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ABSTRACT: Declines in biodiversity resulting from anthropogenic disturbance to ecosystems have
focused attention on the role of biodiversity in ecosystem functioning. However, the high level of
complexity of ecosystems has made this a difficult topic to investigate. Much simpler model systems
incorporating small-scale, spatially delimited, artificial assemblages of species have been widely
used recently to address the link between biodiversity and ecosystem functioning (BEF). Their
simplicity lends tractability to these systems, but has also resulted in much criticism in the literature
over their relevance. Here, we examine the strengths and limitations of model systems and examine
how useful these systems might be in addressing several issues that are likely to represent future
challenges to understanding BEF: spatial scale, multiple trophic levels, variation, environmental
stochasticity and the choice of representative combinations of species. We find that model systems
have already played an important role in enhancing our understanding of BEF and are likely to con-
tinue this role in the future. However, they do have important limitations, and it is essential to take
these into account when putting results into the broader context of ecosystems and to improve the
level of integration of results with those from other methodologies.
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INTRODUCTION

There is a long history of the use of model systems to
address questions in marine ecology, probably reflecting
the more difficult working environment of the sea and
seabed compared to more accessible terrestrial systems.
Benthic and pelagic micro- and mesocosms have been
employed extensively in research, ranging from pollu-
tion effects to benthic—pelagic coupling (Lalli 1991), such
that they are now a routine tool for marine investigations.
In addition, marine ecologists have played a major role in
developing appropriate and rigorous experimental de-
signs and subsequent analyses (Gamble 1991, Under-
wood 1998), and the techniques required to maintain
and monitor environmental processes under different
experimental treatments are well established.

Few marine ecologists would therefore need con-
vincing of the utility of model systems for exploring
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relationships between biological and physico-chemical
processes. It is somewhat surprising therefore that rel-
atively few attempts (compared to freshwater and ter-
restrial ecology) have been made to take advantage of
such systems for exploring one of the key emerging
issues in ecology, the effects of biodiversity on ecosys-
tem functioning. There is a strong tradition in ecology
of investigating the abiotic drivers of ecosystem struc-
ture and dynamics, whilst biotic factors have been
highlighted only comparatively recently (Lawton 1994,
Chapin et al. 1997, Loreau 2000). This change in
emphasis has been given impetus due to current rates
of species loss and concerns as to how biodiversity
change will affect the efficiency with which ecosys-
tems will function, especially with regard to the provi-
sion of ecological goods and services (Ehrlich & Wilson
1991, Pimm et al. 1995, Costanza et al. 1997, Vitousek
et al. 1997, Chapin et al. 2000).
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Investigating the relationships between biodiversity
and ecosystem functioning is extraordinarily challeng-
ing given the complexity of real ecosystems. Model
systems are a subset of experimental models that have
been at the centre of biodiversity—ecosystem function-
ing (BEF) research (Lawton et al. 1998, Emmerson
et al. 2001, Hector et al. 2002, Petchey et al. 2002b,
Tilman et al. 2002). These systems use spatially delim-
ited replicates of precisely controlled starting condi-
tions (including identity, number and density of spe-
cies), and have been at the heart of much of the
controversy surrounding BEF research (see ‘Combina-
tions of species’ below). BEF is a shift from much of the
earlier biodiversity research in marine ecosystems, but
a field where marine ecologists can play a key role by
virtue of their experience and expertise in the use of
model systems. Here, we review the strengths and lim-
itations of the model system approach as revealed by
studies of BEF issues, mainly conducted in terrestrial
and freshwater systems. We then examine how model
systems might be used to address future challenges,
and how they may be better integrated with other
studies in order to obtain a more rigorous understand-
ing of BEF relationships.

MODEL SYSTEMS

The majority of model systems have been based on
microcosms or mesocosms, defined as ‘spatially delim-
ited artificially constructed model ecosystems’ (Petchey
et al. 2002b). In the present paper, we use this as the
basis of our definition of model systems as ‘small-scale,
spatially delimited, artificially constructed ecosystems,
allowing fine control over initial composition'. The
difference between micro- and mesocosms is rather
arbitrary (Lawler 1998), with mesocosms tending to be
larger in absolute size and, therefore, of greater bio-
logical and spatial complexity (Petchey et al. 2002b). In
the present paper we do not distinguish between
micro- and mesocosms, but differences in scale in the 2
types of systems will affect the strengths of some of the
criticisms of model systems in general. Our definition
of model systems also embraces spatially larger exper-
imental projects such as Biodepth (Hector et al. 2002)
and the biodiversity experiments in grasslands (Tilman
et al. 2002). The use of model systems for addressing
BEF questions has typically involved experimental
designs with biodiversity as the independent (explana-
tory) variable and the levels of a particular ecosystem
function (often productivity) as the dependent (re-
sponse) variable. The biodiversity metric most often
used is species richness (i.e. the number of species).

The main advantage of model systems is the high
level of control possible over initial conditions, includ-

ing the choice of species, numbers of individuals and
starting physico-chemical conditions. This and the rel-
atively small size of the individual treatment plots
means that configurations can easily be replicated
(Lawton 1995, Drake et al. 1996), increasing the level
of statistical power in the experimental design and the
persuasiveness of findings. Related to this is repro-
ducibility (Lawton 1995, Drake et al. 1996), whereby
starting conditions can be set up precisely and repeat-
edly with minimal variation. This high level of control
over initial configurations means that specific factors,
such as biodiversity, can be isolated and their role
in ecosystem functioning can be assessed unambigu-
ously. Small-scale systems are also easily monitored
and maintained. Model systems therefore potentially
offer a high level of tractability.

However, these high levels of control and replication
mean that model system experiments are very specific
to the system, organisms and experimental configura-
tion being used. In turn, this specificity means that
results are unlikely to be generally applicable across
systems, or indeed between different configurations of
the same system. In the same way, model systems are
designed to focus on specific independent factors,
allowing little understanding of the relative impor-
tance of these factors in relation to others in the full
and more complex system.

Model systems at the lower end of the spatial scale
(meso- and microcosms) involve smaller organisms,
with short generation times, making them well suited
to addressing questions requiring many generations
(Drake et al. 1996, Petchey et al. 2002b). This is an
important consideration, particularly when trying to
relate results from micro- and mesocosm experiments
to those from larger-scale terrestrial plant experiments
(Petchey et al. 2002b). If the experimental duration
encompasses many generations, the results will be
strongly driven by population dynamics. However,
terrestrial plant experiments tend to last for only a
few generations, and can therefore be more affected
by transient effects of initial species composition
(Petchey et al. 2002b). Comparison of results between
model systems at different spatial scales may thus be
inappropriate and misleading.

However, whilst smaller model systems might
appear to have advantages over field experiments,
these same advantages are seen by some as potential
problems. The short time required to run the experi-
ments, the modest cost and the ability to conduct the
experiment in the laboratory, rather than having to
regularly visit a field site, have been claimed as entice-
ments leading scientists to use these experimental
designs at the expense of experimental rigour (Car-
penter 1996). A more subtle concern is that of mean
field approximations (Petersen & Hastings 2001). In the
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tight experimental design of many small-scale systems
(cf. more open systems, e.g. Hector et al. 2002, Tilman
et al. 2002) levels of environmental variables are
approximated and constant, based on average levels of
environmental factors (e.g. light, temperature, humid-
ity). There is thus an implicit assumption that average
levels of environmental factors, rather than their
extreme levels or variability, determine ecosystem
dynamics (Petersen & Hastings 2001). This may not be
true and could lead to false conclusions being drawn
from such experiments. However, mean field approxi-
mation can be an advantage in the integration of
model systems with mathematical models and theory.
Mathematical ecosystem models generally use mean
field approximations for environmental variables, and
there is therefore a close conceptual link between
these types of approaches. This is particularly so for
aquatic model systems (Petchey et al. 2002b). Mathe-
matical models and theory often implicitly assume a
closed system and a lack of spatial structure, the trade-
mark of many aquatic model systems and quite dif-
ferent from most field experiments done in terrestrial
systems. Reduced spatial environmental variation cou-
pled with generally mobile individuals, leads to limited
spatial aggregation of individuals and therefore dy-
namics approximating mean field conditions (Tilman &
Kareiva 1997).

By definition, model systems are taxonomically and
structurally simplistic (Lawton 1995, 1996, Carpenter
1996, Drake et al. 1996). For example, there is little or
no spatial or temporal heterogeneity (Lawton 1995),
seasonal variation, disturbance, or large environmen-
tal perturbation (Lawton 1996). Whilst such simplicity
provides for an elegant and tractable experimental
design, important characteristics of real communities
and ecosystems will be excluded or distorted (Carpen-
ter 1996). Carpenter (1996) cites examples from limno-
logy (Gerhart & Likens 1975, Stephenson et al. 1984,
Bloesch et al. 1988) in which container size and exper-
imental duration have affected experimental results.

There are also criticisms of the identities of the spe-
cies that have been used in these experiments which
may contain unnatural assemblages (Lawton 1996)
and, hence, be a poor reflection of the real ecosystem.
Also, species may be used because they survive well
in microcosms, rather than being representative of the
wider community (Lawton 1995) in which the species
have long interconnected evolutionary histories (Law-
ton 1996). If species composition in individual-richness
treatments is not realistic, between-treatment differ-
ences may not represent the differences likely under
natural extinction/colonisation scenarios (Solan et al.
2004), leading to difficulties in interpretation.

Given these limitations and abstractions, it is not
surprising that model systems have attracted hostility.

For example, Carpenter (1996) has argued that the
limitations of this experimental approach mean that
most important questions in applied ecology cannot be
investigated by mesocosms, with statistical advantages
not offsetting the problems of limited scale, so that
there is considerable risk of obtaining misleading
results from these experiments. Despite the strong
views expressed by proponents and critics, there are
areas of general agreement. All realise that model sys-
tems are great simplifications of ecosystems, which are
highly complex, making it foolish and misleading to
extrapolate results from these experiments directly to
ecosystems. Another area of agreement is that these
model systems form only one part of a suite of tools for
studying ecosystems, including mathematical and con-
ceptual models, as well as field observations, experi-
ments and manipulations. However, views about the
contribution that model systems make do vary, from
‘supportive’ (Carpenter 1996) to 'a unifying thread for
the development of a conceptual framework for under-
standing higher levels of organization’' (Drake et al.
1996).

Clearly, model systems have an important role to
play in BEF issues. Observations and correlations on
their own do not allow us to distinguish between cause
and effect (Manly 1992), whilst field studies do not
allow the level of control and measurement permitted
in model systems, required to develop theories and
required to test hypotheses. Model systems therefore
provide us with an extremely valuable starting point in
our understanding of ecosystems. They should be
viewed as one component in an integrated suite of
methodologies that we can use to develop theories and
test hypotheses of ecosystem processes (Lawton 1995,
1996, Petchey et al. 2002b). They are extremely useful,
but must be used with care and in context.

FUTURE CHALLENGES FOR MODEL SYSTEMS

The sheer complexity of ecosystems has meant that
most research into understanding BEF has been of the
reductionist philosophy. This, combined with initial
limitations imposed by the experimental design of
model systems, has meant that many of the model sys-
tems used to date appear simplistic. Many of the future
challenges for model systems stem from the require-
ment to bridge the gap between these simple systems
and real ecosystems by incorporating further key
aspects of ecosystems in their design. Incorporating
additional ecological complexity in these systems with-
out losing their tractability requires careful thought
about which aspects should be included and about
experimental design. Below, we review a number of
ecosystem features that are likely to be important dri-
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vers in a BEF relationship, most of which have so far
not been addressed by model systems. We consider
why these features are likely to be important, the prob-
lems of incorporating them into model system designs,
and how these problems may be overcome.

Combinations of species

The majority of model systems have used terrestrial
plants (Schlapfer & Schmid 1999, Hector et al. 2002,
Tilman et al. 2002), and, as noted below, this is a
trophic bias that needs to be corrected. However, the
particular combinations of species used in model sys-
tems are also open to criticism. The independent
variable that is usually adopted in model system ex-
periments is species richness, with different levels of
this factor assembled in a controlled fashion, usually
species being chosen at random from a species pool.
This has generated a debate over whether effects on
ecosystem functioning are due to biodiversity through
resource partitioning or positive interactions, or are
due to ‘hidden treatments’. The hidden treatment that
has received the most attention has been ‘sampling
effects’ (Huston et al. 2000, Fridley 2001, Loreau &
Hector 2001, Huston & McBride 2002, Tilman et al.
2002). A sampling effect occurs when randomly chosen
(without replacement) combinations with more species
have a greater probability of containing a species or
groups of species with strong functional characteristics
than those combinations with fewer species, and there-
fore are likely to demonstrate a greater level of ecosys-
tem functioning through this chance selection. Conse-
quently, it is difficult to determine if an increase in
ecosystem functioning is genuinely due to an increase
in the number of species or due to this sampling effect.

One approach that allows the distinction of comple-
mentarity and species-selection effects on ecosystem
functioning has been described (Loreau & Hector 2001,
Sala 2001). This requires replications of single-species
treatments so that levels of ecosystem functioning in
multi-species configurations can be separated accord-
ing to sampling effects and species complementarity
through additive partitioning. Although this methodol-
ogy is a significant step forward in interpreting results,
it is an a posteriori approach with limitations and can-
not replace experiments that explicitly address actual
mechanisms operating between biodiversity and eco-
system functioning (Loreau & Hector 2001). An impor-
tant limitation of this methodology is that it allows
separation of the ‘complementarity effect’ and the
‘'selection effect’, but that an underlying mechanism
resulting from complementarity can influence both
effects (Petchey 2003). Thus, it is not possible to link a
single mechanism or class of mechanisms to the '‘com-

plementarity effect’, an error that has been made fre-
quently (Petchey 2003). This technique of separating
effects has been used as part of an explicit ANOVA
(analysis of variance) design in conjunction with sepa-
rate ANOVAs, with each species as a dummy variable
to assess the level of species-selection effects with
changing soil fertility in a terrestrial plant experiment
(Fridley 2002).

The methodology of Loreau & Hector (2001) for sep-
arating complementarity and species-selection effects
relies on a replacement series experimental design
that assumes no density-dependent effects (Benedetti-
Cecchi 2004). These designs require compensatory
reductions in abundance of species with increasing
diversity to keep total density constant. This allows
confounding of complementarity and species-selection
effects with density-dependent effects. Many of these
issues of separating the different effects and their
interactions have been examined through the use of
Monte Carlo simulations (Benedetti-Cecchi 2004). This
work investigated a new design, with biodiversity
(species richness) and density of species as fixed,
crossed treatments. Species assemblage was treated as
a random factor, which was nested within richness
treatments and crossed with density of species
treatments. This allows the identification of species-
richness effects even with the added complication
of density-dependent effects, whilst controlling for
species-identity effects, which can also be identified
(Benedetti-Cecchi 2004).

Views of the relevance of these sampling effects fall
into 2 camps. Some authors consider such effects as
experimental artefacts that interfere with the correct
interpretation of biodiversity effects on ecosystem
functioning (Huston 1999, Wardle 1999, Huston et al.
2000, Huston & McBride 2002). Others see them as a
natural consequence of the inherent differences be-
tween species and therefore as a mechanism through
which species richness may affect ecosystem function-
ing (Lawton et al. 1998, Chapin et al. 2000, Purvis &
Hector 2000). However, the validity of the sampling
effect must rest with how well random species addi-
tion/deletion in the experiment matches the processes
of species addition and deletion in real ecosystems
(Fridley 2001), and this is likely to vary considerably. It
is probable that the environment will strongly affect
the level of this matching, with resulting immigration
and emigration processes that are highly stochastic
likely to lead to strong matching (Fridley 2001). The
significance of sampling effects in model systems must
therefore be considered on a case-by-case basis in
relation to the ecosystem being modelled, rather than
assigning it the constant value of a true effect of bio-
diversity or a statistical artefact. The sampling effect is
a mechanism through which levels of ecosystem func-
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tioning can be affected, and therefore the differences
are largely semantic (Cottingham et al. 2001).

Two other potential hidden treatments are the
‘quasi-replication effect’ and the ‘variance-reduction
effect’ (Huston & McBride 2002). These are subtler
than the sampling effect. The term ‘quasi-replication’
(Huston & McBride 2002) refers to the fact that draw-
ing species randomly from a species pool for each
replicate at a particular species richness means that
replicates will not be true replicates, as they will not
contain exactly the same species.

With a given pool of species to randomly draw from
(without replacement), treatments with intermediate
numbers of species have a much larger number of pos-
sible combinations of species than treatments with low
or high numbers of species. This means that with the
same number of replicates for each treatment the spe-
cies combinations that are used for intermediate biodi-
versities will represent only a small proportion of the
total number of potential combinations. Replicates of
lowest and highest biodiversity treatments will repre-
sent much greater proportions of the potential species
combinations at these species richnesses. This under-
representation of species combinations at the interme-
diate diversity levels means that with the usual small
number of replications in each richness treatment, it is
unlikely that resulting statistical properties are repre-
sentative of the population of species combinations
(Huston & McBride 2002). This is the quasi-replication
effect (Huston & McBride 2002). This implies that the
level of variance will change with richness treatment,
introducing heterogeneity of variance and therefore
breaking one of the assumptions made by ANOVA and
linear regression models, both used extensively to
analyse BEF model systems.

The variance-reduction effect (Huston 1997, Huston
& McBride 2002) results from the similarity of repli-
cates within a species-richness treatment changing
with species richness (Fig. 1). The similarity of quasi-
replicates within a richness treatment level increases
at an increasing rate with species richness, assuming
random selection without replacement. This asymme-
try in similarity results in high-richness treatments
containing almost true replicates, and those treatments
with low species numbers being very far from true
replicates. As a result, statistical behaviour of repli-
cates is likely to change with species richness. The
range of ‘real’ (i.e. statistical population parameter)
levels of ecosystem functioning from the quasi-repli-
cates in high species treatments is likely to be smaller
than the range at low species richness due to the differ-
ent levels in similarity of replicates within a treatment.
A consequence of this is that, in high-richness treat-
ments, levels of ecosystem functioning are more likely
to be proportionately more strongly affected by exper-
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Fig. 1. Levels of similarity between ‘quasi-replicates’ (Huston
& McBride 2002) with increasing species richness. Similarity
between 2 replicates is measured with the Jaccard coeffi-
cient, which is the number of species in both replicates di-
vided by the number of species in just one or the other repli-
cate. A coefficient of 0 indicates no similarity, and a
coefficient of 1 indicates the replicates contain the same spe-
cies. Simulations were run using a pool of 30 species from
which species were selected at random without replacement
and placed in a replicate. An experiment with 5 replicates per
species-richness treatment was simulated. The mean coeffi-
cient over all unique pairings of replicates was calculated for
each set of 5 replicates to get an 'overall similarity’; 1000 sim-
ulations were run, and the mean level of overall similarity at
each species richness is shown (¢) with the standard devia-
tion. The minimum (W) and maximum (A) levels of ‘overall
similarity’ in the 1000 simulations are also shown. The mini-
mum (-) and maximum (@) individual Jaccard coefficients
that occurred between pairs of replicates are shown to indi-
cate the likely range of similarity in different species-richness
treatments

imental error than by biodiversity effects. Due to the
parallel sampling effect making it more likely that
these high-richness treatments will contain the more
productive species, the effect of experimental error is
likely to be in the direction of increased ecosystem
functioning. This increase in ecosystem functioning
due to experimental error cannot be separated from
increases due to species richness and therefore may
lead to a misrepresentation of the meaning of experi-
mental results.

The variance-reduction effect means that there will
be a breakdown of the assumption of homogeneity of
variance across treatments, an assumption made by
ANOVA, which has been used extensively to analyse
the results from BEF experiments. The variance-reduc-
tion effect could be avoided through the use of true
replicates in the experimental design. If this is done,
then the experimental design advocated by Benedetti-
Cecchi (2004) will allow a formal test of the variance-
reduction effect.

Such concerns have led some to call for conclusions
based on results from experiments involving random
sampling from a species pool to be re-evaluated and
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for future experimental designs to focus on the mecha-
nistic drivers of BEF (Huston & McBride 2002). The
level of error due to environmental variation can be
accounted for in 2 main ways (Huston & McBride
2002). Firstly, using the usual experimental design
(biodiversity as an independent factor and ecosystem
functioning as a dependent variable), environmental
parameters can be measured and incorporated into the
statistical analysis as covariates. Secondly, a more con-
trolled approach involves the deliberate manipulation
of environmental conditions and for these levels to be
included as factors in the experimental design. The
levels of interactions between these environmental
factors with diversity (as a fixed factor) in an ANOVA
experimental design can also be obtained. This
approach has been successfully used in a grassland
model system experiment, which demonstrated that
the effect of diversity on productivity significantly
increased with soil fertility (the environmental vari-
able) (Fridley 2002).

The need to address BEF via a mechanistic frame-
work has been recognised, and several experimental
designs have focussed on functional diversity rather
than species richness (McGrady-Steed et al. 1997,
Naeem & Li 1997, Mulder et al. 1999, Paine 2002).
However, this change in focus has its own associated
problems. The functional approach has not been par-
ticularly successful in achieving an understanding of
how taxonomic or functional diversity can affect
ecosystem functioning, because the functional groups
used have been subjective or defined via statistical
segregation based on ecophysiological data (Naeem &
Wright 2003). A general framework for identifying
appropriate functional groups has been proposed that
splits response traits from effect traits, and selects the
relevant functional traits based on the driver and
ecosystem function of interest (Naeem & Wright 2003).
A more appropriate measure of functional diversity
than functional richness has been proposed (Petchey &
Gaston 2002). FD is a functional diversity index that is
a continuous and simultaneous estimate of the disper-
sion of species in trait space at all hierarchical scales.
Another proposed measure is functional attribute
diversity (FAD) (Walker et al. 1999), which uses an esti-
mate of the total distance between species in trait space.
These 2 measures explained a greater level of varia-
tion in above-ground biomass production than species
richness and functional group richness in a comparison
of functional diversity measures (Petchey et al. 2004).
This greater explanatory power was partly explained
by FD and FAD not arbitrarily assigning species to
functional groups, enabling continuous measures of
biodiversity and the greater amount of biological infor-
mation that the 2 measures contain (Petchey et al.
2004). An alternative approach is to use a test of statis-

tical significance that accounts for the effects of group-
ing per se (Petchey 2004). This is done through a ran-
domisation test that compares the observed statistic
against a distribution determined using repeated ran-
dom assignment of species to functional groups, allow-
ing the testing of the null hypothesis that functional
group richness has no effect on ecosystem functioning.
Whether experimental design focuses on species
richness or functional richness, the choice of species or
functional group treatments has still been primarily
based on random selection (Naeem & Wright 2003).
This is equivalent to random extinction, but, in the real
world, extinction tends to be non-random (Pauly et al.
1998, Srivastava 2002, Smith & Knapp 2003). Therefore
random selection of species or functional groups in
experimental design is unlikely to produce combina-
tions representative of the real world (Wardle 1999,
Schwartz et al. 2000), although this is possible in sys-
tems with strong stochastic drivers (Fridley 2001). The
possible significance of non-random extinctions on
BEF has recently been demonstrated using data from
marine invertebrate communities to parameterise
models predicting the effects of extinctions on sedi-
ment bioturbation (Solan et al. 2004). The models
demonstrated that the magnitude of the effect of spe-
cies loss on bioturbation depends on how the func-
tional traits of species co-vary with their risk of extinc-
tion. Similarly, loss of rare (and therefore more prone
to extinction) species had no effect on above-ground
net primary productivity in plots on a prairie grassland
over 2 growing seasons, whereas loss of dominant spe-
cies led to decreased productivity (Smith & Knapp
2003). These results contrast with decreases in ecosys-
tem functioning with decreasing species richness
found in similar studies, but with random species
assemblages (Hector et al. 2002, Tilman et al. 2002).
Acknowledging this in experimental designs could
be done by selecting combinations of species as before,
but with weighting for a species to be included based
on a measure of the relative likelihood of that species
going extinct (Srivastava 2002). However, this would
mean that a general effect of biodiversity on ecosystem
functioning would be confounded by systematic
changes in species composition (Lawton et al. 1998,
Hector et al. 2002). A possible solution to this would be
to use both approaches in the experimental design
(Srivastava 2002). The replicates based on randomly
selected combinations of species would act as a null-
model, and comparison with replicates with weighted
selection of species would allow the separation of the
effect of losing biodiversity per se from the effect of
losing biodiversity selectively (Srivastava 2002). A fur-
ther step would be to allow the experiment to continue
over many generations and so allow extinction events
to occur naturally (Srivastava 2002). This type of
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approach combined with some form of perturbation
has been applied (Petchey et al. 1999, Griffiths et al.
2000), but without the null-model treatments.

Concern over the consequences of how species have
been selected for replicates in BEF experiments has
led to much strong debate over the role of 'hidden
treatments’. Overall, this debate has been very
healthy, resulting in a greater rigour in BEF experi-
mental designs. There is still much to debate, and
methods of choosing which species to include in repli-
cates in model system experiments will remain critical
in interpreting the results and placing them in their
correct context.

Spatial scale

Here, spatial scale is defined as the dimension of
observed entities and phenomena in space (O'Neill &
King 1998, Schneider 2001). Most research into BEF
has focussed on the small spatial scale, and experimen-
tal design has required these systems to be closed to
the surroundings (Bengtsson et al. 2002). It could be
misleading to simply extrapolate results from small-
scale experiments to a larger scale, assuming that pro-
cesses and mechanisms do not change, an assumption
unlikely to be true for ecosystems. There have been 3
main hypotheses proposed to explain increased eco-
system functioning with increased species richness at
the small spatial scales used in model systems: species
complementarity, positive interactions between spe-
cies and hidden treatments. These mechanisms work
at the small, local scale, assuming that species inter-
actions and their functional traits drive the BEF rela-
tionship (Bengtsson et al. 2002). However, at larger
spatial scales, it is likely to be variation in resources
and abiotic factors that are the main drivers (Huston
1994, Anderson 1995). It has been suggested that these
scale differences may lead to differences in the main
effects of changing diversity, with changes at the small
scale mainly affecting rates of ecosystem processes,
whereas, at the larger scale, changing diversity will
tend to alter levels of ecosystem resilience and stability
(Bengtsson et al. 2002).

Not only may scale change the type of relationship
between biodiversity and ecosystem functioning, it may
also alter the level of effect. As one moves towards com-
munity-wide scales in heterogeneous systems, effects
of biodiversity could be overwhelmed by other factors
(Levine et al. 2002), such as abiotic factors. Thus, at in-
creasing scales, effects of biodiversity may become
harder to detect against a background of other effects.

Integration of scale as a factor in model system
design will be intimately related to, and complicated
by, the integration of multiple trophic levels (see ‘Mul-

tiple trophic levels’' section). Species in the higher
trophic levels tend to have larger home ranges, and the
scales at which their dynamics operate will be greater.
This implies that studies conducted at one trophic level
may not be directly relevant to studies at another
trophic level, even if the studies have been conducted
at the same spatial resolution (Bengtsson et al. 2002). A
further implication is that including multiple trophic
levels will change the model system from working at a
single spatial scale, to working at multiple interacting
spatial scales. If changes in biodiversity at different
scales have different effects (Bengtsson et al. 2002),
interaction of mechanisms between scales could be
significant in determining which are the main effects
of biodiversity loss in an ecosystem.

One way of allowing a range of spatial scales in
model systems would be to simply expand the size of
enclosure or plot used in the experiments. This
approach has been utilised (Petchey et al. 1999, Hulot
et al. 2000), but as part of research of multi-trophic
interactions and not to specifically examine biodiver-
sity—ecosystem functioning. A similar approach might
be to connect blocks of micro- or mesocosms together,
allowing interactions over a larger spatial scale
(Bengtsson et al. 2002). These approaches allow only a
limited increase in the range of scales for model eco-
systems, but offer an important next step in addressing
the role of scale in BEF relations.

Other methodologies such as utilising large-scale
enclosures of ecosystems, either using natural bound-
aries such as lakes and islands (Carpenter et al. 2001),
or artificial boundaries (Krebs et al. 1995), have been
used. These designs would be better for continuing to
address the role of scale in BEF at larger spatial scales,
but offer much less control of starting conditions, fewer
replicates (often only 1), and are far more difficult and
costly to monitor. Realistically, model systems will be
limited in the scales that they can incorporate. How-
ever, if they can be expanded in size, albeit to a limited
degree, from the current small spatial scales, it may be
possible to integrate results from these experiments
with experiments based on different experimental
designs and incorporating larger spatial scales. Simply
having multiple spatial scales will allow a start to be
made in addressing the role of scale in BEF.

Working at increasing spatial scales has the associ-
ated problems of increased requirements of space,
time and financial costs, with a possible compromise
being obtained by a reduction in the number of repli-
cates. The great need to address the role of scale in
BEF with the associated likelihood of decreasing the
number of experimental replicates has led to the sug-
gestion that we may have to be prepared to accept a
lower level of statistical rigour in experimental design
and analysis (Bengtsson et al. 2002).
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Dimensional analysis offers potential for designing
model systems that will allow results to be extrapolated
to larger spatial scales (Petersen & Hastings 2001,
Englund & Cooper 2003). The technique involves
determining dimensionless variables by rearranging
different measurements of the systems so that their
units cancel each other out. The relative values of the
component variables can be adjusted to maintain the
same value of the dimensionless variable in the model
system as in the ecosystem. The lack of flexibility in
controlling organism characteristics for scaling in this
way strongly limits this approach (Englund & Cooper
2003). However, the greatest limitation is due to our
lack of knowledge of the scaling relationships that
drive ecosystem dynamics (Petersen & Hastings 2001,
Englund & Cooper 2003). These limitations will be
exacerbated in multi-trophic studies, since the level
and dynamics of scaling will vary between species,
making a common scaling relationship for all species
involved unlikely.

An alternative approach is the translation of results
across scales using scaling models, incorporating
known empirical relationships or mechanistic models
(Schneider et al. 1997, Englund & Cooper 2003). Appli-
cation of this methodology to open predation experi-
ments (Englund et al. 2001) has been used to identify
scale domains (Wiens 1989), ranges in scale over which
there is no or only weak scale dependence, but
between which there is strong scale dependence or
changes in the drivers of the process of interest. The
defining of scaling relationships in the open predation
experiments was accomplished via a meta-analysis
of past experiments performed at different scales
(Englund et al. 2001). Identifying such scale domains
explicitly shows the scales over which we need to be
particularly careful about scaling effects. Again the
major limitation in translating results between spatial
scales is our lack of knowledge of scaling processes;
complex multi-scale experiments or meta-analyses are
required to develop empirical scaling relationships,
and scaling mechanisms are poorly understood. Multi-
scale experiments in which the same treatment is
applied at different spatial scales as part of an inte-
grated experimental design will generate less ambig-
uous results than meta-analyses (Chen et al. 1997).

As part of an assessment of the various research par-
adigms for addressing multi-scale processes, strategic
cyclical scaling was considered to be the most appro-
priate paradigm to use (Root & Schneider 1995). This
paradigm involves using observations at large scales to
direct the testing of mechanistic processes in small-
scale experiments, the results of which are used to
make predictions at larger scales. This cyclic process
builds up knowledge of processes and mechanisms
across a spectrum of scales. Gaps in our knowledge of

scaling processes for a particular system can be explic-
itly visualised with scope diagrams (Schneider et al.
1997), and these represent a possible guiding method-
ology in the recommended strategic cyclical scaling
paradigm.

Multiple trophic levels

Ecosystems are composed of several trophic levels
with interactions between these trophic levels. There-
fore, any theory of BEF that does not take this dimen-
sion of ecosystems into account will necessarily be
incomplete. This raises concerns about current work
using model systems. There has been an overwhelm-
ing concentration on experimentation with plants (a
single trophic level), and multiple trophic levels have
been explicitly incorporated into only a few model sys-
tems addressing BEF (Naeem & Li 1997, Petchey et al.
1999, Naeem et al. 2000, Duffy et al. 2001, 2003, 2005).

Effects of biodiversity are just as likely, or more
likely, to be driven by the consumer level as the level
of plants (Petchey et al. 1999, Duffy 2002, 2003), and
these effects will lead to further effects via trophic
interactions (Naeem et al. 2000, Worm & Duffy 2003,
Duffy et al. 2005). It has been suggested that changes
in ecosystem processes resulting from changes in bio-
diversity at the consumer level are likely to be more
idiosyncratic than would be the case with changes in
plant biodiversity (Duffy 2002). So, not only is there the
complication of added complexity due to interaction
between individuals in the different trophic levels, but
changes in biodiversity at these different levels could
result in very different ecosystem responses (Petchey
etal. 1999, Duffy 2002, 2003, Worm & Duffy 2003). This
has experimental support. Aquatic microcosms have
shown different patterns of species loss at different
trophic levels, resulting in complex responses in eco-
system functioning (Petchey et al. 1999). In estuarine
mesocosms increased grazer diversity led to increased
seagrass diversity only when a predator species was
present (Duffy et al. 2005).

Many of the problems of extending model systems to
incorporate multiple trophic levels are in common with
those of extending spatial and/or temporal scale, these
3 aspects of ecosystems being intimately linked. The
inclusion of multiple trophic levels requires systems of
larger spatial scales and therefore has higher financial
and physical costs, resulting in a trade-off with replica-
tion. A further complication is that the effects of differ-
ent trophic levels can operate at different temporal and
spatial scales (Bengtsson et al. 2002, Raffaelli et al.
2002, Raffaelli 2006, in this Theme Section). For exam-
ple, the soil community appears to respond with a
marked time lag behind plants, indicating a decou-
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pling of temporal dynamics between these 2 trophic
compartments (Van der Putten et al. 2000).

Organisms at some trophic levels tend to be more eas-
ily identified, and by more people, than those at other
trophic levels, so that taxonomic resolution declines at
lower trophic levels, especially in invertebrate (but not
plant-based) webs (Raffaelli et al. 2002). Although model
systems can overcome this problem in principle by using
clearly separate species in the system, biases will in-
evitably result, whilst the systematics of many lower
taxa, such as those in sediments (meiofauna) and soils
(mites), are extremely challenging or even unresolved.

Despite these issues, multi-trophic model systems
have been constructed, although they have rarely
addressed BEF directly and have incorporated limited
numbers of species (Naeem & Li 1997, Petchey et al.
1999, Naeem et al. 2000, Duffy et al. 2001, 2003, 2005).
As with incorporating larger spatial scales, there is
potential here also for using naturally enclosed ecosys-
tems such as lakes and islands (Carpenter et al. 1995,
2001, Krebs et al. 1995). However, the level of control,
the number of replicates and the level of information
on the states of the system with time in these experi-
ments will be inherently much lower.

Understanding BEF dynamics in the context of mul-
tiple-trophic levels will be essential to making properly
informed predictions of the consequences of decreas-
ing biodiversity. As a result, the need for incorporating
multiple-trophic levels in model systems is probably
the most pressing (Raffaelli 2006). However, achieving
this represents a considerable challenge.

Variation

There are 3 principal sources of variation which
need to be considered when addressing BEF issues.
Firstly, biodiversity, viewed as a constant and indepen-
dent factor within each biodiversity treatment in the
experimental design, will be variable over space and
time in real ecosystems. Secondly, there will be varia-
tion in the level of ecosystem functioning under con-
sideration due to biodiversity and, thirdly, residual
variation due to other independent factors.

Ecosystem functioning will vary in space and time,
and these dynamics need to be understood. Model sys-
tems, with high levels of replication, and strong control
over initial conditions are ideal for measuring this
inherent variation in functioning at constant biodiver-
sity, at least at small spatial scales. However, current
experimental designs are not conducive to measuring
the effect of variation (temporal or spatial) in biodiver-
sity on ecosystem functioning (Benedetti-Cecchi 2003).

The majority of ecological experiments attempt to
relate the effect of mean intensity of the independent

variable (biodiversity) to the resulting mean intensity
and variation in the dependent variable (ecosystem
functioning). Variation in the independent variable
tends to be ignored, with experimental design in-
corporating the independent variable as a constant
factor (Benedetti-Cecchi 2003). However, experimen-
tal designs that begin to address the role of temporal
and spatial variation in the independent variable are
starting to appear (e.g. Navarrete 1996, Benedetti-
Cecchi 2000). For example, variance in the spatial dis-
tribution of resource populations can be sensitive to
changes in the variance of the consumer-resource
trophic interaction (Benedetti-Cecchi 2000), in addi-
tion to the mean effect of the consumers. A consumer—
resource model incorporating this effect was able to
replicate patterns in empirical data, which previous
models had not been able to produce (Benedetti-
Cecchi 2000).

Such considerations have not yet been applied to
most BEF experiments. The general experimental
design has been addressed recently (Benedetti-Cecchi
2003), allowing the separation of effects between the
intensity and variability (temporal or spatial) of an
ecosystem process driver. The design must be struc-
tured so that the intensity and variability are arranged
as independent factors (i.e. orthogonal). It should also
be noted that this independence does not hinder exam-
ining relationships between the 2 factors via tests on
interaction terms (Benedetti-Cecchi 2003).

Although these experimental designs separating
intensity and variability of independent factors were
constructed with consumer-resource interactions in
mind, it should be possible to adapt them for addressing
BEF questions, and model systems offer great potential
in this respect. The strong control in determining
starting conditions and the relative ease of producing
replicates should provide for experimental designs in
which biodiversity level and variation are orthogonal,
therefore allowing for the separation of effects due to
variation in biodiversity. However, since heterogeneity
is linked intricately to scale, the small spatial and short
temporal scales of most model systems impose a
limitation on the levels of variation in biodiversity
that can be addressed using this methodology.

Environmental stochasticity

Related to the role of the environment in BEF is the
issue of environmental stochasticity. In the real world,
environmental variables change with time, and these
changes incorporate a stochastic component. A sto-
chastic variable has a random probability distribution
that can be analysed statistically, but not predicted
precisely. Demographic stochasticity describes un-
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certainties relating to characteristics of individuals,
whereas environmental stochasticity describes uncer-
tainties imposed at the population level by the environ-
ment (Bonsall & Hastings 2004). Stochasticity in mod-
els has often been treated as random fluctuations, with
no temporal correlation (Halley 1996), also known as
white noise. However, so-called 'reddened’' spectra,
with positive temporal autocorrelation between fluctu-
ations (Halley 1996), may be more appropriate for
environmental fluctuations (Mandelbrot & Wallis
1969), particularly in marine systems (Steele 1985).
Environmental stochasticity is a well-known determi-
nant of population dynamics (May 1973, Lande 1993),
and long-term population records appear to show red-
dened spectra (Pimm & Redfearn 1988), suggesting a
connection between reddening of environmental dri-
vers and reddening of population dynamics. If this con-
nection is real, the level of temporal autocorrelation in
environmental drivers is likely to play a role in BEF
dynamics, possibly causing BEF relationships to change
independently of changes in species composition
(Johnson 2000).

Aquatic microbial systems are excellent for testing
connections between characteristics of environmental
variation and BEF, providing high levels of control over
environmental conditions and the capacity to run
experiments over many generations (ensuring that the
results are driven by population dynamics). They have
already been used to demonstrate that single-species
microbial population dynamics can be sensitive to the
colour of temperature fluctuation with time (constant,
white, or reddened) (Petchey 2000). In a more recent
experiment, similar temperature fluctuations have
been applied in conjunction with varying species rich-
ness to test for effects on changing total community
biomass (Petchey et al. 2002a). Results indicated that
change in total biomass was unaffected by the temper-
ature regime. However, the authors point out that bio-
mass in each microcosm was estimated only twice and
therefore measured long-term change in biomass and
not fluctuations in biomass, and that this restriction
meant they were unable to separate change due to sto-
chastic fluctuations and change due to directional
changes (Gaston & McArdle 1994). To do this requires
experimental designs with a number of samples and a
frequency of sampling appropriate for obtaining an
estimate of the general trend and therefore enabling
the partitioning of change due to stochastic environ-
mental fluctuations (Gaston & McArdle 1994). Future
experiments aiming to relate environmental stochas-
ticity to variation in ecosystem functioning through
time will also need to ensure that a number of samples
is taken from each microcosm at each time. This will
enable an estimate of sampling error for each ecosys-
tem functioning estimate and therefore enable an esti-

mate of the true but unknown level of ecosystem
functioning (Gaston & McArdle 1994). Any measure of
variation of ecosystem functioning across time will
then be an estimate of the variation in ecosystem func-
tioning, rather than an estimate of the variation in
ecosystem functioning estimates (Gaston & McArdle
1994).

CONCLUSIONS AND RECOMMENDATIONS

This review has shown that model systems have
been much used recently in trying to gain an under-
standing of BEF. Generally using isolated, small-scale
collections of species, they are simplistic systems that
are designed to be tractable whilst distilling out essen-
tial characteristics of BEF. The high level of control
over starting and environmental conditions, along with
good levels of reproducibility and replication make
model systems a potentially very powerful tool for
understanding BEF.

These systems have been heavily criticised in the lit-
erature because of their artificiality and their simplicity
compared to real ecosystems. But this is to view model
systems in the wrong context. The criticisms are really
limitations to the methodology; they do not make the
methodology invalid or less valid than alternative
approaches which have their own faults. Model sys-
tems need to be viewed as part of a holistic approach to
understanding BEF that utilises a range of methodolo-
gies. In this context model systems are a tool with
strengths and weaknesses, but with strengths that
complement those from other methodologies. The
complexity of ecosystems is enormous, and model sys-
tems are a reductionist methodology designed to
address possible links between biodiversity and
ecosystem functioning in a simplistic and therefore
understandable context. They are tools for examining
these links in isolated fine detail; they are not designed
to address how ecosystems function as a whole. The
high level of control and monitoring that is possible
makes these systems particularly suitable for investi-
gating mechanistic processes. We therefore endorse
the strategic cyclic paradigm (Root & Schneider 1995)
with an emphasis on the use of model systems to inves-
tigate possible mechanisms underlying BEF, evidence
of which can then be tested for in larger-scale experi-
ments and field observations (Fig. 2). Although this
paradigm was suggested originally to deal with issues
of different scales between the different methodolo-
gies used to investigate BEF, the cyclic procedure is
just as valid for dealing with other issues, such as mul-
tiple trophic levels.

Model systems, particularly the microbial micro-
cosms, offer a strong connection with theoretical mod-
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elling. This is of great potential benefit as predictions
from theoretical models (including many of the simpli-
fying assumptions) can be rigorously tested under
highly controlled conditions. We suggest that particu-
lar use of this strong link be made to generate theo-
retical models of BEF that can be strengthened by the
validation of matching of model predictions from
theoretical models with model system behaviour.

If there is to be effective integration of the different
methodologies, there will need to be a common lan-
guage. Although dimensional analysis (Petersen &
Hastings 2001, Englund & Cooper 2003) can be diffi-
cult and care must be taken to provide ecologically
meaningful dimensions, it provides a framework for
translating results and concepts across different
methodologies and between different systems. We
therefore advocate its regular use in model systems
and suggest that it be part of an increase in meta-
analyses trying to identify commonalities and differ-
ences across systems as well as scales, providing a
more complete view of mechanisms underlying BEF.

A greater effort needs to be made to put the results of
model systems into proper ecological context. This will
enhance coherency in the general BEF debate by high-
lighting common factors and differences between dif-
ferent model systems, and between model systems and
other methodologies. For example, some model sys-
tems will be driven by population dynamics, whereas
others will be strongly driven by initial starting condi-
tions, making it difficult to integrate the results from

v

the 2 groups. Similarly some model systems will be
based on ecosystems strongly influenced by stochastic
factors and others on ecosystems where this is not the
case. BEF dynamics will alter according to such consid-
erations, and results from model systems need to be
put into context to facilitate an understanding of how
these considerations can alter BEF. This needs to be
recognised so that debate is not over differences due to
a lack of understanding of relevant contexts, but over
true differences and similarities in different situations.

A second vigorous debate in the literature has been
over the implications of hidden treatments with species
selection conducted randomly, leading to the question-
ing of the significance of results from BEF model sys-
tems. The debate over the sampling effect is illustra-
tive of what can be gained from the use of model
systems. It has led to a clarification and increased
understanding of possible mechanisms linking bio-
diversity to ecosystem functioning, and to much more
robust and rigorous experimental designs for the
future.

There are 2 main concerns over hidden treatments:
the match between the random selection of species
method and reality and the resulting effects of the sta-
tistical sample distributions on the validity of the statis-
tical analyses. The random-selection method can
reflect reality in ecosystems in which population
dynamics are strongly driven by stochastic processes
or by a number of interacting processes (Fridley 2001).
The relevance of randomisation must therefore be
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judged in the context of the ecosystem being
addressed. If random selection is not realistic, species-
richness treatments could be chosen using expert
knowledge or using weighted choices based on likeli-
hood of extinction. Microcosm experiments in which
many generations will elapse could be allowed to
progress for different amounts of time, allowing extinc-
tion of species to occur maturally’ and therefore deter-
mine realistic species combinations to be used in BEF
model systems.

ANOVA has been used extensively in the analysis of
BEF model systems. Hidden treatment effects can lead
to heterogeneity of variance, breaking one of the
assumptions underlying this method. However,
ANOVA is robust to this assumption under certain cir-
cumstances. Problems are much more pronounced
when sample sizes differ (Box 1953). However, if sam-
ples are balanced, heterogeneity of variance is usually
only a serious problem when one of the samples has a
larger variance than the others (Underwood 1998). The
effects of heterogeneity of variance are also signifi-
cantly reduced as the number of treatments increases
and when sample sizes are large (usually taken to be
>6) (Underwood 1998). If heterogeneity of variance is
judged to be likely, these considerations in experimen-
tal design should be regarded as a priority.

A second concern about the effects of hidden treat-
ments on the interpretation of results from ANOVA is
asymmetry in similarity of quasi-replicates between
species-rich and species-poor treatments, leading to
differences in the interpretation of experimental error.
This can be minimised, as well as gaining more infor-
mation about the mechanisms involved, by explicitly
incorporating the likely environmental sources of
experimental error as factors in the ANOVA design.

Ecosystem functioning has usually been measured
by a single metric (e.g. primary production). This col-
lapsing of a multi-dimensional characteristic into a sin-
gle dimension offers tractability, but decreases the
level of information gained, as well as leading to possi-
ble misinterpretations due to a lack of perspective. We
suggest an expansion in the number of metrics used to
measure ecosystem functioning in a model system as a
way of increasing the level of understanding of the
mechanistic processes driving BEF.

Similarly, 'biodiversity’ is a multi-dimensional con-
cept that is collapsed into 1 dimension for BEF model-
system studies, usually species richness, since this is a
metric that is both intuitive and easily measured and
manipulated. Future experiments will need to address
other components of biodiversity (e.g. evenness) to
gain a more complete understanding of BEF. This
could be done by repeating experiments using a mea-
sure of biodiversity other than species richness or with
the new measure plus richness. Dealing with the mul-

tiple dimensions of biodiversity is likely to be harder
than expanding the dimensionality of ecosystem func-
tioning, as biodiversity is a treatment rather than a
response, and the possible permutations within and
amongst the newly applied metrics of biodiversity will
increase the already large number of replicates
required for BEF model system studies. An ANOVA
design with crossed biodiversity factors would be
appropriate and allow for the measurement of interac-
tion terms between the different biodiversity dimen-
sions.

The focus on species richness as the metric for biodi-
versity has started to change towards functional rich-
ness. This is a trend that should continue, but it will not
be without difficulties. Functional richness is a mea-
sure based on ecological behaviour and is therefore
much more suitable than species richness for generat-
ing a mechanistic understanding of BEF. Where func-
tional richness has been compared to species richness,
it has shown greater explanatory power for levels of
ecosystem functioning (Petchey et al. 2004). The main
difficulty is generating sensible functional groupings
that relate properly to the ecosystem function of inter-
est, although progress in this has already been made
(Petchey & Gaston 2002, Petchey 2004).

Although model systems are by design simplistic, it
is clear that they can be extended or experimental
designs can be altered, in order to investigate issues of
BEF not yet addressed. Complexity can be increased,
whilst keeping the systems tractable, so that the role of
vital components of BEF can be investigated, such as
spatial scale and multiple trophic levels. The key is to
ensure that these extensions integrate well with other
experimental methodologies.

Natural microcosms are small, contained habitats
that are naturally populated by minute organisms (Sri-
vastava et al. 2004). Although they offer a valuable link
between the simpler model systems and extremely
complex ecosystems (Srivastava et al. 2004), they have
been used relatively little and not to address BEF.
Examples of such systems include aquatic rock pools
(Romanuk & Kolasa 2002), marine pen shells (Munguia
2004), pitcher plants (Kneitel & Miller 2002) and tree
holes (Fincke et al. 1997, Srivastava & Lawton 1998).
These systems offer several benefits: real multiple
trophic combinations of species with a shared evolu-
tionary past and a level of openness of individual
microcosms arranged in a natural hierarchical spatial
structure (Srivastava et al. 2004). These benefits result
in a reduction in the level of control and tractability,
but not to the levels of whole ecosystems. The decrease
in tractability and increase in generality mean that use
of model systems and natural microcosms can be com-
plementary methodologies—model systems testing if
hypothesised effects occur, whilst natural microcosms
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test if these effects are important in the real world
(Srivastava et al. 2004).

Model systems have already proved to be of value in
BEF research and are likely to continue to be useful.
They will not provide us with an overall understanding
of how ecosystems function, but they are capable of
providing valuable insights into how small, isolated
components of ecosystems work. Model systems have
great strengths, but also strong limitations that must be
recognised when trying to put experimental results
into context. They offer an extremely valuable
methodology that must be integrated with other
methodologies, such as observation and manipulation
of ecosystems, in order to provide a more complete
understanding of BEF. This integration of methodolo-
gies will be challenging, but is a necessity if we are to
understand BEF. Marine ecology has a long history in
the experimental design of, and interpretation of results
from, model systems. This knowledge and experience
can play a valuable role in enhancing our understand-
ing of BEF in marine ecosystems and more generally.
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