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Abstract22

This paper explores changes in age–specific mortality risk across periods and cohorts during23

the twentieth century in the developed world. We use and compare two approaches—one24
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graphical (Lexis plots) and one statistical (an adapted Hierarchical age–period–cohort model)—25

that control out overall trends in mortality, to focus on discrete changes associated with26

specific events.27

Our analyses point to a number of key global and local events in the Twentieth Century28

associated with period and/or cohort effects, including the World Wars and the influenza29

pandemic of 1918–19. We focus particularly on the UK but look at other countries where30

results are particularly noteworthy, either substantively or methodologically. We also find a31

decline in mortality in many western countries, specifically in the 1948 birth cohort, which32

may be associated with the development of post–war social welfare policies, the economic33

investment in Europe by the United States, the accessibility of antibiotics such as penicillin,34

and, in the UK, the founding of the NHS.35

We finish by considering the advantages and disadvantages of using the two methods with36

different sorts of data and research questions.37
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Introduction44

Age, period, and cohort methods attempt to disentangle three ways that societies can change45

over time: as individuals age, as time passes, and as birth cohorts replace one another. This46

paper compares two such approaches, one statistical and one graphical, using a worked47

example of mortality in the Twentieth Century.48

Age–standardised mortality risk decreased during the twentieth century for most groups of49

people, in most places in the world (The World Bank, 2017). Separate from this overall50

downward trend there are annual deviations in mortality. Some of this deviation will occur51

naturally without any particular cause: everything varies. However, some of this deviation52

will be due to important influences or events whose effects are worthy of study.53

In this paper we explore deviations in age–specific mortality risk during the twentieth century54

in a number of developed countries, considering both global and country–specific patterns.55

Our interest is not in the long–run downward trend in mortality but in the discrete changes56

in mortality seen as a result of global and national events. The twentieth century was notable57

for remarkable social and technological progress, as well as catastrophic global conflict, and58

we explore how these affected mortality. Many of these events were global, whilst others were59

geographically specific.60

Deviations over time in mortality can occur in two ways. First, period effects affect everyone61
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at the time who is exposed to the event. Second, cohort effects occur when events affect62

specific generations of people born at a particular time in history. Throughout their lives63

individuals in affected birth cohorts benefit from or are hindered by these events that occurred64

in their formative years. Whilst age effects also exist (the risk of death increases broadly65

exponentially as age increases, an important consideration in ageing societies), there are66

fewer deviations caused by specific ages, with the notable exception of the ‘accident hump’ in67

males around age 20 (Heligman and Pollard, 1980).68

We use this example of mortality to compare two approaches to APC analysis, one visual and69

one statistically modelled. First, we use Lexis plots to show the patterns in annual changes70

in age–specific mortality in all developed countries with data available, to see fine–grained71

differences between different combinations of period and cohort effects. Second, we use72

a modified version of the hierarchical age–period–cohort model (HAPC) (Yang and Land,73

2006) in part to find the statistical significance of such patterns, and we compare different74

approaches to setting up these models. In both cases we do not consider long–running75

linear age–period–cohort (APC) trends; instead we focus only on deviations from those76

trends, avoiding the issue of the APC identification problem (Glenn, 2005). Our focus is77

predominantly UK–based, but we consider other countries where the results are particularly78

interesting, either substantively or methodologically.79

This paper thus makes both substantive and methodological contributions. Substantively,80

we point to a number of key occasions in the twentieth century that had period and/or81

cohort effects, both global and geographically specific, including the effects of the World82

Wars, the flu pandemic of 1918, and the post–World War II social welfare policies, such83

as the establishment of the NHS in the UK. Methodologically, we present novel graphical84

and statistical techniques for finding discrete APC effects whilst removing long–run effects.85

We compare the advantages and disadvantages of each approach, and consider how the86

approaches can potentially be combined into a broader methdological framework.87

Literature88

Age, period, and cohort effects on mortality89

Suzuki (2012, p. 452) outlines the following fictional dialogue to illustrate the difference90

between age, period, and cohort effects:91

A: I can’t seem to shake off this tired feeling. Guess I’m just getting old. [Age92

effect]93

B: Do you think it’s stress? Business is down this year, and you’ve let your fatigue94

build up. [Period effect]95

A: Maybe. What about you?96

B: Actually, I’m exhausted too! My body feels really heavy.97

A: You’re kidding. You’re still young. I could work all day long when I was your98

age.99
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B: Oh, really?100

A: Yeah, young people these days are quick to whine. We were not like that.101

[Cohort effect]102

Age is the measurement of time passed since birth. Period is ‘historical time’ when the103

measurement was taken, so represents a snapshot of all people, of all ages, in the study at104

that instance (Goldstein, 1979, p. 19; Suzuki, 2012, p. 452). A cohort refers to:105

. . . those individuals (human or otherwise) who experienced a particular event106

during a specified period of time. The kind of cohort most often studied by social107

scientists is the human birth cohort, that is, those persons born during a given108

year, decade, or other period of time (Glenn, 2005, p. 2, original emphasis).109

Ryder argues that “[e]ach cohort has a distinctive composition and character reflecting the110

circumstances of its unique origination and history” (1965, p. 845).111

Each of age, period, and cohort can have effects on individuals. Considering mortality as the112

outcome of interest, an age effect might mean that the risk of death increases or decreases113

as a person gets older. A period effect could be caused by an event that affected people114

at a particular snapshot in time, for example a war, disease, or economic recession causing115

increased likelihood of death across individuals of all ages at that point in time. A cohort116

effect might manifest as subsequent cohorts having incrementally lower mortality risk than117

earlier cohorts, perhaps because of improvements in living standards in their formative years.118

However, it could also occur as a result of events which have an impact on people in their119

formative years — an effect that stays with those people throughout their lives. For this120

paper we are primarily interested in period and cohort effects, since the (increasing) effect of121

age on mortality is relatively well established, and there are fewer reasons to expect discrete122

effects that apply to most specific age groups (as opposed to long–run gradual changes over123

the life course).124

We anticipate being able to detect period effects for significant events such as war, famine, or125

epidemic because more deaths are observed at the time of the event. Literature on develop-126

mental plasticity (Gluckman, Hanson and Buklijas, 2010) suggests cohort effects on mortality127

over the life course are also plausible. Developmental plasticity as a theory is primarily128

adopted and advanced through the Developmental Origin of Health and Disease (DOHaD)129

hypothesis and life course epidemiology (Hanson and Gluckman, 2016). These hypothesise130

that an individuals’ developmental environment affects the structure, physiology, and function131

of organs and systems throughout the individual’s life (Fall et al., 1995; Wadsworth and132

Kuh, 1997; Ben–Shlomo and Kuh, 2002; Ben–Shlomo, Cooper and Kuh, 2016; Hardy and133

Tilling, 2016; Newman, 2016). ‘Better’ in utero and early–life environment leads to longer,134

healthier lives, while lower quality early–life environments lead to shorter, less healthy lives135

(Hertzman, 1999, p. 85). For instance, links between prenatal malnutrition and low birth136

weight, neonatal mortality, cardio–vascular disease, coronary heart disease, ischaemic heart137

disease, and hypertension have been demonstrated (Hales and Barker, 1992).138

Under this paradigm a stimulus—such as economic circumstances, sudden improvement in139

healthcare, and so on—can have biological and physiological effects on the individual that last140

4



throughout their life course, which has been shown to affect their morbidity and mortality. If141

the same stimulus affects a large number of individuals from the same or similar cohorts in142

the same way, patterns of mortality will be seen throughout the lives of the cohort members143

as they age.144

There may also be cohort effects which do not become apparent at birth, but later in life.145

This could be because formative years occur long after birth; for instance, with smoking146

uptake the age of exposure is much older than birth (Schöley and Willekens, 2017, p. 633). It147

could also be because cohort effects are delayed and only appear long after exposure. As such148

there may be a higher risk of psychological and physiological trauma among older cohorts149

which may manifest as differences in mortality later in their life course, with earlier life events150

being the cause.151

Events that affected mortality in the twentieth century152

A number of significant events occurred in the twentieth century, both globally and nationally,153

that are likely to have affected population mortality in the developed world, both as period154

effects and as cohort effects. Here we briefly discuss four that we see as particularly important:155

World War I; the 1918–19 influenza pandemic; World War II; and the enormous social welfare156

progression that occurred in many countries following the end of the second world war,157

including the formation of the National Health Service (NHS) in 1948 in the UK.158

We would expect a period effect increase in mortality associated with the First World War of159

1914–1918. For the most part we would expect this to be limited to military personnel in160

countries participating in the war, but we might expect to see a period effect in the civilian161

population in countries with high civilian casualties, such as those in continental Europe. In162

other countries such as the UK, civilians were not directly affected by the conflict but effects163

of deteriorating environmental conditions may be detectable. A cohort effect among those164

born during the conflict is also plausible, for example because of poor maternal nutrition,165

exposure to disease, maternal stress, or otherwise inadequate early–life health care as a result166

of the conflict.167

It is also possible that the reverse could be true. There is evidence that war, or rather the168

threat of war, led to improvements in public health in the early twentieth century, especially169

for expectant mothers and young children, as the state sought to ensure sufficient numbers of170

healthy combatants should war break out (Dwork, 1987). Similarly, Winter and Prost argue171

that the Great War resulted in lower mortality among British males aged over 40 (2005, p.172

160). In sum, World War I likely had multifaceted effects on mortality, both instantaneous173

(period) and long–run for those in their formative years at the time (cohort).174

The 1918–19 influenza pandemic is likely to result in detectable period effects as recent175

estimates have put the number of deaths from this disease at 50 million worldwide, or176

approximately five per cent of the global population (Patterson and Pyle, 1991; Johnson177

and Mueller, 2002). Approximately 250,000 died in the UK. Cohort effects for those born178

during the outbreak (1918 to early 1919) are also well established in the literature. Increased179

incidence of cardiovascular disease (Mazumder et al., 2010), decreases in life expectancy at180

birth (Noymer and Garenne, 2000), and increases in socio–economic deprivation (Almond,181
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2006) have been demonstrated in cohorts in the United States born with prenatal exposure to182

the disease. Of course, it is difficult to tell apart cohort effects of the war and the influenza183

pandemic given their temporal proximity. In the case of period effects the different age and184

gender of those theorised to be affected by each give a clue as to what caused each (with185

young men most likely to be affected by the war, whilst the effects of the influenza pandemic186

affected both men and women, and a broader age range).187

Even populations that diverged following the influenza pandemic, such as those of East188

and West Germany, show remarkably similar mortality ‘scars’ (Minton, Vanderbloemen and189

Dorling, 2013) in cohorts born in 1918–1919:190

. . . those born in early 1919 who were exposed prenatally to the most virulent191

phase in the Fall of 1918, had lifetime defecits in economic productivity and192

in education, as well as excess work disability, which suggests developmental193

impairments or lifetime health issues (Mazumder et al., 2010, p. 26).194

Following the First World War, both female and male children born in the group of cohorts195

between approximately 1926 and 1945 have been found to experience a rapid improvement196

in mortality, which slowed for subsequent generations born after 1945 (Willets, 2004). The197

cause of this ‘golden’ cohort effect is not known, but it is hypothesised that a combination of198

factors led to their improved mortality compared to preceeding and subsequent generations.199

Most in this birth cohort were not old enough to have been involved in World War II, and200

post–war rationing led to an improved diet for this cohort. They also likely benefited from201

the development of the welfare state, declining smoking prevalence, and being born during a202

period of relatively low fertility (Willets, 2004).203

We anticipate a detectable period–related increase in mortality during World War II for both204

military and civilian populations. Civilian populations are likely to be more affected than in205

World War I, due to the changing nature of warfare, specifically the increase in bombings of206

civilians made possible by advances in technology. However, as with World War I, we would207

expect the larger effect to be found among young men.208

As well as the period effects there could also be cohort effects among individuals born during209

World War II in some contexts. Specific events such as the Siege of Leningrad and the Dutch210

Hongerwinter, where significant numbers of individuals perished, have been shown to be211

associated with period and cohort mortality increases in the affected populations. Survivors212

of the Siege of Leningrad had a significantly higher risk of dying from breast cancer (Koupil213

et al., 2009), ischaemic heart disease, or stroke (Sparén et al., 2004) compared to those born214

during the same period who were not exposed to the seige. Similarly survivors of the Dutch215

Hongerwinter who were part of the Dutch Famine Birth Cohort Study were more likely to216

have blunted cardiovascular and cortisol stress responses, which are in turn associated with217

a range of adverse health outcomes (Carroll et al., 2017). Other studies have shown a lack218

of effect on other morbidities, however: participants in the Leningrad Siege study did not219

appear to be at greater risk of diabetes (Stanner et al., 1997), whilst the risk of coronary220

heart disease may be mediated by obesity in adulthood (Stanner et al., 1997, para. 17).221

Following the Second World War, many Western nations implemented a number of progressive222

policies aimed at improving population health and wellbeing. In the UK, these covered a223
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range of social issues, such as National Insurance, housing, education, and child welfare,224

as well as the nationalisation of a number of key industries. Perhaps the most prominent225

example was the formation of the NHS in 1948 (Rivett, 1998). This involved a comprehensive226

reorganisation and rationalisation of medical provision, and treatment became free at the227

point of access for all. This included previously marginalised groups, such as working–class228

women, for whom treatment had previously been limited due to the prohibitive cost (Webster,229

2002). A detectable period effect of reduced mortality is plausible at this time; although230

no new treatments were immediately developed with the founding of the NHS, existing231

treatments were suddenly accessible to everyone regardless of ability to pay.232

A cohort effect is also plausible for cohorts born around this time in the UK in particular.233

Limited availability of antenatal and perinatal care—critical periods for the child—prior to234

the introduction of the NHS is likely to have adversely affected the developmental trajectory235

of many children. With the NHS, pregnant women could now access antenatal care, for the236

first time often provided by general practitioners, and give birth in hospital. Increasing the237

opportunities for intervention at critical periods in utero could result in improved health and238

reduced mortality over the whole life course for the infant. Similar effects could be found in239

other countries, associated with other social welfare policies introduced at a similar time.240

Moreover, exposing pregnant mothers to the health care system through antenatal care and241

a hospital birth may have the cultural effect of ‘normalising’ the use of medical care. If this242

contributed to earlier detection of disease or illness this cultural effect could have benefits243

to the mortality of children born under the NHS throughout their lives, for whom seeing a244

doctor became part of their early socialisation. The NHS, along with other public health245

improvements in the UK and elsewhere, are likely to have resulted in lower mortality for246

people born in those post–war years onwards.247

Methods248

Mortality data for 40 countries1 with data available for the twentieth century were obtained249

from The Human Mortality Database (University of California, Berkeley (USA) and Max250

Planck Institute for Demographic Research (Germany), 2017). This provides full demographic251

data on mortality rates, deaths, and populations, for all ages and for all years since at least252

1900 for many developed countries (although the data goes further back it is less reliable, so we253

have not used this older data). Our aim is to use this data to analyse discrete, non–continuous254

changes in mortality rates, net of any long–run improvements in mortality.255

Here we present two methods: one visual and one statistical. First, we use Lexis plots of256

mortality change (the change in the mortality rate for a given age from one year to the257

next). We use mortality change for a given age, rather than mortality, in order to remove258

long–run changes in mortality over time. Lexis surface diagrams have long been used in259

demography to depict cohort information as well as period and the event of interest (Derrick,260

1927; Kermack, McKendrick and Mckinlay, 1934; Carstensen, 2006; Healy, 2018). Lexis261

1Countries included were those with consistent mortality data available for the whole of the twentieth
century. The full list of countries is available in the online appendix.
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diagrams were produced using the Lattice package for R, version 0.20-45 (Sarkar, 2008).262

These plots were made for all countries in the Human Mortality Database; although only263

some are shown in this paper, the rest can be found in the online appendix.264

Interpreting Lexis diagrams, especially using them to disentangle age, period, and cohort265

effects, in the presence of a ‘linear drift’ is problematic and therefore controversial as the266

linear drift tends to account for the majority of variation in mortality (Murphy, 2010, p. 371).267

However, this is not a problem here, as we focus on non–continuous, discrete effects, and268

long–run changes in mortality are removed by modelling change in mortality rates, rather269

than the mortality rate itself.270

An additional advantage of this approach is that it allows us to see period and cohort effects271

that only affect specific age groups. However, as a descriptive approach it cannot quantify the272

level of uncertainty around those effects given the data that we have, and often patterns are273

difficult to see when there is a lot of random variation. What it does do, is allow researchers to274

identify possible patterns and then choose a modelling approach that suits the quantification275

of those patterns.276

One approach that could be taken is to adapt a Lee–Carter style model to allow it to model277

similar APC trends. In general, Lee–Carter models have been used for the purpose of278

forecasting evolving mortality rates, and so are often used by actuaries and demographers279

where that is the focus of interest. Where these models have been extended to allow the280

modelling of, for instance, cohort–type features (see (Renshaw and Haberman, 2006)) this281

has generally been for the purpose of evaluating and validating forecasting models, rather282

than those features being the primary purpose of fitting those models. An effective strategy283

for comparing out–of–sample fit between models is demonstrated by Hyndman and Koehler284

(2006) and Pascariu, Lenart and Canudas–Romo (2019), and we consider such approaches285

important for comparing demographic forecasting approaches. However, in practice a model286

with an a priori specification of structure and variables which correspond directly to readily287

interpretable sociological or epidemiological quantities of interest can be immensely valuable288

for researchers whose aims are to understand the processes which gave rise to the observations,289

even if the in– or out–of–sample fit of the model is poorer than for models with less directly290

interpretable parameters2. As such we do not take this approach, aiming instead for a291

model which explicitly parameterizes and identifies APC features. These approaches are292

complementary but distinct, most notably in that our aims and framing are more sociological293

and epidemiological than actuarial.294

Instead we use modified hierarchical age–period–cohort (HAPC) models constructed for295

countries or sub–regions of interest that control for the linear trends in APC, allowing us to296

focus on discrete, non–continuous change.297

2As an example of this a difference–in–differences (DiD) model for time series data comparing intervention
and control populations is often more valuable for users than a model based on smoothed splines or polynomial
terms, even if the latter leads to improved fit, because for a DiD model the intervention effect is explicitly
modelled and interpretable to the user. Similarly we argue that our model specification, which explicitly
includes age, period, and cohort terms to estimate, may be especially valuable for understanding the
substantive processes which may have given rise to the data observed, even if a Lee–Carter based model has
superior fit.
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The original version of the HAPC model (Yang and Land, 2006) treats the age effect as a298

fixed effect polynomial, with the period and cohort effects as cross–classified random effects.299

The model can be specified as (for a continuous outcome variable):300

yi(j1,j2) = β0j1,j2 + β1Agei(j1,j2) + β2Age
2
i(j1,j2) + εi(j1,j2) (1)

β0j1,j2 = β0 + u1j1 + u2j2 (2)

εi(j1,j2) ∼ N(0, σ2
e), u1j1 ∼ N(0, σ2

u1), u2j2 ∼ N(0, σ2
u2) (3)

where yi(j1,j2) is the dependent variable (in our case age–cohort specific mortality from the301

previous year) for individual (or in our case age–period measurement) i in cohort group j1302

and year of measurement j2. u1j1 represents the cohort random effects and u2j2 the period303

random effects, both of which are assumed to be normally distributed, as is the level one304

residual term (εi(j1,j2)).305

When considering age, period, and cohort there is a problem that by knowing two variables306

we can perfectly predict the other: age equals period minus cohort, so the three variables have307

only two degrees of freedom. This is referred to as the ‘identification problem’ (Glenn, 2005;308

Bell and Jones, 2013). The HAPC model (Reither, Hauser and Yang, 2009), as well as the309

‘intrinsic estimator’ (Yang and Land, 2006; Yang et al., 2008), are attempts to statistically310

separate the three compondents. Unfortunately both of these models have been shown to311

apportion linear trends in ways that often do not fit with the true data generating processes312

(DGPs) (Luo, 2013; Bell and Jones, 2014a, 2014b, 2018; Luo and Hodges, 2015).313

In our case, however, we are interested only in non–linear period and cohort stochastic314

fluctuations, once the age, period and cohort long–run trends are controlled. As such we can315

control for these trends in the fixed part of the HAPC model, leaving only discrete deviations316

in the random part of the model (see Chauvel, Leist and Ponomarenko (2016)). Whilst we317

cannot control for all three of APC in the fixed part of the model because of the identification318

problem, controlling for two of APC will control out the linear component of the third by319

default. Our first version of this model can therefore be specified as follows:320

MortalityChangei(j1,j2) = β0j1,j2 + β1Agei(j1,j2) + β2Age
2
i(j1,j2) + εi(j1,j2) (4)

β0j1,j2 = β0 + Periodj1 + u1j1 + u2j2 (5)

Here MortalityChangei(j1j2) is the change in mortality rate for a specific age group, in321

comparison to the previous year, for age–year cell i in year j1 and birth year j2. This is the322

same as Equations (1) to (3), but with the addition of a Period term in the fixed part of323

the model, which means all APC linear trends will be absorbed from the period and cohort324

residuals into the fixed part of the model. However, because we are using a measure of325
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mortality change (as opposed to the number of deaths) we would not expect to see much in326

the way of linear trends in any case.327

A downside of this approach is that because we are using age–period cells as our units of328

analysis, we cannot account for the differences in size of the different groups, and so our329

measures of uncertainty will be somewhat inaccurate (a cell of 10 people is treated the same330

as a cell of 10,000 people). An alternative approach would be to model the number of deaths,331

controlling for the size of the population. To do this we use a Poisson model for the number332

of deaths in a given age–year cell. We additionally use an offset of the expected number of333

deaths given the population size of that cell, if deaths were distributed evenly across the334

population. The inclusion of the offset means that we are effectively modelling the mortality335

rate by taking account of the population size in our estimation of uncertainty (Jones et al.,336

2015). Thus, our model is specified as follows:337

Deathsi(j1,j2) ∼ Poisson(πi(j1,j2)) (6)

Loge(πi(j1,j2)) = Loge(Ei(j1,j2)) + β0j1,j2 + β1Agei(j1,j2) + β2Age
2
i(j1,j2) (7)

β0j1,j2 = β0 + β3Periodj2 + uj1 + uj2 (8)

uj1 ∼ N(0, σ2
u1);uj2 ∼ N(0, σ2

u2) (9)

V ar(Deathsi(j1,j2)|πi(j1,j2)) = πi(j1,j2) (10)

There are a number of key differences between this model and that specified in Equations338

(1)–(3). First, as stated above, we use a Poisson model with log link function, meaning we339

assume that the level 1 variance is equal to the estimated mean deaths (πi(j1,j2)), and we340

model deaths with an offset, Expected Deaths Ei(j1,j2) so we are effectively modelling death341

rates (see Jones et al., 2015). We also include Periodj2 in the fixed part of the model, as in342

Equation (5). Between this and the Agei(j1j2) variable, we are controlling for all linear effects343

of age, period, and cohort because of the exact dependency between the three terms3.344

In both of the models above we cannot trust the estimates of β1 or β3 (because they will345

incorporate any cohort linear effects if they exist in the DGP), but we are not particularly346

interested in their estimates. We can say that u1j1 and u2j2 will be accurate estimates of347

deviations from the long–run trends in periods and cohorts (whatever they are), and we can348

be confident (linear) APC trends will not be included in those estimates. However, there349

may be some long–run, but not linear, trends remaining in these residual estimates which350

3These models assume the Poisson (level 1) residuals are not overdispersed - we would encourage researchers
to check this when using the Poisson link function
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should not be interpreted as their meaning will depend on the trends controlled out in the351

fixed part of the model.352

We removed data for individuals aged 91 years and over from our analysis, and removed data353

for birth years before 1900. In both cases there were significant problems with the data prior354

to this date and at older ages, as well as artefacts from imputation. See Section 5.4 of the355

HMD methods protocol for methods used consistently in the database for older populations356

aged 90+ (Wilmoth et al., 2021). The models were fitted in MLwiN (Charlton et al., 2017)357

using R and the R2MLwiN package (Zhang et al., 2016) using MCMC (Browne, 2017), with a358

500,000 burn–in and 1,000,000 iterations.359

Full HAPC results tables can be found in an online appendix. It should be noted, however,360

that the APC fixed terms should not be interpreted because of the APC identification problem.361

Full replication code can also be found in the online appendix.362

Results363

In this section we present findings predominantly from England and Wales, with comparisons364

with other countries where useful, as a case study. Figures for all countries are available in365

the online appendix. The performance of the models for other countries is comparable to366

those for England and Wales. We have also written a short comparison of three countries,367

which can be found in the paper’s online appendix.368

Figure 1 shows a Lexis surface for mortality change in England and Wales, with blue and369

green representing a decline in mortality, and red and orange representing an increase in370

mortality on the previous year for a given age of person. Cohort effects appear as diagonal371

‘scars’ (Minton, Vanderbloemen and Dorling, 2013), emanating through age–time upwards372

and rightwards from the affected birth cohorts, whilst period effects appear as vertical scars.373

A red line followed by a blue line might represent temporary excess mortality caused by an374

event such as the influenza pandemic. A blue line followed by a red line would represent375

a temporary decrease in mortality, that later returned to its previous level. A mild winter376

might exhibit such an effect if excess winter deaths are lower than neighbouring years. Figure377

1 shows evidence of both period and cohort effects in England and Wales. Whilst there are378

some notable differences between this figure and the equivalents for other countries, this379

presents a good starting point given the fullness of data and some key features that are380

present in other countries as well.381

In addition to these effects, it is possible to see longer–lasting changes in age–specific mortality382

change, where a decrease in mortality change is not followed by an increase, and vice–versa.383

A lone red line represents a long–term increase in mortality rate, for example caused by an384

enduring economic crash and recession. A blue line without a corresponding red line would385

represent a long–term decrease in mortality rate, for example due to a medical advancement.386

There are some cohort effects visible on the Lexis surface plot (Figure 1) for females and387

males born approximately every ten years between approximately 1840 and 1900 (upper left388
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Figure 1: England and Wales total population Lexis surface plot for annual change in age-
specific mortality. Red signifies worsening mortality compared to previous year; blue signifies
improved mortality

quadrant). We believe these are spurious and a result of data imputation from the decennial389

census, partly because they are not detected in the HAPC models, which we discuss below.390

The equivalent HAPC model for England and Wales produces year (period) and cohort391

residuals. These are shown in Figures 2 and 3 respectively for continuous-Y models with392

change in mortality as the outcome variable. Figures 4 and 5 respectively show the residuals393

of the Poisson model with deaths as the outcome variable, both for the change in mortality394

rate models and the death count Poisson models. The period residuals can be interpreted as395

the deviation in a given year from the overall linear period trend, which is controlled out in396

the fixed part of the model. The cohort residuals can be interpreted as the deviation for a397

given birth cohort, again from the overall linear cohort trend.398

It should be noted that, for the Poisson models, there are continuous trends visible in both399

Figure 4 and 5 which have not been completely controlled–out in the fixed part of the model,400

including a rather dramatic increase in mortality seen in the later cohorts in Figure 5. These401

are continuous effects that are non–linear and so were not controlled (for example, quadratic402

and cubic effects). Given these are not interpretable without knowing what the linear portions403

of these effects are, these should not be interpreted, and only discrete, sudden changes around404

these continuous curves should be analysed. Their presence is perhaps a disadvantage of the405

approach when the outcome includes non–linear continuous trends, unless an appropriate406

functional form can be used to absorb those trends. Because the outcome has been detrended407

by modelling year–by–year change in the other models, this is not a problem. However, in408

both models, a number of features can be identified which we discuss now.409

In Figures 1, 3, and 5 there is a noticeable cohort effect with increased mortality in the cohort410
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Figure 2: Plot of year (period) residuals in England and Wales for males, from the adapted
continuous-Y HAPC model of change in mortality rate. The residuals can be interpreted as
the deviation from the overall (and unknown) linear period trend.
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Figure 3: Plot of birth year (cohort) residuals in England and Wales for males, from the
adapted continuous-Y HAPC model of change in mortality rate. The residuals can be
interpreted as the deviation from the overall (and unknown) linear trend in cohorts.
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Figure 4: Plot of year (period) residuals in England and Wales for males, from the adapted
HAPC Poisson model of mortality rate. The residuals can be interpreted as the deviation
from the overall (and unknown) linear period trend.
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Figure 5: Plot of birth year (cohort) residuals in England and Wales for males, from the
adapted HAPC Poisson model of mortality rate. The residuals can be interpreted as the
deviation from the overall (and unknown) linear trend in cohorts. The strong rise in later
cohorts is likely an artefact of the non-linear continuous effects; it should not be interpreted.
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born in 1918. Whilst this could be in part due to World War I, given the lack of effect for411

those born earlier in the war, and the similar effects found for both males and females, it412

seems likely that this is primarily the result of the 1918–19 influenza pandemic. This effect is413

noticeable in that it appears almost universal across all countries with sufficient data quality414

to identify such an effect, including countries that were less affected by the influenza outbreak,415

for example Australia where the pandemic affected the country later and to a lesser extent416

than European countries (Curson and McCracken, 2006).417

A period effect is also clearly visible around the year 1918 in females and males under the age418

of about 55, in all countries with data going back that far. A sharp increase in mortality is419

followed by a commensurately sharp decrease, indicating a sudden increase in deaths caused420

by the pandemic which then returned to the previous level. For males there is an additional421

effect on mortality in the preceding years for those between ages 15 and 35 in Great Britain422

and Italy. This high increase in mortality is concentrated in young men during the entirety of423

the First World War, reflecting the increasing deadliness of this conflict for military personnel.424

A number of other countries that we might expect similar effects for (for example France or425

Germany) have missing data at around the time of World War I.426

Literature on the cohorts born around 1931 (1926–1945) suggests it may have been possible427

to find a positive effect of being born around these times (Willets, 2004). However, we do428

not see clear evidence of such a cohort effect.429

Another period effect appears around the Second World War. In Great Britain the population430

from birth to old age exhibits higher period mortality in the year around 1940, contemporane-431

ous with The Blitz. This suggests either civilians suffered greater exposure to the conflict or432

environmental conditions worsened during this time, or both. Although that specific pattern433

does not appear in other countries, some countries involved in World War II do show increases434

in mortality for young men. This seems more extensive than the equivalent effect of World435

War I, affecting in particular Finland, Great Britain, Italy, and the Netherlands (again there436

was limited data for France and Germany).437

The Netherlands also appears to show an increase in mortality associated with World War II438

for the whole population. Based on the plot for The Netherlands a decline in period mortality439

around World War II is detectable in the Dutch population (Figure 6). The Lexis surface440

plot shows increased mortality for all ages and both sexes during the Second World War,441

but for a greater time period beginning in 1940, and in particular in 1945. This suggests a442

greater exposure to the conflict for the Dutch civilian population than the UK population or443

other countries with mortality data. As The Netherlands was occupied from May 1940 until444

1944–1945 this is to be expected.445

Of particular interest is the mortality rate in the year 1945, where the increase in mortality446

spans a much greater age range. By the end of 1944 much of The Netherlands south of the447

Waal was liberated, but areas north of the Waal, included the densely populated coastal448

provinces, remained occupied until 1945. It is these areas that suffered the Hongerwinter449

(Warmbrunn, 1963, pp. 14–17). Therefore, it is possible that much of the increase in mortality450

rate observed in 1945 could be because of the famine in occupied areas of The Netherlands,451

before the mortality rate recovered following the end of the Second World War.452
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Figure 6: Lexis surface plot of mortality for The Netherlands

Both males and females show improved mortality rates in the years immediately following453

the end of World War II. There does not appear to be evidence of a cohort effect for those454

born during World War II in any countries (either positive or negative).455

A less obvious, but nonetheless present, change in cohort mortaltiy rate is observed among456

those born in the year 1948 in a number of countries. In England and Wales this is visible457

in Figures 1 (a diagonal line originating from 1948), 3 and 5. Similar effects are visible in458

Canada (Figure 7) and the USA (Figure 8). In each case a small reduction in mortality459

is evident and this is not followed by a comparable increase in mortality in the following460

cohorts. The effect is small, but does suggest people born in those countries in 1948 and later461

experienced a lower mortality rate throughout their lifecourse than individuals born even462

just one year previously.463

The obvious change that occurred in England and Wales, as with the rest of the UK, at this464

time was the formation of the NHS. If the NHS is indeed the cause of this improvement465

in cohort mortality, the implication is that being born under the NHS institution gave an466

advantage in terms of mortality. Whilst those born just prior to 1948 lived the majority of467

their lives under the NHS, they did not appear to receive this benefit.468

This could be because pre–natal and early life care are particularly important in improving469

mortality for individuals throughout their lives. Alternatively (or additionally) the NHS may470

have had a cultural effect on those born under it—and their parents—making them more471

likely to seek treatment through it throughout their lives.472

Whilst the localisation of this effect to 1948 implies the NHS is important it is not the only473

possible explanation. The winter of 1946–1947 in Europe was especially harsh with fuel and474

food shortages reported from late January 1947. If the severity of this winter affected the475
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Figure 7: Canada Lexis surface plot

nutrition available to pregnant mothers it may have also affected the later morbidity and476

mortality of their children born up to early 1948. It is possible the lower mortality in 1948 is477

partially explained by the returning to background levels of mortality after an increase in late478

1947. However, if this were the case, we would expect to see a paired banding of constrasting479

colours (red, then blue) as seen in the case of the 1919 birth cohort, rather than the single480

blue line seen for the 1948 cohort.481

The presence of the 1948 effect in countries other than England and Wales perhaps suggests482

a more global explanation. First, all of these countries implemented health and welfare policy483

after the war, and the finding could be a result of a more general improvement in health and484

welfare provision as a result of these. For instance, in the UK the formation of the NHS was485

situated within a context of high employment, the implementation of welfare policies such as486

the National Assistance Act (1948) – which was itself an addition to the National Insurance487

Act 1946 which introduced social protections, nationalisation of energy and rail transport,488

and substantial financial aid from the United States in 1946 and 1947 (Medlicott, 1967; Hill,489

1970, p. 291). Similar social welfare improvements in other countries may have led to similar490

improvements in mortality. However, this does not provide a clear reason why this would491

happen specifically in 1948, and not the years immediately before or after.492

Second, penicillin was first produced in bulk during the early 1940s, but became more493

accessible to patients as costs were driven down during the mid– to late–1940s. It is possible494

that penicillin became more accessible in 1948 in the UK, as well as in the US and other495

countries, leading to reductions in cohort and period mortality. Penicillin could have been496
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Figure 8: USA Lexis surface plot
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used both to treat young children, and also to treat new mothers (particularly for postpartum497

infections), improving survival rates of mothers in labour and thus, plausibly, the life outcomes498

of their children. However, penicillin also became more accessible at the same time in countries499

such as Portugal (Bell, Rui Pita and Pereira, 2017) which showed an increase in cohort500

mortality in 1948 (see appendix) suggesting, if penicillin availability were partly responsible501

for decline in cohort and period mortality, the picture is complicated by other factors. This502

work is very much exploratory and more work would be needed to confirm these hypotheses.503

Comparing the approaches: which works best?504

For the most part the two methods produce results in agreement with each other: they both505

find specific period and cohort effects relating to events, such as the 1919 flu pandemic and the506

World Wars. It should also be noted that both approaches are intrinsically exploratory—so507

neither should be used to test specific hypotheses about the presence of particular cohort or508

period effects. Rather they provide opportunities to explore the temporal patterns in the509

data. In that sense both methods ‘work’. However, it is clear that there are advantages and510

disadvantages to both that are worthy of discussion.511

The Lexis plots have the advantage of being unconstrained by the model parameters that512

are set. They allow for unanticipated interactions between APC, as seen for instance with513

the period effects of the World Wars which affected only a particular age group and gender.514

The Lexis plots also do not rely on some of the assumptions that the models are constrained515

by, for example normality of residuals or linearity of main effects. The main limitation of516

the Lexis plots in comparison to the modelled approach is the lack of information about517

uncertainty in the results that are produced. Where we are using population–level data, as518

here, this is less of a problem since there will likely be little uncertainty in the results found.519

With other data, for example survey data, this is likely to be more of a problem with results520

found that are actually caused by chance alone, and patterns missed in the ‘long grass’ of521

natural variability. There is also scope to combine the effects found in different countries on522

to single Lexis ‘curvature’ plots, allowing for interesting cross–national comparison (Acosta523

and van Raalte, 2019).524

Conversely the modelled approach does produce measures of uncertainty: confidence intervals525

relating to the period and cohort residuals, although these are potentially less accurate when526

the assumptions of the model are problematic. This is particularly evident in the Poisson527

models where continuous trends remain even after the inclusion of the linear APC terms528

in the fixed part of the model. It would seem sensible, therefore, to only use these models529

where the dependent variable is lacking in such trends, or can be de–trended by calculating530

change as we have done in our Normal model. A further disadvantage is a lack of flexibility in531

comparison to the Lexis approach: any interactions for example would need to be explicitly532

modelled, whereas these can be explored more readily with a Lexis plot.533

In general, certainly for this data, we find the Lexis plots are more effective than the HAPC534

model for the exploration of the data that we are using them for. However, with other data535

and outcomes which are, for instance, noisier—making it difficult to find trends in the Lexis536

plot—the HAPC model might be more appropriate if there are no trends in the residuals.537
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An approach that potentially combines the two approaches is outlined by Minton (2021).538

There a Lexis plot could be used to identify key features in the data which then could be539

explicitly modelled. The model residuals can then be plotted in a Lexis plot to see the extent540

to which the model ‘explains’ those features. Such a model could, in fact, incorporate features541

of Lee–Carter style models where the data deems them appropriate. Of course the model is542

then only as good as the researchers’ reading of the data, and the features of the Lexis plot543

would still need to be understood substantively. However it provides a potentially useful way544

to formalise features in the data seen visually, in model form.545

Conclusions546

This paper has explored period and cohort effects on mortality in developed countries during547

the twentieth century, using Lexis surface plots and hierarchical age–period–cohort models.548

The paper makes both a substantive and methodological contribution. Substantively, we549

have shown where key events appear to have affected national mortality rates, both as period550

effects and cohort effects. In particular, World Wars I and II both appear to have had period551

effects on male mortality, whilst the influenza pandemic of 1918–1919 appears to have had552

both a period and cohort effect on mortality across a number of countries. There also appears553

to be a cohort effect associated with 1947 in the Netherlands and a cohort effect, this time554

reducing mortality, associated with 1948 in a number of countries including Great Britain555

although the cause of this remains uncertain.556

Methodologically this paper has shown the value of APC analysis of non–linear stochastic557

variation, both using statistical methods (such as the adapted HAPC model) and graphical558

techniques (such as the use of Lexis diagrams). These techniques can be used to assess a range559

of outcomes across the health and social sciences, wherever age, period, and cohort stochastic560

effects are of interest. There is the potential for further work to assess different ways our561

modelling approach could be adapted, reducing the misspecification seen where non–linear562

APC trends remain in the residuals. A comparison between these sorts of models, and563

Lee–Carter models, would also be worthwhile, revealing the ways in which they complement564

each other and could potentially be combined to produce more robust inference.565

Of course, our results are only as accurate as the data we have used, and so some of our566

results could be driven by inaccuracies or inconsistencies in the data. Our results could be in567

part related to artefacts in the way some of the HMD data is imputed for some countries.568

Alternatively it could be a result of ‘phantoms’ in the data (Cairns et al., 2016) relating to569

different distributions of birth registrations throughout each year, which could in turn affect570

the accuracy of our mortality predictions for particular cohorts.571
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