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Abstract 

This paper presents an analysis and performance of a LQR 
control algorithm for quadrotor helicopters. For a successful 
analysis, first the dynamic model has been developed for the 
quadcopter and then the controller was designed, tuned and 
tested. In tuning the LQR, much attention was given to the 
feedback gain matrix (K). The controller’s performance was 
verified in terms of delay time, rise time, overshoot, settling 
time and tolerance limits. The overall performance of the 
LQR controller was analysed. 

1 Introduction 

In recent years, Unmanned Aerial Vehicles (UAVs) have 
attracted more attention due to their high manoeuvrability, 
simplicity of construction, low maintenance costs and low 
noise. Quadcopters are rotary wing machines that make use of 
four propellers in achieving vertical take-off and landing and 
other flight manoeuvrings. UAVs have become very useful 
not only for military purposes but in many areas such as; 
aerial photo and video shooting, farm irrigation and crop 
monitoring, border patrol and rescue missions, electric power 
line and gas pipeline monitoring and many others. Works are 
underway to see UAVs fully-fledged in door-to-door delivery 
of goods bought over the internet through Amazon, Google 
and others 

Generally small in size, quadcopters use a variety of sensors 
to achieve a high level of stability and control, allowing them 
to navigate even in narrow spaces. Additionally, because each 
rotor is small, they require less power during flight, which 
makes quadcopters much safer both to human operators and 
to the flight environment. Lastly, quadcopters are generally 
low cost and easy to construct. All these factors contribute to 
making them the rotorcraft of choice for most academic and 
research purposes. 

Design of control system for quadrotor helicopters is an 
ongoing and growing research field.  The controller is the 
main part in designing any autopilot system for aviation and 
quadrotor helicopter in particular. For a stable control,  the 
throttle, roll, pitch and yaw have to be controlled  successfully 

so that  the vehicle navigate its terrain while maintaining 
steady, stable flight and controlled movement.  

The goal of this paper is to present a step by step design of the 
LQR controller for intelligent control of Quadrotor helicopter.  
The emphasis will be on the linearized state modelling of the 
quadrotor helicopter, system’s performance index (state and 
control weighting matrices, (Q and R), the feedback gain 
matrix (K) and the tuning. 

2 The LQR Controller 
Linear Quadratic Regulator (LQR) is a modern control 
technique that uses state-space to analyse and design a 
system. The state-space representation of the quadcopter has 
been developed and used in designing an effective LQR 
controller. The state-space equations are usually of the form, 
Equation (1) [1-3]: 

 �̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵u 
𝑦𝑦 = 𝐶𝐶𝑥𝑥 + 𝐷𝐷𝐷𝐷 (1) 

 
Where x  is the state vector, y is the output vector, u is the 
input/control vector. A, B, C, D are system matrix, input 
matrix, output matrix and feed forward matrix respectively. 
The state vector x derived from Equation (A1), appendix A,  
is given by x = (ϕ, �̇�𝜙, ϴ, �̇�𝛳, ψ, �̇�𝜓, x, 𝑥𝑥 ̇, 𝑦𝑦, �̇�𝑦, 𝑧𝑧, �̇�𝑧 )T and the 
input vector u is given be u = (u1,u2,u3,u4)T. 

3 Derivation of the quadcopter’s state-space 
equation 

Using aerodynamic laws, as in Equation (A1) and for 
simplicity in the mathematical calculations, only the linear 
and angular accelerations are considered for the state vector’s 
derivative ( x&). This would result in the state-space equations, 
as in   (2) [1]. 

�̇�𝑋 =  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ �̈�𝜙 = �̇�𝜃�̇�𝜓 �

𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑧𝑧𝑧𝑧
𝐼𝐼𝑥𝑥𝑥𝑥

�+ �̇�𝜃 �
𝐽𝐽
𝐼𝐼𝑥𝑥𝑥𝑥
�Ω +

1
𝐼𝐼𝑥𝑥𝑥𝑥

𝑈𝑈2

 �̈�𝜃 = �̇�𝜙�̇�𝜓 �
(𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥)

𝐼𝐼𝑦𝑦𝑦𝑦
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1
𝐼𝐼𝑦𝑦𝑦𝑦

�𝑈𝑈3

�̈�𝜓 = �̇�𝜃�̇�𝜙 �
𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑦𝑦𝑦𝑦

𝐼𝐼𝑧𝑧𝑧𝑧
� +

1
𝐼𝐼𝑧𝑧𝑧𝑧

𝑈𝑈4 

�̈�𝑍 = 𝑔𝑔 − (𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)
1
𝑚𝑚
𝑈𝑈1 

�̈�𝑥 = (𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓)
1
𝑚𝑚
𝑈𝑈1 

�̈�𝑦 = (𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓)
1
𝑚𝑚
𝑈𝑈1

   (2) 
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Where the input vector, u is defined, as in Equation (3).  

 

𝑈𝑈1 = 𝑏𝑏(Ω12 + Ω22 + Ω32 + Ω42) 
 𝑈𝑈2 = 𝑏𝑏(−Ω22 + Ω42)
 𝑈𝑈3 = 𝑏𝑏(Ω12 − Ω32)

 𝑈𝑈4 = 𝑑𝑑(−Ω12 + Ω22 − Ω32 + Ω42)

 (3) 

Effective LQR designs are only based on linear state-space 
models [2]. However, Equation (3) is non-linear and thus, 
needs to be linearized. 

4 Linearization of the quadcopter 
In linearizing, the designer has to choose and work around the 
stable operating regions of the system which is to be 
controlled [3]. In this paper the stable hovering position of the 
quadcopter was seen as the stable operating region suitable 
for the design and, thus chosen. Therefore, linearization of 
Equation (3) and other linearization required in the LQR 
design would be done around this stable hovering position. 
Equation (4) holds true for the quadcopter at its stable 
hovering position according to [3],. Where subscript h 
denotes hovering.  

 

⎩
⎪
⎨

⎪
⎧𝜃𝜃 = 𝜙𝜙 = 𝜓𝜓 = �̇�𝜃 = �̇�𝜙 = �̇�𝜓 = �̈�𝜃 = �̈�𝜓 = �̈�𝜙 = 0

�̇�𝑥 = �̈�𝑥 = �̇�𝑦 = �̈�𝑦 = �̇�𝑧 = �̈�𝑧 = 0
𝑉𝑉ℎ = 𝑉𝑉1 = 𝑉𝑉2 = 𝑉𝑉3 = 𝑉𝑉4

Ω = Ωℎ
Ω̇ = Ω̈ = 0 ⎭

⎪
⎬

⎪
⎫

 (4) 

Applying linearized equations to this LQR design was a bit 
difficult since their state-space equations would not conform 
to the format as in (1). According to [4], Taylor series could 
be applied in linearizing non-linear equations. However, in 
the LQR design, linearization was simply achieved by 
approximating   (2) and accounting for all inaccuracies with 
an offset - of which was achieved satisfactory results. The 
same technique was implemented in this application to design 
the LQR controller. Equation (5) shows the linear equations 
that were achieved after applying this technique [1]. 
 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ �̈�𝜙 =

1
𝐼𝐼𝑥𝑥
𝑈𝑈2

�̈�𝜃 =
1
𝐼𝐼𝑦𝑦
𝑈𝑈3

�̈�𝜓 =
1
𝐼𝐼𝑧𝑧
𝑈𝑈4

�̈�𝑥 = 𝐷𝐷𝑥𝑥
1
𝑚𝑚  𝑈𝑈1

�̈�𝑦 = 𝐷𝐷𝑦𝑦
1
𝑚𝑚  𝑈𝑈1

�̈�𝑧 = 𝐷𝐷𝑧𝑧 ⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 (5) 

Where;  �

𝐷𝐷𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓
𝐷𝐷𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓

𝐷𝐷𝑧𝑧 = 𝑔𝑔 − (𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)
1
𝑚𝑚  𝑈𝑈1

� (6) 

Another technique that was adopted in this LQR design was 
the reduction technique [1]. This was implemented in order to 
simplify the mathematical calculations in this paper. With this 
technique, the state vector which is given as X = (ϕ, 𝜙𝜙 ̇, ϴ, 𝛳𝛳 ̇, 
ψ, 𝜓𝜓 ̇, 𝑥𝑥, �̇�𝑥, 𝑦𝑦, �̇�𝑦, 𝑧𝑧, 𝑧𝑧 ̇)T, though consists of 12 members, will 
be reduced into the following; altitude, attitude and position 
controls as in Equation (7). The altitude control would be 
characterized by (𝑧𝑧, �̇�𝑧)T whilst the attitude control would be 
characterized by (ϕ, 𝜙𝜙 ̇, ϴ, 𝛳𝛳 ̇, ψ, 𝜓𝜓 ̇)T. On the other hand, the 
position control would be characterized by (x, �̇�𝑥, 𝑦𝑦, 𝑦𝑦 ̇)T. 

X = 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜙𝜙
�̇�𝜙
𝜃𝜃
�̇�𝜃
𝜓𝜓
�̇�𝜓
𝑥𝑥
𝑥𝑥 ̇
𝑦𝑦
�̇�𝑦
𝑧𝑧
𝑧𝑧 ̇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6
𝑥𝑥7
𝑥𝑥8
𝑥𝑥9
𝑥𝑥10
𝑥𝑥11
𝑥𝑥12⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= (Attitude, Position, Altitude)T (7) 

As noted in   (2), only linear and angular accelerations were 
considered in writing the state-space equation. However, with 
the above categorization of the state vector (X) into altitude, 
attitude and position controls, new and much reduced state 
space-equations had to be considered. In the state-space 
equation, as in Equation (8) (for attitude), the following were 
considered; (a) attitude of the quadcopter is characterized by ( 
ϕ, 𝜙𝜙 ̇, ϴ, 𝛳𝛳 ̇, ψ, �̇�𝜓 )T; where  ( ϕ, 𝜙𝜙 ̇, ϴ, 𝛳𝛳 ̇, ψ, �̇�𝜓 )T is equal to ( 
x1, x2, x3, x4, x5, x6 )T from Equation (7); (3) and,  in (5), it 
was realized that; 
 

�̈�𝜙 =
1
𝐼𝐼𝑥𝑥
𝑈𝑈2

�̈�𝜃 =
1
𝐼𝐼𝑦𝑦
𝑈𝑈3

�̈�𝜓 =
1
𝐼𝐼𝑧𝑧
𝑈𝑈4

 

 

 
In order to obtain the state-space equation for attitude to 
conform to the format ẋ = Ax + Bu as in Equation (3), x had 
to be made equal to both ( ϕ, 𝜙𝜙 ̇, ϴ, �̇�𝛳, ψ, �̇�𝜓 )T and ( x1, x2, x3, 
x4, x5, x6 ) T. In addition its derivative, ẋ be made equal to 
both (𝜙𝜙 ̇, �̈�𝜙, 𝛳𝛳 ̇, �̈�𝛳 ,�̇�𝜓, 𝜓𝜓 ̈ )T and (�̇�𝑥1, �̇�𝑥2, �̇�𝑥3, �̇�𝑥4, �̇�𝑥5, �̇�𝑥6 )T. 

 

⎣
⎢
⎢
⎢
⎢
⎡
�̇�𝑥1
�̇�𝑥2
�̇�𝑥3
�̇�𝑥4
�̇�𝑥5
�̇�𝑥6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0 
0 0 0 00 0 
0 0 0 1 0 0 
0 0 0 0 0 0 
0 0 0 0 0 1 
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

���������
𝐴𝐴

 

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6⎦
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0    0      0
1
𝐼𝐼𝑥𝑥

    0      0 

0     0      0

0     
1
𝐼𝐼𝑦𝑦

    0

0       0     0 

0      0    
1
𝐼𝐼𝑧𝑧 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

���������
𝐵𝐵

 �
𝑈𝑈1
𝑈𝑈2
𝑈𝑈3
� (8) 

In deriving the state-space equation (9), the following were 
considered; (a) position of the quadcopter is characterized by 
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(x, �̇�𝑥, 𝑦𝑦, 𝑦𝑦 ̇)T; (b) From Equation (7), ( x, �̇�𝑥,𝑦𝑦, 𝑦𝑦 ̇) T is equal to 
(x7, x8,  x9, x10 )T. From equation (5), it was realized that; 

�̈�𝑥 = 𝐷𝐷𝑥𝑥
1
𝑚𝑚

 𝑈𝑈1

�̈�𝑦 = 𝐷𝐷𝑦𝑦
1
𝑚𝑚  𝑈𝑈1

 

 
In order to make sure the state-space equation conforms to the 
ẋ = Ax + Bu format, x had to be equal to both (x, �̇�𝑥, 𝑦𝑦, 𝑦𝑦 ̇)T 
and ( x7, x8, x9, x10 )T. And its derivative, ẋ be equal to both 
(�̇�𝑥, �̈�𝑥, �̇�𝑦, 𝑦𝑦 ̈ )T  and ( �̇�𝑥7, �̇�𝑥8, �̇�𝑥9, �̇�𝑥10 )T  
 

 �

�̇�𝑥7
�̇�𝑥8
�̇�𝑥9
�̇�𝑥10

� = �

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

�

�������
𝐴𝐴

 �

𝑥𝑥7
𝑥𝑥8
𝑥𝑥9
𝑥𝑥10

� + �

0 0 
𝑎𝑎 0 
0 0 
0 𝑎𝑎 

�

���
𝐵𝐵

�
𝑈𝑈𝑥𝑥
𝑈𝑈𝑦𝑦
� (9) 

 
Where symbol a in matrix B is equal to 1

𝑚𝑚
𝑈𝑈1. 

 
In writing the state-space equation for altitude, as in Equation 
(10), the following were considered; (a) Altitude of the 
quadcopter is characterized by z and 𝑧𝑧 ̇; (b) from Equation (7), 
z is equal to x11 and �̇�𝑧 is equal to x12; (c) and in Equation (5), 
it was shown that 𝑧𝑧 ̈ is equal to Uz. To make sure the state 
space equation conforms to the format ẋ = Ax + Bu, x had to 
be equal to both (𝑧𝑧,�̇�𝑧)T and (x11, x12) T. Whereas, ẋ (the 
derivative of x) be equal to both (𝑧𝑧,̇ 𝑧𝑧 ̈)T and ( �̇�𝑥11, �̇�𝑥12 ). 
 

 ��̇�𝑥11�̇�𝑥12
� = �0 1

0 0��
𝐴𝐴

 �
𝑥𝑥11
𝑥𝑥12� + �01��

𝐵𝐵

[𝑈𝑈𝑧𝑧] (10) 

After obtaining these state space equations, they were verified   
using them on the quadcopter plant, the system would be both 
controllable and observable. 
 

5 Determining the weighting matrices of the 
cost function 
In LQR designs, the system’s performance index is 
characterized by a cost function (J) for which the controller 
seeks to minimize [4]. This cost function is given by the 
formula; 

 𝐽𝐽 = � [𝑥𝑥𝑇𝑇
∞

0
𝑄𝑄𝑥𝑥 + 𝐷𝐷𝑇𝑇𝑅𝑅𝐷𝐷]𝑑𝑑𝑑𝑑  (11) 

Where Q is the state weighting matrix with real symmetry and 
positive semi-definite in nature. R, is the control weighting 
matrix of real symmetry but positive definite in nature [5]. 
These weighting matrices help determine the relative 
importance of the existing error as well as the energy 
expenditure of the system [4]. It is therefore important that, 
for a successful LQR design, these parameters be chosen 
accurately. 
In this paper a hybrid form of the classical approach based on  
the Bryson’s method [9] and the trial-and-error methods are 
combined. This method was chosen for its ability to offset the 
disadvantages of just using the trial-and-error or Bryson’s 
method. The Bryson’s method was first used in determining 
the initial Q and R weighting matrices. The trial-and-error, 

then, was relied on to fine-tune these two parameters to 
achieve a better performance of the controller [6].   
The Bryson’s Rule: According to this rule, Q and R are 
diagonal matrices whose diagonal elements are respectively 
expressed as the reciprocals of the squares of the maximum 
acceptable values of the state variable (X) and the input 
control variable (u).  The diagonal elements Qii of matrix Q, 
thus, can be written as [6]; 
 

 𝑸𝑸𝒊𝒊𝒊𝒊 =
1

𝑚𝑚𝑎𝑎𝑥𝑥𝑐𝑐𝑚𝑚𝐷𝐷𝑚𝑚 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑣𝑣𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑐𝑐𝑜𝑜 𝑋𝑋𝑖𝑖2
 (12) 

 
Where i ϵ (1, 2, 3......l ) 
And the diagonal elements Rjj  of matrix R, also, can be 
written as [5]; 
 

 𝑹𝑹𝒋𝒋𝒋𝒋 =
1

𝑚𝑚𝑎𝑎𝑥𝑥𝑐𝑐𝑚𝑚𝐷𝐷𝑚𝑚 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑣𝑣𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑐𝑐𝑜𝑜 𝐷𝐷𝑖𝑖2
 (13) 

 
Where j ϵ (1, 2, 3......k) 
Applying Bryson’s rule to the state-space equation for 
attitude, as in Equation (9), the following initial Q and R 
values were obtained; 

Q =�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�; R = 0.3 

 
Also applying Bryson’s rule to the state-space equation for 
position, as in Equation (10), the following initial Q and R 
values were obtained; 

Q =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

; R = 0.5 

 
Finally applying Bryson’s rule to Equation (10) (altitude), the 
following initial Q and R values were achieved; 
 

Q =�1 0
0 1�; R = 1 

 

6 Obtaining the feedback gain matrix through 
Riccati equation 

After obtaining the Q and R matrices above, they had to be 
substituted into the algebraic Riccati Equation, as in Equation 
(14) to solve for P [7]. 

 𝐴𝐴 ∗ 𝑃𝑃 + 𝑃𝑃𝐴𝐴 − 𝑃𝑃 𝐵𝐵 𝑅𝑅−1𝐵𝐵 ∗ 𝑃𝑃 + 𝑄𝑄 =  0 (14) 
   

With P solved, the feedback gain matrix (K) would then be 
calculated using (15) [7]. 
 

 𝐾𝐾 = 𝑅𝑅−1𝐵𝐵 ∗ 𝑃𝑃 (15) 
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MATLAB was used as it provides a convenient way of 
solving for K by just using the following command; 
 

 𝐾𝐾 = 𝑎𝑎𝑙𝑙𝑙𝑙(𝐴𝐴,𝐵𝐵,𝑄𝑄,𝑅𝑅) (16) 
   

The MATLAB command, as in Equation (16), was also used 
to derive the K values for attitude, position and altitude 
controllers. In the altitude controller, for instance, where; 
 

A =�0 1
0 0�; B =�01�; Q =�1 0

0 1� 
 

R = 1, the values obtained for K = [1 1.7321]. 

7 Closed-loop system with LQR controller 
With the feedback gain matrix (K) and state-space equations 
obtained, the closed-loop system of the quadcopter can now 
be developed, Figure 1. 

 
Figure 1: Closed loop control system for the Quadcopter  
 
Where the state-space model is of the format, as in Equation 
(1) and the state feedback (F) obeys the optimal control law, 
which is expressed by (17); 
 

 𝐹𝐹 =  − 𝐾𝐾𝑥𝑥 (17) 
 
After realizing the closed-loop system with the quadcopter 
using LQR controller, simulations have been conducted to 
ascertain its performance in terms of meeting the design 
specifications. 

8 Tuning the LQR controller 
In tuning the LQR controller, much attention was given to the 
feedback gain matrix (K). This is because, until the right K 
values have been reached, the performance of the LQR 
controller would not be satisfactory. With the calculated 
feedback gain, K = [1   1.7321] (for altitude), the closed-loop 
system of the quadcopter was simulated at different throttle 
positions as seen in Figures 2 and 3.  
 
 

 
 
Figure  2: Simulating the LQR controller with K = [1  1.7321] 

at a throttle position of 0.2m 
 

 
 
Figure 3: Simulating the LQR controller with K = [1   1.7321] 

at a throttle position of 30m 
 

It was realized from the above simulations, that the LQR 
controller could control the dynamic response of the plant 
with no overshoot. It was, also, able to optimally change the 
plant’s state to zero (in approximately 5 seconds). These met 
the design specifications required. However, the rise time and 
settling time which were expected to be around 2 seconds 
remained same in both simulations (at 5 seconds).  These did 
not meet the expected specifications, thus, the need to re- tune 
the feedback gain, K.   
Since Q and R weighting matrices have corresponding effects 
on the values of K, some guidelines were followed to obtain 
the right values for K [8]; 

• The larger the values of R, the lower K becomes and the 
slower the state variables approach zero.  

• The lower the values of R, the higher K becomes and the 
faster the state variables approach zero.  

• The larger the values of Q, the higher K becomes and the 
faster the state variables approach zero.  

• The lower the values of Q, the lower K becomes and the 
slower the state variables approach zero. 
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Using the above guidelines for tuning, the LQR controller 
was simulated with different values of K (which were 
calculated using MatLab command by varying Q and R).  
, 5 and 6 show the response curves of these simulations. In 
both   Figures 4 and 5 for example, the value of R was 
maintained at 1 whilst Q was respectively varied from [1  0; 0  
1] to [0.5  0; 0  0.5] and [1.5  0; 0  1.5]. These corresponded 
to K values being varied from [1   1.7321] to [0.7071   
1.3836] and [1.2247   1.9873] respectively.   
 
It was realized from the response curves that, the lower K 
became, not only did the state variables slowly change to zero 
but the controller’s response became faster (as rise time 
became shorter). There were overshoots and the response 
never settled at the commanded value as can be seen in Figure 
4. 
 
Also the higher K became, not only did the state variables 
change to zero faster but the controller’s response became 
slower (as its rise time became longer). It also never reached 
the commanded value as seen in Figure 5.  
 

 
Figure 4: Simulating with K = [1  1.7321] and K = [0.7071  

1.3836] at a throttle position of 30m 
 

 
 

Figure  5: Simulating with K = [1   1.7321] and K = [1.2247  
1.9873] at a throttle position of 30m 

 
 
Figure 6: Simulating the LQR controller with different K 

matrices at a throttle position of 30m 
 

In Figure 6, the value of Q was maintained at [1  0; 0  1] 
whilst R was varied from 1 to 0.1 and, then, 0.006. These 
corresponded to K values of [1   1.7321] to [3.1623   4.0404] 
and, then, to [12.9099   13.8740] respectively. Since in both 
cases, K was being increased, the state variables changed to 
zero faster and the controller’s response became slower (as its 
rise time became longer) and never reached the commanded 
value. It should be noted that, despite the number of attempts 
to tune the rise time and settling time of the LQR controller to 
2 seconds, they proved difficult. For this reason, the tuning  
finally settled on K = [1   1.7321], since it had no overshoot, 
no steady state error and was robust. 
 

9 Conclusion 

A linearized LQR dynamics Simulink model controller for 
quadrotor helicopter has been developed. The model 
verification was successful and it has been seen that the 
model dynamics faithfully responds to the commanded inputs. 
The designed LQR controller was able to meet the 
performance parameters in terms of overshoot, setting time 
and response time. 

The developed controller was simulated with under various 
conditions and the effect the Q and R weighting matrices on 
the feedback gain matrix K. It was found that for lower values 
of K the controller’s response was faster with some issues in 
the overshoots and settling time. It was, also, found that 
controller’s stability hinges on the right tuning parameter of 
the gain matrix K. 
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Appendix A: Analytical model for the quadrotor helicopter [3] 
 
  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑉𝑉
�̈�𝑥
�̈�𝑦
�̈�𝑧
�̈�𝜙
�̈�𝜃
�̈�𝜓⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑉𝑉 = 𝐽𝐽𝐽𝐽�̇�𝛺

𝑘𝑘𝑞𝑞
+ 𝑘𝑘𝑒𝑒𝛺𝛺 + 𝐽𝐽𝑅𝑅𝛺𝛺2

𝑘𝑘𝑞𝑞

2𝜌𝜌𝐴𝐴
𝑚𝑚
�𝑓𝑓𝑓𝑓𝑘𝑘𝑡𝑡
𝑘𝑘𝑞𝑞
�
2

(𝑉𝑉12 + 𝑉𝑉22 + 𝑉𝑉32 + 𝑉𝑉42)(𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓)

2𝜌𝜌𝐴𝐴
𝑚𝑚
�𝑓𝑓𝑓𝑓𝑘𝑘𝑡𝑡
𝑘𝑘𝑞𝑞
�
2

(𝑉𝑉12 + 𝑉𝑉22 + 𝑉𝑉32 + 𝑉𝑉42)(𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 )

2𝜌𝜌𝐴𝐴
𝑚𝑚
�𝑓𝑓𝑓𝑓𝑘𝑘𝑡𝑡
𝑘𝑘𝑞𝑞
�
2

(𝑉𝑉12 + 𝑉𝑉22 + 𝑉𝑉32 + 𝑉𝑉42)(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙) − 𝑔𝑔

 2𝜌𝜌𝐴𝐴
𝑚𝑚
�𝑓𝑓𝑓𝑓𝑘𝑘𝑡𝑡
𝑘𝑘𝑞𝑞
�
2

(𝑉𝑉22 − 𝑉𝑉42)

2𝜌𝜌𝐴𝐴
𝑚𝑚
�𝑓𝑓𝑓𝑓𝑘𝑘𝑡𝑡
𝑘𝑘𝑞𝑞
�
2

(𝑉𝑉32 − 𝑉𝑉12)
𝐽𝐽
𝐼𝐼𝑧𝑧𝑧𝑧
�Ω̇1 + Ω̇3 − Ω̇2 −  Ω̇4� + 𝑅𝑅

𝐼𝐼𝑧𝑧𝑧𝑧
(Ω12 + Ω32 − Ω22 − Ω42) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                     (A1) 
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