
Received: 22 August 2017 Revised: 9 February 2018 Accepted: 15 February 2018

DOI: 10.1002/ldr.2918
R E S E A R CH AR T I C L E
The influence of trees, shrubs, and grasses on microclimate, soil
carbon, nitrogen, and CO2 efflux: Potential implications of
shrub encroachment for Kalahari rangelands

Andrew David Thomas1 | David R Elliott2 | Andrew John Dougill3 |

Lindsay Carman Stringer3 | Stephen Robert Hoon4 | Robin Sen4
1Department of Geography and Earth

Sciences, Aberystwyth University,

Aberystwyth SY23 3DB, UK

2Environmental Sustainability Research

Centre, University of Derby, Derby DE22 1GB,

UK

3School of Earth and Environment, University

of Leeds, Leeds LS2 9JT, UK

4School of Science and the Environment,

Manchester Metropolitan University,

Manchester M1 5GD, UK

Correspondence

A. D. Thomas, Department of Geography and

Earth Sciences, Aberystwyth University,

Aberystwyth SY23 3DB, UK.

Email: ant23@aber.ac.uk

Funding information

NERC facilities grant; Leverhulme Trust

standard grant
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

This is an open access article under the terms of th

the original work is properly cited.

© 2018 The Authors Land Degradation & Develop

Land Degrad Dev. 2018;1–11.
Abstract
Shrub encroachment is a well‐documented phenomenon affecting many of the world's drylands.

The alteration of vegetation structure and species composition can lead to changes in local micro-

climate and soil properties which in turn affect carbon cycling. The objectives of this paper were

to quantify differences in air temperatures, soil carbon, nitrogen, and CO2 efflux under trees

(Vachellia erioloba), shrubs (Grewia flava), and annual and perennial grasses (Schmidtia kalahariensis

and Eragrostis lehmanniana) collected over three seasons at a site in Kgalagadi District, Botswana,

in order to determine the vegetation‐soil feedback mechanism affecting the carbon cycle. Air

temperatures were logged continuously, and soil CO2 efflux was determined throughout the

day and evening using closed respiration chambers and an infrared gas analyser. There were sig-

nificant differences in soil carbon, total nitrogen, CO2 efflux, light, and temperatures beneath the

canopies of trees, shrubs, and grasses. Daytime air temperatures beneath shrubs and trees were

cooler compared with grass sites, particularly in summer months. Night‐time air temperatures

under shrubs and trees were, however, warmer than at the grass sites. There was also signifi-

cantly more soil carbon, nitrogen, and CO2 efflux under shrubs and trees compared with grasses.

Although the differences observed in soils and microclimate may reinforce the competitive dom-

inance of shrubs and present challenges to strategies designed to manage encroachment, they

should not be viewed as entirely negative. Our findings highlight some of the dichotomies and

challenges to be addressed before interventions aiming to bring about more sustainable land

management can be implemented.
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1 | INTRODUCTION

The impact of livestock on soils and vegetation has been well docu-

mented in the Kalahari (e.g., Bhattachan, D'Odorico, Dintwe, Okin, &

Collins, 2014) and elsewhere (e.g., Linstädter et al., 2014). With limited

animal disturbance, Kalahari soils are typically covered in a

cyanobacterial biocrust (Büdel et al., 2009) which provides numerous

ecosystem benefits (Belnap & Lange, 2003). Biocrust microorganisms
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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have been identified as common rhizosphere and endophyte species in

overlying grasses and shrubs (Elliott, Thomas, Hoon, & Sen, 2014; Steven,

Gallegos‐Graves, & Kuske, 2014) suggesting functional interdependence

and an important beneficial microbial refugia role for biocrusts. They are,

however, easily damaged by livestock trampling, and a reduction in the

area covered by biocrusts is an immediate consequence of grazing

disturbance (Dougill & Thomas, 2004). Diminished biocrust cover is

synonymous with increased soil erodibility (Ravi et al., 2011) and a
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FIGURE 1 Location of study site [Colour figure can be viewed at
wileyonlinelibrary.com]
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reduction in soil nitrogen (Belnap & Lange, 2003) and carbon (Thomas,

Hoon, Dougill, & Mairs, 2012). However, the negative impacts of short

periods of intense grazing are temporary, and damaged biocrusts can

recover after a period of respite (Thomas, Elliott, Griffith, & Mairs, 2015).

Over longer time scales, unsustainable grazing can affect competi-

tion between plant species, initially reducing perennial grass cover in

favour of less palatable annual grasses and ultimately replacing grasses

with shrubs (Eldridge et al., 2011; Van Auken, 2000). Shrub encroach-

ment has long been a feature of the Kalahari, with reports that >1

million ha of Kalahari rangeland was affected by Senegalia mellifera

expansion as long ago as the 1950s (Ebersohn, Roberts, & Vorster,

1960, cited in Hagos & Smit, 2005). In southern Africa, numerous

studies have attributed shrub encroachment to long‐term grazing

(e.g., Joubert, Smit, & Hoffman, 2013; O'Connor, Puttick, & Hoffman,

2014). The universal occurrence of shrub encroachment across the

world's drylands is, however, suggestive of global drivers of change

(Stevens, Lehmann, Murphy, & Durigan, 2017; Van Auken, 2000). The

increase in atmospheric CO2 favours C3 photosynthetic shrubs because

it leads to improved water and N use efficiencies over lower CO2

adapted C4 grasses (Leakey et al., 2009). Warming could also enhance

the survival and growth rates of cold intolerant woody shrubs

(D'Odorico et al., 2013). In southwestern Ethiopia, pollen records sug-

gest that the savannah has been affected by multiple phases of shrub

encroachment over the last two millennia, the primary drivers of which

were changes in rainfall and fire occurrence (Gil‐Romera, Lamb, Turton,

Sevilla‐Callejo, & Umer, 2010). Nevertheless, although global and

regional factors may be a driver of vegetation change in drylands, they

cannot alone explain local differences (Bond & Midgley, 2012;

D'Odorico, Okin, & Bestelmeyer, 2012). Ultimately, the vulnerability

of an area to shrub encroachment will depend on land use and the func-

tional traits of plants that govern their responsiveness to all drivers,

human, and climatic (Bond, 2008; Stevens et al., 2017; Van Auken, 2000).

The decline in grazing value associated with shrub encroachment is

the primary reason why it is considered both a cause and symptom of

land degradation in drylands. Changing vegetation composition will,

however, have a range of impacts, including the development of islands

of fertility resulting from the unequal distribution of resources (Schle-

singer et al., 1990). Localised nutrient enrichment occurs as plants (pri-

marily shrubs and trees) obstruct sediment and water movement

(Tongway & Ludwig, 1994) and through dung enrichment from animals

attracted by the shade (Dean, Milton, & Jeltsch, 1999). Shading also

reduces direct losses of C from surface litter via photo‐degradation

(Austin & Vivanco, 2006), altering soil microbial, temperature, and mois-

ture conditions, all ofwhichwill affect organicmattermineralisation rates

and soil C stores. This partly explains why Eldridge and Soliveres (2014)

found a positive correlation between shrub density and a range of eco-

system characteristics such as biodiversity, C sequestration, soil fertility,

and rainfall capture. The positive impact of shrubs on a range of ecosys-

tem characteristics is, however, density dependent.Where canopy cover

exceeds 40–60%, they found that impacts across a range of parameters

became negative (Eldridge & Soliveres, 2014) as the ability of individual

shrubs to capture runoff and sediment declines (Breshears, 2006).

Despite widespread vegetation changes, the species specific

impact of trees, shrubs, and grasses on microclimate and C cycling is

poorly documented in the sandy soils of the Kalahari. Quantifying
these changes for different plant species and understanding their impli-

cations are vital if we are to improve our understanding of terrestrial C

stores and cycles and a prerequisite to inform sustainable land manage-

ment in drylands. This paper presents soil and climatic data collected

during three contrasting seasons in the Kgalagadi District, Botswana,

relevant to the C cycle and soil‐vegetation feedback processes in shrub

encroached rangelands. The objectives were to determine how tree,

shrub, and grass cover affect (a) microclimate (light and air temperature)

and (b) soil C, N, CO2 efflux, and the δ13C of respired gases. The results

are discussed in the context of terrestrial C cycles, land degradation, and

management options that could be employed in order to facilitate more

sustainable land management in the Kalahari rangelands.
2 | MATERIALS AND METHODS

2.1 | Study site and data collection

Field work was undertaken in 2011–2012, approximately 15 km north

of Tsabong (25o56′51'S, 22o25′40″E) in the Kgalagadi District of

Botswana (Figure 1). The site is 980 m above sea level and situated

on level ground on the periphery of the Kalahari dunefield. Soils are

Arenosols (Food and Agriculture Organisation, 2014) and are acidic

(pH 5.8 ± 0.2), fine‐grained sands, with little horizon development

and low concentrations of soil N and C (Wang, Okin, Caylor, & Macko,

2009). Mean annual precipitation is 334 mm. At the time of sampling, a

3–4‐mm deep biocrust, composed of bacteria, cyanobacteria, and fungi

(Elliott et al., 2014), covered approximately 30% of the soil surface.

Data were collected within a fenced area enclosing several

hectares typical of the rangelands in the region, although for the

duration of the study, livestock was excluded to allow installation of

monitoring equipment. Three replicate microsites characterised by

trees (Vachellia erioloba E. Mayer), shrubs (Grewia flava DC), and

http://wileyonlinelibrary.com
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perennial and C4 annual grasses (Eragrostis lehmanniana [Nees] and

Schmidtia kalahariensis [Stent]) were sampled over 4 days in November

2011, 6 days in February 2012, and 6 days in July 2012 ensuring a

range of weather and soil conditions (Figure 2). To avoid

pseudoreplication, the microsites were distributed across the entire

enclosure a minimum of 20 m apart.

2.2 | Temperature, precipitation, and soil moisture

Air temperatures were logged continuously at 1‐min intervals approx-

imately 10 cm from the ground surface by USB502 loggers (Adept Sci-

ence, UK) at each of the microsites. The sensors were shaded from

direct sunlight and protected from rain ingress. For the purpose of

the analyses, data were categorised as either daytime or night‐time

with 7 p.m.–5 a.m. in March and November and 6 p.m.–6 a.m. in June

classified as night‐time. For the duration of the experiment, soil volu-

metric water content and temperature were determined every 2 hr

using a Decagon EM4 logger and 5TM moisture/temperature sensors

installed in the preceding year to permit soil recovery in the centre

of the fenced area. Sensors were inserted laterally into a backfilled soil

pit at 0.1, 0.3, and 1.0 m.
FIGURE 2 (a) Daily air and soil temperatures at 0.1‐, 0.3‐, and 1.0‐m depth
(b) Daily precipitation and mean daily soil moisture at 1.0‐, 0.3‐, and 0.1‐m
with arrows [Colour figure can be viewed at wileyonlinelibrary.com]
2.3 | Soil CO2 efflux and δ13C

Soil CO2 efflux was determined using closed respiration chambers and

an infrared gas analyser (PP Systems, Amesbury, USA) which facilitated

multiple replication and near simultaneous determination of efflux.

Details of the chambers, field methods, and quality control procedures

are supplied in the Supporting Information. CO2 efflux measurements

were undertaken in the early morning, at noon, in the mid‐afternoon,

and evening on each day to encompass a range of temperature, humid-

ity, and light conditions representative of diurnal cycles. For the shrub

and tree microsites, measurements were taken on both east and west

sides of the canopies and the mean used as a single value for the anal-

yses. In total, there were 144 CO2 flux measurements from soil under

each grass type and 288 measurements from soils beneath both the

shrub and tree canopies. The short‐duration but high intensity mea-

surement protocol repeated over contrasting seasons allows for more

reliable quantification of efflux than periodic daily or weekly measure-

ment for identifying differences between soils under different vegeta-

tion types and under different weather conditions. This protocol was

adopted on the basis of experience in soil efflux measurement in this

environment (e.g., Thomas, 2012).
s (daily mean of 48 bihourly measurements) from a grass covered area.
depths (mean of 48 bihourly measurements). Sampling periods marked

http://wileyonlinelibrary.com
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Biological respiratory systems discriminate to a greater or lesser

extent between the two stable C isotopes, 12C and 13C. This fraction-

ation can be used to identify biological sources and pathways in soils

and their interaction with the atmosphere (Amundson, Stern, Raisden,

&Wang, 1998). On March 8, 2012, the 6 p.m. cycle was used to collect

gas samples for determination of their 12C and 13C isotopic composi-

tions. Three gas samples were collected from the chambers and injected

into pre‐evacuated 12 mL borosilicate Exetainer® vials. To prevent con-

tamination, the vials were over‐pressurized, and lids were dipped in hot

wax before transportation to a stable isotope facility (CEH, Lancaster,

UK). Samples of leaf litter from beneath G. flava and E. lehmanniana

were collected, and their 12C and 13C isotopic compositions determined.

Stable 13C/14C isotopic ratios for each sample, Rsample, = δ13C are

reported in parts per thousand (per mil, ‰) variation from the ratio in

the Pee Dee Belemnite (PDB) international standard (Equation 1).

δ13CPDB ¼ Rsample−RPDB

RPDB

� �
×103: (1)

2.4 | Soil total C, N, and bulk density

Soil samples were collected from five depths (0–1, which included

biocrust where present, 1–2, 2–5, 5–10, and 10–20 cm). Three repli-

cate pits were sampled from soils under each of the microsites (tree,

shrub, and annual and perennial grass) during each field season. Soils

were sieved to remove particles >2 mm, air‐dried, bagged, and stored

prior to analysis. Total C and N were determined using a LecoTruSpec

CN element analyser (Matejovic, 1997). Soil bulk density was deter-

mined on samples collected from 5‐cm depth using a metal cylinder

with internal dimensions of 10 cm × 4.8 cm. Sample mass was deter-

mined after sieving and oven drying at 105 °C.

2.5 | Photosynthetically active radiation

Incoming solar radiation in the photosynthetically active wavelengths

(400–700 nm) was measured continuously and simultaneously 2 m

above the ground surface in an open area and beneath a G. flava shrub

canopy using photosynthetically active radiation quantum sensors

(Skye Instruments Ltd., UK) connected to data loggers.

2.6 | Statistical analyses

All statistical analyses were performed using SPSS (IBM v. 24). To test

the hypothesis that mean values of the dependent factors (soil C, soil

N, soil CO2 efflux, and daytime and night‐time air temperatures) were

significantly different at each vegetation microsite, one‐way analysis of

variance (ANOVA) was used. The analyses were run independently for

each of the three sampling periods for all variables except soil C and N

which were amalgamated into one dataset (as in comparison with the

other variables sample numbers were low and relatively unresponsive

to changes in season). Data were first checked for normality using

the Shapiro–Wilk test. Soil C and N data were grouped for all depths

and were found to be normally distributed and required no transfor-

mation. However, CO2 efflux and daytime and night‐time air tem-

peratures were not normally distributed and required a log10

transformation. The Levene's F statistic was then used to test equality
of variance, and although ANOVA can tolerate inhomogeneous vari-

ance, where these conditions were not met, the more robust Welch

and Brown Forsythe tests of significance were used. Tukey's honest

significant difference post hoc test was undertaken to further evaluate

significant (p < .05) differences along with Cohen's d to evaluate the

size of the effect calculated using (Equation 2).

d ¼
�X1−�X2

SD1−SD2ð Þ=2: (2)

Cohen's d values of <0.2 were attributed to small effect sizes; up

to 0.5 medium effect sizes and >0.8 were considered large effect sizes.

To test the effects of temperature and moisture on CO2 efflux, linear

and multiple linear regression tests were performed. The temperature

sensitivity of CO2 efflux at each site within each season was described

with a Q10 exponential model. We used a fitting algorithm to maximise

the correlation coefficient r2 (Q10) with the initial conditions R0 = R(0)

and T0 = 0, where is R0 is efflux at reference temperature T0 (Thomas

& Hoon, 2010).
3 | RESULTS

3.1 | Soil moisture and precipitation

Soils contained least moisture (<0.06 m3 m−3) at the end of the dry sea-

son in November 2011 (Figure 2). Thereafter, a series of large

(>30 mm) precipitation events during March 2012 led to moisture

recharge in the deep subsoil (>1 m). Mean daily air temperatures in

June were typical for winter, ranging from 6 to 12 °C, but unseasonal

rainfall led to increases in soil moisture at 0.1 m. By June 2012, mois-

ture below 0.3 m was depleted by a combination of drainage and tran-

spiration and was decoupled once more from surface diurnal moisture

variations. The interaction between soil temperature and moisture at

different depths can be seen in Figure 2, where, as is to be expected,

annual and diurnal variations in soil temperature decrease in amplitude

with depth.

3.2 | Air temperature and solar radiation

There were significant differences in mean daytime and night‐time air

temperatures between vegetation microsites in all months (Figure 3a,

b). The one‐way ANOVA yielded a statistically significant effect for

daytime temperatures in November (F = 20.3, p ≤ .01, df = 3), March

(F = 234.7, p ≤ .01, df = 3), and June (F = 88.9, p ≤ .01, df = 3). There

was a similarly statistically significant difference in night‐time temper-

atures between vegetation microsites in November (F = 365.1, p ≤ .01,

df = 3), March (F = 4520, p ≤ .01, df = 3), and June (F = 24.9, p ≤ .01,

df = 3). The results of the post hoc analyses (Table 1a,b) show that in

most cases (30 out of 36 comparisons), the daytime and night‐time

temperatures at all vegetation microsites were significantly different

to each other in all months (p ≤ .01) although the effect size was gen-

erally small to medium. In general, summer daytime temperatures

under shrubs and trees were cooler than at the grass sites (Figure 3a)

and warmer during the winter and summer nights, although this latter

effect was much smaller (Figure 3b).



FIGURE 3 (a) Daytime temperatures (°C); (b) night‐time temperatures (°C); and (c) soil CO2 efflux (mg C m−2 hr−1) at each vegetation microsite in
each sampling month. Vachellia erioloba is dark grey, Grewia flava light grey, Eragrostis lehmanniana lighter grey, and Schmidtia kalahariensis is
unshaded. (d) Mean soil total C and N (%) over all three sampling months at each vegetation microsite. Means with standard deviations
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Lower amounts of solar radiation reached the soil surface under

G. flava canopies compared with soils at the grass site (Figure 4). This

was particularly noticeable in June, when despite the lack of leaf cover,

the woody branches and lower sun angle meant that less light pene-

trated through shrub canopies to the soil surface.
3.3 | Soil total C and total N

There were significant differences in mean soil C and N between veg-

etation microsites (Figure 3d). The one‐way ANOVA yielded a statisti-

cally significant effect for total C (F = 13.8, p ≤ .01, df = 3) and N

(F = 17.7, p ≤ .01, df = 3). Post hoc analyses show the significant differ-

ences to be associated with soil beneath V. erioloba trees which was

significantly enriched in both soil C and N compared with soil beneath

all other vegetation microsites (Table 1c). The effect size of these dif-

ferences was large in all cases. Differences in soil C and N concentra-

tions beneath G. flava and beneath grasses were not significant

(Table 1c, Figure 3d).

Total C and N concentrations declined with depth at all sites

(Figure 5) but remained higher at depth beneath shrubs and trees com-

pared with grasses. Incorporation of leaf litter into the surface soils

reduced bulk densities from 1.51 ± 0.05 g cm−3 under shrubs to

1.28 ± 0.05 g cm−3 in soils under grass, but soils still contained signif-

icantly greater C stores than the surrounding grass covered areas. C:

N ratios at the surface of soils under grasses were 8.4–8.6 declining

with soil depth to 6.4–6.9. C:N ratios in surface soils under shrubs

and trees were higher (10.6 and 12.1, respectively) declining to 9.5

and 6.2, respectively, at 10–20 cm.
3.4 | Soil CO2 efflux

There were significant differences in mean soil CO2 efflux between

vegetation microsites in all months (Figure 3c). The one‐way ANOVA

yielded a statistically significant effect in November (F = 24.7,
p ≤ .01, df = 3), March (F = 47.7, p ≤ .01, df = 3), and June

(F = 11.81, p ≤ .01, df = 3). The post hoc analyses (Table 1d) show that

CO2 efflux from soils beneath V. erioloba trees was significantly greater

than from soils beneath grasses in all months (p ≤ .01). Furthermore,

there was significantly greater soil CO2 efflux beneath G. flava shrubs

in March and June compared with soils beneath grasses (p ≤ .01;

Table 1d).

The temperature sensitivity of soil CO2 efflux is strongly affected

by soil moisture conditions (Figures 2 and 6). In November 2011, when

soils were dry, CO2 efflux from soil under all vegetation types was uni-

formly low and unresponsive to soil temperature, with Q10 ranging

from 1.20 to 1.25. However, with elevated soil moisture in both cool

winter and warm autumn conditions, soil CO2 efflux increased with

temperature at all sites, and the Q10 was between 1.35 and 1.40.

The δ13C of efflux gases in March 2012 shows different signatures

between soil CO2 efflux originating from soil beneath C4 grasses and

C3 shrubs and trees (Figure 7). There was, however, no significant dif-

ference in the isotopic signatures of gas respired from annual and

perennial grass sites. The y axis intercepts of Keeling plots (Figure 7)

are unique and identify the source gas (or proportions of contributory

gases) of the soil CO2 efflux at each location. Under G. flava shrubs, it

was −14‰ δ13C, under both grasses, it was −10.5 ‰δ13C, and under

V. erioloba trees, it was −12‰ δ 13C.
4 | DISCUSSION

This study has demonstrated how soil properties and microclimates

differ significantly between vegetation microsites at a grazed range-

land site in the Kalahari. Soils beneath trees and shrubs were enriched

in C and N and were hotspots of microbial activity compared with soils

in grass covered areas. Furthermore, air temperatures were less

extreme, with cooler summer daytime and warmer night‐time temper-

atures beneath the canopies of trees and shrubs compared with grass



TABLE 1 Tukey's honest significant difference multiple comparisons
of air temperatures at each vegetation microsite (a) daytime; (b) mean
night‐time temperatures; (c) soil C and N; (d) soil CO2 efflux

November March June

(a) Daytime comparisons p d p d p d

VE GF .34 −0.05 <.01 −0.32 <.01 −0.21

VE EL <.01 0.16 <.01 0.21 <.01 0.09

VE SK .13 0.06 <.01 0.15 <.01 0.11

GF EL <.01 0.21 <.01 0.53 <.01 0.31

GF SK <.01 0.11 <.01 0.47 <.01 0.33

EL SK <.01 −0.10 .01 −0.06 .77 0.02

November March June

(b) Night‐time comparisons p d p d p d

VE GF <.01 −0.50 <.01 −0.87 <.01 0.14

VE EL <.01 −0.65 <.01 −1.05 .127 0.04

VE SK <.01 −0.72 <.01 −1.04 <.01 0.15

GF EL <.01 −0.15 <.01 −0.35 <.01 −0.08

GF SK <.01 −0.23 <.01 −0.36 .484 0.03

EL SK <.01 −0.08 .60 −0.02 <.01 0.00

Soil C Soil N

(c) Soil C and N comparisons p d p d

VE GF <.01 1.11 <.01 1.26

VE EL <.01 2.06 <.01 2.30

VE SK <.01 1.88 <.01 2.09

GF EL .27 1.83 .20 1.36

GF SK .40 1.41 .41 1.00

EL SK .99 −0.55 .97 −0.53

November March June

(d) Soil CO2 efflux comparisons p d p d p d

AE GF <.01 1.27 .94 −0.09 .87 −0.12

AE EL <.01 2.11 <.01 1.54 <.01 0.97

AE SK <.01 2.15 <.01 1.41 <.01 0.91

GF EL .21 0.50 <.01 1.75 <.01 0.88

GF SK .03 0.66 <.01 1.62 <.01 0.83

EL SK .84 0.23 .85 −0.17 .99 −0.08

Note. Effect size is given by Cohen's d where values of <0.2 are attributed
to small effect sizes; up to 0.5 medium effect sizes, and >0.8 large effect
sizes. VE = Vachellia erioloba; GF = Grewia flava; EL = Eragrostis
lehmanniana; SK = Schmidtia kalahariensis.

FIGURE 4 Diurnal variation in open‐grass site (solid line) and below
Grewia flava canopy (dashed line) incoming solar radiation (630 nm)

in November 2011 and March, June 2012
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areas (see also D'Odorico et al., 2010). The data are useful in under-

standing how vegetation change, particularly shrub encroachment, will

impact the C cycle and other ecosystem characteristics in the future.

This is important for several reasons. First, changes in dryland net pri-

mary productivity, soil C storage, and fluxes will have global impacts

(Ahlström et al., 2015; Le Quéré et al., 2013). Second, vegetation

change will alter the fire regime, and an increase in shrubs at the

expense of grasses will reduce fuel loads and likely reduce the fre-

quency and severity of fires (Bond, 2008; Mouillot & Field, 2005).

Third, different plants affect ecosystem properties in different ways,

and these impacts will themselves be dependent on plant density, mak-

ing for a complex and dynamic ecosystem response to vegetation

change that is scale dependent. Finally, feedbacks between vegetation,

soil, and microclimate are likely to affect the persistence of shrub
encroached systems and ultimately the success of rangeland manage-

ment policy seeking to increase grass cover (D'Odorico et al., 2012).
4.1 | Microclimates beneath tree, shrubs, and grasses

Seasonal weather was the dominant driver of near soil surface air tem-

perature (Figure 2), and in comparison, the mitigating effects of vege-

tation on microclimate were subtle (Figure 3a,b). Nevertheless, the

mosaic of trees, shrubs, and grasses typical of the field site and the

wider Kalahari result in significant differences in near ground air tem-

peratures. The air beneath tree (and to a lesser extent shrub) canopies

was cooler than the soil boundary layer under grasses during the day-

time, particularly in the hotter months. The closed canopy of G. flava

shrubs also had a significant impact in reducing cooling and keeping

the air beneath shrubs warmer than in grass areas during cold winter

nights. If this leads to fewer winter ground frosts, it may contribute

to shrub survival and provide a further competitive advantage to

shrubs over grasses (D'Odorico et al., 2012; He, D'Odorico, De

Wekker, Fuentes, & Litvak, 2010). A number of factors are leading to

the observed differences. Shading from tree and shrub canopies

(Figure 4) will reduce the energy reaching the surface, leading to



FIGURE 5 Total N and total C concentrations at five soil depths at each microsite. VE = Vachellia erioloba; GF = Grewia flava; EL = Eragrostis

lehmanniana; and SK = Schmidtia kalahariensis.Means with standard deviation, n = 15 in each case (five replicates sampled in each season)

FIGURE 6 Soil CO2 efflux and air temperature under Vachellia erioloba
(black), Grewia flava (grey), and Eragrostis lehmanniana with Schmidtia
kalahariensis plotted together as grasses (no shading) in November

2011, March 2012, and June 2012. n = 57 in November, 106 in June,
and 119 in March
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cooling and reducing soil moisture evaporation. Wind permeability, air

movement, and convection will also be reduced in shrub canopies

compared with more open grass covered sites. There is likely to be a

vertical shifting of the wind velocity profile around taller vegetation.

Shrubs and trees typically have a lower albedo than grasses, particu-

larly in the dry season when grass foliage is dead (Hayden, 1998),

and this is likely to have an impact on regional heat balances. From a

mesoclimatic perspective, because woody plants reduce temperature

extremes experienced at the soil surface, an increase in their cover will

homogenise temperatures across the landscape compared with areas

with both grasses and woody plants. Whether or not this is favourable

to the ecosystem remains questionable.
The microclimatic (and edaphic) changes associated with higher

shrub densities may tip the competitive balance in favour of shrubs,

thus contributing to their persistence once established. Future climatic

changes affecting air temperatures and the distribution and timing of

rainfall could also affect the shrub–grass–tree balance in the Kalahari

(Intergovernmental Panel on Climate Change, 2013) although impacts

on nutrient cycling are less clear. Wang, D'Odorico, Manzoni,

Porporato, and Macko (2009) modelled the effects of a 10% reduction

in rainfall across the Kalahari transect and concluded that there would

be minimal impacts on N and C pool sizes and fluxes. The Walter

(1971) hypothesis of grass and tree root niche separation has been

used to explain coexistence and competition in mixed tree, shrub,

and grass savannahs, although this has been the source of some con-

tention in southern Africa. For example, Scholes and Archer (1997)

and Hipondoka, Aranibar, Chirara, Lihavha, and Macko (2003) consid-

ered it unlikely because of interspecies root interaction at all soil

depths, likely mediated by arbuscular mycorrhizal networks. More

recently, however, Ward, Wiegand, and Getzin (2013) provide a con-

vincing case for support in dry savannahs such as the Kalahari. Warmer

air temperatures will generate higher evaporation pressures in the soil

profile, and percolating rain water will have to penetrate deeper before

it is below evaporation depths. Currently, the most frequently occur-

ring rainfall event at the study site is <5 mm, and this infiltrates to rel-

atively shallow depths of approximately 0.1 m. Deep soil moisture

recharge was only observed after successive, large (> 20 mm) rainfall

events, and this is a much less frequent occurrence (Figure 2). A shift

to more intense rainfall events would lead to greater soil moisture

recharge accompanied by increased microbial activity, and potentially,

the ability of plant roots currently only extending into dry subsoil

zones to access new sources of moisture. Conversely, more rain days,

with fewer large events, could favour grasses (and biocrusts), deliver-

ing water to only shallow depths.
4.2 | Vegetation types and C stores and fluxes

Shrubs and trees are hotspots of biological activity, C and N cycling

(see, e.g., Tews et al., 2004). Stores and concentrations of soil C and

N (Figures 3d and 5), microbial activity, and CO2 efflux (Figure 3c) were

significantly higher under shrubs and trees compared with grasses.



FIGURE 7 δ13C of leaf litter and soil respired gases and air collected during the 6 p.m. cycle on March 2012. Keeling plots of δ13C and the
reciprocal of CO2 concentrations of soil efflux gas for Grewia flava, Vachellia erioloba, and Eragrostis lehmanniana with Schmidtia kalahariensis
(plotted together as grass species)
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There are numerous pathways in which the soil is enriched under veg-

etation including hydrological (stemflow and throughfall), rhizospheric

(root exudates and N‐fixation by leguminous species such as

S. mellifera), vegetation (primarily leaf litter), and animals (dung and

urine). Shrub and tree productivity is underpinned by moisture made

available by deep roots, and consequently, they generate more leaf lit-

ter, soil organic matter, and C and N than grasses (Su, Li, Liu, Xu, & Sun,

2014). Wang, D'Odorico, et al. (2009) found well‐developed islands of

fertility under plant canopies at Tshane, a site approximately 200 km to

the north of our study site. Soils under plant canopies had consistently

higher moisture and significantly larger C pools compared with open

areas. Their work concluded that over regional scales, the availability

of moisture controls nutrient cycling rates, whereas at a local scale,

vegetation patchiness is the key control.

Findings from a parallel study at the same microsites demon-

strated that vegetation cover was also related to soil microbial commu-

nity structure (Elliott et al., 2014). Of particular significance were

cyanobacteria, capable of sequestering CO2 and fixing N2 (Flores,

López‐Lozano, & Herrero, 2015). Cyanobacteria were abundant in soil

surfaces at grass sites but were present in only very low levels in soils

beneath trees and shrubs. This is likely explained by competition from

plants, including significantly reduced light levels and changes to the

temperature and moisture regime at the soil surface (Figures 2 and

3). Litter inputs from plants and animals will provide resources for het-

erotrophic microbial competitors and further constrain cyanobacterial

populations. Recovery of biocrusts may be affected by a loss of micro-

bial inoculum, particularly cyanobacteria, associated with an increase in

shrubs and trees. The protection of small refuge areas could, however,

provide natural inoculum to surrounding degraded areas, facilitating

crust regeneration when grazing pressure eases.

Higher CO2 efflux associated with soils under trees and shrubs

was most likely due to a combination of factors including greater het-

erotrophic microbial and plant root respiration, higher concentrations

of C, and more favourable conditions for microbial respiration (Tang

& Baldocchi, 2005). Soil microbial populations, respired CO2, and gas

diffusion will all be affected by changes to soil properties associated
with vegetation change. The soil surface under shrubs and trees has

a lower bulk density than beneath grasses, and this will facilitate water

and gas movement through the soil profile. Soil CO2 efflux of biotic ori-

gin is moisture limited for most of the year in the Kalahari, and in dry

soils, the sensitivity of CO2 emissions to changes in temperature is

almost zero (Figure 6). In dry soils, heterotrophic respiration will be

mainly due to fungal and, to a lesser extent, fungal associated bacteria,

due to their ability to translocate water directly or via mycorrhizal

associations from host plant sources. The approximately 10% increase

in Q10 during moist soil conditions is likely due to enhanced bacterial

activity. The soil moisture regime is thus vital to soil microbial activity,

decomposition processes, respiration, and soil CO2 efflux (see also

Wang, D'Odorico, et al., 2009). There are complex temporal variations

in soil moisture profiles, associated with rainfall, infiltration, and evap-

orative pressure (Figure 2), all of which will be affected by vegetation.

Across the continent, land use changes, particularly conversion of nat-

ural land to agriculture and agricultural intensification, have been

identified as accelerating CO2 efflux from African soils (Kim et al.,

2016). Our results demonstrate that shrub encroachment is another

driver that will lead to significantly greater CO2 efflux from dryland

sand soils.

Whether or not the increased CO2 efflux from soil beneath trees

and shrubs represents a long‐term decline in the soil, C store depends

on the provenance of the C. The majority is likely to be associated with

autotrophic (root) respiration and does not necessarily mean a net loss

of soil C to the atmosphere. CO2 efflux will also depend on the nature

of the soil organic C which will reflect the form of the litter inputs from

grasses, trees, and shrubs, all of which have unique C:N and 12C:13C

ratios. The distinctive δ13C signatures of CO2 efflux from soils under

grasses, shrubs, and trees demonstrated the different C fractionation

processes and C origins (Thompson, Zaady, Huancheng, Wilson, &

Martens, 2006; Figure 7). The high standard deviation associated with

the mean δ13C of gas from soil underneath G. flava suggests that there

are two distinct contributory sources with unique isotopic signatures.

The y intercept of the grass Keeling plot is clear and suggests a typical

C source that has been fractionated by a C4 photosynthetic pathway.
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Vegetation changes will alter the type of organic compounds stored in

the soil and the ease with which they are respired and ultimately their

residence times. Further work is needed to determine the implications

of these differences for the soil C store.
4.3 | Challenges to sustainable pastoral management
in the Kalahari

Findings from our biophysical measurements have important implica-

tions for the management of grazing systems in the Kalahari. Our study

shows that relationships between grazing management and C storage

are not simple in the Kalahari rangelands, where there are complex

links and feedbacks between vegetation, soils, and microclimate. From

a pastoral perspective, shrub encroached rangelands are frequently

classified as degraded (van Rooyen, 1998) because of the reduction

of palatable grasses, the activation of dune crests, and the develop-

ment of shrub thickets. However, it is too simplistic to view shrub

encroachment as entirely negative (Eldridge & Soliveres, 2014)

because it also forms new habitats for a variety of species (Smit &

Swart, 1994), enriches the C and N of soils, provides a more favourable

microclimate, and encourages a greater soil microbial diversity across

the landscape. The challenge for sustainable grazing in the Kalahari is

to adopt management strategies that avoid driving significant longer

term shifts in vegetation structure but that also accommodate a degree

of vegetation change. Nevertheless, an ever‐increasing number of

livestock on a decreasing amount of communal grazing land resulting

in widespread, dense thickets of shrubs is not advisable, particularly

when it could compromise other rangeland uses (e.g., collection of

medicinal herbs or thatching grasses [Sallu, Twyman, & Stringer, 2010]).

Labour intensive intervention programmes involving removal of

shrubs have been recommended (Reed et al., 2015). However, clear-

ance of encroaching shrubs would result in a significant loss of soil

nutrients from an already nutrient poor system and more extreme air

temperatures, and selective thinning of dense thickets might be a more

appropriate intervention (Hagos & Smit, 2005). Strategies that prevent

land falling into the later stages of grazing‐induced degradation will

have numerous benefits for ecosystem services as natural recovery

from shrub‐encroached, or bare dune states are unlikely without sig-

nificant intervention. Consequently, management practices that pre-

vent shrub encroachment from occurring in the first place, such as

through destocking in times of drought and manual bush removal or

stem burning, will be more cost‐effective over the long term.
5 | CONCLUSION

This study clearly demonstrates that there were significant differences

in soil C, N, CO2 efflux, and microclimate beneath the canopies of

trees, shrubs, and grasses at a rangeland site in the Kalahari. The soil

surface beneath shrubs and trees was cooler during the summer day-

time, warmer during winter nights, and experienced less intense solar

radiation than grass sites. Soils beneath trees and shrubs contain

greater total C and N and contribute to greater soil microbial diversity

in the landscape. Consequently, microbial activity was also higher

resulting in more rapid nutrient cycling. Although associated with a loss
of palatable grasses, an increase in shrubs will also be associated with

higher soil C stores and less extreme ground air temperatures. This has

important implications for grazing land management which our find-

ings show should not seek to remove low density shrub thickets but

rather seek to exploit the wider benefits from a mosaic of dryland veg-

etation types.
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