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Object classification is a vital part of any video analytics sys-
temwhich could aid in complex applications such as object
monitoring and management. Traditional video analytics
systems work on shallow networks and are unable to har-
ness the power of distributed processing for training and
inference. We propose a cloud-based video analytics system
based on an optimally tuned convolutional neural network
to classify objects from video streams. The tuning of con-
volutional neural network is empowered by in-memory dis-
tributed computing. The object classification is performed
by comparing the target object with the pre-stored trained
patterns, generating a set of matching scores. The match-
ing scores greater than an empirically determined threshold
reveal the classification of the target object. The proposed
system proved to be robust to classification errors with an
accuracy and precision of 97% and 96% respectively and can
be used as a general-purpose video analytics system.
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1 | INTRODUCTION

Object classification is an important part of any video analytics system. It has its applications in police, airports, hospitals
and a number of other organizations. It helps to classify objects bymatching the provided samplewith the already stored
patterns in a database. Traditional video analytics systems performing object classification uses shallow networks. In
contrast, we propose a cloud-based system that learns features automatically from pixels for the classification task. It
uses a convolutional neural network for classification of objects. The proposed system employs detection and extraction
phases to detect and extract desired objects from decoded video frames.

We have used the concept of adaptive frame sampling during the decoding and detection phase. In the adaptive
frame sampling, only those video frames are retainedwhich contained the objects in them. All the video frames which
do not possess anything are discarded. In a video stream, the consecutive video frames are more likely to contain
the same object with the same pose and lightning conditions. Due to constraints onmotion, no change can occur in
such a short interval of time. For consecutive video frames we took 5 frames out of 25 per second as the fps is set
to 25. Sowe have a frame sampling rate of 5. The frame sampling helps in discarding redundant frames and leads to
less data transfer to the cloud, which in turn reduces the training time.

The normalization is performed in order to change the dynamic range of pixel intensity values. The objective is
to achieve consistency in the dynamic range of video frames for the training of convolutional neural network. We
have normalized the values of the video frames to range [0, 1]. The dynamic range of video frames to [0, 1] is better
than [0,255] for the training of convolutional neural network because latter can cause numerical issues during the
learning of first layer weights in CNNs [10]. Also, we have performed the training by using gradient descent and
used the same learning rate across all weights, so the normalization helped to have the similar distribution across
the network. The normalization does not had any negative effects on the extracted objects as the extracted objects
do not possess extreme values and can be fully represented by the pixels in the constrained range of [0, 1].

Weharnessed the power of an in-memory cloud for parallel model training. The trained parameters from each
partial model on each node are averaged using parameter averaging. This procedure reduces the overall training
time which would have been very high in case of training the model as a whole. The trained classifier from cloud is
saved locally and is further used to perform object classification.

A sample of the target object which is to be classified in the video streams is passed through the trained classifier.
The trained classifier returns the probabilities or matching scores of the possible labels for the object. Only the
probabilities of the possible labels are returned but not the labels themselves. The labels of all the objects present in
all the video streamswere pre-stored in the database beforehand. The object with the highest probability (above an
empirically determined threshold) indicates the classification of the object. The probabilities closer to 1 depict a closer
match of the object and the probabilities close to 0 depict the unavailability of the object in the video streams.

The contributions of this paper are the following: Firstly, a system to classify objects in video streams is presented.
Secondly, we perform parallel model training on an in-memory distributed cluster. Thirdly, we propose an optimally
tuned convolutional neural networkmodel that best suits for a general purpose video analytics system. This paper is an
extension of our work published in [31].

The remaining sections are organized as: Section II reviews the related work. Section III presents the proposed
approach. Section IV presents the architecture and implementation details. Experimental setup and results are
described in Sections V and VI respectively. Section VII concludes the paper.
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2 | RELATED WORK
Video analytics is an active area of research from the recent past. Researchers have exploited the use of color and
texture to performobject classification. [20] proposed an ensemble of different approaches and combined themon color
spaces. They extracted both the color and texture features from the images andmade a comparison of them on the basis
of distancemeasures. Other studies [12] [6] [34] [17] also exploited the use of color features but all these approaches
built upon the color and texture properties fail in the case of strong illumination conditions. Some approaches [16]made
the use of local features and generated a set of key-points to produce the signature of target object. But the accuracy of
these approaches is highly dependent on the performance of key-point detector.

A number of studies [27] [30] [29] [9] worked on multi-modal features. They used hidden markov models [8],
guassian density functions [22] and local pattern features [2] [32] in their system. [5] used a probabilistic fusion scheme
to fuse the features from different modalities and then performed the classification. [7] proposed a rank-level fusion
approach to fuse the features from different modalities. Then amajority voting rule was applied to perform decision.
However, all these approaches need to have a good compromise between computational cost and performance as the
use of multi-modal features generate large feature vectors.

The deep learning based approaches can overcome the weaknesses of hand crafted features as they have the
ability to learn features automatically from the input data. Deep learning based algorithms such as convolutional neural
networks can learn features directly from the pixels of images or video frames. Convolutional neural network performed
quite well recently. Several approaches [11][23] employed convolutional neural networks to perform large scale object
classification. Similarly [13] used convolutional neural network to perform age and gender classification.

Few recent studies havemade the use of deep learning based approaches for video analytics. [14] proposed a filter
pairing neural network. They jointly optimized all the components of the system to handle geometric and photometric
transforms and achieved good results on their self-generated dataset. Similarly [33] proposed a siamese deep neural
network to learn a similarity metric from pixels in a unified framework.In another study [3], a deep convolutional
architecture was proposed to simultaneously learn features and corresponding similarity metric. However, they input a
pair of images and tried to find a similarity value to indicate whether the two images belong to same object or not. They
performedmore of a verification task than classification of objects.

Most of the existing video analytics systems lack distributed processing in them. Due to this reason, these systems
train on small datasets and severely suffers from accuracy and performance degradations. We propose an optimally
tuned convolutional neural network based video analytics system in this work. The system is empowered by an in-
memory distributed training mechanism. The proposed system can be used as a general purpose video analytics
system.

3 | VIDEO ANALYTICS APPROACH
In this section, we present the approach behind the proposed video analytics system. Themathematical modeling of
the systemhelps to tune the hyper-parameters of the systemby observing the effects of different hyper-parameter
values on the overall performance of the system. Figure 1 shows the approach of our proposed video analytics system.

The proposed system first decodes the input video stream. The decoded video frames dataset “X" can be repre-
sented as;

“Decoded F r ames dat aset X = x1, x2, . . . , xn " (1)
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F IGURE 1 Architecture of the Proposed System

Here, “x1, x2, . . . xn " are frames in the dataset.
The decoded frames then go through the detection phase which associates a bounding box around the area of

detection. A labeled frame in our system is represented by (x; c) where ′x ′ represents the frame and ‘c′ represents
the ground truth. The associated bounding box is represented by;

R (x0, y0 xn , yn ) (2)

Adaptive frame sampling is used during the decoding and detection steps where only those video frames are retained
which contain objects in them. All the video frames which do not possess any object are discarded. In the video stream,
the consecutive video frames aremore likely to contain the same object with the same pose and lightning conditions.
Due to constraints onmotion, no change can occur in such a short interval of time. The frame filtering and sampling
helps in discarding redundant frames and leads to reduced data for transmission to the cloud data center, which in
turn reduces the training time. For consecutive video frames we select only 5 frames per second. The total number
of frames generated per second is 25 as the frame per second rate is set to 25. So we have a frame sampling rate of
5 in the proposed system.

The extracted objects are scaled at 150*150 pixels. A normalization having a range of [0,1] instead of [0,255] is
also performed as the latter can cause numerical issues during the learning of first layer weights in CNNs.

Figure 2 depicts the procedure of training the deep learning model. All the variables are first initialized and
the datasets for training the model are loaded from the storage. We have defined a record reader which iterates
over the records. The normalizer is then initialized to normalize the dataset. After determining the labels for the
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extracted objects from the video frames, the deep neural network is built. All the layers of the deep network are
defined and initializedwith their respective parameters.

There are two convolutional layers in the network. The first convolutional layer has 50 kernels in it with a di-
mension and stride of 150 x 150 x 1 and 1 x 1 respectively. Stride controls how depth columns around the spatial di-
mensions are assigned. The next layer has 100kernles in itwith a dimension and stride of 5 x5 and1x1 respectively.
These layers constitute nonZeroBias. Each layer constitutes ’RMSPROP’ updater and ’relu’ as an activation function.
Thekernel size of both the convolutional layers is [5,5]. There are twomaxpooling layerswhich are followedbyeach
convolutional layer in the network. There is one output layer which is followed by one dense layer. The kernels and
neurons of the subsequent layers has a connection with the previous layers. A momentum of 0.9 is selected. The
dense and output layers have a layer size of 500 and 34 respectively. Each layer constitutes ’RMSPROP’ updater.
The value of learning rate is selected to be 0.0001. It has been selected after a number of experiments.

The layers of the CNN are represented as;

Convk , l = g (xk , l ∗Wk , l + Bk , l ) (3)

Subk , l = g (↓ xk , l ∗wk , l + bk , l ) (4)

Table 1 depicts the basic configuration parameters of convolutional layers. The activation function is represented
as;

h = max (0, a)wher ea =Wx + b (5)

The Local Response Normalization is used for generalization. The Local Response Normalization simulates the
behavior of actual neurons and generates a competition amongst neuron outputs. The pooling layer performs sam-



6 MUHAMMADUSMAN YASEEN ET AL.
TABLE 1 Layers Configuration

Layer Info. Convolutional 1 Convolutional 2
Layer Size 50 100
Kernel Size [5,5] [5,5]
Updater RMSPROP RMSPROP
Weight Init. XAVIER XAVIER
Stride [1,1] [1,1]
Activation ReLU ReLU

ple based discretization or downsampling of an input representation (feature maps from convolutional layer in our
case). It reduces the dimensionality of the features. L2 regularization is used to avoid over-fitting. L2 regulariza-
tion penalizes the squared magnitude of parameters. It penalizes peaky weight vectors heavily and prefers diffuse
weight vectors. Training themodel on large amount of data onmultiple nodes of a cluster also helped to prevent the
problem of under-fitting. L2 regularization adds

λ2
∑
i

θ2i (6)

This is added for every weight in the network directly in the objective. In this equation λ represents the strength of the
regularization.

The bias andweight deltas which are updated in backpropagation are given as;

4Wt , k = LR
F∑
i=1

(xi ∗ Dhi ) +m4W(t−1,k ) (7)

4Bt , k = LR
F∑
i=1

Dhi +m4B(t−1,k ) (8)

These weight and bias deltas are used to have a better estimate of the gradient during training.
The loss function which we try tominimize during training is represented as;

L(x ) = LR
∑

xi −>X

∑
xi −>Ti

l (i , xiT ) (9)

The loss function is themeasure of the difference between the actual outcome and the prediction of the network.
The stochastic gradient descent which reduces the loss function is represented as;

Wt+1 =Wt − αδL(θt ) (10)

Themomentum term is added as;
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Vt+1 = ρvt − αδL(θt ) (11)

Wt+1 =Wt +Vt+1 (12)

The softmax layer is represented as;

T R (i , xiT ) = M (e i , f (xiT )) (13)

The trained classifier is then used to perform object classification for our video analytics system as shown in
Figure 3. The target object which is to be classified is passed through the trained network. The target object passes
through the same normalization procedure before passing through the deep network. The trained model then gen-
erates a set of probabilities against the target object. The highest probability determines the label of the target
object. The number of object classes to be determined by the system are represented as;

Y (i ) = 1, 2, . . .K (14)

where 1,2, . . .K represents the total number of possible classes. Our hypothesis function for the classification task is
given by;

hθ (x ) = 1/(1 + exp(−θT x )) (15)

where θ represents the trainedmodel parameters that minimize the cost function. The hypothesis function estimates
the probability P(y = k | x) for each value of K = 1, 2, . . .K . The system then estimates the probability of the class label
and produces an output vector with ’K’ estimated probabilities. The hypothesis function takes the form;

hθ (x ) =



P (y = 1 |x ; θ)
P (y = 2 |x ; θ)
· · ·

P (y = K |x ; θ)

(16)

4 | SYSTEM IMPLEMENTATION
A distributed cloud infrastructure [19] [21] has been used to train the proposed video analytics system. Distributed
infrastructures have been used actively in the past [26] [25] [15] to improve the performance of a compute intensive
system. The proposed system is also compute intensive and necessitates parallel model training. The training of the
model is parallelized by adopting Apache Spark [24] computing framework. Each node in the spark cluster trains a
partial model. Iterative parameter averaging is then used to combine the partial models in a central model.

Themaster node of the spark cluster loads initial configurations. Each node in the cluster performs partial model
training on subsets of data. Theworkers train partialmodels and their results are averaged through parameter averaging.
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Algorithm 1Distributed Training
Input:

Input Dataset X = x1, x2, . . . , xn , 150 x 150 image size
Network Configurations no. of workers, averaging frequency, minibatchs etc.
Initial Model Parameters momentum/rmsprop/adagrad etc.
Data Split R

Output:
result: Trained Network atMaster TR(x)

whileData Splits r: 1→R do
while Each Split of Training Data x: 1→ X do
Distribute network configurations andmodel parameters to workers
Train eachmodel on the worker on its own split
Calculate weight and bias deltas on eachworker

4Wt , k = LR
∑F
i=1(xi ∗ D

h
i
) +m4W(t−1,k )

4Bt , k = LR
∑F
i=1 D

h
i
+m4B(t−1,k )

Compute error yx − a
Back propagate and update network weights on eachworker

Wt+1 =Wt − αδL(θt )
Average the results from eachworker and return the results back tomaster
end

end

In parameter averaging, the network parameters are first initialized depending upon the configuration of themodel.
The current parameters (a duplicate copy) is transferred to each worker node in the cluster. Each worker node then
trains a partial model on a subset of data assigned to it. At themaster node, the global parameters are set to average the
parameters provided by eachworker node as explained in Algorithm 1. This process continues for the whole training
dataset.

The subsets of data are then transformed into mini-batches. These mini-batches are serialized with the help of
kryo serialization library. The Kryo serialization is muchmore efficient than java’s own serialization library [18]. The
parameter averaging rate is an important parameter to be controlled. Amisconfiguration of this parameter can lead
to an overhead in initialization. The overhead can also be caused in network communication. Themisconfiguration of
parameter averaging rate can also degrade performance as the parameters will deviate extensively. We have selected a
frequency of 16mini-batches as it provided the optimal performance in our case.

The data repartitioning strategy is another important parameter. If it is configured properly, it helps to utilize all
cluster resources efficiently. We have selected this repartitioning factor on the basis of experimentations to ensure
balanced partitions. The iterativemap-reduce framework has been used in the proposed system. It executesmultiple
passes of map-reduce as opposed to simplemap-reduce. As the convolutional neural network based systems are are
highly iterative so the single pass of map-reduce does not performs quite well. Therefore, iterative map-reduce is a
good candidate for such systems.

The configuration of locality in spark is performed according to the computational demands of the algorithm. As
the deep learning algorithmwhich is being executed on spark has high computation demands, it poses high computation
per input mini-batch. We have executed one task on each executor; therefore it is much appropriate to transfer the data
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Algorithm 2 Training of Convolutional Neural Network
Input:

Input Dataset x1, x2, . . . , xn , 192 x 168 image size
Output Target Label T 1-in-k vectors y1, y2, . . . , yt
Number of back-propagation epochs R
Number of convolutionmasks J
Activation function of convolution g(.)

Output:
result: Trained Network TR(x)

while epoch r: 1→R do
while Training image number x: 1→ X do
Compute J hidden activationmatrices z1, z2, ..., z j g(xk , l +wk , l + Bk , l )
Downsamplematrices z1, z2, ..., z j by a factor of 2 g(↓2 xk , l +wk , l + bk , l )
Calculate weight and bias deltas

4Wt , k = LR
∑F
i=1(xi ∗ D

h
i
) +m4W(t−1,k )

4Bt , k = LR
∑F
i=1 D

h
i
+m4B(t−1,k )

Calculate softmax activation vector ’a’ l (i , xiT ) = M (e i , f (xiT ))
Compute error yx − a
Back propagate and update network weights Wt+1 =Wt − αδL(θt )
end

end

Algorithm 3Object Classification
Input:

Input Target Object x, 192 x 168 size
Output Target Label T 1-in-k vectors y1, y2, . . . , yt
Number of Trained Patterns R
Similarity Function f(.)

Output:
result: Classification Labels fco ⇐ F ul l yConnect ed

r esul t ⇐ Sof tmax (fco )
while Training vector x: 1→R do

Load the trained classifier TR(x)
Apply pre-processing steps on target object’s sample
Pass the sample through the trained network
Calculate softmax activation vector ’a’ l (i , xiT ) = M (e i , f (xiT ))
Compute similarity index yx − a
Generate the set of possible probabilities i

end
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to a free executor instantly as an executor gets free. It will not be a good setting to wait for a free executor that has local
access to the data (default configuration of spark). Transferring the data to a free executor which does not have a local
access to data will require the data to be copied across the network, but it allowsmaximum cluster utilization for our
proposed algorithm.

The implementation phase initiates by decoding the video streams into video frames. An open-source library named
as Nd4j [1] is used to store the extracted objects from individual frames. A dataset iterator is createdwhich iterates
over the dataset objects present in thememory. The dataset objects contain features and labels for the video frames.
The training process for CNN is explained in Algorithm 2. A value of 0.0001 is selected for the learning rate on the basis
of experimentation. The higher values caused divergence of the networkmodel away from the error minimum. On the
other hand, a small value caused slow convergence on an error minimum.

A sample of the target object which is to be classified in the video streams is passed through the trained classifier
after training. The trained classifier returns the probabilities or matching scores of the possible labels for the object as
explained in Algorithm 3 . The object with the highest probability (above an empirically determined threshold) indicates
the classification of the object.

5 | EXPERIMENTAL SETUP

We present the experimental setup used to evaluate the proposed system in this section. A private cloud has been
used to configure in-memory computing based spark cluster. Eight nodes in the cloud are configured to run spark
framework. A ubuntu version of 15.04 is installed on each cloud node. Each node has a storage of 100GB, 4vCPUs and
16GBmemory.

Most of the video dataset used in the proposed system is self generated. The video streams recorded for the
experiments are relatively simple (capturedunder controlled environmental conditionswith faces posing towards a
camera) as shown in Figure 5. The extracted objects from the video frames are labeled manually. A directory struc-
ture is maintained which contains the frames from the same subject in their respective directories. A number of
video streams are captured containing different subjects comprising of almost 100 GB in size. All the subjects ap-
pearing in the video streams aremostly facing towards the video camera. Some video streams also contain the rear,
side and front poses of the subjects. However, the subjects are not occluded as occlusion has not been considered
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F IGURE 5 Example Faces from
Self-generated Dataset

F IGURE 6 Example Faces from
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F IGURE 7 Example Faces from
BioIDDataset

in this work. The self-generated video dataset also does not posses illumination or other challenges. The duration
of each of the video stream is almost 120 seconds.

The video streams are decoded to produce video frames containing side pose, front pose and rear pose of per-
sons. The total number of decoded video frames is directly proportional to the duration of video stream being an-
alyzed. For a video stream of 120 seconds length, 3000 video frames are generated. All of these video frames are
stored as .PNG files. Some publicly available datasets such as BioID [4] and Yale [28] have also been made part of
the dataset. The Yale face database has been created to mimic the real world situations. Exceptional importance
has been given to the illumination effects which occurs mostly in real life scenarios. The database consists of a va-
riety of human faces with diverse facial expressions, poses and illumination effects as shown in Figure 6. There are
34 subjects, each with 60 samples for training and testing. The images are gray scaled and each subject in each
image demonstrates variations in illumination conditions (left-right, center-right, rightright) and facial expressions
(normal, sad, happy, sleepy).

The BioID Face Database on the other hand also has a diversity of face sizes, background conditions and illu-
mination effects. The database contains gray level images captured under varying conditions. For testing purposes,
the images are artificially blurred by using a Gaussian blur mask with various sigma values (0, 0.25 · · · ). Figure 7
shows some example images from the BioID Face Database.

The network is built upon a total of five layers. There are two convolutional layers in the network with 50 and 100
kernels respectively and constitutes nonZeroBias as shown in Figure 4 . Each layer constitutes ’RMSPROP’ updater and
’relu’ as an activation function. The kernel size of both the convolutional layers is [5,5]. There are twomax pooling layers
which are followed by each convolutional layer in the network. There is one output layer which is followed by one dense
layer. The ReLU non-linearity layer follows all the layers and amomentum of 0.9 is selected.
The dense and output layers have a layer size of 500 and 34 respectively. Each layer constitutes ’RMSPROP’ updater.
The dense layer has ’relu’ as an activation function and the output layer has softmax function for classification. The
kernels of the following layers are connected to the kernels of the preceding layers. All the neurons in the dense layer
are connected to the neurons of the preceding layer. More detailed specifications of these layers are listed in Table 2.
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TABLE 2 Configuration Parameters

Spark Configuration Model Configuration
Parameters Values Parameters Values
spark.worker.cores 1 Number of Layers 5
spark.worker.instances 1 nonZeroBias 1
spark.eventLog.enabled TRUE DropOut 0.5
spark.scheduler.mode FIFO OptimizationAlgo SGD
spark.serializer KRYO Activation RELU
spark.rpc.message.maxSize 250 Regularization L2
spark.locality.wait 0 Momentum 0.9
Averaging Frequency 1 Seed 42
Batchsize perWorker 12 Learning Rate 0.0001
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F IGURE 8 Model Scores

6 | RESULTS AND DISCUSSION
In this section, we first describe the performance of the system during training and visualize the performance graphs
by tuning the selected parameters. The trained classifier is then evaluated and its performance is measured by the
confusionmatrix. It is then used in the proposed video analytics system. The scalability of the system is discussed at the
end of this section.

Classifier Training Parameters:

The loss function value i.e. L(x ) = LR
∑
xi −>X

∑
xi −>Ti l (i , xiT ) at various iterations of the current minibatch is

shown in Figure 8 . It can be observed in the figure that loss narrows down after each iteration over time. It depicts
that the learning rate is set properly. The values of the learning rate are varied to 1e-2, 1e-4 and 1e-6. It was observed
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that 1e-2 provided the best learning performance. A decreasing trend in the graph is observed which indicates that the
training data is normalized properly. L2 normalization schemewith stochastic gradient descentWt+1 =Wt − αδL(θt ) is
themost appropriate approach for our network training.

Figure 9 depicts ratio of meanmagnitudes of the parameters which is suggested to be between -3.0 and -4.0 on a
log10 chart. If it is between the suggested range, it indicates that the learning rate and other network hyper-parameters
are initialized properly. A divergence of ratio from the suggested range indicates unstable parameter initialization and
selection.

Figure 10 shows the layer activation graphs for all weight vectors of each layer. It is observed that the graph tend to
stabilize over each iteration and does not suffers from the problem of exploding activations. The stability of the graph
after some iterations also shows that proper regularization scheme i.e. λ2 ∑i θ2i is adopted. The value of λ is varied from
5 * 1e-2 to 5 * 1e-8 but the value of 5 * 1e-4 provided the best results.

A normal gaussian distribution is observed in the histograms of layer parameters. An approximate gaussian distri-
bution in the histogram of weights for different layers shows that the weights have been initialized correctly, updating
in each iteration and there is sufficient regularization in the network. An approximate gaussian distribution is also
observed in the histogram of layer updates. These updates are the gradients which are generated after applying the
regularization, momentum and learning rate. The momentum is given byVt+1 = ρvt − αδL(θt ) and the value of ρ is
varied to 0.6, 0.8 and 0.9 for the generated results. The value is finally set to 0.9 for network training. Similar to the
layer parameters histogram, an approximate gaussian distribution in the layer updates histogram represents that the
network is not prone to exploding gradient problem. This is mainly because of the usage of gradient normalizationwhich
we have added in the network.

Performance Characterization:

In order to evaluate the performance of the trained classifier on the proposed parameters, we have used two test
datasets comprising of 38 individuals in total. Table 3 shows the confusionmatrix depicting the overall performance of
the proposed system. The confusionmatrix measures the performance of the system by counting the number of true
positives, false positive, true negatives and false negatives. We also calculated various evaluations of the proposed
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system by using four counts such as accuracy, recall, precision and F1 score.
In the first experiment, the test dataset consists of video frames from four different individuals. These video frames

contain individuals with varying lighting effects and poses. The four different individuals are represented by four
different numeric values in the confusionmatrix. It can be seem from thematrix that the classifier performs quite well
in distinguishing between different individuals. The individuals with label 0 and label 1 have been classified correctly
by 19968 and 19456 times respectively. Similarly, the individuals with label 2 and label 3 are classified correctly by
11264 and 35680 times. The second experiment contains 34 different individuals with varying lighting effects and
poses. All the individuals are again represented by 34 different numeric values. The confusionmatrix depicted that the
classifier performed quite well in this experiment in distinguishing between different individuals. The system generated
an overall accuracy of 0.9788 percent.

Some of the video frames are alsomisclassified by the system as depicted by the false positives. The video frames
labeled as label 1 are classified as label 3 for 128 times by the classifier. Also, 320 labels which were labeled as label
3 are classified by the classifier as label 0. Label 3 is also classified 64 times as label 1 by the classifier. Also, for the
second experiment some of the labels aremiss-classified by the classifier. We believe that these frames aremisclassified
because of the high variance in the pose of the subject. Various lightning conditions also contributed to the false
positives of the system. Since the classifier was trained on the dataset which was captured under controlled lightning
conditions, therefore various challenges such as blur and illumination effects are not coped by the system. Tackling
these challenges is one of the future works of our system.

The precision of the proposed system,which is the positive prediction value, is recorded to be 0.9709. The proposed
system proved to be precise as well as accurate as depicted in the confusion matrix. The recall and F1 score of the
system are recorded to be 0.9738 and 0.9783 respectively. Recall can also be referred to as the sensitivity of the system
while F1 depicts the overall performance of the systemwith 0.0 to be theworst score and 1.0 being the best score of the
system. Precision and F1 scores for the system are calculated as;

F 1 = 2T P /(2T P + F P + F N ) ; Recal l = T P /(T P + F N ) (17)

Object Classification:
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TABLE 3 ConfusionMatrix

Classification Scores
Accuracy 0.9788
Precision 0.9709
Recall 0.9738
F1 Score 0.9783

{0=[0 x 19968], 1=[1 x 19456, 2 x 512], 2=[0 x 1280, 1 x 256, 2 x 11264 ], 3=[3 x 35680]}
{0=0, 1=512, 2=1536, 3=0}
{0=1280, 1=256, 2=512, 3=0}
{0=19968, 1=19456, 2=11264, 3=35680}
{0=67168, 1=68192, 2=75104, 3=52736}
{0=[0 x 19, 18], 1=[1 x 20], 2=[16, 2 x 18, 26], 3=[3 x 19, 31], 4=[4 x 20], 5=[5 x 19, 13], 6=[6 x 20], 7=[7 x 20], 8=[8 x 19, 30],
9=[9 x 20], 10=[16, 10 x 19], 11=[11 x 19, 27], 12=[12 x 20], 13=[26, 13 x 19], 14=[14 x 20], 15=[15 x 20], 16=[16 x 20],
17=[17 x 20], 18=[18 x 20], 19=[19 x 20], 20=[20 x 20], 21=[20, 21 x 19], 22=[22 x 20], 23=[23 x 20], 24=[24 x 20],
25=[25 x 20], 26=[26 x 20], 27=[27 x 20], 28=[28 x 20], 29=[24, 29 x 19], 30=[30 x 20], 31=[12 x 2, 31 x 18],
32=[32 x 20], 33=[33 x 19, 7]}

After training the classifier in the cloud, we have downloaded and saved it locally. It is then further used to perform
classification of objects from the video streams. Themarked or target object which is to be identified from the video
streams is passed through the trained classifier after performing all the preprocessing steps on it to make it appropriate
for the classifier. The classifier then returns the probabilities of the possible labels for the target object as shown in
figure 11 . High probabilities indicate that the target object which was being searched from the video streams is present
in that video stream. On the other hand, low probabilities against the video streams indicate the absence of that object
in the video streams.

Figure 11 shows the probabilities of some of the objects generated by the classifier. The objects which were
provided as input to the trained classifier are listed on the right hand side of the graph. We have shown the results for
10 objects in this graph. Each bar of the graph shows the probability value for each object generated by the classifier.
The probabilities approaching to 1 indicates a closer match of themarked object. On the other hand, the probabilities
approaching to 0 shows the unavailability of objects in the video stream database.

In order to track a specific object from a number of video streamswe check the generated probabilities or matching
scores against each video stream. The trained classifier generates a highmatching score against themarked object if its
training instances is present in the database. We can therefore set an empirically determined threshold on the basis
of matching score. Thematching scores greater than or equal to the threshold reveal that the object is present in the
specific video stream.

We have alsomeasured the estimated presence time of the object in the video streams and recorded its location
as well. Themeta-data about the location of the video streamwas stored in the database along with the video itself.
Once an object is searched in a video stream, its location is also recorded through the meta-data. Figure 12 shows
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F IGURE 11 Classification ofMarkedObject

the presence of the object and the trajectory inmultiple video streams. The presence of object in the video stream is
represented by ‘1’ while its absence is represented by ‘0’. It can be seen that the object remained present throughout in
video 1 and video 4. However, in remaining videos it remained there for a fraction of time.

Figure 12 also provides a visual representation about the tracking of the object as it has beenmapped on a graphical
representation. This graphical representation is actually the summary of multiple videos in which the specific object
has been detected. Each bar in the graph represents the amount of time that themarked object has spent at a specific
location while its travel movement can be observed by the line graph.

Scalability of the System:

The proposed system is executed on a spark based cloud infrastructure in order to test the scalability and perfor-
mance. Spark executesmany executors depending upon the configuration and the RDD objects are accessed by each
executor in an iteration.

The total size of decoded video frames used in the experiments varied from5GB to 100GB. The individual video
frames are small in size and iterative reduce can perform better on large data files. Due to this, the individual video
frames arebundled together byusing abatchprocess andare thenmoved to cloud for processing. The time required
to bundle the data varies with the amount of video frames being considered as shown in Figure 13. This time is
directly dependent to the size of the dataset. For a dataset of 10GB to 100GB, the time of a batch process varied
from 0.25 hours to 3.8 hours.

Wehavemeasured the time required to transfer the data to cloud data storage. The data transfer time to cloud
data storage mainly depends on the bandwidth of the network and the block size of cloud data storage. To have an
estimate of the transfer time, wemeasured the transfer time for various sizes of data and plotted in Figure 14 . It can
be observed from the figure that the transfer time varied from 0.36 to 2.18 for a dataset size of 20GB to 100GB.We
have also measured this time by changing the cloud storage block size from 128MBwhich is the default size to 256MB.
However, very little improvement has been recorded in the transfer time by varying the block size.

The training of the proposed system is performed onmultiple nodes of the cloud. To have a good estimate of the
training timewe have executedmultiple tests onmultiple sizes of datasets and plotted their average execution time in
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Figure 15 . The average execution time gives ameasure of howmuch training time on average is required to train the
proposed system on a specific size of dataset. The dataset sizes have been varied from 20GB to 100GB tomeasure the
time on various cloud nodes. It has been observed that the execution time increases by increasing the size of dataset.

The total execution time by the systemhas also been observed onmultiple nodes of the cluster by changing the
block size. The experiment was repeated by changing the block size to have an estimate that howmuch effect does
block size has on the overall execution time of the system. We have changed the block size from 128MB (which is
the default block size) to 256 MB and repeated the experiment. It can be observed from Figure 15 that the total
execution time for 100GB dataset size decreased to 6.8 hours. For 20 GB of dataset size, it took almost 1.43 hours.
However, this shows that the block size does not have amajor impact on the overall execution time of the system.

In order to test the scalability of the system and to have an estimate of the execution time taken by the system
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F IGURE 15 Analysis TimeWith Varying Dataset Sizes F IGURE 16 Analysis TimeWith Varying CloudNodes

on average on cloud infrastructure, we have executed the system and repeated the experiments by varying the
number of cloud nodes. With each experiment we have increased the number of nodes in the cluster and observed
the effects on the overall execution time of the system. The overall execution time of the systemwith an increase in
the number of nodes helped to determine the amount of time required to process the total amount of data. It also
gives an estimate that howmuch each node is contributing in the processing the total amount of data. This provides
an estimate on howmany nodes should be required to process a specific amount of data in a given amount time.

Figure 16 shows that amount of time required by multiple nodes to process the data. It can be seen from the
figure that the total amount of time required to process the data decreaseswith an addition in the number of nodes
of the system. Addition of each node in the cloud decreases the overall execution time. However, this also increases
the network communication between nodes. More nodes can be added or removed from the system in order to
further increase or decrease the overall processing time. However, it should be noted that having few nodes will in-
crease the processing cost on each node and having toomany nodes will increase the communication cost between
them.

We have also observed the effects of data locality on the performance of the overall system. Data locality can
play an important role in a deep learning based system performing video analytics. Data locality refers to the avail-
ability of image or video data required for processing on multiple nodes of the cluster. If the resilient distributed
datasets are not persistant then the replicas of the data block aremaintained depending upon the replication factor
of distributed file system. This ensures the locality of the data which is helpful for fault tolerance across multiple
operations.

We havemeasured the total time taken by the system for executionwith different values of data replication. A
good selection of this parameter can help to ensure fault tolerance in the overall execution of the system and can
improve the execution time. We have varied the replication factor to different values and observed its effects on
the overall percentage of total spawned tasks. Figure 17 shows the values of data replication on the x-axis and the
spawned tasks percentage is depicted on the y-axis. It can be observed from the figure that an increase in the value
of data replication, increases the locality of data for spawned tasks. However, setting this value to be very high can
increase thememory and disk requirements andwill also requiremore network bandwidth.
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F IGURE 17 Data Persistance

7 | CONCLUSION AND FUTURE WORK
A cloud-based video analytics system has been presented and evaluated in this paper. The system is based on con-
volutional neural networks whose parameters are optimally tuned for accurate classification of objects from video
streams. A comparison of the target object with the pre-trained patterns is made which results in the generation
of matching scores. The matching scores greater than an empirically determined threshold reveal the class of the
marked object. The system learns features from large amounts of input data by performing training in parallel on a
multi-node cluster. The proposed system proved to be robust to classification errors with an accuracy and precision of
97% and 96% respectively. Several factors contributed to achieve high accuracy such as optimal selection of learning
rate, regularization, normalization and optimization algorithms. The design of multi-layer network including number of
layers and their parameters also played amajor role in achieving high accuracy in the system. The proposed system can
be used as a general-purpose video analytics system.
In future, wewould like to improve the performance of our video analytics system by leveraging other deep learning
based models. We will extend the functionality of the system by executing it under complex challenging conditions
containing lightning and other variations. Wewould also like to deploy the proposed systemon an in-memory processing
cloud coupled with the computation power of GPUs to improve performance and training time.
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