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Abstract 148 

Plant communities are composed of species that differ both in functional traits and 149 

evolutionary histories. Understanding how species’ traits and histories interact with the 150 

environmental conditions of a site and drive the assembly of ecological communities is the 151 

basis for predicting the impacts of climate change on biodiversity and ecosystem functioning. 152 

As species’ functional traits partly result from their individual evolutionary history, the 153 

functional diversity (FD) of communities is expected, on average, to covary positively with 154 

their phylogenetic diversity (PD). However, this expectation has only been tested at local 155 

scales, for specific growth forms or specific habitat types, e.g. grasslands. Here, we compared 156 

the standardized effect sizes of FD and PD for 1,781,836 vegetation plots using the global 157 

sPlot database. In contrast to our expectations, the correlation between FD and PD was weak, 158 

not positive but negative, and these two facets of diversity were more often decoupled than 159 

coupled. While PD reflected recent climatic conditions and vegetation type, being higher in 160 

forests, FD depended on recent (1981-2010) and past climatic conditions (21,000 years ago). 161 

The independent nature of functional and phylogenetic diversity makes it crucial to consider 162 

both aspects of diversity when analyzing ecosystem functioning or prioritizing conservation 163 

efforts. 164 

Introduction 165 

Climate change and biodiversity loss are two of the most pressing environmental issues of our 166 

time, with rising temperatures and shifting precipitation patterns increasingly becoming one 167 

of the main drivers of the extinction of many plant species1. These changes have significant 168 

implications for ecosystems and human societies alike, with impacts ranging from altered 169 

agricultural yields to increased risk of natural disasters2,3. To understand and mitigate the 170 

effects of climate change and biodiversity loss, it is crucial to determine how plant species are 171 

assembled into communities and how these communities respond to changing environmental 172 

and climatic conditions4,5. This means that we need to understand the underlying mechanisms 173 

of plant community assembly, and how these mechanisms are mediated by the interactions 174 

between species’ functional traits, evolutionary histories and environmental conditions6.  175 

Community assembly is the net result of several processes that partially reinforce or oppose 176 

each other7. On the one hand, environmental filtering may result in a phenotypic clustering 177 



of traits in a community8,9. On the other hand, biotic interactions, and in particular 178 

competitive exclusion, may limit the similarity of the phenotypes in a community, since 179 

species can more readily coexist when they have different traits, and result in trait 180 

divergence10,11. The attribution of convergence or divergence to specific mechanisms is not 181 

clearcut, however., since cConvergence could also be caused by the competitive exclusion of 182 

species whose traits are associated with low competitive abilities7, and divergence might stem 183 

from habitat filtering in case of correlated traits under different environmental controls12, or 184 

. In addition, trait divergence can arise from interacting environmental factors that select the 185 

resident species in a community13. Whatever the underlying mechanism, species functional 186 

traits clearly play a big role in community assembly, while also being the result of the 187 

evolution of a species in its environment. In other words, functional traits are subject to 188 

selection and are often conserved within phylogenetic lineages. This means that species that 189 

are closely related on the evolutionary tree are more likely to share similar traits compared 190 

to species that are less closely related. Depending on the velocity of evolution, specific traits 191 

can be more or less conserved on the phylogenetic tree14,15. Different indices based on 192 

Brownian motion models of evolutionary modelstrait evolution (e.g. Blomberg`s K and Pagel`s 193 

λ16,17) exist to test whether a trait is phylogenetically conserved, which are based on the 194 

correlation between the species distances in trait values and their distances in the 195 

phylogeny6,18,19.  196 

If species in a community share similar traits, the community is said to show phenotypic 197 

clustering, which is equivalent to having a low functional diversity (FD). Phenotypic clustering 198 

can be associated with two patterns, either a combination of phylogenetic clustering with 199 

trait conservatism (Fig. 1, bottom left) or a combination of phylogenetic dispersion with trait 200 

convergence (Fig. 1, bottom right)6,14,20. In the former case, there is a positive covariation 201 

between phylogenetic and functional distances, which is why we call the resulting 202 

communities coupled. In the latter case, the phylogenetic and functional distances are 203 

inversely related, and thus, we call the resulting communities decoupled. 204 

In contrast, if species in a community have dissimilar traits, the community has a high 205 

phenotypic variation, which is equivalent to a high FD. High FD can either happen in 206 

combination with high phylogenetic variation (Fig. 1, top right) or phylogenetic clustering (Fig. 207 

1, top left). Again, in the former case phylogenetic and functional diversities are coupled, 208 



while they are inversely related, and therefore decoupled, in the latter case20,21. Many local 209 

studies found a prevalence of coupled communities with positive covariation of functional 210 

and phylogenetic diversity (FD, PD)22–24, but negative covariations25,26 and unclear patterns 211 

have also been encountered27. However, it is not yet known under which conditions 212 

communities express coupled or decoupled functional and phylogenetic diversities. 213 

By calculating functional and phylogenetic diversity for 1,781,836 vegetation plots from 214 

sPlot28, the global vegetation plot database, we tested whether patterns of coupling or 215 

decoupling 1) dominate at the global level, 2) have regional patterns, 3) differ between forest 216 

and non-forest ecosystems, and 4) correlate with current and past climatic gradients. We 217 

hypothesized an overall coupled pattern of functional and phylogenetic diversity, since 218 

phylogenetic diversity has often been found to reflect functional trait diversity, especially for 219 

those phylogenetically conserved traits which are not easily measurable in plants, such as 220 

herbivore and pathogen resistance14,19,29. We expected higher phylogenetic diversity in 221 

forests than in non-forest ecosystems due to the co-occurrence of woody and non-woody 222 

plant species, given that the herbaceous habit has evolved from the ancestral woody state 223 

multiple times and in different lineages30–33. Since phylogenetic and functional diversity 224 

metrics are correlated with species richness, we used null models to calculate standardized 225 

effect sizes and quantify how much phylogenetic and functional diversity differed from 226 

random expectations, before comparing them34. 227 



 228 

Figure 1: Conceptual figure of the relationship between functional and phylogenetic diversity 229 

after Ref. 19 & 20. If functional diversity is proportional to community phylogenetic diversity, 230 

we consider the community to be coupled (diagonal). The extremes are the results either of 231 

phylogenetic clustering in combination with trait convergence (bottom left) or phylogenetic 232 

overdispersion in combination with trait divergence (top right). Decoupled communities can 233 

be either observed if a community shows phylogenetic overdispersion in combination with 234 

trait convergence (bottom right) or if it shows phylogenetic clustering with trait divergence 235 

(top left). 236 

  237 



Results 238 

The relationship of functional and phylogenetic diversity 239 

We modelled the relationship between functional and phylogenetic diversity indices 240 

expressed as a standardized effect size of Rao´s quadratic entropy based on functional traits 241 

(SES.FDQ) and phylogenetic distances (SES.PDQ), when considering three selected functional 242 

traits representative of the main dimensions of the global spectrum of plant form and 243 

function, namely the leaf economics spectrum (specific leaf area), the size-seed mass 244 

dimension (plant height), and the root collaboration gradient (specific root length)35,36. Both 245 

indices were calculated using Rao’s quadratic entropy and transformed to standardized effect 246 

sizes, based on biome-specific null models that account for the uneven species richness across 247 

plots, and use the relative frequencies of species occurrences within each biome to weight 248 

species resampling probabilities. We did this because both functional and phylogenetic 249 

diversity are tightly related to species richness. Out of 1,781,836 vegetation plots, 31.38% 250 

showed trait and phylogenetic coupling as SES.FDQ and SES.PDQ were equally high or low. 251 

53.03% of the vegetation plots had higher SES.FDQ than SES.PDQ and 15.6% had higher 252 

SES.PDQ than SES.FDQ, suggesting that decoupled plant communities are twice as common 253 

than coupled ones and that, on average, global communities are more functionally than 254 

phylogenetically diverse (Fig. 2A). These results did not change after removing non-significant 255 

standardized effect values, i.e. values between -1.96 and 1,.96 (6.9% coupled communities, 256 

45.8% decoupled with high FD values and 17.3% decoupled with high PD values). 257 

We did not find any clear geographical pattern at the global scale (Fig. 2B). Decoupled 258 

communities with high SES.FDQ and low SES.PDQ, (see Methods for definition of high and low 259 

values of SES.FDQ and SES.PDQ) occurred in the western USA and locally across Europe, while 260 

communities with low SES.FDQ and high SES.PDQ were found close to the Arctic circle in 261 

Scandinavia and Siberia, and in New-Zealand and Japan. Coupled communities with high 262 

values of both diversity indices were encountered in the eastern USA, Central-Europe as well 263 

as in New-Zealand and Japan. 264 

Overall, we found a negative relationship between SES.FDQ and SES.PDQ. Accounting for the 265 

spatial structure of the data by adding a smoothing spline, our general additive model 266 

explained 7.8% of the deviance in SES.FDQ (Fig. 2A). Modelling the raw values of FDQ against 267 



the raw values of PDQ, i.e., not accounting for the effect of species richness, also returned a 268 

negative relationship with 18.5% of deviance explained (Fig. S 1 A). The explained deviance 269 

increased to 36.2% when the distance matrix of phylogenetic distances was square root-270 

transformed, accounting for the non-linearity of trait evolution (Fig. S 1 B).  271 

The negative relationship between SES.FDQ and SES.PDQ was robust to the use of alternative 272 

null models, diversity indices, selections of functional traits and subsets of vegetation plot 273 

data (see Methods for details). Using a null model based on a global species pool, SES.PDQ 274 

together with the spatial smoothing spline explained 5.8% of the deviance in SES.FDQ, which 275 

increased to 6.2% when the phylogenetic distances were square root-transformed (Fig. S 1 C, 276 

D). Based on  a biome-specific, but unweighted species pool, the explained deviance was 6.8% 277 

(Fig. S 1 F). When null models were constrained based on a  and for a phytogeographic37 278 

species pool the explained deviance was 7.8% (Fig. S 1 G). The same negative relationship was 279 

found when using alternative indices of functional and phylogenetic diversity, i.e., when 280 

modelling standardized effect size of functional dispersion against mean pairwise distance 281 

(MPD). The explained deviance in this case was 7.1% (Fig. S 1 E). Considering each trait 282 

individually, or including additional traits (eight) but only for an environmentally-balanced 283 

subset of vegetation plot data (i.e., sPlotOpen38), also returned a negative relationships 284 

between FDQ and PDQ (Fig. S 87, Table S 1). 285 



 286 

 287 

 288 



Figure 2: The relationship of standardized effect size of quadratic functional (SES.FDQ) and 289 

phylogenetic diversity (SES.PDQ). SES.FDQ is based on three functional traits: specific leaf area, 290 

plant height and specific root length. A SES.FDQ as a function of SES.PDQ with the linear 291 

regression slope (blue) after accounting for spatial autocorrelation with a general additive 292 

model (7.8% explained deviance). Additionally, the line of coupling with the 1:1 relationship 293 

(black) and the confidence interval (grey, see Methods). 31.38% observations are lying within 294 

the confidence interval. 53.03% and 15.6% of all observations show decoupling, with either FD 295 

> PD or FD < PD, respectively. B Mean log ratio of standardized effect sizes of functional 296 

(SES.FDQ) and phylogenetic diversity (SES.PDQ) per raster cell (863.8 km2). Negative values 297 

indicate higher observed SES.PDQ than SES.FDQ and vice versa. The extracted values from the 298 

spatial smoothing spline from the General Additive Model (GAM) can be found in Fig. S 2 D. 299 

The environmental drivers of functional and phylogenetic diversity 300 

We used Boosted Regression Trees (BRT) to select the environmental variables that best 301 

explain either SES.FDQ or SES.PDQ. The BRTs suggested climate variables to be most relevant 302 

for shaping patterns of SES.FDQ (Fig. 3 A). Temperature of the coldest quarter and coldest 303 

month (both reflected by PC2 in a principal component analysis based on 19 bioclimatic 304 

variables) had the highest relative influence on SES.FDQ, followed by the climate variability 305 

after the Last Glacial Maximum (LGM) and precipitation seasonality (PC5). Partial dependence 306 

plots suggested a predominantly positive relationship between SES.FDQ and climate variability 307 

after the LGM and a negative one with precipitation seasonality (PC5, Fig. S 3). SES.FDQ first 308 

increased and then decreased with increasing temperatures of the coldest quarter and 309 

coldest month (PC2). 310 

Regarding phylogenetic diversity, SES.PDQ was especially related to the vegetation type 311 

(forest vs. non-forest, classified based on cover of the tree layer and species traits, such as 312 

growth form and height, see methods), being higher in forest compared to non-forest 313 

ecosystems, and tend to increase with annual precipitation (PC1; Fig. 3 A, Fig. S 4). 314 



 315 

316 

317 
Figure 3: Results of the Boosted Regression Trees for A SES.FDQ, B SES.PDQ and C the 318 

relationship of both expressed as the logarithm of the ratioquotient betweenof SES.FDQ and 319 

SES.PDQ. An explanatory variable was considered relevant in the model when its relative 320 

influence was greater than 12.5%, indicated by the dashed line, which is the expected influence 321 

of a variable if all eight predictors had the same relative importance. The signs indicate the 322 

direction of the significant effects arisen from the partial dependence models (Fig. S 3 – 5). 323 

When modelling the log ratio of SES.FDQ and SES.PDQ, as log(SES.FDQ/SES.PDQ), the BRTs 324 

showed that the classification of forest or non-forest and annual precipitation (PC1)  were the 325 

variables with the highest relevant influence, which was mostly equivalent to what observed 326 

for SES.PDQ (Fig. 3 B, S 5).  327 

Only those variables with relative influence greater than 12.5%, which is the percentage of 328 

relative influence by chance (100% divided by eight explanatory variables) in the BRTs were 329 

used as predictors in the general additive models (GAM) with SES.FDQ or SES.PDQ as response 330 

variables and accounting for spatial autocorrelation. The model for SES.FDQ explained 4.6% 331 

of the deviance and suggested a positive relationship with climate variability after the LGM 332 

and temperature of the coldest quarter and month (PC2, Fig. 4). A negative relationship was 333 

shown for precipitation seasonality (PC5).  334 

Annual precipitation (PC1), vegetation type and the spatial smoothing spline explained 37.3% 335 

of the deviance of the SES.PDQ model. SES.PDQ increased with increasing precipitation and 336 



was higher in forests than in non-forest ecosystems (Fig. 5). The model of the log relationship 337 

ratio between SES.FDQ and SES.PDQ reflected the results of SES.PDQ with an explained 338 

deviance of 30.8% (Fig. 6).  339 

In order to explore the effect of environmental predictors on the general patterns of coupling 340 

and decoupling we modelled the relationship between SES.FDQ and SES.PDQ as an ordered 341 

categorical variable with three states, to acknowledge that while there is only one way for 342 

communities to be coupled, decoupling can come in two ways: decoupling with PD > FD, or 343 

decoupling with FD > PD. When doing so the explained deviance was 10.2% (Fig. S 6) with 344 

annual precipitation (PC1), precipitation seasonality (PC5) and forest or non-forest as the 345 

variables with the highest power to discriminate the three categories. 346 



 347 



Figure 4: Drivers of the standardized effect size of functional diversity (SES.FDQ). Residuals of 348 

SES.FDQ as a function of A temperature of the coldest quarter and month (PC2), B precipitation 349 

seasonality (PC5), and C climate variability after the last glacial maximum. The general 350 

additive model (GAM) explained 4.6% of the deviance. The solid line shows the regression 351 

obtained from the GAM. The density hexagons show the distribution of the residuals of the 352 

model without the explanatory variable of interest. The smooth term of SES.FDQ can be found 353 

in Fig. S 76 A. 354 

 355 

356 
Figure 5: Drivers of standardized effect size of phylogenetic diversity (SES.PDQ). Residuals of 357 

SES.PDQ as a function of A PC1 - annual precipitation, and B vegetation type. The general 358 

additive model (GAM) explained 37.3% of the deviance. The solid line shows the regression 359 

obtained from the GAM. The density hexagons show the distribution of the residuals of the 360 

model without the explanatory variable of interest. The smooth term of SES.PDQ can be found 361 

in Fig. S. 76 B. 362 

363 
Figure 6: Drivers of the relationship log ratio between the standardized effect size of functional 364 

diversity (SES.FDQ) and phylogenetic diversity (SES.PDQ). Residuals of log(SES.FDQ/SES.PDQ) as 365 

a function of A PC1 - annual precipitation, and B vegetation type based on the dominant 366 

species. The general additive model (GAM) explained 30.8% of the deviance. The solid line 367 

shows the regression obtained from the GAM. The density hexagons show the distribution of 368 

the residuals of the model without the explanatory variable of interest. The smooth term of 369 

log(SES.FDQ/SES.PDQ) can be found in Fig. S. 76 C. 370 



Discussion 371 

Plant communities differ in their functional and phylogenetic composition. Here, we modelled 372 

the relationship between functional and phylogenetic diversity in plant communities across 373 

the globe and made inferences about the drivers of these diversity facets. We showed that 374 

values of functional and phylogenetic diversity tend to be decoupled, suggesting global 375 

patterns of community assembly are primarily driven by either functional or phylogenetic 376 

diversity, less acting together. Functional diversity (FD) was driven by both recent climate 377 

conditions, as well as by past climatic events. In line with our initial hypothesis, we found high 378 

phylogenetic diversity (PD) in forest communities. The log ratio of FD and PD varied as a 379 

function of vegetation type (forest vs. non-forest), and of recent climate conditions, in line 380 

with what observed for PD. 381 

Contrary to our hypothesis, we found a negative but weak relationship between FD and PD at 382 

the global scale (Fig. 2 A). As PD is often considered to be a proxy for capturing unmeasured 383 

patterns of species functional traits, we did expect a positive relationship between FD and 384 

PD39, as postulated also by theoretical studies24. The negative correlation observed at the 385 

global scale shows that functional and phylogenetic diversity are more often decoupled than 386 

coupled in plant communities, with communities either having high phylogenetic or 387 

functional diversity, which is in line with recent results in grassland communities25. 388 

Additionally, distribution of traits across phylogenies can vary at small spatial scales, including 389 

both trait clustering and overdispersion14,19. This indicates that, contrary to the expected from 390 

the coupling of FD and PD, closely related species exhibit greater differences in their trait 391 

values, while phylogenetically distant species tend to share more similar trait values than 392 

expected by chance. It is possible that co-occurring species with similar traits differ in other, 393 

not easily measurable traits, e.g., herbivory resistance, which are captured by phylogeny but 394 

less so by functional traits. Vice versa, phylogenetically close species tend to vary in their 395 

functional traits. This fFunctional clustering could be due to equalizing competitive dynamics 396 

in neutrally assembled communities40 or because of broader-scale environmental filters. 397 

Additionally, when considering lineages’ biogeographic histories, phylogenetic clustering 398 

could arise due to recent stochastic extinctions or limited dispersal following allopatric 399 

speciation41.  400 



The negative covariation between PD and FD might primarily be explained by  the different 401 

impacts of biotic interactions competitive exclusion and environmental filtering across 402 

communities40,42,43. In phylogenetically closely relatedclustered communities, competitive 403 

exclusion seems to be the main acting mechanism, resulting in the co-existence of species 404 

with dissimilar phenotypes and thus, higher FD. In contrast, environmental filtering seems to 405 

be the driving process in communities with low FD and high PD. Here, only species with 406 

specific phenotypes would be admitted to the community44, which however might come from 407 

different clades, thus, exhibiting functional convergence but phylogenetic variation. This 408 

pattern also suggests that thoese species would differ in features not captured by the traits 409 

we used for included in calculating FD45. Since most communities showed decoupling with 410 

high FD (53%), competitive exclusion seems to be the strongest driver for global plant 411 

community assembly processes. However, we have to consider that trait divergence can also 412 

arise from interacting environmental factors that filter the species in a community, in 413 

particular when these factors interact13. In communities with intermediate values of PD, 414 

environmental filtering and competitive exclusion seem to be equally important, thus 415 

resulting in coupled communities. However, the relative importance of such mechanisms is 416 

almost impossible to test as we do not know if species are excluded from a given community 417 

due to the environmental conditions, biotic interactions, dispersal limitation, or by the 418 

interaction between multiple factors13,46. This results in FD and PD aremay more often 419 

become decoupled in communities where geographical, and  or local drivers differentially 420 

interact with factors of biotic interactions affecting functional and phylogenetic relationships 421 

among co-occurring species.  422 

We found no clear spatial patterns of functional and phylogenetic diversity, as vegetation 423 

plots with coupleding and decoupleding of FD and PD were observed in geographical 424 

proximityly close plant communities, indicating that local-scale factors dominate community 425 

assembly are the drivers of diversity within specific regions (Fig 2 B). Previous studies have 426 

reported geographical patterns of functional diversity based on climatic conditions, such as 427 

precipitation gradients47. Similarly, phylogenetic diversity can differ along latitudinal 428 

gradients, decreasing polewards48,49. Studies on the global distribution of PD showed striking 429 

differences across that many different ecoregions or biomes are able to exhibit high values of 430 

phylogenetic diversity50,51. This leads to regional diversity patterns which do not translate into 431 



global patterns, as the broader scale environmental conditions are unable to reflect local 432 

geographical ecological conditions conditions are likely to be blurred by broader 433 

environmental conditions at the global scale. However, considering the relationship between 434 

functional and phylogenetic diversity as a three-level categorical variable (“Decoupling with 435 

higher PD”, “Coupling”, “Decoupling with higher FD”) we were able to show that large-scale 436 

environmental factor do play a role (Fig. S 6). This suggests that even though we are not able 437 

to explain the full range of possible combinations of FD and PD, broader patterns can be 438 

explained. 439 

 We were able to reveal some tendencies between SES.FDQ and environmental conditions, 440 

but not to show that SES.FDQ is strongly driven by those conditions at the global scale (Fig. 4). 441 

In particular, functional diversity was not well explained by current climatic conditions and 442 

climate variability after the Last Glacial Maximum (LGM). This is in line with studies suggesting 443 

that the functional composition of local communities depends mostly on local factors, such 444 

as land use history, soil properties and microclimatic conditions23,52. However,  a fine 445 

classification of vegetation types, as it was done in a recent Europe-wide analysis on climate-446 

trait relationship53, could  have possibly increased the explanatory power of our model. 447 

Phylogenetic diversity (SES.PDQ) was consistently higher in forests compared to non-forest 448 

ecosystems, which points to the complex evolutionary structure of the different layers of 449 

forest communities (Fig. 5). Forests are normally characterized by the presence of different 450 

structural layers, with woody and non-woody species occupying different layers. 451 

Interestingly, this stratification was connected to increased phylogenetic diversity but not to 452 

higher functional diversity. We interpret this pattern as the result of the evolutionary history 453 

of trees, which significantly differs from that of the understory vegetation. Many tree species 454 

belong to families that are mostly woody, meaning they are more phylogenetically distant to 455 

other plant families which contributes to the high phylogenetic diversity found in forest 456 

ecosystems30–32. This is particularly true for conifers, which represent a clade of woody 457 

species separating from today’s angiosperms as early as 300 Mya18, and now most commonly 458 

found in forests. Furthermore, ferns and lycopods, which are typical components of the herb 459 

layer in temperate forests and typically occur as epiphytes in tropical forests, represent very 460 

distinct evolutionary histories compared to trees, contributing to the increased phylogenetic 461 

diversitydistance between co-occurring species that we observed in forests54,55. This resulted 462 



in higher PD in forests where those lineages were present. Additionally, more stable 463 

microclimatic conditions under a closed canopy could have led to more favorable conditions 464 

for different species across distinct families56,57. Overall, our findings suggest that while forest 465 

ecosystems display high PD, the functional diversity of plant species within these 466 

ecosystemsin forests may be more limited by the due to convergence in functional traits 467 

across different layers. 468 

Our work represents a first contribution to understanding the relationship between 469 

functional and phylogenetic diversity at the global scale, but it does not come without 470 

limitations. Even if sPlot is the biggest, harmonized database of global vegetation plots, the 471 

coverage is uneven across Earth´s biomes and vegetation types, which may bias our results. 472 

Yet, when using an environmentally balanced subset of the data, where data from the 473 

temperate zone are downsampled in favour of data from the tropics, we observed an even 474 

stronger negative relationship between FD and PD. This suggests that tropical plant 475 

communities contribute disproportionately to this pattern. Furthermore, the data contained 476 

in sPlot were collected using different sampling protocols and approaches, for instance 477 

focusing on woody species only or using plots of various shapes and sizes. While we partially 478 

overcome this problem by including predictors related to plot record characteristics (see 479 

methods) and by calculating standardized effect sizes, it remains unknown how these biases 480 

influence the correlation between FD and PD. As species abundance data is not well 481 

standardized in sPlot, the use of presence-absence data was the robust choice, which might 482 

limit the comparison to other studies on functional and phylogenetic diversity. Also, the 483 

selection of functional traits might influence the observed relationship between functional 484 

and phylogenetic diversity, especially given that we used only three traits to calculate FD. We 485 

note, however, that our results were robust to the selection of individual traits used, either 486 

individually or jointly, used when calculating FD, which did not  indicating that the specific 487 

trait chosen to calculate FD did not significantly impact the relationship between FD and PD 488 

(Fig. S 78, Tab. S 1). The polytomies included in the constructed phylogeny might lead to a 489 

possible underestimation of PD58, which we accounted for by calculating standardized effect 490 

size of PD. Additionally, we found the same negative pattern when we considered functional 491 

dispersion and mean pairwise distance (Fig. S 1 E) as proxy for FD and PD, where the latter is 492 

known to show different dispersion patterns than FDQ
59. However, when including PD as an 493 



explanatory variable for future studies, it is important to consider the relationship between 494 

traits and phylogeny and the potential non-linearity of trait evolution. Additionally, our 495 

analysis revealed that none of the potential traits exhibited a strong phylogenetic signal in all 496 

families considered in this study (Fig. S 7 8 B). Moreover, it appeared that certain families 497 

tend to possess more conserved traits compared to others. This is in line with other findings 498 

that evolutionary conservation can be associated with specific traits and lineages37, but this 499 

is not a commonly observed pattern. Consequently, depending on the sampled community 500 

and plant species, different patterns may emerge in the relationship between FD and PD. 501 

While both plant characteristics and evolutionary history are playing a crucial role in 502 

community assembly processes the underlying interacting mechanisms of biotic and abiotic 503 

factors remain unclear. 504 

Our findings on the relationship of SES.FDQ and SES.PDQ, imply that ecological communities 505 

can exhibit a wide range of combinations of functional and phylogenetic diversity. The general 506 

decoupling, even with negative correlation of FD and PD found in our study implyimplies a 507 

dominant signal of competitive exclusion in plant communities. This highlights that for an 508 

effective conservation of biodiversity we need to consider both functional and phylogenetic 509 

diversity, as both seems to drive community assembly and may reflect also the adaption 510 

possibilities of the community to climate changes. However, future research is needed, 511 

especially in areas where we were able to detect communities with both high FD and PD 512 

values, to understand which regional conditions leads to those diversity hotspots.  Achieving 513 

a better understanding of the diverse and context-dependent nature of FD and PD will help 514 

us shed light to better understand on and protect the intricate dynamics and complexities of 515 

ecological communities. 516 

  517 



Methods 518 

Species community data 519 

The vegetation plot database sPlot28 (www.idiv.de/splot) is a harmonized collection of 520 

national- and regional-scale vegetation-plot datasets. sPlot provides geo-referenced 521 

information on the presence and abundance of all vascular plants co-occurring in a sampling 522 

area, i.e., vegetation plot. The database version sPlot 3.0 holds a total number of 1,977,637 523 

vegetation plot records from 160 datasets collected between 1873 and 2019, across six 524 

continents and most biomes, including 76,912 vascular plant species (for version 2.1, see ref. 525 

28). The size of a plot varies according to the type of vegetation being sampled; plot size 526 

ranged from 1 m2 in grasslands to 250,000 m2 in forest ecosystems. The vegetation type of a 527 

plot was classified as forest and non-forest based on tree layer cover and the growth form of 528 

dominant species28. Vegetation plot records were included in the study if the cumulative 529 

coverage of species for which both trait and phylogenetic information was available 530 

accounted for at least 50% of the relative vegetation cover in that plot (see below). 531 

In addition,  we used sPlotOpen38, which is an environmentally balanced, open-access subset 532 

of sPlot, as a benchmark of our results, both when testing for the effect of trait selection when 533 

calculating functional diversity, and for the effect of uneven coverage of sPlot data across the 534 

Earth`s biomes. 535 

Functional diversity 536 

Plant functional traits were available from the gap-filled version of the TRY 5.0 database60–63. 537 

We calculated functional diversity as Rao’s quadratic entropy (FDQ) as well as functional 538 

dispersion (FDis) for all vegetation plots in sPlot 3.0. The calculation of Rao’s quadratic 539 

entropy64 is based on a Gower distance matrix calculated for the species present in each 540 

vegetation plot. FDis was computed from the uncorrected species-species distance matrix 541 

with the function dbFD from the R-package FD65,66.  We based this calculation on three 542 

functional traits selected to cover most of the variation within plant traits and to represent 543 

different axes in the plant economic spectrum, i.e. belowground and resource strategy of 544 

acquisition or conservation (specific root length, specific leaf area) and reproduction strategy 545 

of quality or quantity (plant height)36,67. To evaluate the influence of trait selection on the 546 

http://www.idiv.de/splot


relationship of functional and phylogenetic diversity, we calculated FDQ on eight functional 547 

traits (specific leaf area, specific root length, seed mass, plant height, leaf phosphorus and 548 

nitrogen content, leaf dry matter content, chromosome number), both taken individually and 549 

jointly. We did this additional analysis based on the sPlotOpen subset only, since calculating 550 

standardized effect sizes (see below) of FD calculated on eight traits in all plots was 551 

computationally unfeasible, even using our High Performance Cluster.  Additionally, 552 

considering all eight traits for the complete dataset would have led to a loss of approximately 553 

2000 species (~10% of species considered in this study, see below) due to missing data in the 554 

TRY database. 555 

Functional traits can be conserved ion the phylogeny. This was tested with two evolutionary 556 

models, i.e., Blomberg`s K and Pagel`s λ, where the latter is known to be more robust against 557 

incomplete resolved phylogenies or suboptimal branch lengths16,17. Pagel’s ʎ and Blomberg’s 558 

K were calculated using the function phylosig from the R-package picante68. In contrast to 559 

other tests for phylogenetic signals both models can be used to compare phylogenetic signals 560 

across different phylogenies16, which needs to be done as a global plant phylogeny is simply 561 

too large for an appropriate calculation of phylogenetic signals. Therefore, the phylogenetic 562 

signal for each trait was calculated within each family. All eight functional traits showed either 563 

no or low phylogenetic signals for Pagel`s ʎ and Blomberg`s K (Fig. S 7 8 B & C). Therefore, we 564 

assume that there is also no phylogenetic signal across angiosperms for the considered traits. 565 

Phylogenetic diversity 566 

For all species present in sPlot, a phylogenetic tree was built using the function phylo.maker 567 

from the R-package V.PhyloMaker69. The phylogenetic backbone of the package is the 568 

combination of GenBank taxa with a backbone provided by the Open Tree of Life, version 9.1 569 

(GBOTB), for seed plants70 and the clade of pteridophytes71. Missing genera were inserted to 570 

the half point of the family tree. This approach was evaluated by ref. 72, who showed that 571 

phylogenetic indices based on the calculated tree were highly correlated with indices based 572 

on the “PhytoPhylo megaphylogeny” (updated phylogenetic tree from ref. 71). Species that 573 

could not be inserted by the phylo.maker were bound to the half of the terminal level of a 574 

sister species if only one species was available in this genus, or to the most recent ancestor 575 



(MRCA) if the genus included more than one species. This additional binding was done with 576 

the bind.node function from the R-package phytools73. 577 

The computed phylogenetic tree for sPlot contained 160 families with 68,052 of 76,912 578 

species (88%) present within the database. Additional 3,802 species were included, with 579 

3,348 being bound to the node of the most recent ancestor (MRCA) of already present sister 580 

species and 454 species to the half of the terminal level on the family node. The final 581 

phylogenetic tree contained 71,854 species on 32,395 nodes. A total of 31,727 species in the 582 

phylogeny also had traits in the TRY database. Of this subset, 322 species (approx. 1%) were 583 

bound to the half of the terminal level on the family node and 2766 (approx. 9%) to the MRCA.  584 

Vegetation plot records were only included in the analysis if both trait and phylogenetic 585 

information was available for at least 50% of the total relative cover of the species in that 586 

plot. In total, 1,781,836 out of 1,977,637 plot records remained. 587 

Phylogenetic diversity was calculated as Rao`s quadratic entropy (PDQ) which amounts to the 588 

mean nearest taxon distance for presence-absence data. We used the function raoD from the 589 

R-package picante68, which is based on the cophenetic distance of all n species in the 590 

phylogeny, pruned to contain only the species in that plot. To account for the non-linearity of 591 

evolutionary histories, we also calculated PDQ based on the square root-transformed 592 

cophenetic distance74. Additionally we calculated mean pairwise distance (MPD), to be 593 

compared with functional dispersion, as MPD could show opposite dispersion patterns than 594 

PDQ
59. Only species with both trait information and known phylogeny were used to calculate 595 

functional and phylogenetic diversity. 596 

Standardized effect size 597 

The species richness of the vegetation plot records ranged from one to 412 species (Fig. S 89). 598 

Functional and phylogenetic diversity indices are known to depend on species richness75–77. 599 

Especially for functional diversity, a higher number of species in a community is more likely 600 

to return higher functional diversity values than communities with fewer species76. We 601 

controlled for species richness by calculating the standardized effect size of each diversity 602 

index for every vegetation plot record78, fixing the number of species of the plot record and 603 

drawing species randomly, which is equivalent to shuffling traits across species. As species do 604 

not equally occur across the globe, we calculated our null expectations based on biome-605 



specific species pools accounting for the frequency of species in the plot records in each 606 

biome. However, to see if the patterns also hold true for broader species pools we used the 607 

following hierarchical approach with three four stages of defined species pools. For the 608 

simplest species pool, we calculated our null expectations based on all species present in the 609 

whole sPlot database, so we allowed each species to occur everywhere in the world. For a 610 

more geographically constrained approach we calculated the null expectations based on 611 

species pools within 16 phytogeographical units37 (stage 2) and ten predefined biomes (stage 612 

3) in response to global climate variation28,79, namely: alpine, boreal zone, dry mid-latitudes, 613 

dry tropics and subtropics, polar and subpolar zone, subtropics with winter rain, subtropics 614 

with year-round rain, temperate mid-latitudes, tropics with summer rain, and tropics with 615 

year-round rain. The third fourth and most complex null model was based on the species pool 616 

within each biome, additionally sampling the species weighted by their frequency in the plot 617 

records within each biome. This means a species that occurred more frequently within a 618 

biome was randomly drawn more often to recalculate the null diversity index, compared to a 619 

species occurring less often. For each of the three four null models, we calculated the mean 620 

and standard deviation of the distribution of null functional and phylogenetic indices across 621 

499 draws. Vegetation plots only containing one species or for which trait and phylogenetic 622 

information was not available were excluded from functional or phylogenetic diversity 623 

calculations. Standardized effect sizes (SES) were obtained by subtracting the mean index of 624 

the randomized data from the observed index and dividing the result by the standard 625 

deviation of the index of the randomized data. 626 

Definition of coupling and decoupling 627 

To measure the percentage of coupled and decoupled communities a confidence interval was 628 

defined. We randomly drew one million values from a uniform distribution, defined between 629 

the minimum and maximum of observed standardized effect sizes of Rao´s quadratic entropy 630 

based on functional traits (SES.FDQ) as explanatory variable. We created a correlated response 631 

variable by adding an error from a normal distribution, obtained from the mean and the 632 

standard deviation of the observed SES.FDQ. We fitted a linear model and extracted the 633 

intercept and the confidence interval. Communities with an observed value of SES.FDQ were 634 

considered coupled if the standardized effect sizes of Rao´s quadratic entropy based on 635 

phylogenetic distance (SES.PDQ) fell within this interval. Based on this, we defined three 636 



categories of community patterns, i.e. “Decoupling with higher FD than PD”, “Coupling” and 637 

“Decoupling with lower FD than PD”. This variable was later used as an ordered categorical 638 

response.  639 

Additionally, we calculated the log ratio between SES.FDQ and SES.PDQ as 640 

log(SES.FDQ/SES.PDQ) after scaling the values between 0.001 and 1. Positive and negative 641 

values define the deviation with higher and lower SES.FDQ than SES.PDQ, respectively, from a 642 

perfect coupled community.  643 

Explanatory variables 644 

Current climate conditions (1981-2010) were represented by the 19 bioclimatic variables 645 

from CHELSA v.2.180,81. A principal component analyseis (PCA) was performed to reduce data 646 

dimensionality. In the following analyses, we only used the first five PCA axes, collectively 647 

accounting for 92.3% of explained variation. We interpreted the axes based on the highest 648 

loadings of the corresponding climate variable as follows: annual precipitation for PC1; mean 649 

daily air temperature of the coldest quarter and mean daily minimum air temperature of the 650 

coldest month for PC2; annual air temperature range for PC3; isothermality for PC4; and 651 

precipitation seasonality for PC5 (Tab. S 2, Fig. S 910). 652 

Mean air temperature variability after the Last Glacial Maximum (LGM) was derived from the 653 

open-access StableClim v1.1. dataset, containing estimates from 21,000 years ago at 2.5° 654 

spatial resolution82. Climate variability represents rapid global warming during the last 655 

deglaciation during the Bølling-Allerød transition83 on land and sea. The mean temperature 656 

variability between 21,000 B.P. and 100 A.D. was used as indices for the climate variability 657 

after the LGM. 658 

All climate variables were extracted for each plot with the extract function from the R-659 

package raster84. 660 

Not all vegetation plot records were complete in terms of the sampled functional groups. 661 

Records from tropical forest plots often contained either only tree data, or tree and shrub 662 

data. As the exclusion of those plots would have substantially reduced the spatial coverage of 663 

our model, we added the nominal predictor variable called ‘plants recorded’ to our models 664 

to partially control for this source of bias as in ref. 35. The variable ‘plants recorded’ has four 665 



values: all vascular plants, only dominant species, all woody plants, only trees. Additionally, 666 

we used the vegetation type (forest vs. non-forest) from the vegetation plot database sPlot 667 

as predictor variable.  668 

In total, we prepared eight explanatory variables, five related to the current climate 669 

conditions, one to past climate variability, and two to plot record characteristics. 670 

Statistical modelling 671 

A generalised additive model (GAM) was used to model the relationship between functional 672 

and phylogenetic diversity, either expressed as observed Rao`s quadratic entropy (for 673 

phylogenetic diversity also after a square root transformation of the distance matrix), or as 674 

standardized effect size of Rao`s quadratic entropy, functional dispersion and mean pairwise 675 

distance. A GAM is a generalised linear model in which the linear response can depend on 676 

unknown smooth functions of the explanatory variables. To account for the spatial structure 677 

of the data, the spatial coordinates were included as smooth spherical splines. All GAMs 678 

included a basis penalty smoother spline on the sphere (bs = ”sos”), applied to the geographic 679 

coordinates of every plot, thus taking spatial autocorrelation into account. The explanatory 680 

variable was included as linear predictors without any smooth function. The model was 681 

performed using the function gam from the R-package mgcv85–90, defined as following: 682 

gam( SES.FDQ ~ SES.PDQ + s(Longitude, Latitude, bs = "sos"), family = "gaussian", method = 683 

"REML") 684 

SES.FDQ is the standardized effect size of Rao's quadratic entropy based on the three selected 685 

functional plant traits and SES.PDQ is the standardized effect size of Rao's quadratic entropy 686 

based on the phylogenetic distances of species present in the community. This step was done 687 

for the complete dataset and for the sPlotOpen subset, for which we considered theing eight 688 

traits, both  individually and jointly, for calculating standardized effect size of FD. 689 

To model the relationship between either functional or phylogenetic diversity and the set of 690 

the eight explanatory variables described above, we used a two-step approach. In the first 691 

step, we used Boosted Regression Trees to select relevant explanatory variables and quantify 692 

their relative influence. In the second step, we fitted GAMs using functional, phylogenetic 693 



diversity or their log ratio as response variables, and the predictors selected in the first step 694 

as explanatory variables. We did this because fitting a full GAM algorithm with all predictors 695 

would lead to convergence issues, due to the huge number of data points.  696 

Boosted regression trees (BRTs) are a machine-learning technique used in regression and 697 

classification having few prior assumptions and being robust against overfitting and 698 

collinearity. They are known to uncover nonlinear relationships as well as interactions among 699 

predictors. The parameters of the BRT were set as follows: a tree complexity of five and a bag 700 

fraction of 0.5. The learning rate was set to 0.01 with a maximum number of 20,000 trees. 701 

The BRTs were calculated using the gbm.step routine from the dismo package91. An 702 

explanatory variable was considered relevant in the model if its relative influence was greater 703 

than 12.5%, which is the expected influence of a variable if all the eight predictors had an 704 

equal relative importance. 705 

The variables that were considered as relevant from the BRTs were then used in a second set 706 

of GAMs, having as response variable either functional diversity (SES.FDQ), phylogenetic 707 

diversity (SES.PDQ) or their log ratio, and as explanatory variables those that turned out to be 708 

relevant in the corresponding BRT. Additionally, we fitted a GAM with the ordered categorical 709 

response of coupling and decoupling against the environmental predictors, which were 710 

selected by the BRTs for functional and phylogenetic diversity. As the three categories were 711 

not equally represented, we sampled 10,000 communities for each category and repeated 712 

the GAM 100 times, besides run the same model on the complete (unbalanced) dataset. The 713 

spatial coordinates were included as smooth spherical splines in the all model as explained 714 

above. As not all vegetation plot entries in sPlot are classified as forest / non-forest the 715 

number of observations for the environmental models was 1,497,238. 716 

The prediction of each explanatory variable was performed using the prediction function from 717 

the R-package marginaleffects92 by predicting the explanatory variable based on the 718 

sequence between the minimum and maximum of the variable in the original data and the 719 

GAM model. The plotted regressions were obtained by extracting the residuals from a GAM 720 

without the explanatory variable of interest. 721 



For plotting, Ffunctional and phylogenetic variables were averaged plotted as mean for each 722 

grid cell with a size of 863.8 km2. The spatial smoother within the GAM was plotted at the 723 

same resolution based on the following model (example based on SES.FDQ): 724 

gam( SES.FDQ ~ 1 + s(Longitude, Latitude, bs = "sos"), family = "gaussian", method = "REML") 725 

All analyses were performed in R 4.1.393.  726 
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