedenquist, 1995; Sillitoe 

and Hedenquist, 2003; Sillitoe, 2010). The differential resistance to erosion of the different 

types of alteration has been widely utilised by exploration geologists (e.g. Chang et al., 2011; 

Rae et al., 2003). The three-dimensional complexity in alteration patterns (Rytuba, 1994) 

combined with the large size, inaccessibility issues and often indistinct surface features can 

make accurate interpretation of the extent and nature of the alteration patterns using only 

field-based mapping approaches difficult. The potential of satellite remote sensing-based 

approaches to accurately map the alteration zones associated with epithermal porphyry 

deposits at site-to-landscape scales have been widely demonstrated (e.g. Aubakar et al., 2018; 

Pour et al., 2018; Rowan et al., 2006) but these studies have often been limited to mapping 

the surface expressions of the ore deposits. In this study a key objective was to investigate 

the potential of an integrated remote sensing approach to identify silicified lithocaps 

representative of the residual silica core (Kilias et al., 2001; Milesi et al., 1999; Vamvoukakis 

et al., 2001; 2005; Voudouris and Alfieris, 2005). 

In the Mesotopos caldera the different alteration zones are intimately spatially associated 

with a continuous gradation from the silicified, through the different grades of advanced 

argillic to the argillic zones. In the Mesotopos caldera transect A-B showed that the 

distribution of the silicified and the highest grade advanced argillic alteration zones was 

closely associated with the localized topographic highs within the caldera structures probably 

because of their resistance to erosion (Figs. 9 and 10). This integrated dataset provides the 

critical information to enable interpretation of the horizontal and vertical variation of 

alteration grade with regard to their spatial relationship to the hydrothermal core 

(Vamvoukakis et al., 2001; 2005). In the Stipsi caldera there are discrete, outcrops of 

advanced argillic rocks on the western side and silicified rocks on the eastern side of the 

caldera with no other associated alteration zones (Figs. 11 and 12). The silicified outcrop is 

associated with a lava dome whereas the high grade advanced argillic outcrop is quite close 
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to a radial fault. The lack of a range of alteration zones could therefore be due to the ore 

deposit being constrained by the location of emplacement (Yasami et al., 2017). The silicified 

and higher grade advanced argillic zones at the top of the topographic highs could have 

limited erosion exposing the underlying lower grade alteration zones. This study has 

demonstrated the potential of a remote mapping tool to assist identification of silicified 

lithocaps at landscape scales. 

In this study an integrated compositional-altitudinal MPM approach utilising remote 

sensing data, where available, has been implemented to integrate the wide variety of available 

spatial geological data and transform it into a more complex spatial data product able to 

improve the targeting and discovery of mineral deposits. The limited availability of 

information on the presence of mineralisation in the study area meant that more data-driven 

MPM approaches such as Random Forest (Harris et al., 2015) could not be applied. The MCE 

approach implemented utilised a knowledge-based approach (Harris et al., 2015) providing 

a highly flexible mechanism for importing and processing a wide range of spatial datasets 

within a GIS environment (Zhang et al., 2017). The results of the MPM modelling are 

supported by the clear spatial association with the field mapped hydrothermal zones at both 

the landscape and site scales. In both the Mesotopos and the Stipsi calderas the highest values 

modelled cells fall within the silicified and high grade kaolinite – alunite zones. A critical 

potential weakness in the MCE MPM approach is the range and quality of the knowledge 

utilised in the modelling. While this can be mitigated to some extent by methods such as 

fuzzy AHP (Zhang et al., 2017) additional improvements would be beneficial. The results of 

the MCE MPM implemented in this study could be improved by (a) inclusion of other data 

layers, such as geochemistry and geophysics that were not used in this study; (b) 

implementation of a multi-scenario modelling approach which would allow the sensitivity of 

the model results to variation in the key criteria to be quantitatively assessed and (c) more 

detailed understanding of the influence of the faulting on the spatial distribution of epithermal 

porphyry related alteration (Eastman et al., 1995). 
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This study has demonstrated that data reduction methodologies offer a structured 

quantitative methodology to integrate a wide variety of complex spatial datasets to analyse 

the distribution of mineral deposits and model their spatial association providing insights into 

the controls on ore deposition as well as assisting understanding of the geology at the 

landscape scales. The potential of satellite SWIR and TIR data, integrated with high spatial 

resolution topographic data, to resolve silicified lithocaps at the landscape scale provides a 

powerful new exploration tool. The presence of vegetation cover and the spatial resolution 

of the ASTER TIR imagery does inhibit this approach however hyperspectral and very high 

spatial resolution multispectral satellite imagery offers the potential of significantly 

improving the remote mapping capabilities in the near future. The knowledge-based MCE 

MPM approach implemented in this study offers an exploration approach without a priori 

knowledge of mineral deposits in the study area, as in this study. The results of the MPM 

modelling showed a very clear spatial correlation to field-based mapping of the alteration 

zones in both the Mesotopos and Stipsi calderas. 
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