An Equivalent Property of a Hilbert-Type
Integral Inequality and Its Applications
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Abstract Making use of complex analytic techniques as well as methods involving
weight functions, we study a few equivalent conditions of a Hilbert-type integral
inequality with nonhomogeneous kernel and parameters. As applications we deduce
a few equivalent conditions of a Hilbert-type integral inequality with homogeneous
kernel, and we also consider operator expressions.
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1 Introduction

In 1925, Hardy [1] presented the following result, which is currently known in the
literature as the classic Hardy-Hilbert integral inequality. This states that for the
positive real numbers p, g with p > 1, % + é = 1, and functions f(x),g(y) > 0, with
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0< / FP(x)dx <o and 0< / g4(y)dy < oo,
0 0

we have

/Ow /Ow fgf)()y) dxdy < sin(::/p) (/ooofp(x)dx) : (/()""gq(y)dy) é , (D)

where the constant factor

T
sin(7t/p)
is the best possible.
For p = g = 2, (1) recovers the well known Hilbert integral inequality. Both (1),
as well as Hilbert’s integral inequality play an important role in analysis and its
applications (cf. [2], [3]).
In 1934, Hardy et al. established the following extension of (1):
If k1 (x,y) is a nonnegative homogeneous function of degree —1, and one defines

ky = / ki (u, D~ pdu € Ry = (0,00),
0

then we have the following Hardy-Hilbert-type integral inequality:

/: /Ow ki (6, y) f(x)g (y)dxdy < kp (/wa”(x)dx) : (/Owgq(y)dy) é , @

where the constant factor k), is the best possible (cf. [2], Theorem 319).
Additionally, the following Hilbert-type integral inequality with nonhomoge-

neous kernel is proved:

If h(u) > 0,¢(0) = 5" h(u)u®~'du € R, then

Jy Y, )dxdy<¢( )( /:xpsz’(x)dx);(/Owg%y)dy)‘l’,(z)

where the constant factor ¢ (%) is the best possible (cf. [2], Theorem 350).

In 1998, by introducing an independent parameter A > 0, Yang established an
extension of Hilbert’s integral inequality, namely the following (cf. [4], [5] ):

// x+y ddy<3<§ g)(/ AP y1“<>dy)£,<4>

where the constant factor B ( 55 ) is the best possible (B(u, v) is the beta function).

In 2004, by introducing two pairs of conjugate exponents (p,q) and (r,s), Yang
[6] proved the following extension of (1):
IfA>0,p,r>1, %—f—é = %—l—% =1, and f(x),g(y) > 0, satisfy
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)

0</0 x”(lfé)*lf”(x)dx<oo and 0</0 y11=5)=1g9(y)dy < oo,

then we have
/ / f(ax)g(? dxdy
0o Jo x*+y
b S i

<)~Sm(7f/r)[/o xp(l_%)_lfp(x)dx];[/oqu(l‘“”g"(y)dy G

where the constant factor -

Asin(m/r)

is the best possible. For A = 1,r = g,s = p, (5) reduces to (1).

In 2005, the paper [7] also provided an extension of (1) and (4) with the ker-
nel ﬁ and two pairs of conjugate exponents. Krni¢ et al. [8]-[16] proved some
extensions and particular cases of (1), (2) and (3) with parameters. In 2009, Yang
established an extension of (2) and (5), namely the following (cf. [17], [19]):

If 4 + 4, =24 €R, ky (x,y) is a nonnegative homogeneous function of degree —A,
satisfying
k?L (uxvuy) = uilkl (x,y) (uvxay > O),

and =
k(/h)z/ o (1, 1M du € R
0

then we have

/0°° /0°° ky, (x,) f (x)g(v)dxdy

1
<k(xl>[/0 xf’M”‘ff’(x)dxH/o YRl ga(yyayl " (6)

where the constant factor k(A;) is the best possible.
For 2 =1, =1, & = 4, (6) reduces to (2), while for 2 >0, 4 =%, 4, = 2
ky(x,y) = ﬁ, (6) reduces to (5).

Additionally, the following extension of (3) was proved:

/ow /0‘” h(xy)f(x)g(y)dxdy

< ¢(o) {./(;wxp(l°)1fp(X)dX} ’ [/(;my"('G)'g"(y)dy ! @)

where the constant factor ¢ (o) is the best possible (cf. [18]).

For 6 = l, (7) reduces to (3). Some equivalent inequalities of (6) and (7) were
constructed by [19]. In 2013, Yang [18] also studied the equivalence of (6) and (7)
by adding a condition h(u) = k), (u,1). In 2017, Hong [20] studied an equivalent
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condition for (6) involving certain parameters, and some further related results were
given in [21]-[25].

In the present paper, making use of complex analytic techniques as well as meth-
ods involving weight functions, we study a few equivalent conditions of a Hilbert-
type integral inequality with the nonhomogeneous kernel

1

T o) e 70

and a best possible constant factor. In the form of applications we deduce a few
equivalent conditions of a Hilbert-type integral inequality with homogeneous kernel.
We also consider operator expressions.

2 Some lemmas

Lemma 1. (¢f. [26]) If C is the set of complex numbers and Co, = CU {0},
7% € C\{z|Re(z) >0, Im(z) =0} (k=1,2,...,n)

are different points, the function f(z) is analytic in C except for z; (i=1,2,...,n),
and 7 = o is a zero point of f(z) whose order is not less than 1, then for a € R, we
have

/Ooof(x)xa_ldx T 1 _g2mai Z Re(s ) Zk} ®)

where 0 < Im(Inz) = argz < 27. In particular, if 7 (k = 1,...,n) are all poles of
order 1, setting

Ok(z) = (z2—z2) f(2) (@r(zk) #0),

then

P 1 _ <
/f dr= sinwo ; (2)- ©)

Example 1. Fors e N={1,2,...}and0<¢; <---<¢;,0< 0 < sA,€ >0, we set

1

) = L W e

(u>0),

and
G=ck+k—1ek=1,...,s).

By (9), for z; = —ci, we derive that
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= _ 19" Ldt

1 o
= 1/0 mbﬂqdu
T 5 c,?i1
~ AsinZ2 o o (€ = Ck)
Setting 4t = sA — (> 0), we obtain that

0 < k( 71%1
< S l/ Hk1u+6k)u u

1 o l 271
= Vi dv
)LClil/A /0 (v+1)
1

RV (7:5) <=

and by Levi’s theorem (cf. [28]), it follows that

o0 tc—l —1
k(o / ——dt= lim / 7(11‘
S( ) 0 Hi:l (17L + Ck) e—=0t Hk 1 l + Ck)

g
~ cl
lim k g
e s(0) = lsm o Z s

=t I (€ — k)
In particular:

€R,.

(i) for s = 1, we obtain

/ G/A. T .
1 b
A utc lc’f/l sin(”T")
(i) for s = 2, we get that
kr(0) = /W 1 o1y,
0o (t*+c1)(t* +c2)
T ocb et
/lsin”l—" Cc)—C1

(>iii) for ¢y = --- = ¢ in (10), we have

k(")::/ow(ﬂt:l)sd’: it (77):

(10)
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Ifp>1, %—Fé: I,seN,0O<c; <---<¢5,0<0<sA,01 €R, thenforneN,
we define the following two expressions:

1) 1 1 1
I ;:/ {/ ‘.xGJr”"ldx} o1— qn dy, (11)
t Vo Ty [(op)* + ]

1 1 1 1
L ::/ { xG_P"_ldx}yG‘+W_ldy. (12)
o Ut It [6o)* + ]
Setting # = xy in (11) and (12), by Fubini’s theorem (cf. [28]), we obtain

= AT
1 [Jo Tt +cr) \y y
— /lmy“""f)*%*1 [/Oy mu‘”z}nldu} dy
= T [ g
+/°°y<cl—c>—},—1/yMu“ﬁn‘ldudy
- /wy( 1dy/ m 0+ﬁ*1du

_ 1 L,l
+/ {/ ylor-o ldy} — Wy, (13)
[T (u* +cx)

1
L[ e 1 u\o 1
o L () e
0 { v et (0 +a) \y y
1 oo 1 1
_ (o1—0)+1-1 {/ o—-L -1 ]
=y n —————u" » duldy
/ y Hi 1 A"‘Ck)
_ G| —1
y dy/ —  Tw Ldu
/ Hk 1 +Ck)

1
_|_/ (6170‘)+271/ : ucfﬁfldud
07 1 n;;zl(ul ) Y

/1 |;/‘” (G]-G)"rl—ld :| 1 G—]L—ld
pry n _— U pn u
o LJo? g T— (u* + )

1 1 oo 1 _L_g
+/ (o1-0)t5-1g / —  uTE lau 14
Jo ¥ Y [T (u* +cx) (19

In what follows we suppose that p > 1,%—1—% =1,5eNO0O<c¢ <-- <y,
o,u>0,0+u=sA, 0 €R.
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7

Lemma 2. [f there exists a constant M, such that for any nonnegative measurable

Sfunctions f(x) and g(y) in (0,0), the following inequality

_/ / Hk1 +Ck]dxdy

1 oo
SM[/O x”“")‘f”(X)dX]p[/o =001 g3 (y)ay|

holds true, then we have 6| = ©. In this case, it follows that M > k(o).

Proof. 1f 61 < o, then for n > GJGI (n € N), we set two functions

x> 0,y>1

0,0<x<1 o+t
fn(x) ::{xd—l— y gn()’) ;:{y m,0<y<1 )

Hence, we obtain that

1
Jp = |:/0 xP(l—G)—lfr[li(x)dx:| g |:'/0 yq(l—Gl)—ng(y)dy:| q
1 1
1 P 'l 1 4
:(/xn dx) (/yn dy) =n.
1 0

By (14) and (15), we have

1 u
(o1—0)+1i-1 ] 1 ‘7_;7 1
y ndy| =———— mdu

<12_// f" ”) _ In08nY) iy < Mgy =
Hk +Ck}

Since (01 —6) + 1 <0, it follows that for any u € (0, 1),

/y"' 7 ldy = co.

By (16), in view of

! >0, ue(0,1)
711 pn u
T (* +cx) ’ 7
we deduce that co < Mn < oo, which is a contradiction.
If 61 > o, then for n > — (n € N), we set

1
~ . xo+p771’o<x<1 . o 0,0<y<1
fn(x) = { 0, x> 1 - gn(y) = ycl*qflrzfl

cy>1

15)

(16)
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Hence, we derive that

1 1
b= [/ wxp(l“’)_lff(x)dxr [/ L T
0 0

L s 1y .
= /xn dx /y ndy| =n.
0 1
By (13) and (15), we have

oo 1 1 1
(o1—0)—1—1 / o1
y ndy | ————u " du

/ Hifl ”l+ck)

/ / Hk _iCk] dxdy < MJ, = Mn.

Since (07 — o) — % > 0, it follows that

/; y(cl_c)_%_ldy:oo.

A7)

By (17), in view of

o+l 1
_ . e lauso,

we have co < Mn < oo, which is a contradiction.

Hence, we conclude that 61 = ©.
For 01 = 0, we reduce (13) and then apply (17) as follows:

1 1 _
R R
n n [Tz ( +Ck)
1 +L_q
() i
Hk*l(”l"'ck)
o+-L—1 —a1
/7 / 76114
[Tz (u* +cx) [T (W +cx)
1
< -MJ= (18)
n

Since the sequence
1

{ 1 SOt 1}°° <resp { 1 ucrqnl}oo )
[T (u* +cx) n=1 [T (e +cx) n=1

is nonnegative and increasing in (0, 1) (resp. (1,00)), by Levi’s theorem (cf. [28])

we deduce that
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_ ° 1 _1_
o lgu lim 7»1" 7 du

ks(G) = 1 n—oeo Hk ](ul +Ck)

1 1
0 ’H""szl(u +Ck)

= lim

/ - / . <M < oo, (19)
n—ee | JQ Hk=l +Ck 1 Hk 1 I/l +Ck)

This completes the proof of the lemma. O

3 Main results

Theorem 1. The following conditions are equivalent:
(i) There exists a constant M, such that for any f(x) > 0, satisfying

0</ A(1=0)=1 2 (1) dx < oo,
0

we have the following inequality:

1
<M[/0 xP1=0)=1 P (x)q r; (20)
(ii) there exists a constant M, such that for any f(x),g(y) > 0, satisfying
0</0mx’7 1P (x)dx < o,
and
0< / y?1701)= 160 (y)dy < oo,

we have the following Hilbert-type integral inequality with nonhomogeneous kernel:
T
0 Jo Ty [(ep)* + e

1
<M{ /0 x"“‘G)‘lfp(x)dx]' [ /0 o tga(yyay| Q1)

(iii) o1 = ©.
If Condition (iii) is satisfied, then M > k(o) and the constant factor M = ky(0)
in (20) and (21) is the best possible.

Proof. (i) = (ii). By Holder’s inequality (cf. [29]), we have
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1= /Om {ycl_ll’ /Om Hil[gc(yx))l Tal dx} (y%“’lg(y)) dy
<J[/ yali-o0)- )dy] . 22)

Then by (20), we derive (21).
(it) = (iii). By Lemma 1, we have 07 = ©.
(iii) = (i). Setting u = xy for y > 0, we obtain the following weight function
D S B
. 0 T [(ey)* + ]

x° ldx

1
= |t e e=kto) =
=1

By Holder’s weighed inequality and (23), we have

oo 1 P
{ o TP Fed” (")""}

o m 1 y(6_1>/17 X(G—l)/q J p
N /onizl[(xy)l—&—ck] x(“*‘)/qf(x) y(o=D/p x
1 yc 1
0 Ty () T do nwal 4

- 1 xo-1 plq
X dx
0 [T [(ey)* 4 ¢ ylo—Da/p

B (O'y p—1 1 yG—l
Lq(c IH] / [Tz [(9)* + ] x(o=D o7l

_ (k 1 crf
. y,w 1 o Ihioi ()t +af x <<7 lﬂ/qu() (24)

If (24) assumes the form of equality for some y € (0,00), then (cf. [29]) there
exist constants A and B, such that they are not both zero, and

o—1 o—1

y X

» .
Ax p/qf (x) = yi(c—l)q/p a.e.in R,.

We suppose that A # 0 (otherwise B = A = 0). Then it follows that
B
—lepiy — q(l1-0) in R
fP(x) =y 1 dein Ry,

which contradicts the fact that

0</0 xPU=0)=1 P () dx < oo,
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Hence, (24) assumes the form of strict inequality.
For 61 = 0, by Fubini’s theorem, we have

l y - r
J < q{/ / T To0): o 2 p/qf"( )dxd)’}

I i o)

_ ;[/ (6, )19 () r

1

— k(o) {/wa”“")lf”(x)dx} 7

Setting M > ks(0), then (20) follows.

Therefore, the conditions (i), (ii) and (iii) are equivalent.

When Condition (iii) is satisfied, if there exists a constant M < k(0), such that
(21) is valid, then by Lemma 3, we have M > k(o). By this contradiction it follows
that the constant factor M = ks(o) in (21) is the best possible. The constant factor
M = ks(0o) in (20) is still the best possible. Otherwise, by (22) (for o} = 0), we
would conclude that the constant factor M = ks(o) in (21) is not the best possible.
O

I
—
k2
—

Q
ey

Setting y = %, G(Y)=Y"*2g (%) ,U1 = sA — o1 in Theorem 4, then replacing
Y (respectively G(Y)) by y (respectively g(y)), we deduce the following result.

Corollary 1. The following conditions are equivalent:
(i) There exists a constant M, such that for any f(x) > 0, satisfying

0<A.¢ “fP(x)dx < oo,

)"x]p"y};

we have the following integral inequality:

{/ e 1{/ MM (x l(
<M[/0 101 () ]

(ii) There exists a constant M, such that for any f(x),g(y) > 0, satisfying

u."““ + =

(25)

0</ xPU=0)=1£P (x) dx < oo,
0

and

0</y q(1—p1)~ 9(y)dy < oo,
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we have the following Hilbert-type integral inequality with homogeneous kernel:
oo oo X
/ / : f( ig(y) —dxdy
0 Jo TTi—y(x* +c*)

<M{/Omx"““’> ] [/ ya(1om)- )dy " e

(i) = U

If Condition (iii) holds, then we have M > ks(0), and the constant factor
M =ks(0) in (25) and (26) is the best possible.
Remark 1. On the other hand, setting y = +, G(Y) = Y**~2g(%),01 = sA — 1, in
Corollary 5, then replacing Y (resp. G(Y)) by y (resp. g(y)), we deduce Theorem 4.
Hence, Theorem 4 and Corollary 5 are equivalent.

4 Operator expressions

We set the following functions:
p(x) := (17917 y(y) i= y1=0)=1 g(y) := 1)1 wherefrom,

v P (y) =y e P (y) =y (ry e RY).

Define the following real normed linear spaces:

Lp,w(R+)={f I£lng = ( [ pWlrlras <oo}
Lyy(Ry) = {g l8llg.y := (/ v(y)|g)|4dy <oo}
Lyo(Ry) = {g: l8llg. := (/(;m¢(y)|g )|dy <<>°}
Lyyo(Ry) = {h il = ([ ¥ 0 0Pay) " <oo}
Lq.¢1p(R+)={h Il 51- p_(/ P ) |pdy) <m}

(a) In view of Theorem 4 (setting 01 = o), for f € L), »(R.), setting

1

= e Wi R,
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by (20), we have

il = ([ ¥ 000 )" <Mlflpg < @D

Definition 1. Define a Hilbert-type integral operator with nonhomogeneous kernel
TW: L, o(Ry) — L, y1-»(Ry) as follows: For any f € L, o(R), there exists a
unique representation 7 f = by € L, yi-»(Ry), satisfying TW £(y) = hy(y), for
anyy e R;.

In view of (27), it follows that

NN fllpyrp = Wil < M1 f

P9
and then the operator 7! is bounded satisfying
T -
= wp Tl
F#0eLpe®s)  Iflpo

If we define the formal inner product of T f and g as follows:

(1 f,8) = /Om {/Om ILi—l[(fx(yx))“rwc]dx} g(y)dy,

then we can rewrite Theorem 4 as follows:

Theorem 2. The following conditions are equivalent:
(i) There exists a constant M, such that for any f(x) >0, f € L, o(Ry),
|| fllp,9 > 0, we have the following inequality:

N7 Fllpyr-» < MIfllp.g3 (28)

(ii) there exists a constant M, such that for any f(x),g(y) > 0,f € L, o(Ry),
g€ Lyy(Ry), | fllp.e,1&llg,w > 0, we have the following inequality:

(T £.8) < Ml p.0l8llg.v- (29)
We still have |TV || = k() < M.

(b) In view of Corollary 5 (setting p; = ), for f € L, o(R.), setting

L w
hay) = ./0 Hizl(ﬂL +cyt) d

defined for every y € R, by (25) we have

lisloros = ([0 P00 )" <Ml < GO
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Definition 2. Define a Hilbert-type integral operator with the homogeneous kernel
T® : L, o(Ry) — L, 41-»(Ry) as follows: For any f € L) o(R), there exists a

unique representation T3 f = h, € L, o1-»(Ry), satisfying T £(y) = ho(y), for
anyy € R .

In view of (30), it follows that

||T(2>f||,,7¢1—p = lhall, p1-» < M| fllp.p;

and then the operator T(?) is bounded satisfying

7@ _
o= wp Wl
FE0eLpo®s)  Ifllpe

If we define the formal inner product of T f and g as follows:

@ [T S
(Tzf,g)-—/0 Uo L g(y)dy,

then we can rewrite Corollary 5 as below:

Corollary 2. The following conditions are equivalent:
(i) There exists a constant M, such that for any f(x) >0, f € L, o(Ry),
|| fllp,9 > 0, we have the following inequality:

1T £l 10 < M1l p.g3 G

(ii) there exists a constant M, such that for any f(x),g(y) > 0,f € L, o(Ry),
g€ Lyo(Ry),[fllp.o,llgllg.0 > 0, we have the following inequality:

(TP f.8) <Ml|flp.pllglg.o- 32)
We still have | T?)|| = ky(c) < M.

Remark 2. Theorem 8 and Corollary 10 are equivalent.
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