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Abstract— Recent advances in stroke rehabilitation technology 

have been focused on developing Intelligent Rehabilitation Robots 

(IRR) that can effectively engage post-stroke patients (PSP) in 

intuitive motor training for full function recovery. Most existing 

rehabilitation robots incorporate functionalities that are passive in 

nature, constraining PSP to predetermined trajectories that often 

deviate from patients’ limb movement intentions, consequently 

hindering recovery. To resolve this issue, a robust deep-transfer 

learning driven network (DTLN) is developed to adequately 

characterize PSP’s motion intention signatures from neural 

oscillations towards achieving intuitive and active training. Thus, 

we investigated and proposed the utilization of mu-frequency 

spectrum (muFS) based CWT approach for Scalograms 

construction, which serves as inputs to the DTLN model that 

characterizes multiple classes of PSP’s motor execution signatures 

from multi-channel electroencephalography (EEG) recordings. 

Then, we evaluated the proposed method using EEG data from six 

PSP and compared the decoding results to those of related 

approaches under similar experimental settings. The proposed 

method resulted in a significant increment of 10.84 % - 13.19% 

decoding accuracy across stroke patients and better convergence in 

comparison to other methods. Additionally, the method exhibited 

distinct task separability for individual motor execution signature 

across patients. In conclusion, our method offers a consistently 

accurate decoding of motor tasks that could enable intuitively 

active robotic training in PSPs with impaired motor function.  

Keywords—: Stroke rehabilitation, Deep transfer learning, Brain-

computer Interface, Electroencephalography, Rehabilitation robots 

I. INTRODUCTION 

The human arm play essential role in facilitating the 
performance of various tasks during activity of daily living. 
Unfortunately, Post-Stroke patients (PSP) often face challenges 
in fully utilizing their arms for daily tasks due to the loss of 
motor function [1-2]. This emphasizes the crucial need for 
advanced preventive and rehabilitation technology. Basically, 

conventional physiotherapy approaches have been used to try 
to restore lost limb functionality, and in recent years this has 
been augmented with Intelligent Rehabilitation Robot (IRR) 
strategies. In particular, IRR approaches have gained wide 
acceptance within research and clinical communities for their 
efficacy and ability to provide quality rehabilitation to large 
numbers of patients at a reduced cost [3-6].  

In [7-9], techniques that facilitate intuitive robotic training 
capable of recognizing the intended limb movement of a PSP 
using non-invasive bio-signals such as electroencephalography 
(EEG) are proposed. EEG offers exceptional temporal 
resolution, facilitating direct recording of electrical potentials 
from the underlying neural brain tissues via non-invasive 
electrodes on the scalp [10]. Emerging evidence revealed that 
PSP’s frequencies of EEG oscillations offers insights into 
cortical reorganization and alterations in inter-hemispheric 
balance related to the lesioned areas [14]. Therefore, these 
frequencies are considered as potential biomarkers that could 
be leveraged to characterize PSP’s motor intentions. 

Recent advances in IRR have incorporated EEG 
oscillations and traditional machine learning (TML) 
approaches for decoding PSP’s motor intention which could  
serve as control input to the rehabilitation robot. However, the 
TML methods mostly incorporate signal processing and feature 
extraction techniques for decoding PSP’s motor intention 
toward developing IRR for adequate restoration of limb 
functions [11-12]. However, the TML models often employ 
hand-crafted features and require experts’ involvement to 
construct and characterize PSP’s motor intention [12-13]. To 
overcome the constraints of TML approaches, deep learning 
networks that can automatically learn and construct rich feature 
set from biological signals have been proposed [17-18]. 
Moreover, the training of these networks from the scratch 
requires a lot of computational resources and a substantial 
volume of training data that could hardly be obtained in the 
case of PSPs  
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Thus, leveraging benchmark Deep Transfer Learning 

Network (DTLN) trained previously on large data in similar 

domain would be a viable option. To construct the input to 

DTLN, two common techniques based on time-frequency 

representation including Short-Time Fourier Transforms and 

Continuous Wavelet Transform (CWT) have been proposed 

[19]. Moreover, Scalograms derived from CWT offer variable 

resolution and incorporate multiple scales, offering 

appropriate time and frequency information in accordance 

with the uncertainty concept proposed by Heisenberg [20-21]. 

Furthermore, constructing Scalograms based on CWT from 

requisite EEG frequency oscillation characteristics can retain 

essential motor information for adequate decoding of ME 

tasks, particularly in severely impaired PSP. Thus, this is vital 

for initiating active robotic trainings required for adequate 

rehabilitation of PSP. Additionally, studies have shown that 

event-related desynchronization in the mu (10 Hz - 14 Hz) and 

beta (16 Hz – 26 Hz) frequency spectrums of EEG signals can 

evidence motor function recovery in stroke survivors [15-16]. 

However, investigating and extracting specific motor 

execution (ME) signatures from the motor cortex region of 

PSPs based on mu frequency spectrum (muFS) and beta 

frequency spectrum (betaFS), for constructing Scalograms that 

serve as input to DTLN has rarely been considered to date.  In 

other words, investigating the use of Scalograms constructed 

from such frequency spectrums as input to DTLN for precise 

decoding of PSPs’ motor intention in the context of IRR 

constitute a research gap that needs to be addressed. 
Therefore, this study first conducted investigation into mu and 

beta frequency oscillations of EEG, and then proposed the use of 

muFS based CWT approach for Scalograms construction, which 

serves as inputs to DTLNs to characterize multiple classes of 

PSP’s ME signatures from multi-channel EEG recordings. The 

proposed method’s (muFS-CWT_Scalogram) efficacy and 

robustness was examined in comparison to the other related 

methods under different experimental scenarios using multi-class 

EEG signals of stroke patients.      

II.  METHODOLOGY 

A. Participants information 

The study recruited ten ischemic stroke patients to participate 

in the data collection experiment. Preliminary examination 

revealed that the patients have no neurological condition they 

may hinder them from participating in the motor execution (ME) 

tasks deigned for the study. The patients agreed to participate in 

the study and provided permission for the publication of the 

study’s results. The study’s experimental protocol was approved 

by the Shenzhen Institute of Advanced Technology, Chinese 

Academy of Sciences’ Institutional Review Board and the 

Shenzhen Longhua District Central Hospital.  

B. Data acquisition and pre-processing  

Utilizing the international 10–20 standard, EEG signals of 

predefined upper limb ME tasks were recorded. This was 

accomplished using a 64-channel waveguard EEG Cap that 

incorporates an eegoTM amplifier from ANT Neuro, 

Netherlands. The ground electrode was situated at AFz and 

connected to CPz for referencing. Additionally, electrodes for the 

electrooculogram were situated on both sides of the supraorbital 

ridge and outer canthi to capture horizontal and vertical eye 

motions. The sampling frequency used is 1000Hz while the 

impedance was maintained around 5-8kΩ, depending on each 

stroke patient’s tolerance level. The experimental procedure was 

well communicated to the patients, and they were directed to sit 

in a comfortable chair and engage in the ME tasks using their 

paretic limb. The tasks were guided by a video presented on a 

computer before them. As illustrated in Fig. 1, this study focused 

on four pivotal ME tasks, including two grasping movements 

(KG: key-grip and PG: power-grip) as well as two wrist 

movements (WE: wrist-extension and WF: wrist-flexion) which 

are commonly used in a wide range of daily activities.  

Figure 1. Representation of the experimental setting for EEG signal acquision 

for four classes of ME tasks performed by the stroke patients. 
 

The patients were presented with a video sequence of ten 

images of a given active ME task and ten images of non-active 

task (rest), resulting in a total of 20 for each ME. Moreover, 

each active-task in the video was shown for a duration of 5s, 

followed by a 5s rest-period to prevent mental fatigue. All 

participants underwent two experimental sessions for each of 

the specified ME task. Due to the patients’ level of motor 

impairment, only six out of the ten stroke patients completed 

the four ME tasks, and we proceeded with the analysis using 

their data. The data preprocessing and analysis was done using 

MATLAB and EEGLAB. The signal was decomposed using 

Independent Component Analysis and Artifact Subspace 

Reconstruction (ASR) technique [22] was used for artifacts 

elimination. Afterward, the active segment of the signals was 

epoched from -1s to 5s. The muFS and betaFS were extracted 

from eighteen channels located at the motor cortex region 

(denoted as ROI: region of interest) of the brain were explored 

for characterizing ME tasks performed by stroke patients. 
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C. Construction of CWT-Scalograms based on muFS and betaFS  

To enhance the representation of the Scalogram inputs, we 

individually extracted ME information from the ROI based on 

muFS and betaFS.  The information formed a feature vector (fv) 

that served as inputs to the CWT for constructing Scalograms 

to train and validate the DTLN. The fv is transformed through 

the application of CWT concept as follows.  

               (1)  

In this context,  represents the transformation, � 

denotes the translation time, and the scaling is denoted by b. 

Additionally, � represents the selected mother-wavelet while 

fv(�) corresponds to the input value at a given time (t). A 

decrease in the wavelet scale (b less than 1) leads to enhanced 

spectral resolution, whereas an increase in the wavelet scale (b 

greater than 1) yields improved temporal-resolution. The 

former case highlights transient-events, while the later 

emphasizes steady-state frequencies.  
 

                           (2) 
 

 
Where  is the wavelet’s energy while � is the 

mother-wavelet. This yields the dual-properties associated to 

the wavelet as outlined in eqn. (1): finite energy as expressed 

in eqn. (2) and admissibility illustrated in eqn. (3).  
 

                            (4) 
 

A graph representing the correlation between transformed 

signals and scaled-wavelets/time is used to construct the 

Scalograms via eqn. (4). The Scalograms then serve as inputs 

to the DTLN for characterizing ME tasks of patients.  

B. Evaluation of the experimental results 

  The effectiveness of the proposed method was assessed by 

comparing it with existing approaches using accuracy and 

robustness as metrics for characterizing ME tasks. In generating 

the input Scalogram images, we considered the raw EEG and 

those preprocessed through ASR technique. For the preprocessed 

and raw EEG signals, we applied the CWT technique on the 

muFS component to construct muFS-CWTasr and muFS-CWTraw 

based Scalograms, respectively. Similarly, we generated the 

requisite Scalograms based on betaFS for both the preprocessed 

and raw EEG signals, yielding betaFS-CWTasr and betaFS-

CWTraw. The DTLNs decoded the ME tasks of PSPs based on 

the four variants of the CWT-Scalograms mentioned. The 

performance of these variants was evaluated using the 

classification accuracy (CA) metric as described in equation (5). 
 

 
 

The means of classification accuracy (CA) for our method were 

subjected to comparison with those of alternative approaches 

through a paired t-test for statistical analysis, where the level of 

significance is set at p < 0.05. Moreover, the GoogleNet pre-

trained DTLN with 144 layers was utilized in this study. The 

RGB versions of the obtained Scalograms with dimensions 224 

by 224 by 3 were used as input to the network. The initial layers 

focus on recognizing features deemed as low level and the 

subsequent layers delve deeper to construct high level features, to 

ensure accurate characterization of the ME tasks. We introduced a 

dropout-layer to randomly reset the input to 0 to handle 

overfitting/related issue. The DTLN built using 70% and 30% of 

the data was used to test the trained model. Employed training 

parameters are Batch Size:20; Epoch:80; Learning Rate:0.0001; 

and LossFunction: gradient descent. 
 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. The DTLN’s decoding outcomes for ME tasks 

 This section presents the obtained results after training and 

validating the DTLN based on Scalograms inputs driven by the 

proposed method (muFS-CWTasr and muFS-CWTraw) and the 

benchmarked approach (betaFS-CWTasr and betaFS-CWTraw) 

Figure 2 presents the decoding results of the proposed method 

and compared approach across stroke patients and ME tasks. 

Figure 2:  Performance of the DTLNs based on the proposed approach and 

other methods for decoding ME tasks of stroke patients (SP) across.  

 The results in Fig. 2 show that the Scalograms generated 

based on the proposed approach (muFS-CWTasr and muFS-

CWTraw) led the DTLN model to achieve higher decoding 

accuracy for all patients and ME tasks compared to other 

approaches (betaFS-CWTasr and betaFS-CWTraw), except for 

the fifth patient who could not perform all the tasks well due to 

their level of impairment. Overall, the muFS approach achieved 

the best decoding performance when Scalograms based on muFS-

CWTasr was used. This reveals that muFS may aid adequate 

learning of essential patters of EEG signals, especially when 

processed with ASR than using the raw signals. Moreover, we 

computed and analyzed the average decoding accuracy and 

standard deviation across stroke patients and ME tasks based on 

the proposed approach and related approaches as presented in 

Table 1. From Table 1, it can be observed that the proposed 

method achieved significant increment (at p < 0.05) in accuracy in 

the range of 10.84 % - 13.19% with a lower standard deviation 

across stroke patient. Thus, such lower standard deviation values 

indicate the reliability of the muFS approach since there is no wide 

difference in the results obtained across subjects.  



Table 1: Average DTLN’s ME decoding performance across patients for the 
proposed approach and other approaches.  

Compared Methods 
Average Decoding Accuracy (ADA) and Standard 

Deviation (STD)  

ADA (%) STD (%) 

betaFS-CWTasr 71.67 13.13 

muFS-CWTasr 84.86 12.95 

betaFS-CWTraw 70.83 10.21 

muFS-CWTraw 81.67 8.165 

C. Performance of the DTLN motor execution task decoding 

Considering the difference in characteristics of individual ME 
task in the experiments, it is essential to examine how well the 
proposed method can effectively decode them in comparison to 
other methods. Thus, confusion matrices were plotted using data 
from a representative patient on the proposed and conventional 
method to decode the four distinct ME tasks as shown in Figure 3.   

 

 

 

 

 

 

 

 
 

 

 

Figure 3. Decoding of Stroke patient’s individual ME task with our approach 

(A) and the compared approach (B), across the ME tasks. Note that: C1 is Key 
grip, C2 is Power grip, C3 is Wrist extension, and C4 is Wrist flexion.  

 

By examining the entries along the confusion matrices 

diagonal (Figure 3), it is observed that our approach (A: muFS-

CWTasr) overall recorded significantly higher decoding accuracy 

for the individual ME tasks (90%) compared to the other method 

(B: betaFS-CWTasr) that achieved lower (60%), though same 

accuracy value was recorded for C4 task (Wrist flexion). This result 

further evidence the efficacy of the proposed method in 

facilitating accurate and robust decoding of ME tasks of patients.  

IV. CONCLUSION AND FUTURE WORK 

The need to develop intelligently intuitive and adaptive 

rehabilitation robotic system capable of restoring the lost limb 

functions in PSPs is on the rise. Decoding of ME signatures of 

PSPs from bio-signals can serve as input to reinforce active and 

accurate robotic training towards adequate restoration of their 

limb function via IRR. In spite of the promising benefits, existing 

IRR have only recorded marginal success. This is partly because 

of their inability to efficiently decipher multiple classes of motor 

executions due to individual differences in the physiology of 

patients, especially in chronically impaired persons [19-20]. 

Therefore, this study proposed and examined the use of mu 

frequency (muFS) based CWT approach for Scalograms 

construction, which serves as inputs to DTLNs to characterize 

multiple classes of PSP’s ME signatures from EEG recordings. 

Moreover, the performance of the proposed (muFS-

CWT_Scalogram) was examined and compared with other related 

methods under standard experimental settings. The experimental 

results evidenced the efficacy of the proposed approach in 

attaining consistently high decoding accuracy for ME tasks from 

non-invasive brain signals of PSPs. Besides, our approach can 

potentially aid precise and robust decoding of stroke patients’ 

motor intentions, particularly in severely impaired persons. This 

can effectively support intuitively active motor training in IRR, 

potentially facilitating full function recovery in stroke patient.    

Despite the promising results in this study, there is a need to 

further investigate the performance of the proposed method in 

real-time using additional dataset from stroke patients with 

various characteristics.   
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