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Abstract 

Competitive interactions between insects and microbes and the associated cost of 

development in bacterially-dense environments are investigated using the blowfly 

Lucilia sericata (Meigen) as a model. The effects of developing in a bacterially-dense 

environment are measured by assessing the fitness consequences of competition 

using the pathogen Staphylococcus aureus. Fitness is quantified in terms of larval 

survival, puparial development and adult emergence.  

The influence of bacteria on larval immune defences is investigated using optical 

density to assess whether antibacterial potency of the larval excretion/secretion 

changes in response to the degree of contamination of the larval environment. The 

results demonstrate that bacterial presence has no detrimental effect on survival of L. 

sericata from egg to adult eclosion, or on puparial size. Additionally, the level of 

microbial contamination of larvae has no effect on the antibacterial potency of the 

larval excretion/secretion. These findings confirm that larval antibacterial activity is 

not induced by the presence of environmental bacteria but is produced constitutively.  
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Introduction 

Carrion-feeding insects colonise and survive in bacterially-dense environments, such 

as that provided by a human or animal corpse. Blowflies (Calliphoridae) dominate 

the early stages of decomposition, assisting its progress as they feed (Putman, 

1983). The demands of the fly larvae for nutritional resources are high (Ives, 1991) 

and there is intense intra- and inter-species competition within the Calliphoridae 

(Goodbrod & Goff, 1990; Prinkkila & Hanski, 1995; Smith & Wall, 1997; Dos Reis et 

al., 1999). Such competition can have detrimental effects on larval survival, duration 

of the larval stage, puparial and adult size, adult longevity and fecundity.  

 

Little research has been carried out on the competitive interactions between insect 

and microbe decomposers in the corpse environment.  Previous research has 

concentrated on the costs associated with the internal immune responses of insects 

(Kraaijeveld & Godfray, 1997; Fellowes et al., 1998; Kraaijeveld et al., 2001a; 

Kraaijeveld et al., 2001b; Armitage et al., 2003; Sadd & Siva-Jothy, 2006; Haine et 

al., 2008; Roth & Kurtz, 2008). However, competition with microbes in the external 

environment also incurs lifecycle costs for the insect. For example, the microbes in 

the corpse environment have a detrimental effect on the reproductive success and 

larval growth of the burying beetle, Nicrophorus vespilloides (Herbst) (Rozen et al., 

2008).  

 

Several carrion-feeding insect species, both dipteran and coleopteran, show 

externalised antibacterial activity in their excretion/secretions (ES), which may be 

seen as the first line of defence against microbes in their environment (Scott, 1998; 

Suzuki, 2001; Hoback et al., 2004; Cotter & Kilner, 2009; Barnes et al., 2010).  
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Studies investigating the antibacterial activity of Lucilia sericata (Meigen) have been 

conducted in the context of maggot debridement therapy (where larvae are added to 

a wound to remove necrotic tissue, reduce the microbial load and promote healing) 

and show that ES produced by aseptically raised L. sericata larvae is active against 

several Gram-positive and Gram-negative bacteria (Simmons, 1935; Thomas et al., 

1999; Bexfield et al., 2004; Kerridge et al., 2005; Bexfield et al., 2008; Jaklic et al., 

2008; van der Plas et al., 2008). These results demonstrate that antibacterial activity 

is not induced by exposure to environmental bacteria. However they give no 

indication of bacterial effect on the potency of the ES. Additionally, the effect of such 

exposure to pathogenic bacteria, on the rate of survival to adulthood of these insects 

has not previously been investigated.  

 

The present study examines the impact of a bacterially-dense environment on the 

survival and development of L. sericata larvae and the influence of this environment 

on the antibacterial potency of the ES produced by the larvae. The study has two 

aims; first to assess the costs of development in a bacterially-dense environment 

where cost is quantified in terms of successful larval development (reflected as 

puparial size) and survival throughout the lifecycle with and without the presence of 

bacteria. These parameters are chosen because they are important measures of 

fitness that correlate with success in terms of competition for reproductive 

opportunities amongst adults (Webber, 1955; Daniels et al., 1991). The second aim 

is to assess the influence of bacteria on the effectiveness of the antibacterial activity 

of larval ES. This research extends that work conducted on internal interactions 

between the insect immune system and bacteria by exploring competition between 

insect and microbes in the external environment. 
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Materials and Methods 

Insect culturing 

Colonies of L. sericata were maintained at the University of Lincoln under a lighting 

regime of LD 16 : 8h and at a temperature of 25 ± 3 °C. Larvae were reared on 

different diets according to the objectives of each experiment. Sterile larvae 

(experiment one and two) were fed an artificial diet combining 20% horse blood 

(Oxoid Ltd, Basingstoke, Hampshire, England) and 5% yeast agar (Oxoid Ltd, 

Basingstoke, Hampshire, England) (diet modified from the protocol of Daniels, et al., 

1991) which was sterilised by autoclaving before addition of larvae. Non-sterile 

larvae (experiment two) were fed a diet of ad libitum porcine liver. 

Representative bacterial species 

Staphylococcus aureus (ATCC 25923) was used as the bacterial species in these 

experiments. This bacterium is found in the nasal openings of 30% of the human 

population (Bexfield et al., 2008) and has been isolated from human corpses during 

the first 24 h after death (Rose & Hockett, 1971; Niwayama, 1971). Staphylococci 

are also found in the oral cavity, upper respiratory tract and genital regions of the 

human body (Wilson, 2005), sites where blowfly eggs are likely to be deposited (Dix 

& Graham, 2000; Carvalho & Linhares, 2001; Grassberger & Frank, 2004; Perez et 

al., 2005). Therefore, it is assumed that the larvae of an initial coloniser such as L. 

sericata will have contact with this pathogen as they emerge and consume a corpse. 

Measuring survivability and larval growth 

To assess the effect of bacteria on the survivability of L. sericata, larvae were fed on 

an artificial diet (comprising 20% horse blood and 5% yeast agar) containing S. 

aureus. Each Petri dish contained the same amount of artificial diet (20g) but varied 
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in the quantity of bacteria according to the treatment group (0%, 50% or 100% S. 

aureus). 

Inocula for the artificial diet was prepared as follows: one colony of S. aureus was 

taken from a stock plate of nutrient agar (Oxoid Ltd, Basingstoke, Hampshire, 

England) and inoculated into 9 mL sterile water and diluted to 105 colony forming 

units (CFU) mL-1 . One loop (10 µL) of this suspension was added to each of nine 

artificial diets and spread over half of the agar (50% S. aureus). Two loops of this 

suspension were added to each of nine replicates and spread over the complete 

agar surface (100% S. aureus). Nine plates were left uninoculated to serve as the 

control (0% S. aureus). All plates were incubated at 37°C for 18 h to allow bacterial 

growth. 

Eggs of L. sericata were collected and sterilized using 70% ethanol. A complete 

absence of bacteria was confirmed in the egg stage by spreading an aliquot of each 

egg batch onto agar plates and incubating for 24 to 48 h after which an absence of 

bacteria was confirmed. Hence, the only artificially introduced bacterial species in the 

larval environment was S. aureus and any effect on survivability could be attributed 

to the presence of this bacterial species alone. 

Live first instar larvae that emerged from the sterile eggs were transferred to artificial 

diets (20 larvae per plate) and the dishes placed in a controlled environment with 

pots of water to provide local humidity. Larval development was monitored visually 

until the post-feeding stage. At this point, the lids were removed from the Petri dishes 

and the post-feeding larvae allowed to migrate into sawdust to pupate. 

The proportions of surviving larvae in each treatment group (0% S. aureus, 50% S. 

aureus and 100% S. aureus) were counted at the 3rd instar, puparial and adult stage. 

Puparial cases of those larvae which successfully pupariated were recovered from 
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each treatment group and the length of each entire case measured (mm) using 

callipers.  

Collection and preparation of larval excretion/secretion from bacterially-dense and 

bacterially-sterile environments 

To compare the potency of antibacterial activity from larvae raised in sterile and non-

sterile environments against S. aureus, ES was collected from 3rd instar larvae.  

Larvae from previously sterilised eggs were raised aseptically on Petri dishes 

containing sterile artificial diets. Larvae from non-sterile environments were fed on 

porcine liver and no attempt was made to sterilise these larvae at any life stage. 

The ES was collected by adding deionised water (dH2O) to a weighed sample of 

larvae (1 g mL-1) (Barnes et al., 2010). Larvae were incubated at 30 °C for 60 min 

after which the ES was collected and micro-centrifuged at 7826 g for 5 min. The ES 

from non-sterile larvae was sterilized by filtration (0.20 µm). The ES was tested for 

sterility before use to ensure any bacterial growth recorded was solely due to S. 

aureus. 

Preparation of bacteria 

One colony of S. aureus was removed from a stock plate of nutrient agar (Oxoid Ltd, 

Basingstoke, Hampshire, England) and inoculated into 20 mL sterile tryptone soya 

broth (TSB) (Oxoid Ltd, Basingstoke, Hampshire, England). The broth was incubated 

at 37 °C with aeration for 17 h. A sample of 0.1 mL of this overnight bacterial culture 

was transferred to 10 mL TSB and incubated at 37 °C with aeration for four h. 

Assessment of the antibacterial potency of larval excretion/secretion from both 

environments 

The ES was separated into 4 mL aliquots to investigate the antibacterial activity of 

ES from L. sericata. The purpose of this experiment was to model the antibacterial 
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activity of ES in the insects' natural environment. Therefore additional media was not 

employed in this assay as its effect on antibacterial activity of ES was unknown. In 

order to demonstrate the pattern of normal bacterial growth, 4 mL aliquots of TSB/ 

dH2O were utilised as controls to replace the ES.  

Twenty microlitres of S. aureus in TSB (105 CFU mL-1) were added to all 4 mL 

aliquots. Optical density was used to measure bacterial growth over the experimental 

period (Thomas et al., 1999; Bexfield et al., 2004). An initial absorbance reading 

(time zero) was taken by diluting the sample in sterile dH2O (1 : 10) in sterile 

universals and comparing it to a blank (with an identical content to the sample but 

without the bacteria) at 600 nm. Samples were incubated with aeration at 37 ºC for 

24 h and readings were taken at 0, 1, 2, 4, 8, 18, 20 and 24 h after inoculation. The 

experiment was repeated three times and in each experiment samples were run in 

triplicate. 

Results and Discussion 

Experimental data fit the assumptions needed for parametric tests and statistical 

analyses were conducted using SPSS (version 14.0). 

 

Effect of S. aureus on survivability and larval success 

Under the environmental conditions provided in these experiments S. aureus is not 

detrimental to the growth, or survival, of L. sericata larvae to adulthood. The 

presence of bacteria had no significant effect on the number of survivors through the 

life stages between treatments (0% cover of S. aureus, 50% cover of S. aureus and 

100% cover of S. aureus) indicating that S. aureus (105 CFU mL-1) was not 

pathogenic to L. sericata (ANOVA: F2,6=0.68, P = 0.54) (Fig. 1). Similarly, change in 

bacterial density did not affect the puparial size of L. sericata (ANOVA: F2,89=1.09, P 
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= 0.34) (Table 1). These results indicate that L. sericata is able to tolerate the 

bacterial species frequenting its natural environment and that any nutrients resulting 

from the presence of bacteria are irrelevant in terms of enhancing larval growth. 

 

These findings for L. sericata are in contrast to Rozen et al. (2008) who find 

evidence of a strong detrimental effect of microbial competition on the reproductive 

success and larval growth of the burying beetle, N. vespilloides. Burying beetles 

choose substrate with the lowest microbial load as a food source for their larvae 

(Rozen et al., 2008). Such substrate choice has not been reported in Lucilia species 

and consequently, L. sericata larvae are likely to develop in suitable environments 

irrespective of the bacterial populations.  

 

In the present study, larvae of L. sericata are able to tolerate the presence of 

pathogenic bacteria until they pupariate. Roth and Kurtz (2008) report that immune-

challenged larvae of the red flour beetle, Tribolium castaneum (Herbst), pupate 

significantly earlier than controls. However, no difference in the speed of 

development is noted between the L. sericata larvae in sterile and non-sterile 

environments. In fact, during this period, the colonies of S. aureus are eradicated 

from the blood agar plates upon which the larvae are feeding. This observation 

suggests that larvae are not only able to tolerate the bacteria but can also destroy 

them.  
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Effect of S. aureus on antibacterial potency of larval ES 

 

Research, mainly conducted within the context of maggot debridement therapy, 

proposes two possible mechanisms whereby L. sericata larvae reduce bacterial 

growth. Some studies show that bacteria, such as E. coli are consumed and 

eradicated in the acidic midgut of L. sericata (Robinson & Norwood, 1934; 

Greenberg, 1968; Mumcuoglu et al., 2001; Daeschlein et al., 2007), whereas others 

demonstrate that ES from L. sericata provides an effective control mechanism 

against S. aureus (Simmons, 1935; Thomas et al., 1999; Bexfield et al., 2004; 

Kerridge et al., 2005; Jaklic et al., 2008; van der Plas et al., 2008). The ES recovered 

from 3rd instar L. sericata in the present study inhibited the growth of S. aureus for 24 

h. These data demonstrate that S. aureus is susceptible to the antibacterial activity 

of ES, which plays an effective role in determining larval immunity against this 

bacterial species.  

 

Neither the sterility of the larvae or the larval environment influences the antibacterial 

potency of ES in the present study. A Repeated Measures ANOVA, conducted on 

the absorbance data over the 24-h experimental period, indicated that there was no 

significant difference between the effectiveness of ES from non-sterile larvae 

compared to ES from sterile larvae (ANOVA: F1,16=0.12, P = 0.73). Additionally, 

there was no significant bacterial growth in either treatment over this period (ANOVA: 

F7,16=0.41, P = 0.88). The change in bacterial growth in the two treatments over the 

24-h experimental period is illustrated in Figure 2. These results show that the 

presence of bacteria does not appear to be required for the induction, or production, 

of the antibacterial activity of ES.  
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The results from this study are in accord with studies that report antibacterial activity 

in ES from aseptically-raised L. sericata larvae (Simmons, 1935; Thomas et al., 1999; 

Bexfield et al., 2004 and 2008; Jaklic et al., 2008; van der Plas et al., 2008). This 

result also suggests that there is no additional intensity of antibacterial factors in ES 

in response to the environmental presence of S. aureus, as there is in the 

haemolymph of L. sericata in response to a bacterial insult (Altincicek & Vilcinskas, 

2009). The antibacterial activity of ES against S. aureus therefore appears to be 

present constitutively in these larvae. This is in contrast to the antibacterial activity in 

secretions from N. vespilloides which is only upregulated following discovery of a 

corpse (Cotter & Kilner, 2009). Lucilia sericata larvae have most likely evolved to 

have a high level of constitutive antibacterial capacity in response to developing in 

bacterially-dense environments.  

 

It would seem that there are no detrimental effects in terms of survival associated 

with the production of externalised antibacterial activities against S. aureus in larval 

ES. This finding supports work by Armitage et al. (2008) who report no measurable 

costs for constitutive investment in immunity in Tenebrio molitor (Linnaeus). However, 

other bacterial species may differ in their effects on larval survivability or growth, 

showing less sensitivity to the ES. Roth and Kurtz (2008) find that T. castaneum 

produced fewer offspring when exposed to the Gram-negative E. coli but not to the 

Gram-positive Bacillus thuringiensis. Further work on the developmental success of 

L. sericata in the presence of other bacterial species is required to determine 

whether developing in an environment colonised by different pathogenic species has 

associated costs.  
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For carrion-feeding larvae, such as L. sericata that inhabit bacterially-dense 

environments natural selection ought to favour specific mechanisms of resistance to 

pathogens only when it is beneficial. Therefore, developing in a bacterially-dense 

environment should not warrant the costly use of the immune system and the 

constitutive production of antibacterial ES, where components also include enzymes 

utilized for digestion, is perhaps more efficient.  

 

In summary, the present research provides evidence that L. sericata can develop 

normally in bacterially-laden environments. In addition, these experiments reveal that 

antibacterial activity against S. aureus is produced constitutively in larval ES and 

indicates that this form of immune defence is not costly to the growth or survival of 

the insect. 

Acknowledgments 

The authors would like to thank David Kelly for his contribution to this work by 

measuring puparial cases and Ben Cambery for his assistance with statistical 

analyses. 

References 

Altincicek, B. & Vilcinskas, A. (2009) Septic injury-inducible genes in medicinal 

maggots of the green blow fly Lucilia sericata. Insect Molecular Biology. 18, 119- 

125. 

 

Armitage, S.A.O., Thompson, J.J.W., Rolff, J. & Siva-Jothy, M.T. (2003) Examining 

costs of induced and constitutive immune investment in Tenebrio molitor. Journal of 

Evolutionary Biology. 16, 1038-1044. 



13 

 

Barnes, K.M., Gennard, D.E. & Dixon, R.A. (2010) An assessment of the 

antibacterial activity in larval excretion/secretion of four species of insects recorded 

in association with corpses, using Lucilia sericata Meigen as the marker species. 

Bulletin of Entomological Research, 22, 1-6. 

 

Bexfield, A., Nigam, Y., Thomas, S. and Ratcliffe, N. A. (2004) Detection and partial 

characterisation of two antibacterial factors from the excretions/secretions of the 

medicinal maggot Lucilia sericata and their activity against methicillin-resistant 

Staphylococcus aureus (MRSA). Microbes and Infection, 6, 1297-1304. 

 

Bexfield, A., Bond, A.E., Roberts, E.C., et al. (2008) The antibacterial activity against 

MRSA strains and other bacteria of a <500Da fraction from maggot 

excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes and 

Infection. 10, 325-333. 

 

Carvalho, L.M.L. & Linhares, A, X. (2001) Seasonality of insect succession and pig 

carcass decomposition in a natural forest area in southeastern Brazil. Journal of 

Forensic Science, 46, 604-608. 

 

Cotter, S.C. & Kilner, R.M. (2009) Sexual division of antibacterial resource defence 

in breeding burying beetles, Nicrophorus vespilloides. Journal of Animal Ecology, 79, 

35-43. 

 



14 

 

Daeschlein, G., Mumcuoglu, K.Y., Assadian, O., et al. (2007) In vitro antibacterial 

activity of Lucilia sericata maggot secretions. Pharmacology and Physiology, 20, 

112-115. 

 

Daniels, S., Simkiss, K. & Smith, R.H. (1991) A simple larval diet for population 

studies on the blowfly Lucilia sericata (Diptera: Calliphoridae). Medical and 

Veterinary Entomology, 5, 283-292. 

 

Dix, J. & Graham, M. (2000) Time of death, decomposition and identification. An 

atlas. CRC Press, Florida, U.S.A. 

 

Dos Reis, S.F., Von Zuben, C.J & Godoy, W.A.C. (1999) Larval aggregation and 

competition for food in experimental populations of Chrysomya outoria (Weid.) and 

Cochliomyia macellaria (F) (Dipt., Calliphoridae). Journal of Applied Entomology, 123, 

485-489. 

 

Fellowes, M.D.E., Kraaijeveld, A.R. & Godfray, H.C.J. (1998) Trade-off associated 

with selection for increased ability to resist parasitoid attack in Drosophila 

melanogaster. Proceedings of the Royal Society. Part B. 265, 1553-1558. 

 

Goodbrod, J.R. & Goff, M.L. (1990) Effects of larval population density on rates of 

development and interactions between two species of Chrysomya (Diptera: 

Calliphoridae) in laboratory culture. Journal of Medical Entomology, 27, 338-343. 

 



15 

 

Grassberger, M. & Frank, C. (2004) Initial study of arthropod succession on pig 

carrion in a central European urban habitat. Journal of Medical Entomology, 41, 511-

523. 

 

Greenberg, B. (1968) Model for destruction of bacteria in the midgut of blowfly 

maggots. Journal of Medical Entomology, 5, 31-38. 

 

Haine, E.R., Pollitt, L.C., Moret, Y., et al. (2008) Temporal patterns in immune 

responses to a range of microbial insults (Tenebrio molitor). Journal of Insect 

Physiology, 54, 1090-1097. 

 

Hoback, W.W., Bishop, A.A., Kroemer, J., et al. (2004) Differences among 

antimicrobial properties of carrion beetle secretions reflect phylogeny and ecology. 

Journal of Chemical Ecology, 30, 719-729. 

 

Ives, A.R. (1991) Aggregation and coexistence in a carrion fly community. Ecological 

Monographs, 61, 75-94. 

 

Jaklic, D., Lapanje, A., Zupancic, K., et al. (2008) Selective antimicrobial activity of 

maggots against pathogenic bacteria. Journal of Medical Microbiology, 57, 617-625. 

 

Kerridge, A., Lappin-Scott, H., & Stevens, J.R. (2005) Antibacterial properties of 

larval secretions of the blowfly, Lucilia sericata. Medical and Veterinary Entomology, 

19, 333-337. 

 



16 

 

Kraaijeveld, A.R., & Godfray, H.C.J. (1997) Trade-off between parasitoid resistance 

and larval competitive ability in Drosophila melanogaster. Nature, 389, 278-280. 

 

Kraaijeveld, A.R., Hutcheson, K.A, Limentani, E.C. & Godfray, H.C.J. (2001a) Costs 

of counterdefenses to host resistance in a parasitoid of Drosophila. Evolution, 55, 

1815-1821. 

 

Kraaijeveld, A.R., Limentani, E.C. & Godfray, H.C. (2001b) Basis of the trade-off 

between parasitoid resistance and larval competitive ability in Drosophila 

melanogaster. Proceedings of the Royals Society. Part B, 268, 259-261. 

 

Mumcuoglu, K.Y., Miller, J., Mumcuoglu, M., et al. (2001) Destruction of bacteria in 

the digestive tract of the maggot of Lucilia sericata (Diptera: Calliphoridae). Journal 

of Medical Entomology, 38, 161-166. 

 

Niwayama, G. (1971) Postmortem blood microbiology using sterile autopsy 

technique. Tohoku Journal of Experimental Medicine, 105, 247-256. 

 

Perez, S.P., Duque, P. & Wolff, M. (2005) Successional behaviour and occurrence 

matrix of carrion-associated arthropods in the urban area of Medellin, Colombia. 

Journal of Forensic Science, 50, 1-7. 

 

Prinkkila, M-L. & Hanski, I. (1995) Complex competitive interactions in four species 

of Lucilia blowflies. Ecological Entomology, 20, 261-272. 

 



17 

 

Putman, R.J. (1983) Carrion and dung: the decomposition of animal wastes. Arnold, 

London, U.K. 

 

Robinson, W. & Norwood, V.H. (1934) Destruction of pyogenic bacteria in the 

alimentary tract of surgical maggots implanted in infected wounds. Journal of 

Laboratory and Clinical Medicine, 19, 581-586. 

 

Roth, O. & Kurtz, J. (2008) The stimulation of immune defence accelerates 

development in the red flour beetle (Tribolium castaneum). Journal of Evolutionary 

Biology, 21, 1703-1710. 

 

Rose, G.W. & Hockett, R.N. (1971) The microbiologic evaluation and enumeration of 

postmortem specimens from human remains. Health Laboratory Science, 8, 75-78. 

 

Rozen, D.E., Engelmoer, D.J.P. & Smiseth, P.T. (2008) Antimicrobial strategies in 

burying beetles breeding on carrion. Proceedings of the National Academy of 

Sciences of the United States of America, 105, 17890-17895. 

 

Sadd, B.M. & Siva-Jothy, M.Y. (2006) Self-harm caused by an insect's innate 

immunity. Proceedings of the Royal Society. Part B, 273, 2571-2574. 

 

Scott, M.P. (1998) The ecology and behaviour of burying beetles. Annual Review of 

Entomology, 43, 595-618. 

 



18 

 

Simmons, S.W. (1935) The bactericidal properties of excretions of the maggot Lucilia 

sericata. Bulletin of Entomological Research, 26, 559-563. 

 

Smith, K.E. & Wall, R. (1997) Asymmetric competition between larvae of the 

blowflies Calliphora vicina and Lucilia sericata in carrion. Ecological Entomology, 22, 

468-474. 

 

Suzuki, S. (2001) Suppression of fungal development on carcasses by the burying 

beetle Nicrophorus quadripunctatus (Coleoptera: Silphidae). Entomological Science, 

4, 403-405. 

 

Thomas, S., Andrews, A.M., Hay, N.P., & Bourgoise, S. (1999) The anti-microbial 

activity of maggot secretions: results of a preliminary study. Journal of Tissue 

Viability, 9, 127-132. 

 

van der Plas, M.J.A., Jukema, G.N., Wai, S-W., et al. (2008) Maggot 

excretions/secretions are differentially effective against biofilms of Staphylococcus 

aureus and Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 61, 

117-122. 

 

Webber, L.G. (1955) The relationship between larval and adult size in the Australian 

sheep blowfly Lucilia cuprina (Wied.). Australian Journal of Zoology, 3, 356-353. 

 

Wilson, M. (2005) Microbial inhabitants of humans – Their ecology and role in health 

and disease. Cambridge University Press, U.K. 



19 

 

Table 1: Mean puparial lengths of Lucilia sericata (Meigen) for control (0% S. aureus) 

and treatments (50% S. aureus and 100% S. aureus). Values for standard deviation 

and standard error are also presented. 

 

 

 

Puparial sizes of 

Lucilia sericata (mm) 0% S. aureus 50% S. aureus 100% S. aureus 

Mean 7.39 7.20 7.21 

Standard Deviation 0.47 0.53 0.67 

Standard Error 0.09 0.10 0.12 
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Figure Legends 

 

Figure 1.  Mean (± SEM) number of surviving individuals of Lucilia sericata (Meigen) 

for control (0% S. aureus, open bar) and treatments (50% S. aureus, grey bar and 

100% S. aureus, solid bar) at three developmental stages. 

 

Figure 2. Mean (±SEM) growth curves for Staphylococcus aureus in 

excretion/secretion collected from aseptically reared larvae (sterile larvae) of Lucilia 

sericata (solid squares), or collected from non-sterile larvae and filter sterilized (non-

sterile) larvae (solid triangles). Normal bacterial growth is represented by the control 

data (solid circles). The insert is a comparison of the growth of S. aureus in the two 

treatment groups (sterile larvae and non-sterile larvae) alone. 

 


