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Abstract

This paper presents a Self-Learning Robotic System (SLRS) for healthcare assistance using
Deep Imitation Learning (DIL). The proposed SLRS solution can observe and replicate
human demonstrations, thereby acquiring complex skills without the need for explicit task-
specific programming. It incorporates modular components for perception (i.e., advanced
computer vision methodologies), actuation (i.e., dynamic interaction with patients and
healthcare professionals in real time), and learning. The innovative approach of implement-
ing a hybrid model approach (i.e., deep imitation learning and pose estimation algorithms)
facilitates autonomous learning and adaptive task execution. The environmental aware-
ness and responsiveness were also enhanced using both a Convolutional Neural Network
(CNN)-based object detection mechanism using YOLOVS (i.e., with 94.3% accuracy and
18.7 rms latency) and pose estimation algorithms, alongside a MediaPipe and Long Short-
Term Memory (LSTM) framework for human action recognition. The developed solution
was tested and validated in healthcare, with the aim to overcome some of the current
challenges, such as workforce shortages, ageing populations, and the rising prevalence
of chronic diseases. The CAD simulation, validation, and verification tested functions
(i.e., assistive functions, interactive scenarios, and object manipulation) of the system
demonstrated the robot’s adaptability and operational efficiency, achieving an 87.3% task
completion success rate and over 85% grasp success rate. This approach highlights the
potential use of an SLRS for healthcare assistance. Further work will be undertaken in
hospitals, care homes, and rehabilitation centre environments to generate complete holistic
datasets to confirm the system’s reliability and efficiency.

Keywords: self-learning robotics; healthcare assistance; imitation learning; YOLOVS; pose
estimation algorithms; MediaPipe; human-robot interaction

1. Introduction

Artificial Intelligence (AI) and robotics have profoundly influenced the healthcare
sector, as it drives innovation in patient support and service delivery [1,2]. One of the
most promising developments within clinical environments is the emergence of assistant
robots, which are designed to aid healthcare professionals, enhance patient care, and
streamline operations [3,4]. Conventional robotic systems are constrained by their depen-
dence on traditional programming methods and rigid task structures. This limits their
effectiveness in dynamic and unpredictable healthcare settings, where adaptability and
operational efficiency are essential [5]. To address these challenges, recent research has
focused on Self-Learning Robotics Systems (SLRSs) that can autonomously acquire new
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skills through demonstration and observation [6,7]. The current implementation is typically
limited to predefined tasks such as object handovers with restricted object diversity and no
personalisation based on patient-specific needs [8].

This research presents an SLRS for healthcare assistance that implements a hybrid
model approach (i.e., deep imitation learning and pose estimation algorithms) that fa-
cilitates autonomous learning and adaptive task execution. Leveraging Deep Imitation
Learning (DIL) and computer vision frameworks has also enabled context-aware robotic
behaviour. In this context, deep imitation learning is an advanced learning process, wherein
a self-learning robotic system observes actions demonstrated by multiple human experts,
analyses these demonstrations through policy learning, and autonomously optimises, se-
lects, and replicates the most optimal action. This approach allows for the robot to not
only imitate human behaviour but also adapt it contextually, thereby enabling the efficient
execution of complex tasks within dynamic and unpredictable environments. This means
that, by incorporating technologies such as CNN-based object detection (YOLOVS), pose
estimation, and LSTM-based gesture recognition, the system can autonomously perform
assistive tasks typical to the ones in healthcare environments. This research also presents
the initial evaluation of the applicability and effectiveness of an SLRS using both a CAD
simulation model and real-world scenarios. During this assessment stage, special attention
is given to the system architecture, training procedures, and key challenges encountered
during deployment [9,10].

2. Related Work
2.1. Healthcare Robotics: Current Trends and Limitations

Al and robotics have rapidly evolved, offering promising solutions to meet the growing
demands for enhanced services and patient care, especially in healthcare systems, as this
evolution could be a good platform solution to some of the current healthcare challenges,
i.e., workforce shortages, ageing populations, and the increasing prevalence of chronic
diseases. Robotic systems have been employed in various healthcare applications, including
surgical assistance, rehabilitation, elder care, and logistics [3]. For instance, robots such
as the Da Vinci Surgical System and Robear exemplify robotics solutions used to support
clinical tasks. However, these systems often rely heavily on pre-programmed routines
and lack the adaptability required for dynamic environments and personalised patient
needs [4,6]. This inadaptability limits their effectiveness, especially in real-world clinical
settings where patient behaviour and care contexts frequently vary [10]. These limitations
include rigid and task-specific programming, which cannot generalise to handle diverse
scenarios or patient behaviours [11]. This shows the needs for a new generation of robotic
systems such as an SLRS that are capable of learning and adapting independently.

2.2. Self-Learning Robotics in Healthcare

The foundational theories of an SLRS are built upon Reinforcement Learning (RL)
and Imitation Learning (IL) paradigms [12,13]. An SLRS integrates sensory inputs with
real-time feedback and learning algorithms to iteratively refine its operational capabili-
ties [14]. For example, Jadeja et al. (2022) presented a self-learning robotic system that
effectively replicated human movements using imitation learning frameworks, illustrating
its potential for healthcare applications [13,15]. Thus, an SLRS offers abilities to enhance
task performance through observation, environmental interaction, and iterative learning.
The core advantages lie in their capacity to adapt to individual patient needs and evolving
medical protocols. Therefore, recent research shows the success of using these systems in
practical applications as a healthcare assistant, i.e., patient handling, medication dispensing,
and surgical assistance.
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2.3. Deep Imitation Learning: The Backbone of Adaptability

Imitation learning enables an SLRS to acquire skills from expert demonstrations
instead of relying on explicit programming. This is particularly valuable in healthcare
settings, where tasks involve subtle human interactions, such as therapeutic assistance or
complex procedural support [16]. Deep Imitation Learning (DIL) advances traditional IL by
incorporating deep neural architectures, such as Convolutional Neural Networks (CNNs)
and Long Short-Term Memory (LSTM) models, which process high-dimensional visual and
temporal data [17]. CNNs extract visual features, such as object boundaries and textures,
while LSTMs model temporal dependencies in human motion. These capabilities allow for
robust mapping from video and sensor data to meaningful robotic actions. Techniques like
behavioural cloning, Inverse Reinforcement Learning (IRL), and Generative Adversarial Im-
itation Learning (GAIL) have shown effectiveness in healthcare robotics—even in scenarios
with limited training datasets—by improving behavioural fidelity and adaptability [18].

2.4. Applications and Efficacy of Self-Learning Robots in Healthcare

DIL-trained robotic assistants have been successfully applied in caregiving tasks such
as object handovers, medication delivery, and mobility support for patients with restricted
function [19]. These systems demonstrate adaptability to diverse patient requirements
through continuous observation and learning, supporting their use in hospital wards and
care facilities [15]. The integration of computer vision with deep learning further enhances
robotic perception and decision-making. Controlled experimental settings have shown
that SLRSs achieve strong performance in real-time decision-making tasks such as object
tracking, trajectory planning, and corrective action in response to dynamic changes [14].

2.5. Research Gaps and Challenges

Even though progress has been made in the SLRS areas of development and deploy-
ment, there are still several challenges that remain. These are the following:

= Lack of a Dataset: Collecting and annotating healthcare demonstrations are difficult
due to privacy concerns, data ownership, and variation across institutions [20].

= General Limitations: Systems trained on narrow demonstration sets often perform
poorly in unfamiliar environments or with unexpected task variations [17].

. Human-Robot Interaction (HRI): Natural, intuitive communication between robots
and patients or clinicians is still underdeveloped, despite its critical importance [1].

»  Safety and Ethics: Ensuring fail-safe operation in sensitive contexts remains a major
concern, particularly when an SLRS interacts directly with patients [6].

The fact is, addressing these challenges demands the integration of advanced policy-
learning techniques and closer interdisciplinary collaboration among engineers, clinicians,
and ethicists. This is to ensure that, as SLRS systems are deployed in real-world care
environments, both technical robustness and ethical compliance are fully considered. These
gaps highlight the needs for modular and learning-driven assistive robots that are capable
of real-time perception, adaptive behaviour, and ethical operation. This is where this
potential research programme with its aim and objectives comes in.

3. SLRS Architecture, Functioning Principles, Control Blocks, and
Implementation

3.1. SLRS System Architecture
Figure 1 illustrates the system architecture of the Self-Learning Robotic System (SLRS).

It is a modular system framework that integrates industrial-grade robotics with Deep
Imitation Learning (DIL). This is to enable autonomous replication of complex tasks demon-
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strated by humans in healthcare settings [15]. The system is built upon three core modules:
perception, learning, and action.

Imitation Learning

_ Forward Kinematic Behavior Segmentation
Joint angle Data
Acquisition
Movement
. I Segmentation l
Griper positioning )
Task Processing o Motee DMP
Demonstration by Planning
Human Expert
RGB-D Movement l
Tactile sensor N Annotation
Motion Sensor ¥ Imitation
Electrophysioclogy >
Sensor
Robotics System
Data —
Gathering
Real time data from novel task
Joint angle
Mapping Forward Kinematic
system
Interactive Human Assisant 'L
Correction Griper positioning
Robotic
Arm
¢ RGB-D
. B Tactile sensor
Joint < Motion Sensor
Controller Electrophysiology
Sensor

Figure 1. Architecture of a self-learning collaborative robot system using imitation learning [15].

The perception layer combines RGB-D sensors, stereo vision modules, and standard
web cameras. This is to acquire high-dimensional visual data, including object locations and
human skeletal poses [2,5,10]. These feed into a policy-learning module, which translates
the sensory data into actionable robotic movements [7,9]. The action process is at the
hardware level, as the SLRS employs a six Degrees-Of-Freedom (DOF) robotic arm, the
MyCobot 280 Jetson Nano. This is controlled by an onboard Jetson Nano processor. This
compact, power-efficient platform enables real-time inference for deep learning models,
making it suitable for use in clinical settings (i.e., hospitals, care homes, and rehabilitation
centres) [1,4,19]. The SLRS integrates YOLOVS for object detection (operating at 91 frames
per second) and a MediaPipe + LSTM pipeline for human action recognition to ensure
robust perception and responsive interaction. This dual-modality setup allows for the robot
to interpret spatiotemporal human behaviour by analysing key point trajectories over time,
thus facilitating smooth and context-aware interaction [1,6]. These three core modules
(i.e., perception, learning, and action) are key features of the SLRS that show how it is
Programmed via Demonstration (PvD). The robot records these task sequences and learns
to generalise them, which eliminates the need for technical programming expertise [16].
This means that it allows for healthcare professionals to teach the robot tasks simply by
performing them. To promote task flexibility and detail, complex activities are decomposed
into motion primitives—basic, reusable actions that can be recombined for different tasks.
This modularity architecture enhances the SLRS’s adaptability across various scenarios,
from physical assistance to medication delivery [10,20-22], as it offers three interdependent
functional modules:

= Perception Module: Utilises multimodal sensors to interpret environmental and
spatial cues [2,5].



Electronics 2025, 14, 2823

50f24

=  Learning Module: Applies imitation learning algorithms, including Dynamic Move-
ment Primitives (DMPs), to convert observational data into robotic actions [9,12,16].

s Action Module: Executes learned behaviours via low-level control and feedback
mechanisms for real-time refinement [13,17].

The training data were split 70:30 between training and testing, using a sampling rate
of 10 Hz to synchronise 3D skeletal key points with RGB frames. This structure ensures
effective alignment between observed behaviours and the system’s decision-making logic.
The control logic of the SLRS is structured into two primary phases, learning and reproduc-
ing, as illustrated in Figure 2. In the learning phase, expert demonstrations are recorded
and split into three data streams: Follow Path: Captures spatial trajectory and motion paths,
Actuation Control: Records force and joint control signals required to execute the task, and
De-actuation Control: Identifies motion completion and transition points. These elements
are integrated into a learning-based controller that generalises the demonstration data
and generates a regulation model for downstream execution. In the Reproducing Phase,
the robot uses the learned policy to determine motion parameters such as joint angles,
velocities, and forces in response to its current sensory state. The robot executes these
actions, transitions to the next task phase, and continuously monitors feedback to refine
its performance. This two-phase control system ensures the SLRS can learn and execute
complex sequences in real-time, adapt to new inputs, and provide responsive support in
diverse healthcare tasks. By combining perception, learning, and actuation into a cohesive
framework, the SLRS operates not just as a manipulator but also as a healthcare assistant
capable of safe and intelligent support across a range of healthcare contexts [3,8,14,19].

i Learning i Reproducing
! Recorded Demonstration : !
2 v 2 :
Follow Path Actuation Control Deactuation Control| | : Robotic System > Arm Move & generate
' Control next state
A
A
: 4 i Decide The Desired :
: i : Sensor Observe & Send| |
Learning Based Controller to e R Force, Angle & Velocity | State information to the| |
regulate Based on Received user computer '
State Format

.......................................................................................................................................

Figure 2. Control blocks of the self-learning collaborative robot system using imitation learning.

3.2. Learning Framework and Policy Acquisition

The SLRS is built upon a multi-stage learning pipeline that integrates deep learning,
computer vision, behavioural segmentation, and real-time control [7,8,10,23]. At the core of
this framework is imitation learning, which treats the learning process as a Markov Decision
Process (MDP) but without relying on explicitly defined reward functions. Instead, the
system learns optimal policies directly from expert demonstrations [9,16,24]. An overview
of this learning framework is shown in Figure 3. The figure shows how the learning
framework links data collection and perception to policy acquisition and execution. The
robot begins by processing raw sensory inputs, extracting relevant spatial and behavioural
features. These features inform the policy learning module, which is trained to replicate
expert behaviour through learned control actions.
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Figure 3. Learning pipeline of SLRS using imitation learning [7].

3.2.1. Data Acquisition and Preprocessing

During demonstration sessions, the SLRS collects synchronised RGB video and depth
data using stereo vision and RGB-D cameras [2,5,10]. These inputs allow for the following;:

" Object detection via YOLOVS [25];
n Human skeletal pose extraction using MediaPipe [22,26];

»  Environmental context awareness, such as object affordances and workspace bound-

aries [23].

As illustrated in Figure 4, human experts perform tasks (e.g., handovers), which
are captured and parsed into structured input suitable for robot imitation. To ensure
time-aligned learning, visual and motion data are synchronised at 10 Hz, associating

environmental changes with observed human actions [27-30].

Visual Demonstration Data Collection System

@

Human Demonstration (PvD)

Define trajectories

Y

Object tracking

Y.

Object recognition

Y

Movement
segmentation

Y

Data gathering

Sensor System

.

Workspace

'YOLOVS Object Detection

Temporal Synchronization

Data Storage

S Execute task

Robot Imitate Behavior

Read trajectories

Y

Follow path
planning

5
:
: Y

~

@ rcsviceo @ Depnpata @ Object Detection

Solid arrows: Direct process flow

Data Streams

Human Pose

@ oviects

Dashed arrows: Data transmission

Figure 4. Visual demonstration data collection system: demonstration, data collection, processing,

and imitation.

The collected demonstrations are then segmented into behaviour units using a three-

stage preprocessing approach:
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n Temporal segmentation isolates atomic actions such as reach, grasp, lift, and re-
lease [16,30].

»  Pose tracking extracts 3D joint coordinates and movement patterns of the demonstra-
tor [22,26].

= Trajectory encoding represents the demonstrator’s hand or tool movement as parame-
terised curves, enabling precise robotic reproduction [7,23,27,31].

This behavioural abstraction enables the creation of a library of motion prim-
itives, which can be recombined for novel tasks or simplified across different
environments [12,30,32].

3.2.2. The Policy Learning Framework

The SLRS employs a hybrid policy learning strategy that combines structured be-
havioural segmentation with two complementary imitation learning methods: Behavioural
Cloning (BC) and Inverse Reinforcement Learning (IRL). These are supported by perception
algorithms for real-time object and action recognition. To enable effective training, two
custom-designed preprocessing algorithms are applied.

Algorithm 1, behavioural segmentation algorithm, processes a set of expert demonstra-
tions D = {Dq, Dy, ..., Dy}, where each demonstration contains spatiotemporal movement
data. For each demonstration,

. Feature trajectories are extracted.

= An affinity matrix is computed based on motion similarity.

m  Spectral clustering is applied to group motion patterns into clusters.

s Segment boundaries are determined based on changes in motion labels.

= Valid segments are grouped using a similarity threshold 6 to form higher-level
motion categories.

These segmented actions, such as reaching, grasping, and handing over, serve as
discrete learning units for policy training.

This process ensures that demonstrations are converted into semantically meaningful
and reusable sub-tasks.

Algorithm 2, object detection and colour recognition, forms the core of the SLRS visual
perception module. It begins with object detection using deep feature extraction and applies
secondary validation based on colour data.

m  Deep features are extracted using a ResNet-50 backbone and CNN layers [33-35].
n  Classification is performed via SoftMax.

»  If confidence is low, feature vectors are compared using Euclidean distance.

s RGB values are also used to confirm object identity.

This dual pathway ensures robust detection in real-world environments with visual
noise or occlusion.

The segmented demonstrations and recognised objects are used as input to two
learning frameworks as shown in Table 1:

= Behavioural Cloning (BC) maps sensory input directly into actions through supervised
learning. It is fast but sensitive to noise and lacks exploration [8,16].

= Inverse Reinforcement Learning (IRL) infers the underlying reward structure
and then optimises a policy accordingly. It is more robust but computationally
heavier [9,13,24,30].
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Algorithm 1: Behavioural Segmentation Algorithm

start
Read the set of Demonstrations D = {D1, D3, ..., Dy};
for each Demonstration D; in D do
Extract Feature Trajectories T; from D;;
Compute Affinity Matrix A; using motion similarity between T;;
Apply Spectral Clustering on A; to obtain Cluster Labels: C;;
Initialize Segment Boundaries = &;
Set PrevLabel = C;[0], StartIndex = 0;
forj=1tolength(C;) — 1do
if
Ciljl # PrevLabel and (j — StartIndex) > minLen then
Append j to Segment Boundaries;
Set StartIndex = j;
Set PrevLabel = C[jI;
else if
Slice Demonstration D; using Segment Boundaries;
for each Segment s in Sliced D; do
else if
Segment s is Valid (based on 6 and motion consistency) then
Add s to Segment List;
for each pair of Segments (s;, s;) in Segment List do
else
Motion Similarity(s;, s]-) > 0 then
Merge s; and s; into same Motion Group;
end
end
end
end
Output all Behavioural Segments;
end

These learning methods form a robust hybrid framework capable of both speedy

deployment and long-term behavioural adaptation.

Figure 5 illustrates the three policy representations underpinning these approaches.

= Symbolic representations encode abstract logical task steps, useful for high-level

planning [11,12];

»  Trajectory-based representations retain motion fidelity through continuous path en-

coding [7,30];

»  Action-state mappings directly link sensor input to motor responses, enabling real-

time reactivity in dynamic environments [23].

These representation modes enable the robot to operate both reactively and strategi-

cally across use cases.

The training of the policy models uses Stochastic Gradient Descent (SGD). SGD
is particularly suitable for imitation learning due to its scalability, efficiency with large

datasets, and suitability for online or incremental learning [24,36]. It iteratively minimises

the error between predicted and demonstrated actions. It allows for the SLRS to continually

refine its learned policies as additional demonstrations are collected over time, thereby
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supporting personalisation and domain adaptation [8,24]. Figure 6 shows the process
where policy accuracy improves with training progression.

Algorithm 2: Object Detection and Colour Recognition Algorithm

start
Read the Object Image O; from input Device;
Apply the pre-processing Algorithm;
Apply Resnet-50 on the Object Image: Fresnet (O;);
Apply the ReLU Activation Function: Frery(x) = max(0, x);
Apply the CNN Algorithm: Fenn (FreLu (Fresnet (01)));
Apply SoftMax Function: F, fmax(x) = ﬁ;]
Extract the RGB features of Object Image: RGB_features(O;);
if Object Identified then
Print “Pick Object”
else if
forI=1to N do//N is the number of DS images;
Read the Datasets (DS) image features: DS feqpyres;
Calculate the distance between the two feature vectors;

n

. 2
Distance (Oi/ Dsfeutures) = kgl (Oi [k] - DSfetures [k])

else if (Classified Threshold Satisfied) then
Print “Place Object to Destination;”

else
Print “Object not Identified with DS Images;”
end
end
end
end
end
( D 4 N
Symbolic Representation Trajectory-based Action-state Mapping
Encodes abstract logical steps Stores detailed motion sequences Connects sensor readings to
and high-level task structure with kinematic characteristics appropriate responses
Decision Tree Motion Sequence Neural Network
S | <
:
if condition else Time
Rule-Based System Time-series Data Behavior Map
Time (s) | JointAngles () State-action intensity map
- 0.0 30, 45, 10]
15 45, 60, 25)
- J \ J

Comprehensive Framework for Capturing and Reproducing Human Expertise

Figure 5. Imitation learning and policy representation types (symbolic (logic-based), trajectory
(motion-based), and action-state (sensor-based) policies offer layered learning strategies aligned with

robotic control architecture).
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Table 1. Comparison of Behavioural Cloning (BC) and Inverse Reinforcement Learning (IRL).

Aspect

Behaviour Cloning (BC)

Inverse Reinforcement Learning (IRL)

Definition

Learns a policy by directly mimicking
expert demonstrations

Infers the reward function underlying
expert behaviour

Learning Target

Policy function

Reward function (then derive policy via
reinforcement learning)

Supervision Type

Supervised learning

Combination of supervised +
reinforcement learning

Data Requirement

Requires a large and diverse set of
expert trajectories

Requires fewer demonstrations but needs
exploration capability

Generalisation

Poor generalisation outside seen states

Better generalisation by learning the
underlying intent (reward)

Robustness to Noise

Sensitive to imperfect demonstrations

More robust to suboptimal or noisy
expert actions

Includes exploration as part of reward

Exploration No exploration; purely imitation-based function optimisation
Implementation Simpler and faster to implement Computationally expensive and complex
Advantages Easy to implement, Fast training Learns the intent of the expert, Better
long-term behaviour
L Prone to compounding errors, Does not Complex optimisation, Needs RL to derive
Limitations . .
learn intent policy from reward
Typical Use Cases Autonomous driving, robotics with Strategic planning, robotics with

ample data

sparse demonstrations

Update

Repeat until Convergence J

Mini-batch Compute
of Data Gradient
SGD Optimization Process
H
Steady Convergence
Improvement

M High Learning
Rate

Check for
Parameters Convergence

Policy Accuracy

Early Middle Late

Training lterations

Figure 6. SGD optimization process improves policy prediction accuracy with each epoch, supporting
continuous model refinement in large datasets.

3.2.3. Context-Aware Perception

The combination of structured behavioural segmentation, robust perception, and deep
imitation learning strategies equips the SLRS with task reliability, adaptability, and the
ability to operate effectively and safely in the unstructured conditions [1,4,37]. To support
robust policy learning, the SLRS incorporates a tightly integrated perception pipeline,
which captures real-time visual and behavioural information. It also combines object
recognition, human pose estimation, and action detection. This is to ensure temporal
alignment of visual features with the robot’s learning process.
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View:

Environment Details

1001

Accuracy (%)

Banana

v

Environment:

Orange Toothbrush

»  Object Detection: The system uses the YOLOvS algorithm, fine-tuned on a domain-

specific healthcare dataset prepared via Roboflow [21,25]. YOLOvV8 was selected for
its speed (91 FPS) and high detection accuracy, particularly under dynamic conditions
common in clinical environments. Detected objects include assistive items such as
bananas, toothbrushes, and medicine bottles, which are classified and localised in the
robot’s workspace in real time.

»  Pose Estimation: To detect and classify human hand pose, a MediaPipe-LSTM frame-

work is used. MediaPipe extracts 3D skeletal key points, while LSTM networks model
the temporal dynamics of these key points to classify gesture sequences. This enables
the robot to interpret motion over time, for example, distinguishing between reaching
and giving gestures. The system processes 1662 pose features per second (55 key
points x 30 FPS), enabling fine-grained motion tracking and real-time interpretation
of human intent.

s Temporal Synchronisation and Feature Alignment: The outputs of object and action

recognition pipelines are temporally synchronised to ensure consistent alignment
between observed behaviours and environmental states. This is essential for policy
learning, where the robot must understand both what action is required and how it is
executed within a specific context.

= System Performance Evaluation: Figure 7 presents a performance evaluation of the

perception system under various lighting conditions and object occlusions. Detection
accuracy and frame processing time were benchmarked for three representative
object classes:

All Objects Comparison v

Normal Conditions v

100+ r30
r30

Accuracy (%)
(sdy) paeds

(sdy) paads

Normal Low Light ~ Occlusion Motion

M Banana Accuracy (%) M Banana Speed (fps)
m Orange Accura
M Toothbrush Accuracy (%) M Toothbrush Speed (fps)

M Detection Accuracy (%) M Processing Speed (fps)

Figure 7. Perception system performance under different environmental conditions. Accuracy and
speed were recorded for objects, including banana, orange, and toothbrush, with obstruction and
lighting variations. Evaluation of all objects maintained >75% accuracy.

. Banana: Highest accuracy (up to 9%), even under occlusion.
. Orange: Moderate accuracy across conditions.
u Toothbrush: Lower accuracy in cluttered scenes, dropping to 79%.

A strong correlation was observed between detection accuracy and environmental
complexity, confirming the robustness of the system’s multimodal perception pipeline. This
layered perception learning architecture allows for the SLRS to interpret the following:

= What actions to perform (object and goal recognition);
s How they should be performed (human gestures and motion recognition).

By integrating perception and behaviour analysis, the system is capable of replicating
human-like behaviour with high temporal precision and contextual awareness. It indicates
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the practicality of the system deployment in complex environments, such as hospitals, care
homes, and rehabilitation centres. This is where object identity and human intent must be
accurately recognised despite environmental variability [21,22,27,38,39].

3.3. Implementation and System Integration

The SLRS was implemented using a cost-effective hardware and software configura-
tion. This is designed to meet performance, safety, and usability requirements in typical
healthcare environments. The system comprises a physical robot platform, an integrated
software stack, and a hierarchical control architecture. Together, these support real-time
task execution, training, and adaptation [28].

3.3.1. Hardware Platform

The SLRS uses the MyCobot 280 Jetson Nano robotic arm and a compact, six degrees-of-
freedom (DOF) manipulator. This is designed for close-proximity human-robot interaction.
This lightweight platform is particularly suited for fine motor tasks, such as tool handovers
or delicate object retrieval, commonly required in clinical and home-care settings [7,40,41].

Key Hardware Components:

= Manipulator: MyCobot 280, with six DOF for flexible articulation.

s Computing Unit: Jetson Nano—selected for its real-time inference capability and low
power consumption [21,25,41].

= Sensing Suite: Stereo vision cameras, RGB-D sensors for 3D depth mapping, and
webcams for high-resolution RGB input.

The stereo vision system comprises dual cameras and depth sensors, utilising stereo-
matching algorithms and K-means clustering for spatial analysis [10,42]. This setup en-
hances environmental awareness by enabling 3D object localisation, thereby reducing the
likelihood of collision or misplacement during object interaction [10,43]. The system com-
puting backbone is powered by the Jetson Nano [44], which provides sufficient real-time
processing capability for deep learning inference tasks while maintaining energy efficiency
and a compact form factor suitable for integration into mobile assistive platforms [21,25,45].

3.3.2. Software Platform

The SLRS framework is built for modularity, scalability, and real-time performance.
The core framework is based on the Robot Operating System (ROS2), which facilitates
sensor integration, motion planning (via Movelt!) [46], real-time task execution, and system
synchronisation [11,47,48]. Additional components include the following:

n Simulation and Control Logic: Developed in MATLAB/Simulink 2022b, enabling
multi-body dynamic simulation, PID tuning, and safety validation before real-world
deployment [6,13,20].

. Deep Learning Pipelines:

O YOLOVS for object detection;
@) MediaPipe + LSTM for human gesture/action recognition [49];
O Implemented in TensorFlow, optimised for edge inference on Jetson
Nano [21,22,26,36].
Figure 8 shows an overview of the SLRS software stack, showing the flow from sensor
input, through middleware, to policy execution.



Electronics 2025, 14, 2823

13 of 24

Applications Layer

Cognitive Layer

Perception Layer

Machine Learning
Framework

Middleware Layer

System
Software Layer

Hardware
Interface Layer

Robotic Healthcare Assistant Software Stack

Healthcare Assistance Interface Task Monitoring Dashboard

Layered architecture integrating YOLOv8 object detection
and MediaPipe+LSTM action recognition on Jetson Nano

Task Demonstration Interface

Patient care and medical staff Real-time task visualisation Teaching interface for
interaction application and robot status new task programming

Task Planning Engine Behaviour Adaptation

Error Recovery System

Hierarchical task decomposition Dynamic adjustment based on Robust handling of edge cases
and sequencing environmental context and failures

oo e
Real-time object detection Body pose tracking Action recognition for handover,
and classification (1662 points x 30 frames) take, reach tasks

L msomow | T

H
|

Optimised for Jetson Nano Accelerated neural network Parallel computing on
inference inference Nvidia GPU

ROS1 Framework Communication Bus

Service Discovery

Message passing and Inter-process and Dynamic component discovery
service architecture network communication and binding

s

Resource Scheduler

Real-time enabled Isolated runtime CPU/GPU/Memory
Linux distribution environments allocation

Hardware Interface

Mycobot 280JN with Jetson Nano
embedded processing platform

Figure 8. Diagram of software stack.

3.3.3. Control System Implementation

High level controller: The SLRS control system adopts a hierarchical structure com-
prising three levels. At the high level, task planning is informed by detected objects
and recognised actions, allowing for the robot to determine the optimal sequence of
operation to achieve the desired task outcome [3,12,38].

Mid-level controller: This handles the trajectory generation, combining Stochastic
Gradient Descent (SGD) for initial optimisation with Sequential Quadratic Program-
ming (SQP) for fine-tuned trajectory refinement [24,36,43]. This hybrid approach
produces smooth and biologically plausible motion patterns while respecting the
robotic system’s kinematic constraints [13].

Low level controller: This is a PID controller that regulates the robotic arm’s joint
positions and velocities, ensuring accurate execution of planned trajectories [6,11,20].
This classical control foundation, while complemented by learning-based approaches,
provides deterministic safety and robustness under variable environmental conditions.
A multimodal feedback loop is implemented, enabling auto-correction based on
real-time visual feedback to recover from minor failures without requiring human
intervention [22,27,38].

Figure 9 illustrates the closed-loop interaction between the perception module, learn-

ing policies, and the control hierarchy. This integrated control framework enables efficient

and reliable translation of learned policies into physical actions while satisfying healthcare-

specific safety requirements.
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Figure 9. Closed-loop interaction between the perception module, learning policies, and the
control hierarchy:.

3.4. Evaluation Methodology and Experimental Design
3.4.1. Training and Testing Protocol

Training data was collected using the multimodal perception setup described in the
system architecture in Section 3.1. Each demonstration sequence included the following;:

s RGB-D video streams capturing human motion and object states;
» 3D skeletal pose data from MediaPipe;
= Annotated task phases, including reach, grasp, transfer, and release.
The data was synchronised at 10 Hz, with segmentation based on behavioural units
generated by Algorithm 1. Table 2 summarises the dataset structure.

Table 2. Summary of data collection statistics for training and testing.

Category Value
Expert Demonstration Videos 20
Total Images 1500

Task Types 3 (Fruits Handover, Vegetables Handover, Daily Use Items Handover)
Example Items Apples, Oranges, Bananas, Carrots, Cucumbers, Toothbrushes, etc.
Total Recorded Data 85h

Number of Expert Subjects 5

Testing Environments

2 (Laboratory Setting, Home Environment)

Robot Platform Used

1 (Assistive Robotic Arm)
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The dataset was split into 70% for training and 30% for testing, ensuring each sub-task
type appeared in both partitions. Demonstrations were performed by different human
subjects to introduce variability in style, speed, and hand orientation supporting the
system’s requirements.

3.4.2. Model Training Procedure
Two parallel models were trained:

= Behavioural Cloning (BC) policy using supervised learning;
= Inverse Reinforcement Learning (IRL) policy using learned reward functions.

Both policies were trained using Stochastic Gradient Descent (SGD) with the following
hyperparameters:

n Learning rate: 0.001
" Batch size: 32

= Epochs: 100

= Optimiser: Adam

The models were trained on NVIDIA Jetson Nano using TensorFlow, with reduced
precision to meet edge device constraints. Loss convergence was monitored to assess over-
fitting and underfitting capability. As shown in Figure 6, SGD enabled stable convergence
in both Behavioural Cloning (BC) and Inverse Reinforcement Learning (IRL) models, with
IRL exhibiting greater robustness to noise and temporal inconsistencies.

To further assess learning efficiency, both models were trained for 300 epochs. The
training and validation accuracy curves are presented in Figure 10. BC achieved approxi-
mately 78% validation accuracy, while IRL continued to improve, ultimately reaching 93%.
This illustrates IRL’s ability and learning efficiency, despite its increased computational
cost. The performance trends in Figure 10 also demonstrate IRL’s narrower gap and train-
ing stability. To evaluate the deployed policies under real-world constraints, a set of key
performance indicators was established. This included trajectory accuracy, task completion
success rate, grasp reliability, execution time, adaptability, emergency stop response time,
and user satisfaction. Table 3 outlines the quantitative thresholds associated with each
metric, reflecting the operational standards required for safe and effective assistive robot
deployment in healthcare environments.

Learning Curves: Training and Validation Accuracy

110
100
R e T e et
>
v
©
-
H
s r -
$ 80 f b T e
Jolmml e Legend:
______ —e— BC Training
_______ -e- BC Validation
7 —e— |RL Training
—-eo- [RL Validation
o0 0 10 20 30 40 50
Epochs

Figure 10. Learning curves for BC and IRL training and validation.
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Table 3. Validation metrics thresholds.

Metric Threshold Justification

. . Ensures sufficient precision for household
Trajectory Accuracy <10 mm deviation object handover tasks
Task Completion Success Rate >90% Required reliability for daily

assistance operations

Execution Time

<2.0x human time Balance between efficiency and safety for

household tasks
Grasp Success Rate ~85% Reliable grasping of varied objects (fruits,
vegetables, daily items)
- o Ensures robustness in varying home
Adaptability Score >80% lighting and object placement
Safety Metric (Emergency Stop Response) <300 ms Rapid response to unexpected situations
User Satisfaction Rating >3.8/5.0 Acc.eptance criteria for home
assistance users
. o o Ability to correctly identify various
Object Recognition Accuracy >92% household items
Handover Position Accuracy <15cm Comfortable handover zone for

human users

3.5. SLRS CAD Simulation and Real Applications Case Studies Evaluation

Three case study scenarios were conducted to assess SLRS validity and generalisability.
These included representative scenarios of a hospital (i.e., surgical assistance), a domestic
care setting (daily living support), and a rehabilitation environment. While these trials
were conducted in university labs, they were modelled closely on actual task demands,
workflows, and user interactions observed in clinical and assisted-living contexts [1,4,32].

3.5.1. Surgical Health Assistance

In this scenario, the SLRS operated as a robotic nurse analogue, retrieving surgical
instruments and responding to gesture-based or verbal cues from a test operator. The
simulation included the following;:

= A surgical tray setup with identifiable tools;
s Timed request prompts from the operator;
»  Lighting and spatial constraints reflecting operating theatre conditions.

Key metrics included tool selection accuracy and response latency. The system
achieved over 92% accuracy in identifying and transferring the correct tool, with an av-
erage response time under 800 milliseconds. These results indicate that the SLRS could
support surgical workflows by reducing manual search time and enhancing procedural
efficiency [3,32,50].

3.5.2. Daily Living Health Assistance

In a mock home-care setup, the SLRS assisted participants in retrieving or delivering
common household items (e.g., toothbrushes, medication containers, and packaged food
items). The system operated on gesture cues and voice commands, and its usability
was evaluated through task execution and participant feedback. Performance highlights
included a grasp success rate of over 85% and task completion rate above 90%. These
findings suggest the potential for SLRS deployment in eldercare and independent living
scenarios, particularly for users with mobility impairments [19,37,51].
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3.5.3. Rehabilitation and Care Support (Adaptive Interaction Trials)

This scenario simulated a rehabilitation setting with dynamic task environments.
The robot was evaluated on its ability to give away items (e.g., toothbrush, banana, pen),
adapt to unfamiliar users and lighting variations, and respond safely to occlusion or
sudden human motion. The SLRS maintained a handover position error of less than 12 cm
and responded to contact interruptions within 276 milliseconds, satisfying safety and
responsiveness criteria. Importantly, it retained performance consistency across multiple
user profiles and object types, indicating strong policy generalisation [22,51,52].

4. SLRS Testing, Validation, Results, and Discussion

The SLRS was tested, validated, and evaluated based on laboratory simulations that
mimic typical healthcare use cases. The evaluation focused on key metrics including
object detection accuracy, task execution success rate, interaction fluency, and system
responsiveness under varying conditions, such as lighting changes and user motion. A
formal risk assessment was conducted to ensure compliance with UK healthcare safety
standards [18]. Additionally, data protection protocols were followed, with all sensor data
encrypted and stored locally to support secure learning [38,52]. Hardware-level safety
features, including emergency stop and redundant sensors, were implemented to ensure
safe operation during human-robot interaction.

SLRS Performance Results

Object detection was a key component of the SLRS’s performance. Three computer
vision models—YOLOv5, YOLOvVS, and Single Shot Multi-Box Detector (SSD)—were evalu-
ated as shown in Table 4. This was conducted under varying conditions, including different
lighting, cluttered backgrounds, and object occlusion. YOLOvS outperformed the others,
achieving 94.3% accuracy and an average processing latency of just 18.7 milliseconds.
These results demonstrate YOLOVS8's suitability for real-time object recognition in health-
care environments, enabling the robot to reliably identify assistive items (e.g., bananas,
toothbrushes), even under challenging visual conditions.

Table 4. Computer vision algorithms comparison.

Algorithm Detection Accuracy (%) Processing Time (ms) Reliability in Dynamic Settings
YOLOvS 94.3 18.7 High

YOLOvV5 89.7 224 Moderate

SSD 86.2 279 Moderate

By combining YOLOVS with a pose estimation pipeline using MediaPipe and LSTM,
the system improved its ability to interpret human gestures and hand positions in real time.
This multimodal perception enabled more accurate alignment between detected objects
and user actions, which is critical for smooth handover tasks in care scenarios. For example,
as illustrated in Figure 11, the robot was able to observe a user gesture and respond by
picking up the correct item with precision and timing.

To assess general performance, the SLRS was tested in 150 trials across three healthcare-
related scenarios: surgical assistance, daily living support, and rehabilitation. The system
completed 131 out of 150 tasks successfully, resulting in a task success rate of 87.3%. A task
was considered successful if the robot correctly interpreted the user’s intent, retrieved the
appropriate object, and delivered it within acceptable time and spatial accuracy thresh-
olds. Compared to a baseline rule-based system (62.1% success rate), the SLRS showed
significantly higher adaptability and reliability. Statistical validation using the Wilcoxon
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signed-rank test (p < 0.05) confirmed the effectiveness of the imitation learning-based
approach in improving task performance under variable conditions. Figures 12-14 illus-
trate examples from the daily living use case, including object handovers of items such as
bananas and toothbrushes. These tasks represent common assistive functions in eldercare
or home environments, where the robot must respond accurately to gesture cues and
operate safely near users. The SLRS demonstrated consistent behaviour across object types
and participant styles, confirming its ability to generalise handover tasks with minimal
variation in task timing or success rates.

Figure 11. Human demonstration of ‘Pick Up and Give Away” action. This figure illustrates the
robot learning from a human demonstration to perform handover tasks within a simulated care
environment.

Even with these encouraging results, the current research and studies still have some
notable limitations.

»  First, the training dataset was relatively small, consisting of 20 demonstration videos
totalling 8.5 h.
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= Second, the evaluated tasks were confined to object handovers, excluding more
complex healthcare interactions such as patient mobility support or natural language
communication.

. Third, all trials were conducted in simulated environments and did not include clinical
staff or real patients, limiting external validity.

= Finally, the system’s performance was not benchmarked against other published
SLRS implementations, making it difficult to assess relative advancement beyond the

rule-based baseline.

Figure 12. Take banana from carer and deliver to patient. The robot identifies and transfers a personal
item as part of a handover task.
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Figure 13. Human demonstration of the “Pick up and Give away” method demonstrating the
structured routine the robot imitates for effective object handling.

Overall, the results indicated that an imitation learning approach combined with
real-time visual and gesture recognition can enable robots to perform responsive, semi-
autonomous assistive tasks in structured healthcare-like settings. The system’s ability to
function on a cost-effective platform such as the Jetson Nano further suggests the feasibility
of deploying similar solutions in resource-constrained environments, like care homes or
community clinics. However, broader validation in uncontrolled and real-world healthcare
settings remains necessary before full deployment.
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Figure 14. Pick up toothbrush and deliver to patient. Depicting task flexibility with different objects
in a case scenario.

5. Conclusions and Future Work

A Self-Learning Robotic System (SLRS) for healthcare assistance applications was
developed and presented in this paper. The SLRS utilised a hybrid model approach. This
was to enable the system to acquire complex skills through observation of expert demonstra-
tions without requiring explicit task-specific programming. It implemented deep imitation
learning, where the optimised real-time learning and training methodology using more
than one expert is implemented. The system contextual awareness and responsiveness
were also enhanced using both a Convolutional Neural Network (CNN)-based object
detection mechanism using YOLOVS (i.e., with 94.3% accuracy and 18.7 ms latency) and
pose estimation algorithms, alongside a MediaPipe and Long Short-Term Memory (LSTM)
framework for human action recognition. The SLRS system was designed to address
critical challenges in healthcare, including workforce shortages, ageing populations, and
the increasing prevalence of chronic conditions. As discussed in Section 3.4.2, Figure 10,
the comparative training results between BC and IRL highlight IRL's superior learning
efficiency and training stability. These findings underscore the SLRS’s potential for scalable
and adaptive real-time deployment, even with the computational overhead associated with
IRL. The 150 trials conducted to assess and evaluate the system were limited to a defined set
of tasks and object types and do not address long-term evaluation or patient-specific person-
alisation. The CAD simulation, validation, and verification tested functions (i.e., assistive
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functions, interactive scenarios, and object manipulation) of the system demonstrated the
robot’s adaptability and operational efficiency, achieving an 87.3% task completion success
rate and over 85% grasp success rate. The key performance indicators parameters, such
as object detection accuracy, task completion time, handover reliability, and interaction
fluency, showed the system’s operational effectiveness and possible useability in health-
care environments. Future work is essential to test and report the system’s capabilities
and include additional tasks such as patient mobility assistance and medication delivery,
incorporate reinforcement learning for enhanced adaptability, and develop personalised
interaction models. The integration of multimodal feedback systems and large-scale trials
in real clinical settings will also be crucial for validating the system’s reliability, safety,
and user acceptance. It is believed that such an ongoing research programme will indeed
enhance care quality and delivery across diverse clinical contexts in healthcare services.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

CNN Convolutional Neural Network

DIL Deep Imitation Learning

DOF Degrees of Freedom

GAIL Generative Adversarial Imitation Learning
HRI Human-Robot Interaction

IL Imitation Learning

IRL Inverse Reinforcement Learning

LSTM Long Short-Term Memory

MATLAB Matrix Laboratory (MathWorks software)
MDP Markov Decision Process

PID Proportional-Integral-Derivative (controller)
PvD Program via Demonstration

RGB-D Red—-Green-Blue with Depth (sensor)

RL Reinforcement Learning

ROS Robot Operating System

SGD Stochastic Gradient Descent

SLRS Self-Learning Robotic System

SSD Single Shot Multi-mid-Box Detector

YOLOv8  You Only Look Once version 8
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