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Abstract

We introduce & new type of polynomial, termed a generalised
Catalan polynomial. We list essential mathematical properties
and give two associated combinatorial interpretations.

1 Introduction

Let the general (n+1)th term of the Catalan sequence {cy, ¢y, €3, €3, ¢4, ...}
={1,1,2,5,14, .. .} be e, with closed form

1 2n
Cn—m( n ), n=01,2,... (1)

The ordinary generating function (ogf) C(z) = _1_:%!;_:2 = Yot
satisfics the quadratic 0 = zC*(z) ~ C(z) +1. In {1} the authors cxplored
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the concept of (lincarly convergent) so called iterated generating functions,
resulting in the appearance of Catalan polynomials whose role in generat-
ing finite subsequences of Catalan numbers was identificd and formalised as
& theorem. A suite of non-lincar identitics for those polynomials was also
developed in [2] based on an algebraic implementation of numeric root
finding schemes taken from a general formulation due to Householder (and
delivering the well known Newton-Raphson and Halley algorithms as partic-
ular instances)  in the context of which the link between these polynomials
and Padé approximants of the Catalan sequence o.g.f. was examined.

The Catalan polynomial Fo(z) is defined for n > 0 as the binomial sum

Lin]

R@=3 (") o o)

=0

or, hypergeomectrically, as

A= (0D ), ®

or indeed via matrices as
P = araave (] 3] ) (1) (@)
N P.(z) = (1,0)( _11 o )n( (1} ) (5)

Forms (2)-(4) arc first scen in (1] (sce (67),(68),(76), pp.16,17,19, resp.;
also cquations (78),(91) (pp.20,23) thercin for others). Basic characteris-
tics were set out in some depth in [1, Scction 5, pp.16-29], which included
8 combinatorial interpretation of associated continued fractions in terms of
Dyck paths. The cquivalence of (4) and (5) was shown in the Appendix of
[3], where further Catalan polynomial identitics were given.

In this paper we generalise the notion of the Catalan polynomial, detail-
ing some properties accordingly and providing- -for an associated ‘limiting
function’ - interpretations in the context of Dyck paths once more, and the
historical problem of polygon decomposition.

2 A Generalised Polynomial

The notion of the Catalan polynomial can be naturally extended to the
formulation of a generalised Catalan polynomial P, (x;m), say, defined for
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fixed integer m > 1 as

L5571l .
n—m: i
Po(z;m) = § ( ; ) (—z)*, n >0, (6)
for which P,(x;1) = Prn(z) is a special case. Expressed hypergecometrically,
we have
-in, —-—(n 1),-3(n—2) | 27z
Fp(z;2) = 3F — 1.
n{T; 2} 3 2( _5'"' 2(n_1) n
- 1),-i(n-2),- $(n~3) | 256z
B(z;3) = 411. (n — 1.
(i3) "F"’( in—i(n-1),-i(n-2) 27
Fo(x;4) =

~sn—4(n—1),~}(n - 2),—(n - 3) ~Y(n-14) | 31252
5F4( 5 —in,— 4(”‘51) iln—2),- in-3) ‘ 256 )’ )

and 50 on, with a gencral form

-, —xg,..., Oy
Pﬂ(m;m) = m+1Fm (

_}81: _nB2: ey ‘ﬁm

mm

Mﬁ) . ®

where oy = =in, a, = aam~ 1), oy = min—m), B = Lq,

B2_.,Tn'( —1),,5,,,_-—%(71-—(’"1"1)).

Examples of this gencralised polyniomial are as follows:

Pzl = 1,

Pi(z;1) = 1,

BPy(r;1) = 1-g,

By(z;1) = 1- 2z,

Py(z;1}) = 1-3z+2?

P(z1) = 1-4z 4 3z?,

Bs(z;1) = 1-5z+ 622 -z,

Prz;1) = 1- 62+ 1022 - 427,
Fa(zi1) = 1-7z+152% - 102° + 24,
Py(z;1) = 1-8z+ 2122 - 2027 + Kot

Pﬂ(ﬂ'.‘; 2) = 1,




P{z;2) = 1,

B(z;2) = 1,

BP(z;2) = 1-—u=,

Py(x;2) = 1-—2x,

Pe(z:2) = 1-3z,

Ps(z;2) = 1—4z+4 2
P(z;2) = 1-5z+32°%
Py(z;2) = 1-—6x+ 627,
Py(z;2) 1-7z+10z% - 2%,. ..,
Pn(.T; 3) = 1,

Pi(z;3) = 1,

Py(z;:3) = 1,

Py(z;3) = 1,

Py(2;3) = 1-g,

Py(z;3) = 1-2z,

Py(z;3) = 1-3z,

Pr(z;3) = 1- 4z,

Py(z;3) = 1-5z+zx2,
Py(z;3) = 1-6z+32%,...,
Py(z;4) 1,

Pi(z;4) = 1,

P(z4) = 1,

Py(z;4) = 1,

Py(z;4) = 1,

Py(z;4) = 11—z,

Ps{z;4) = 1 -2,

Pr(z;4) = 1- 3z,

Pe(z;4) = 14z,

Py(z;4) = 1-5z,..., (9

ete.

In the next section we give some properties of the generalised polynomial

P,(z;m) such
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polynomial

Pp(z;m) such as we have discovered.

Remark 1 Although we have not defined a gencralised Catalan polyno-
mial Po(z;0), we note that (I.1) (but not (1.2)) holds for m = 0, for
which P, (z;0) has the immediate closed form Po(z;0) = (1~ z)™ from (6).
Equations (IL.1)-(IL3) (sce £(z;m) defined later) also hold, with £(z;0) =
(I-z)'=l+4+z+22+284...

3 Mathematical Properties
Properties I: Repeated application of the fundamental second order linear

recurrence [1, (69), p.17] satisfied by the Catalan polynomials results in one
of order m + 1 thus:

Primir(@m) = Poym(2;m) — 2P, (z; m) n >0, (L.1)
subject to initial values Po(zim) = Py(z;m) = ... = m(z;m) =1 (these
values arc immediate; over the range n = 0,...,m, the ratio n/(m + 1) €

[0,1) and so here Py (z;m) = (B =1.1tisa straightforward, though te-
dious, matter to verify (I.1) using P, (z;m) as defined by (6). the recurrcnce
leading to the matrix equation

[ Pp(z;m) ] ( 1
=FPr_1(z;m) 0
Pr_s(z;m) .10
—P_3(z;m) = [Pm(z)] 0 (1.2)
| ()™ Pon(zim) | 0]
with a little work, where (defining P_,(z;m) = 0forn > 0}
( 1 0 0 o 0 0 (-1)ymHigp ]
-1 0 0 o 0 0 ¢
0 -1 0 o ¢ o 0
Pu(z)=| 0 o -1 ¢ 0 0 0 (13)
[ 0 0 ¢ 0 ... 0 -1 0 i

is an (m + 1)-squarc matrix containing a lower Ieft m x m block cutry
~In (Im being the order m identity matrix). Equation (L.2) holds for
n 2 0 being a non-recursive means of generating polynomials P, (z; m)
sequentially in n for fixedm > 1 a special case of which is n =0, wherchy




we sec that

[ Po(z;m) i [1] [ 1]
—P_j(z;m) 0 0
P_s(z;m) 0 0
—P_3(z;m) =Imus|lo| = |o (L4)
| (-1)™P_p(z;m) | | 0 ] L 0]
whence Pplz;m) = 1, P_j(z;m) = -+ = P_y,(z;m) = 0; cach successive

increase in n thercafter releases a newly defined polynomial.

We offcr the rcader a couple of additional non-trivial examples to illus-
trate the application of (1.2):

Example : m=2,n=4

Py(z;2) 1
[—Ps(x;z) = [Po=))*| O

Py(z;2)
10 —z7*T1
= -1 0 0 0
0 -1 0 0

(1-—2:.': z —z+z* 1
= -l+xz —=x T 0}, (15

1 z —T

giving Pa(x;2) = 1, P3(z;2) = 1 — z, Py(x;2) = 1 — 2z (sce (9)).

Example 2: m =4, n = 16

Pig(z;4) 1
—Pi5(x;4) 0
Piy(x;4) = [P4 (.’E)]lﬁ 1]
~Pi3(x;4) 0
P]_g(m‘;4) 0
16
1 0O 0 0 -—= 1
-1 0 0 0 0 0
= 0 -1 0 ©O 0 0
0O 0 -1 o0 1] 0
o 0 0 -1 0 0
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(1.4)

sach successive

mples to illus-

0, (L)

(9))-

[ I oo [ e B o B

1 - 122 + 2822 — 42°
-1+ 11z — 2122 4+ 23
1- 10z + 15z2
-1+ 92 — 10=z2
1 -8z + 6z2

» (L6)

I

== B B .

giving Pg(2;4) = 1 — 12z + 2822 — 423, Pi5(z;4) = 1 — 11z 4 2122 — z3,
Pia(z;4) = 1-10z+1522%, Pz(x; 4) = 1-92+10z?, Pia(z;4) = 1-8z+6z2.

The characteristic cquation 0 = Am+1 — \m 4 asociated with P,(z;m)
is given immediately by the linear recurrence (I.1) (or (I.3) morc indi-
rectly by consideration of [P, (z) — Alm+1], sec Appendix), and, with z

unassigned, proves problematic to solve for roots Agm),. . .,A,(;_",el for val-

ucs of m beyond m = 1. Whilst A{}) = (14 vT—4z)/2 trivially (from
which the closed form for Pu(x) = P,(x;1} is casily constructed [1, Sce-
tion 5.1.1, p.17]), when m = 2 the simplest root, for example, within the
solution sct Aig,a of zeros to the cubic A? — A? 4 x has the awkward form
{18108z +12/32(27z — 4)]% +4+2[8— 1080+ 12,/32(27z — 4]} } /6[3—
108z + 121/3z(27z — 4)]% (with the other two roots more complicated);
for m > 3 the characteristic equation is, for all practical purposcs, largely
intractable symbolically and so no general closed form for Ppn{z;m) is avail-
able through this route (see also the Acknowledgement). We can, however,
say something further regarding the roots of the characteristic cquation:

Lemma Suppose z £ 0, mﬁnfm Then, form > 1, fo(A) = A™HI_)\my
has distinct roots.

Proof We arguc by contradiction. The Lemma holds trivially for m = 1.
Supposc, for m > 2, fz(A} has a multiple root a, say. Then we can write

m-—1
20 =0—a)? [T(A- ), (L1)
=1
where oy, @z, ..., am-; arc other roots of fz()) (one or more of which may
co-incide with o). Diffcrentiating,
A}
' A — dff’-'(
ry = 2o
d m—1 m=-1
= (,\—a) [(/\—Q)EX{H(A—-Q{)} +2 E(A—ai):l, (L2)

80 that A = o is a root of both f;()) and f/(A). Now the actual roots
of f;(A) arc simply the solutions A, = 0 (repcated), A, = a7 of the

27




equation 0 = f1{A} = (m + 1)A™ — mA™~!, 50 in order to achieve the re-
quircd contradiction it remains but to show that fz(Ag) and f.(As) arc cach
non-zero. This is trivial: fr(A4) = f:(0) = = # 0 by assumption, whilst
fz(A) = fw(',;:.?._l) = .,pnl.|.1)m+1 - (fﬁ)m+$ ==X m’!‘nm—t{ # 0,
again by assumption.d (See the Appendix for the cases z = 0, "nT"iFﬂ)

Properties II: For fixed m > 1, define a function

Assuming £(z;m) exists, then (1) yields casily (reader exercise) that it
must satisfy the governing equation

0=1-£€x;m)+zf™ ! (z;m), (11.2)

whence we can write down its series form

o0

é(r;m) = g m ( ; ) ¥ (I1.3)

any cquation in £(z;m) of the form £ = a + z¢(f) (for arbitrary constant
o and infinitcly differentiable function ¢), of which (I1.2) is a special case,
lends itself to a series form of solution using the well known technique of
Lagrange Inversion (mentioned briefly, for instance, in a paper by Larcombe
and Wilson [4, pp.104-105) on the Catalan sequence o.g.f.). Hypergecometric
forms arc available for £(x;m) (with closed forms for m = 1,2), the first
few of which are

#z;1) 2F1( %51 ‘43) - Cl),

2z 2 1 (33
4 _‘/—3_zn§arcmn D) |

12
Hz;2) = 2F1(3é3
3

113
_)_,‘_ 2561’

£($;3) = 3F2(42224 T'?_) (II.4)
33

ete., where, for m > 2,
1~ 2 m

mAL) mEL) " "V T m+1m+1:i:

Hz;m) = , F, _1(1’"*3 +1ME (—m,)n— : (IL5)
m'mrTC ''m

Equations (8),(IL.5) are, of course, formulated cmpirically based on comp-
tations (see the Acknowledgement).

Remark 2 £
identified a
tion must b
solutions, fi
zg™t(z), a
g(@)j1-=

FHz)g™(;
then I — z!

f(z) = g(x)

Properties
to have cons
illustration,
{Pa(z; 2)}5°
0.E.LS. seq

Veluem =1

{Pa(—10;1)}
{P.(-9;1)}
{Pn(~8 1)},
{Pu(-T; )}
{Pa(—6; 1)}
{Pu(=5 1)}k
{Pa(—41}k
{P.(-3 1)k
{P(-2 1)k
{Pa(-1; 1)}

{Pa(0; 1)}c




gve the re-
p) are cach
ion, whilst
et # 0,

m

Aty )-

(IL1)

isc) that it

(1L.2)

(L.3)

xry constant
sjpecial case,
:echnique of
w Larcombe
sergeometric
2), the first

)

(IL4)

(IL5)

xd on compu-

Remark 2 Assuming that any solution of (J1.2) exists € R[[z]] (we have
identified a particular solution £(z; m) € Z[z]) as given in (I1.3}), this solu-
tion must be unique, for supposc two Taylor series f(z), g(z) € R[[z]] arc
solutions, f(z) # g(x). We can write 0 =1 f(z)+xf™+!(z) = 1 - g{z) +
29™+(z), and in turn 0 = f(z) - g(z) — z{f™(z) ~ g™*)(z)] = [f(z) —
9(z)|[1-20(z)], where U(z) = f™(z) + ™ L(z)g(z)+ f2(x)g(z) +- - -+
FA()g™ (@) + f(2)g™(z) + g™(z) € Rlfz]]. Now since f(z) - g(z) # 0

then 1 — 2{)(z)
f(z) = g(z) and the two solutions co-incide.

0, and at £ = 0 this gives a contradiction; hence,

Properties III: Instances of the generalised Catalan polynomial appear
to have considerable connections with other cxisting scquences. By way of
illustration, we list the first few torms of each of the sequences {Pu(z 1)},
{Pn(2;2)}5° for all integer valucs of z € [~10, 10], along with thosc named
0.E.IS. sequences described therchy:

Valuem =1:
{Pa(-10;1)}5°
{Pa(-91))°
{Pa(-&1))°
(P (-7 1)}
{Pa(-6;1)}7
{Pa(=5; 1)}
{Pa(-41)}5"
1B (=3 1)}
{Pn(-21)}&°
{(P(-L1)}§°

{Pa(0;1)}5°

Il

H

{1,1,11, 21, 131, 341, 1651, 5061,21571, 72181, 287891, .. -}

Generalised Fibonacci Sequence A015446,

{1,1,10, 19, 109, 280, 1261, 3781, 15130, 49159, 185329, . . .}

Generalised Fibonacci Sequence A015445,

{1,1,9,17,89, 225, 937,2737, 10233, 32129, 113993, .. .}

Genoralised Fibonacci Sequence A015443,

{1,1,8,15,71,176, 673, 1905, 6616, 19951, 66263, ...}

Generalised Fibonacci Sequence AD15442,

{1,1,7,13,55, 133, 463, 1261, 4039, 11605, 35839, .. .}

Generalised Fibonacei Sequence A015441,

{1,1,6,11,41,96, 301,781, 2286, 6191, 17621, ...}

Generalised Fibonacei Sequence A015440,

{1,1,5,9,29,65, 181,441, 1165, 2929, 7589, .. 3

Sequence AQ06131,

{1,1,4,7,19, 40,97,217, 508, 1159, 2683, ...}

Sequence A006130,

{1,1,3,5,11,21, 43,85,171,341,683,...}

Jacobsthal Sequence A001045,

{1,1,2,3,5,8,13,21,34,55,89,...} |
Fibonacci Sequence A000045,
{L1,1,1,14,1,1,1,1,1,1,.. }
“All 18" Sequence A00Q0L2,
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{P.(L; 1)}
{P.(& 1))
(P31
(P41}
{Pa(5;1))5
{Pa(6;1)}°
{P(T )}
(B8}

{Pa(9; 1))
{P(10; 1))

Valuem = 2.
Jamem = 2.

{Pu(-10;2}2
{Pu(-9;2)}
{Pa(-8;2)32
{Pa(-7,2)}°
{Pu(~6;2)}5
{Pu(=5;2)}5°
{Pa(-4;2)}5°

{Pa(-3; 2035
{Pu(—2;2))5
{Pa(-1;2)}5

{P.(0;2))

{Pu(1;2))3

Ir

1]

It

{1,1,0,-1,-1,0,1,1,0,—1,—1,...}

Inverse of 6th Cyclotomic Polynomial Sequence A010892,
{1,1,-1,-3,-1,5,7,—3,-17,—11,23,.. .}

Lucas/Lchmer Sequence A107920,

{1,1,-2,—5,1,16,13, —35, —74,31,253,...}

Sequence A106852,

{1,1,-3,-7,5,33,13, ~119, —171, 305,989, .. .}

Sequence A106853,

{1,1,-4,-9,11, 56,1, —279, —284, 1111, 2531,...}

Scquence A106854,

{1,1, -5,-11,19, B5, —29, —539, - 365, 2869, 5059, .. -+
{1,1,-6,-13, 29,120, —83, —923, — 342, 6119,8513,.. .},
{1,1, -7, —15,41,161, —167, —1455, —119, 11521, 12473, .. .}:
{1,1,—8,—17, 55,208, —287, —2159, 424, 19855, 16039, . . .}
{1,1, -9, -19, 71, 261, —449, —3059, 1431, 3202}, 17711,...},

(IIL.1)

{1,1,1,11,21, 31,141, 351,661, 2071, 5581, .. .},
{1,1,1,10, 19, 28, 118, 289, 541, 1603, 4204, .. .},
{1,1,1,9,17,25,97,233,433, 1209, 3073, ...},
{1,1,1,8, 15,22, 78,183, 337,883, 2164, ...},
{1,1,1,7,13,19, 61, 139, 253, 619, 1453, ...},
{1,1,1,6,11,16,46,101, 181,411, 916,.. .},
{1,1,1,5,9,13,33,69,121,253,529,...}
Scquence AQ8997T,

{1,1,1,4,7,10,22,43,73, 139, 268, ...}
“Number of Pairs of Rabbits...” Scquence A0B4386,
{1,1,1,3,5,7,13,23,37,63,109,...}

Sequence AQ77949,
{1,1,1,2,3,4,6,9,13,19,28,...}

Sequence A000930,
{1,1,1,1,1,1,1,1,1,1,1,...}

“All 1s” Scquence A000012,

{1: 11 11 01 '_1: _21 “2, ‘1, 1, 3, 4, v }

{Pn(2§:

{Pn(3;:
{Pn(4;:
{Pn(s;:
{Pn (6;
{Pa(T;
{Pn(8;
{Pa(9;
{P.(10;
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5059, ...},
,8513,...}
521,12473,.. .},
55,16039,...},
021,17711,...},

(IIL1)

nce ADB4386,

= Sequcnce A050935,

{Pa(22)}° = {L,1,1,-1,-3,-5,-3,3,13,19,13,.. .}
= Sequence A077950,

{P(3:;2)}8° = {1,1,1,-2,-5,-8,-2,13,37,43,4,...},

{Pa(4;2)} = {1,1,1,-3,-7,—11,1,29,73,69, -47,...},

(P.(5:2)} = {1,1,1,-4,-9,-14,6,51,121,91, —164,...},

{Pn(6;2)}o" {1,1,1,-5,-11,-17,13,79, 181,103, —371,.. .},

{P.(7;2)}5° {1,1,1,-6,-13, —20, 22, 113, 253,99, —692, . . .+

{P.(82)}}a° = {1,1,1,-7,-15,—23, 33,153,337, 73, —1151,...},

{Fa(%2)}e = {1,1,1,-8,-17,-26,46,199,433,19, -1772,...},
{P.(10;2)}° = {1,1,1,-9,-19,-29,61,251, 541, —69, —2579, .. .}

(IIL.2)

Not surprisingly, overlaps with other cxisting scquences occur for further
m instances of P, (z;m), but these are not listed herc for rcason of brevity.

4 Interpretations

4.1 Polygon Partitioning

Equations (II.2),(II.3) are known, having a basic connection with the his-
torical problem of polygon decomposition (it is so called triangularisation
that is the special case through which the Catalan numbers are commonly
interpreted combinatorially). They have in this context been discussed in:
detail in [4, (A1),(A2),(A6), pp.104-105] and, accordingly, we may writc
as follows: [2*]{f(z;m)} = (m_-l-im((m-I-?i-H) = (™) (ie., the
cocflicient of the term z* in £(z;m)) being an instance of what is some-
times referred to in the literaturc as a ‘generalised’ or ‘higher’ Catalan
number- -is the number of ways to internally partition, or subdivide, an
(mi+2)-gon into i (m+ 2)-gons by i — 1 diagonals [4, (A7), p.105); m = 1

describes the famous decomposition of an (i + 2)-gon into i triangles by

i — 1 diagonals, enumerated by the Catalan number c; (and in this casc

Uz;1) = X2 pi1(%)a* = C(z), as we have already noted). As an aside,

the reader is also directed to [5, (22), p.198] (sec the Further Remarks sec-

tion thercof), where the expression ——i—r ((m"'?""'l) can be linked to

what is known as a Raney sequence and corresponds to a particular “Fuss-

Catalan” number, the terminology having been used clsewhere (for related

background material on this point sec {4], and also its forcrunner article [6]

in which an attcmpt was made to set out the full history of the Catalan

scquence).
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4.2 Dyck Paths

A so called m-Dyck path of order i is a 2D lattice path from the arigin (0, 0)
to the point (m4, i) which never goes below the main diagonal {(ms,s) : 0 <
s < i} using combinations of steps (0,1) (north) and (1,0) {cast}. From the
popular reference work of Hilton and Pedersen [7] we have the immediate
observation that ﬁ((mfl)i) is the number of {order i) m-Dyck paths.

T

5 Summary

Based on previous work involving the anthors, a generalised type of polyno-
mial has been presented. Containing the Catalan polynomials as a partic-
ular class,! this generalised polynomial has some interesting mathematical
propertics of its own, allied to a couple of associated combinatorial inter-
pretations. It remains to be scen whether or not any non-lincar identitics
can be formulated for P,{(z;m) such as those isolated ones observed in [1,
Scetion 5.1.5, pp.21-22], or results developed in [2,3] and clsewhere, for the
Catalan polynomials.

We finish the paper with onc or two remarks.

Final Remarks In a 1973 publication Riordan [12] introduced a sct of poly-
nopials in re-visiting the classic bracketing problem of Catalan (counting
s0 called “clutches of nests”). These arc termed “Catalan polynomials” in
the text by Koshy ([13, p-321]; Touchard’s well known reccurrence formula
for the Catalan numbers is also recovered} but, for the record, we cmpha-
sise that they are not the same polynomials as ours. Finally, for complete-
ness, the interested reader is dirccted to some additional results for Catalan
polynomials [14,15]; these have been given by the authors as part of those
for a wider class of polynomial families of which the Catalan polynomials
whose generalised form is considered here- -are but one instance (others arc,
for cxample, classes of polynomials termed (Large) Schroder and Motzkin
polynomials (so named after their namesake sequences from which they arc
derived through their governing o.g.f.), neither of which have a generalised
version at this moment in time).

1For completeness we note that prior to the 2008 and 2009 publications [1-3] the
Catalan polynomials arose originally in work by W. Lang {8] (sec O.E.LS. Sequence
No. A115139), We also romark here that Catalan polynomials have appesrcd in
(1.70),(1.71) of Gould’s 1972 listing [9, p.9], though with no context which relates them
to the Catalan soguence; a couple of Farther results looscly relevant to the generalised
Catalan polynomials are (1.120),(2.121) on p.15. Note that propertics of the Catalan
polynomials are explored further in other papers [10,11] appearing in this Bulletin Special
Issue.
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Appendix

Here we derive the characteristic equation associated with P, (z;m) men-
tioned in Propertics 1. Consider, with P,,,(z) defined in (I.3), its character-
istic polynomial

Pm(z) = Mpia] = @=AAN)| = 0 + 0 - 0 + -
- 4 (_1)m+2.(__1)m+1$|3(/\)| (AI)

(only two signed minors (i.e., cofactors) of Py, (z) — AL, expanding the
determinant along the top row, arc non-zero and contribute), where

-A D 0 0 0 0 0
-1 =-A 0 0 0 0 0
AN = 0 -1 -2 0 0 0 0
| ¢ 0 0 0 .-~ 0 -1 -A |
-1 -2 0 0 -~ 00 0]
0 -1 -2 0 --- 0 0 0
B()«) — 0 0 -1 = -~ 00 0 s (A2)
| 0 0 0 0 .- 00 -1

arc respective lower and upper triangular m X m matrices (albeit sparse
ones). The determinant of an upper or a lower triangular matrix is merely

the product of its diagonal terms, whence we procced readily from (Al) as
follows:

[Pm(2) = Mmya| = (1= AN - z|BOY)|
= (=N —2(-)7
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= (-1)™A"(1-A) -]
— (_1)m+1(/\m+1 —~)\m 4 .’B), (A3)

with characteristic cquation 0 = A™+! - A™ 4 g,

The Lemma says nothing about the zeros of the characteristic equation
(i.€., roots of fo(A) = A™+1 — A™ 4 z) when T takes the two specific values
z =0, Trr'vd-_ml)?” We can, however, deal with these and we do so here in
bricf for completeness:

Case ¢ = z{m) = m™/(m + 1)™+!

Experimental computations suggest that for any m > 1 then Jz(m)(A) pos-
sesses a sole repeated root? A = m/(m + 1), together with cither (a) m — 1
complex pairs of roots if m = 1,3,5,7,..., or (b) m — 2 complex pairs of
roots, plus an additional (negative) distinct real root, if m = 2,4,6,8,....
Thus, we can scek a closed form for the (degree m — 1) polynomial

fm(m) (’\) .
(- =)

which dclivers the remaining m — 1 roots of fz(m)(A) according to (a) or
(b), and, with some work, we find a general closed form

Fegmy(A) = (A4)

R m—1 i+1 m m—1-i ; A

verification of whick we leave as a reader exercise,

Cascz =10
This is trivial, for the characteristic cquation reads 0 = fo(\) = A™(A — 1),
with m repeated roots of zero and a single distinct root of unity.
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Commemorating 200 Years
Since the Birth of
Eugene Charles Catalan

Guest Editor
Peter J. Larcombe

Dedication

This Special May 2014 Bulletin Issue is Dedicated to the Memory of
Deavid R. French (‘Frenchy’)
1943—2014

The Catalan sequence has an almost unparalleled ubiquity in discrete math-
ematics, arising as, or in, the solution of a wide variety of apparently dis- -
parate and unconnected counting problems. Throughout the major part
of the 19th century the accepted version of its discovery linked the ini-
tial identification of the sequence to Leonhard Euler, who in 1751 wrote
of its elements as providing solutions to the so called triangulated decom-
positions of polygons—a problem which is today well known and through
which the Catalan sequence was to eventually bear the name of Catalan
himself, seemingly after a flurry of activity (by Catalan and some contem-
poraries) during the 1830s and 1840s. This false attribution (and others)
continued until 1988 when a Chinese historian, J. Luo, detailed a new con-
text as evidence of an even earlier awareness of the Catalan sequence by
the scholar Antu Ming {who during the first half of the 1700s examined,
via geometrical considerations, a certain type of infinite series containing
Catalan numbers).

From such beginnings well over 250 years ago, the Catalan sequence
has continued to make regular appearances in the literature—sometimes in
surprising ways—whilst the Catalan numbers have interesting mathemat-
ical properties in their own right which link with other integer sequences.
My own personal interest in the Catalan sequence took off when it arose
in an enumeration problem on which I was working with an undergraduate
fina] year student in the mid 1990s (strangely, it took many years for this
work to be disseminated), and—after the assimilation and translation of
the relevant material—I wrote, and co-wrote, a series of short pieces on the
origins of the Catalan sequence in an attempt to clarify that part of its
history. Since then both Catalan and the Catalan numbers have at times



figured in my work, most recently through the so called Catalan polyno-
mials which I discovered with a Ph.D. student (James Clapperton) and
great friend Dr. Eric Fennessey (in our study of iterated generating func-
tions) and which form the basis of my joint contributions to this Special
Issue. I am, of course, not alone in my Catalan-related pursuits. Professor
Richard P. Stanley, for instance, has aptly termed an extreme enthusiasm
for all matters Catalan as “Catalania” (“Catalan mania”), & ‘condition’
whose ‘sufferers’ will undoubtedly recognise! Richard himself keeps 2 won-
derful Catalan Addendum to Volume 2 of his well known book Enumerative
Combinatorics active as an up-to-date resource for researchers in which he
details new interpretations and problems, and Professor Thomas Koshy has
been moved to write a stand alone undergraduate text Catalan Numbers
with Applications for a less specialised readership (see overleaf for more
details on these books). Each, in its own particular way, serves the mathe-
matical community well, along with the numerous articles which have, over
the years, formed a substantial body of work on the Catalan sequence and
secured its place at the forefront of the world of integer sequences.

One wonders what Catalan—who as well as being politically active was
quite eclectic in his mathematical endeavours—would have made of the way
the sequence has captivated academics eager to understand its fundamental
pature and application; certainly, it is testimony to the importance of the
Catalan numbers that so many people, at all academic levels, continue to
develop and often retain an interest in them, and there is no sign of this end-
ing. It is, therefore, a great pleasure to write this Foreword in my capacity
as Guest Editor, as the LC.A. formally celebrates both the significant and
longstanding impact of the Catalan sequence within discrete mathematics.
The invited contributions on offer here are as varied as they are interesting,
forming a timely and fitting tribute to Catalan and the Catalan sequence.

Enjoy ! ?
¢ ‘,’ d—/
Peter J. Larcombe
Professor of Discrete and Applied Mathematics
Office E319 (Gateway to ‘Cataland’)
School of Computing and Mathematics
University of Derby
Kedleston Road
Derby DE22 1GB

England, UK.
[P.J.Larcombe@derby.ac. uk|
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Major Contributions to the Literature
on Catalan Numbers by Stanley and Koshy

R.P. Stanley (1999). “Enumerative Combinatorics”®, Volume 2
(Cambridge Studies in Advanced Mathematics No. 62), Cam-
bridge University Press, Cambridge, U.K.

Some useful background information on the Catalan numbers (with refer-
ences) appears in the Notes section at the end of Chapter 6 of this ad-
vanced level book, with the subsequent Exercises 6.19 offering a number of
combinatorial illustrations. Stanley continues to update the original pre-
sentation in the textbook with an “EC2 Supplement” (available from his
M.I.T. homepage) which contains errata, updates a nd new material. In
addition, a “Catalan Addendum” offers new problems related to Catalan
numbers, with solutions, reflecting his deep and enduring interest in them
and a determination to-see them disseminated; Catalan interpretations in
the Addendum currently stand at over 200 in number, the collation of which
is & commendable achievement on the part of Stanley.

T. Koshy (2009). “Catalan Numbers with Applications”, Ox-
ford University Press, New York, U.S.A.

Koshy’s text is aimed at a broad readership (of mathematical amateurs,
high school students/teachers, and both undergraduate and postgraduate
level students), in which he pulls together and catalogues many different
aspects of the Catalan sequence and its numerous contexts. The book—as
the author rightly states—is the first to collect and present an orderly trea~
tise on the various occurrences, applications and properties of the Catalan
numbers, and Koshy draws on a multitude of reference material to create
a very useful resource.




Somef Other Works of Note on Catalan

In 1996 the Société Belge des Professeurs de Mathématique d’Expression
Francaise (Mons, Belgium) published “Eugtne Catalan: Géométre sans
Patrie, Républicain sans République”, a 200+ page book by F. Jongmans
on the life and work of Catalan. [Prior to this, and as a precursor, the author
had contributed a chapter (Chepter 3, pp.23-41) with the same title in a
publication “Regards Sur 1756 Ans de Science a FUniversité de Liége 1817-
1992" (Ed. A.-C. Bernés) which was produced in 1992 under the auspices
of the University’s Centre d’Histoire des Sciences et des Techniques to mark
this period of general scientific activity at the university.]

Other works of note are the articles “Eugéne Catalan and the Rise of
Russian Science” (Acad. . Roy. Belg. Bull. Class. Sci., 2 (1991), pp.59-90)
by P.L. Butzer and F. Jongmans, “Les Relations Epistolaires Entre Eugene
Catalan et Ernesto Cesaro” (ibid., 10 (1999), pp.223-271) by Butzer et al.,
and “Quelques Pitces Choisies dans la Correspondance d'Eugéne Catalan”
(Bull. Soc. Roy. Sci. Liége, 50 (1981), pp.287-309) by Jongmans. Al
bar the final reference are predated by about a century by P. Mansion’s
“Notice sur les Travaux Mathématiques de Eugene-Charles Catalan” which
appeared in Ann. I’Acad. Roy. Sci. Lett. Beauz-Arts Belg. in 1896 (62,

pp.115-172).
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