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Digital twins have been used in industries and is now gaining traction in healthcare, particularly in
precision medicine. Discrete Event Simulation is a modelling methodology for simulating processes
and workflows in healthcare. This paper presents a methodology that integrates these technologies to
optimise critical care workflows based on real-time state changes, emphasising patient safety,
operational efficiency, and sustainability. This study proposes a novel dual-layer architecture to
monitor physical and conceptual entities in the Critical Care Unit. In the current scope, this study aims
to establish a methodology using Azure cloud to track treatment workflows in real-time. The results
indicated that by reviewing observation forms alone successfully tracked 72% of staff-performed
tasks in real-time. This study underscores the potential of digital twins to transform precision care in
critical care delivery by bridging the gap between actual and ideal clinical practices.

Healthcare is a high-risk profession’, continuously evolving to integrate new
technologies that enhance precision medicine. However, studies show some
worrying estimated numbers relating to the harm and death caused by
medical errors. In the United States, this is estimated to be greater than
750,000 cases of severe harm or death from medical error every year'. In the
European Union, World Health Organisation estimates that one in ten
patients experiences harm’. In the United Kingdom, the national state of
patient safety report 2024 estimated that annual cost of these errors alone is
14 billion pounds”. The reason is 40-50% of these errors are thought to be
preventable’. The healthcare professionals strive to reduce harm to their
patients primarily because of vocational responsibility if not the Hippocratic
oaths. The key question, then, is how stakeholders should approach
healthcare provision to better identify sources of harm and implement
strategies to minimise them.

This study started by looking at what has been done to understand the
problems. This approach to understanding harm comes from a combina-
tion of systems theory, complexity science and human factors and ergo-
nomics. All three share a common holistic perspective that recognises the
interconnectedness of things, yet when it comes to understanding causality,
they differ and thus the solutions offered might be different. Why need all
three as the sources of error not only lie in human factors and ergonomics3 R
but also systems and complexity science as this can contribute almost 40% of
the harm that comes to people’.

Healthcare provision is an interplay of multiple professionals, from
doctors, nurses, paramedics, pharmacists, physiotherapists, to porters,
managers and discharge specialists. All have a role to play, yet the way they
function within that system is vastly different. The Accident and Emergency
(A&E) department is very different to the pathology lab, which in turn is
vastly different to how an operation theatre works. So even though these
people all work together they are frequently interacting in novel ways while
working in parallel. The other difference is how they interpret task data. The
working pattern of a nurse or pharmacist, for example, is heavily structured.
They have prescribed tasks that must be carried out in a fixed format with
well-defined time intervals and responses. On the other hand, doctors work
on the other end of the spectrum, their approach is frequently unstructured,
they are individualistic in their approach and only bring structure after a
diagnosis is made.

Overall healthcare delivery requires multiple professionals or agents
who interact in both linear and non-liner behaviour. These professionals
frequently adopt activity to reflect changing knowledge or ground condi-
tions. These behaviours are always sensitive to initial conditions and legacy
activity is frequently reflected in how people work. There are feedback loops
influencing future behaviour. It is often difficult to identify the boundaries of
the system and it is important to acknowledge the role of distributed control,
i.e., there is no way to organise the entire systems behaviour. So, healthcare is
a complex adaptive system.
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This study looked at where the harm comes from through the lens of
human factors and ergonomics to map frequent state changes and inter-
connected linear and non-linear agents in a clinical setting. Based on the
contributors-to-error proportions came from human cognition, work
environment, culture, service design, and the vast gap between work as done
as opposed to how its imagined'. To resolve this, existing literature proposes
Discrete Event Simulation to optimise workflows. Whose characteristics
such as real-time simulation of discrete events and state changes in agents
are considered, the best option appears to be the application of digital twin
technology. Unlike most legacy work, the focus is not a condition or disease,
but the system that provides healthcare to improve patient safety. So, this
study looked at these factors more closely about cognitive errors’ coming
from the tendency of the human brain to look for patterns and seek a first fit
approach to diagnosis and decision making. Clinicians tend to not question
their first assumptions even when a case does not progress as anticipated.
The uncertainty is frequently identified and disregarded when it comes to
clinical management plans. A clinician frequently needs to make decisions
with partial data, is heavily reliant on heuristics and tends to only question
decisions if things go catastrophically wrong.

Discrete Event Simulation is a modelling methodology to simulate
processes or workflows of complex systems using state changes of activities
and assets’. Digital twin is a simulation methodology to mirror physical
entities in real-time, predicting, and evaluating the behaviour’. It has its
origins in the manufacturing domain, where it was initially applied within
product lifecycle management systems'’. The legacy work (aerospace'’,
energy'', maritime'’) shows reliable performance and digital twins were
well-suited not only to the manufacturing industry” but also to other
domains/industries as well. As their potential became evident, digital twins
gained attention from other sectors, becoming a strategic technology for key
business players'’. Although digital twins are now being explored in diverse
domains, including healthcare, achieving optimal benefits relies on how well
the domain aligns with the core characteristics of digital twin models".
However, compared to other sectors, realising similar capabilities in
healthcare is more complex. Clinical workflows at a hospital such as
emergency care and critical care units have many interrelated time critical
activities performing unstructured diagnosis by doctors and structured
treatment by nurses. Discrete Event Simulation based on historical and
synthetic timestamp data to simulate complex systems has proved useful in
many contexts. But in many contexts the main limitation of Discrete Event
Simulation is that it does not provide/support a real-time representation of
the workflows. Digital twins have the capability to represent physical entities
in real-time, but it cannot be used as it is to represent complex workflows.

From a domain aspect, digital twins in health revolutionised man-
agement and delivery, disease treatments and prevention, product design
and development, and personalised medicine. Existing research suggests the
applications such as resource utilisation and managing workflows using
digital twins to revolutionise the cyclical care process and enhance patient
care’. On the other hand, Discrete Event Simulation in healthcare is used for
stochastic modelling to address departments in hospitals such as emergency
care to assess the impact of care process, patient flows, resource usage, and
operational level issues. The applications were designed to address time and
efficiency related matrices using hybrid models'.

To the best of our knowledge there are fewer applications for digital
twins in healthcare for workflow optimisation due to limitations in
demonstrating discrete events of dynamic and complex systems such as
hospital departments”’">. Existing literature utilised digital twin applica-
tions to simulate physical entities such as staff, patients, and others rather
than conceptual events such as care process or workflow in a hospital
department™ . The inherent limitation for that is real-time gathering data
about care process or workflows does not exist and complicated process in a
clinical setting”. But data related to real-time state of physical entities can be
obtained through electronic health records, job lists, and observation forms.

As mentioned earlier, stochastic modelling using discrete events has
helped researchers to simulate care processes and workflows to simulate
patient flow or resource allocation. This study gathered data about physical

entities and timestamps of events in a clinical process from various sources
such as clinical databases, biomedical devices, and others, and then simu-
lated these clinical events using software such as AnyLogic or MATLAB
Simulink. Even though Discrete Event Simulation has helped to simulate
clinical processes it is limited with unavailability of critical data points and
does not simulate real-time state of the clinical process. Some of the legacy
work in digital twin is presented as follows.

Penverne et al. used a simulation-based digital twin for emergency
medical communion centre operations to assess accessibility on organisa-
tional scenarios to enable flexible call distribution using discrete events. This
study was implemented using Witness by Lanner which is a Discrete Event
Simulation software and simulated using historical data from emergency
medical communication centres in Pays-de-la-Loire region in France. This
study improved service quality by 17% to 22%".

Gorelova et al. conducted simulations of patient flow of two assisted
reproduction clinics in Alicante and Madrid using Discrete Event Simula-
tion. This study used MATLAB Simulink environment to simulate digital
twins of patients, hormone biosensors device, and patient care plans entities
using real and synthetic data collected from the infertility clinics. This
proposed method allowed identification of bottlenecks and proposes opti-
mal flows by modelling patient flow and patient health status resulting
reduction of patient wait times, reduced number of patient departures, and
decrease in staff workload. This study concluded to use real-time simulation
of the patients and staff to develop precise digital twins of the infertility
clinics as their future work'.

Zhong et al. investigated modelling an integrated care unit to support
resource management using a hybrid approach combining agent-based
simulation to model physical entities and Discrete Event Simulation for
model care pathways. This study used AnyLogic to simulate critical care
pathways based on the historical records. This approach leveraged perso-
nalised treatments based on trajectories and care services based on patient
care needs. This study stated the lack of operational data which are not easy
to record, visualise, or provide insights. Limited performance matrices at
system level causes issues in validation of data and improving operational
efficiency of the integrated care unit. The results show use of autonomous
agents such as equipment to model physical aspects and rosters, schedule
change disciplines, and handoff process can be used to model service
parameters in the simulation. This study concluded to develop a digital twin
of the integrated care unit with two-way communication between the
physical and virtual entities in real-time for personalised prediction based
on real patient data'.

Zheng et al. introduced Discrete Event Simulation modelling to study
operating room workflows to investigate the impacts of changes in resource
demand, staff level, and operating room policies. This study collected data
from a tertiary public hospital in Beijjing, China and used Any Logic to
simulate operating room workflows. This study performed what-if analysis
on demand accommodation and demand for anaesthetists and operating
rooms”™.

Hassanzadeh et al. proposed Discrete Event Simulation to model
operating theatres to assess the configuration of surgery affects, the key
performance indicators related to efficiency. This study used SimPy library
to implement the simulation using administrative databases of a major
Australian hospital. The model was validated using different scenarios and
performance metrics were included in this study™.

Zhong et al. investigated adopting the Systems Engineering for Patient
Safety (SEIPS) 2.0 to develop conceptual representations of critical care
delivery processes in digital twin of integrated care units. The hybrid
simulation model integrated discrete-time events and autonomous agents to
capture interactions in the integrated care unit by calibrating electronic
health record data from Mayo Clinic Rochester. The results show that the
simulation model can be used as in-silico testbed to investigate clinical
process and workflows in real-time”".

Based on domain perspective, in the last 5, years researchers have
published simulations of workflows based on discrete events to simulate
complex systems in healthcare (e.g., hospitals, clinics) in order to design new
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workflows, evaluate strategies, and predict changes by changing key vari-
ables in the workflow in clinical settings such as operating room™ and
paediatric otolaryngology clinics™. The research of digital twins in health-
care was based on real-time or historical data collected using monitoring
equipment and electronic health record systems to simulate the state of
physical resources and processes such as intensive care unit”’, emergency
medical communication centres'’, and hospital operations™. Few studies
suggested to simulate real-time overview using discrete events and digital
twins as their future work'®"”. To the best of our knowledge, the existing
research does not provide any evidence of a real-time overview of the
workflow, processes, and outcomes in healthcare due to high variability,
uncertainty, and dynamic socio-technical system where human interaction
influence the processes and outcomes.

Balasubramanyam et al. surveyed the research question and objectives,
concepts and benefits, principles and frameworks, application areas, and
challenges and limitations of digital twins in personalised healthcare. This
study identified four layers such as device layer, data layer, modelling layer,
and application layer to support design principles such as data collection
and integration, data modelling and simulation, real-time analysis and
decision support, security and privacy, interoperability, scalability, and user
centric design when implementing digital twin frameworks in healthcare.
This study showed end to end digital twin platforms such as Eclipse, Unity,
or Azure cloud to resolve time, costs, resources, standards, and scalability
constraints involving cloud-based digital twins healthcare applications™.

Wang et al. explored real-time patient data sharing, storage, and pro-
cessing of emergency health. This study compared cloud platforms such as
Amazon Web Services, Microsoft Azure, and Google cloud based on zone
availability, security, and cost factors to manage healthcare data using data
transmission formats and storage file formats based on standards such as
Health Level Seven Fast Healthcare Interoperability Resources (HL7 FHIR),
and Digital Imaging and Communications in Medicine (DICOM). This
study showed using Amazon Web Services cloud to implement emergency
healthcare solutions due to real-time data processing and analytics inte-
grated tools™.

Jameil et al. addressed the limitations involving real-time patient
monitoring due to low latency data transmission and efficiency resource
management. This study implemented low-cost, low-latency multimodal
sensors to simulate various physiological parameters based on dynamic
optimisation modelling using Python based Pyomo software and Azure
cloud and verified using machine learning algorithms. This study shows
Azure cloud helped horizontal scaling to support robustness with increasing
patient and data volumes, effective digital twin modelling and integration
using c-sharp and JavaScript Object Notation based Linked Data (JSON-
LD) languages, and visual tools such as Azure Digital Twin Explorer to
support visual exploration and administration™.

From a technology persepective, the literature review relies on existing
studies such as AnyLogic'®’ or related proprietary software”'***” to
simulate discrete events based on historical databases. To achieve real-time
simulation, study conducted review literature based on proprietary, open-
source, or custom cloud-based methodologies to explore capabilities such as
establishing two-way communication™, scalable data storage and compu-
tation services™’, and analytical capabilities in healthcare. The existing lit-
erature suggest to use cloud-based platforms, since Discrete Event
Simulation software does not provide horizontal scaling which is essential to
patient demand in a clinical setting. The current scope used Microsoft Azure
cloud to implement the digital twin framework to identify stability, latency,
and performance of the Azure services and the next phases will compare the
performance with other proprietary platforms.

Overall, the literature review on both domain and technology per-
spectives of this study has identified the quality of the discrete event data,
scope limitations, technical complexity, regulatory gaps, ethical concerns
and cost all contributed to challenges faced by different projects. Also, the
evaluation matrices for clinical workflows were limited due to difficulty of
data collection of the states in a workflow'’. To evaluate the framework, this
study has identified the following criteria based on the methodology:

1. All interventions are time neutral.
2. Counterbalance with time reduction.
3. No added time spent on data collection.

The final approach was to bring this together by adoption of Discrete
Event Simulation using Cynefin framework based on digital twin technol-
ogy, i.e. can digital twin track real-time activities, identify which of the four
domains the activity falls in, compare activity to ideal (compare work as
done to work as imagined) in areas of best and good practice, and finally
identify if stakeholders can if fixed, governing and enabling constraints
existed and if so, so how effective were they.

The basic questions study has resolved in the methodology:

1. Can each activity be tracked in real-time in clinical workflow settings?
This to be based on whether the activity can be classified as clear,
complicated, complex or chaotic. In real life most of these overlap in
the provision of care of any given patient in any clinical setting. From
a technical perspective this study has resolved the complexities
regarding data collection of physical states associated with critical
care workflows. The relationship between entities such as patients,
staff, and activities were tracked real-time using discrete events
during the treatment process.

2. Can the framework identify areas of best and good practice?

First, this study identified areas of good and best practice. This study
then analysed documents from five NHS trusts in the UK. This study
focused on looking at the Standard Operating Procedures (SOPs) and
seeing if SOPs metthe criteria for ISO 31000 Risk Framework'. SOPs
met the criteria were used to generate flow charts from more than half
the documents, and that none of the documents identified hazards
with each step of the SOPs or any risk mitigation strategy. The
documents were focused on work as imagined and as such seemed to
disregard work as done. So just building on existing documents was
not an option.

Last, this study decided to formulate process maps from scratch,
identify fault points and build on this by mapping this against pre-
vious incidents. This study identified areas of good and best practice
based on national standards and guidance. For some roles like nurses
and nutritionists this was relatively easy, yet for others like physicians
this was rather difficult, or in simple terms structured tasks usually
had some evidence base or recommendations behind them whereas
unstructured tasks did not.

3. Can stakeholders learn on past mistakes?

This study trained doctors on incident analysis and reports from the
incident reporting tool commonly used in the NHS (Datix incident &
risk reporting). The findings, though somewhat concerning, were not
entirely unexpected, system factors were poorly identified, including
environment, or organisational culture, as contributors and as such
the solution offered frequently was training. This frequent lack of
relevant data meant that past data could not be used as it was not
reliable to train any system or map against the flow charts.

4. Can stakeholders modify the behaviour?

This is required for new doctors to the critical care unit department
who are not accustomed to the culture and environment. Buy-in was
sought from existing workforce and the way the intervention was
structured was to introduce gamification into the clinical space. Some
of the new starters were inducted into gamification, they were given
avatars and tasks that gave them points or took them away based on
behaviour. This was quite successful in confirming the anticipated
outcomes.

Results

The overall results are concluded from two perspectives: domain and
technical perspectives. The goal of the domain perspective is to prove that
the digital twin framework can calculate and measure state changes in the
physical digital twin layer is used to synchronise the conceptual digital twin
layer to track the tasks and activities in real-time. The goal of the technical
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perspective is to identify how cloud infrastructure helped to seamlessly
connect both physical and digital entities in real time. The data does not
contain any patient or staff specific information and is anonymised by
randomly generated resource identities for personnel associated during the
data collection due to ethical reasons.

Domain perspective

The experimental data was formulated from the Critical Care Unit (CCU) at
Northampton General Hospital NHS Trust. This setup consisted of 14 staff
members with 10 patients over 7 days. During this study, the framework was
evaluated by using takt-time analysis with the data collected from doctors
(n=11), nurses (n = 3), and patients (n = 10). This study categorised forms
(n = 86) out of all forms (n = 120) which is 72% of forms used in critical care
treatments were taken into this study to gather data based on process groups
(n=7). The number of process groups allocated to doctors (n=1) and
nurses (n=6). Also, out of 86 tasks, 22% recorded data during the data
collection period. The average, minimum, maximum, and count functions
applied for each process group are shown for doctors in Fig. 1a and b daily
entries tasks; And for nurses in Fig. 1c and d peri-operative tasks,
Fig. le and f procedure lines tasks, and Fig. 1g and h admission tasks. The
medical diseases tasks (see Supplementary Table 4), death and dying tasks
(see Supplementary Table 7), and daily entry tasks (see Supplementary
Table 8) were not summarised into graphs due to no incidents were
recorded by nurses during the data collection period.

First, the daily entries process group by doctors included 11 shifts. Out
of 20 tasks, 35% were reported during the data collection period (see Sup-
plementary Table 2). As shown in Fig. 1a, doctors spent more time with high
deviation to perform each task. The “Critical Care Unit Daily Review
(NGV1914)” task and “Clinical Notes (WZW101)” task recorded 53% and
on average 18 minutes and 32 seconds to perform by doctors. The average
time spent to perform daily entry tasks is 12 minutes and 41 seconds which is
higher than nurses. Also as shown in Fig. 1b “Critical Care Unit Daily
Review (NGV1914)” task recorded more frequently with 33% of all recor-
ded data associated with daily entry tasks during the data collection period.

Second, the peri-operative process group by nurses included 2 shifts.
Out of 6 tasks, 33% were reported during the data collection period (see
Supplementary Table 3). As shown in Fig. Ic, nurses spent 1 minutes and
45 seconds on average to perform peri-operative tasks. Also as shown in
Fig. 1d “Trust Core Neurovascular Limb Assessment (Adult) (NGV1380)”
task recorded more frequently with 66% of all recorded data associated with
peri-operative tasks during the data collection period.

Third, the procedure lines process group by nurses included data from
5 shifts. Out of 13 tasks, 38% were reported during the data collection period
(see Supplementary Table 5). As shown in the Fig. 1e, nurses spent less time
with more frequency in each task type. The “Trust Peripheral Venous
Cannula (PVC) Care Plan (Adult) (NGV1176)” task, “Trust Core Care Plan
Care of the Patient with an Indwelling Urinary Catheter (Adult)
(NGV1590a)” task, and “Trust Critical Care Arterial Cannula (AC) Care
Plan (NGV1239)” task recorded 78% and on average 2 minutes to perform
by nurses. The nurses spent 1 minutes and 53 seconds on average to perform
procedure line tasks. Also as shown in Fig. 1f “Trust Peripheral Venous
Cannula (PVC) Care Plan (Adult) NGV1176)” task, “Trust Core Care Plan
Care of the Patient with an Indwelling Urinary Catheter (Adult)
(NGV1590a)” task, and “Trust Critical Care Arterial Cannula (AC) Care
Plan (NGV1239)” task recorded more frequently with 83% of all recorded
data associated with procedure lines tasks during the data collection period.

Forth, the admission process group by nurses included data from
4 shifts. Out of 8 tasks, 75% were reported during the data collection period
(see Supplementary Table 6). As shown in Fig. 1g, nurses spent 23 minutes
and 20 seconds on “Critical Care Nursing Assessments and Care Plans
(NGV2109)” task and 2 minutes and 30 seconds to complete other task
types in the admission process group. Also as shown in Fig. 1h “Trust
Bedrail Assessment and Core Care Plan (Adult) NGV1523)” task recorded
more frequently with 40% of all recorded data associated with admission
tasks during the data collection period.

From domain perspective, data collection was integrated as an addi-
tional task within existing workflow. This has led staff members to spend less
time to perform tasks such as the Trust Bedrail Assessment and Core Care
Plan (Adult) (NGV1523 07/18) in the admission process group even though
this task typically requires more time due to the busy nature of shift hours. In
practice, these tasks often took more than one minute to complete. It was
observed that staff members would log the start and end times for these tasks
at their initiation rather than upon completion which did not reflect the
actual time taken. Also, the doctors took 12 to 18 minutes to complete daily
entry process group, with significant high or low deviations on certain task
types. In contrast, nurses spent 2 to 4 minutes on peri-operative, procedure
lines task types, and certain admission tasks with less variation. This dif-
ference is attributed to doctors primarily performing unstructured tasks,
whereas nurses engage in more structured tasks.

Technology perspective

The data was taken out of Azure analytics associated with Azure IoT Hub
and Azure Digital Twin instances. The data collection period of this study
was carried out for one week using barcode readers to simulate Internet of
Things interfaces and online dashboard to simulate observation forms. The
data consists of telemetry events, trigger events, routing latency, and number
of digital twins. A telemetry event is a unit of interaction triggered by the
edge devices. Each telemetry event holds a payload of information regarding
the state of the physical system. In this study the payload consists of discrete
time intervals of the starting and end timestamps of the activity and masked
identification data about the patient, staff, and observation form. The trigger
events communicate event data based on notification types associated with
the internal state of the service. For example, trigger events can be a tele-
metry event associated with Azure IoT Hub service or digital twin update
event associated with Azure Digital Twins service. The routing latency is the
amount of time to consumed by the service to deliver the event to down-
stream application which is measured in milliseconds. A digital twin is an
instance of a physical entity stored in a digital twin instance. From the
technology perspective, this study aimed at consistent and real-time con-
nectivity between physical and digital worlds, transferring the state of the
staff, patients, observation forms to the physical digital twin layer, data
processing and simulation of interactions and workflows in the conceptual
digital twin layer, and dynamic management of digital twins.

Figure 2a shows number of telemetry events and routing latency in the
Azure IoT Hub instance for a period from 2024/06/20 to 2024/06/24 (see
Supplementary Table 9). The data provides consistent and real-time com-
munication between the physical and digital worlds without any failures.
During the data collection period many staff members actively registered
events during night shift which is time between 20:30 and 08:30. The latency
is between 240 and 160 milliseconds, averaging at 200 milliseconds. The
number of telemetry events corresponds to the latencies, but factors such as
the size of the telemetry payload and the time between two telemetry events
were also could cause higher latencies. The takeout point from the Azure IoT
Hub data is to reduce the payload size and better networking configuration
for immediate updates.

Figure 2b, ¢ shows number of trigger events and latency data for (b)
physical digital twin instance and (c) conceptual digital twin instance for the
period from 2024/06/20 to 2024/06/24 (see Supplementary Tables 10-11).
The data provides consistent and real-time transferring of the state between
physical digital twin layer to conceptual digital twin layer. As shown in Fig. 5
and Fig. 6¢, the number of elementary events is equal due to each trigger
event by the Azure IoT Hub sends event data downstream 100% to the
physical digital twin layer without any dead-letter events or failures. The
latency in the physical digital twin layer is much higher than the Azure IoT
Hub or in the conceptual digital twin layer due to processing, validating, and
mapping the workflows of the unit in the conceptual digital twin layer. The
takeout point from Fig. 2b is the framework requires faster execution time to
reduce the latency. Figure 6¢ shows number of trigger events and latencies
when managing the conceptual digital twin layer. The downstream data
from physical digital twin layer, already determined and updated the
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Fig. 1 | Domain perspective results. a The panel shows time spent in minutes by
doctors to perform daily entry tasks. The line graph was created using data collected
during the trial period. The discrete events associated with daily entry tasks by
doctors were recorded in Supplementary Figs. 50-68 and summarized in Supple-
mentary Table 1. The study sorted data in descending order, with the y-axis
represents time spent on each task in minutes/seconds and the x-axis representing
the task type. The red dotted line indicates the maximum time, the green dotted line
indicates the minimum time, and the blue line represents the average time taken to
perform each task during the data collection period. b The panel shows frequency of
daily entry tasks. The bar graph was created using data collected during the trial
period. The discrete events associated with daily entry tasks by doctors were
recorded in Supplementary Figs. 50-68 and summarized in Supplementary Table 1.
The study sorted data in descending order, with the y-axis representing the number
of events and the x-axis representing the task type. The secondary table below the bar
chart is a glossary table describing detailed names of each daily entry task type. ¢ The
panel shows time spent in minutes by nurses to perform peri-operative tasks. The
line graph was created using data collected during the trial period. The discrete
events associated with peri-operative tasks by nurses were recorded in Supple-
mentary Figs. 1-6 and summarized in Supplementary Table 2. The study sorted data
in descending order, with the y-axis representing the time spent on each task in
minutes/seconds and the x-axis representing the task type. The red dotted line
indicates the maximum time, the green dotted line indicates the minimum time, and
the blue line represents the average time taken to perform each task during the data
collection period. d The panel shows frequency of peri-operative tasks. The bar
graph was created using data collected during the trial period. The discrete events
associated with peri-operative tasks by nurses were recorded in Supplementary Figs.
1-6 and summarized in Supplementary Table 2. The study sorted data in descending
order, with the y-axis representing the number of events and the x-axis representing
the task type. The secondary table below the bar chart is a glossary table describing
detailed names of each peri-operative task type. e The panel shows time spent in

minutes by nurses to perform procedure line tasks. The line graph was created using
data collected during the trial period. The discrete events associated with procedure
line tasks by nurses were recorded in Supplementary Figs. 13-31 and summarized in
Supplementary Table 4. The study sorted data in descending order, with the y-axis
representing the time spent on task in minutes/seconds and the x-axis representing
the task type. The red dotted line indicates the maximum time, the green dotted line
indicates the minimum time, and the blue line represents the average time taken to
perform each procedure line task during the data collection period. f The panel
shows frequency of procedure line tasks. The bar graph was created using data
collected during the trial period. The discrete events associated with procedure line
tasks by nurses were recorded in Supplementary Figs. 13-31 and summarized in
Supplementary Table 4. The study sorted data in descending order, with the y-axis
representing the number of events and the x-axis representing the task type. The
secondary table below the bar chart is a glossary table describing detailed names of
each procedure line task type. g The panel shows time spent in minutes by nurses to
perform admission tasks. The line graph was created using data collected during the
trial period. The discrete events associated with admission tasks by nurses were
recorded in Supplementary Figs. 32-40 and summarized in Supplementary Table 5.
The study sorted data in descending order, with the y-axis representing the time
spent on each task in minutes/seconds and the x-axis representing the task type. The
red dotted line indicates the maximum time, the green dotted line indicates the
minimum time, and the blue line represents the average time taken to perform each
admission task during the data collection period. h The panel shows frequency of
admission tasks. The bar graph was created using data collected during the trial
period. The discrete events associated with admission tasks by nurses were recorded
in Supplementary Figs. 32-40 and summarized in Supplementary Table 5. The study
sorted data in descending order, with the y-axis representing the number of events
and the x-axis representing the task type. The secondary table below the bar chartisa
glossary table describing detailed names of each admission task type.

organisational layout and workflows in the conceptual digital twin layer.
Both digital twin instances showed variability in latency, with both instances
recording higher average latencies, possibly suggesting external factors such
as load during the data collection period. Additionally, there are incon-
sistencies in the conceptual twin data due to users using the online dash-
board to record tasks without using IoT devices.

During the earlier iterations this study observed a latency of 10 seconds
when querying digital twin instances. This issue persisted as staff members
often recorded both start and end events with a brief period, even though
tasks generally took more than 10 seconds to be completed for any given
scenario. This resulted in duplication of activities and tasks digital twins in
the conceptual digital twins during each event. To address this latency, study
implemented API calls using Azure SDK to retrieve digital twins as a default
rather than relying on query. This made querying less feasible when the
digital twins required constant read and write operations.

Additionally, this study used dynamically generated instances of
digital twins for a period from 2024/06/20 to 2024/06/24 (see Supple-
mentary Table 12). The digital twins were created or deleted based on the
physical overview of the critical care unit. Figure 2d shows dynamic
resource allocation based on the demand. For example, if a newly registered
staff member started an activity with a new barcode reader, a set of ports,
session, staff, activity, and task digital twins would be generated in both
physical and conceptual digital twin instances. In such cases, naming digital
twins presented unique problems since the naming conventions and Azure
Event Grid tend to execute each event executed nanoseconds apart. So, any
standard time-based identification was incompatible and caused unpre-
dictability due to duplication of digital twins. Therefore, Globally Unique
Identifiers (GUIDs) were suffixed to digital twin identifier to eliminate
duplication. Also, GUIDs were used to track each telemetry event from the
beginning to the end of the system by attaching them as identifiers to each
IoT telemetry event which helped to identify and track telemetry events
from Event Grid.

To increase security, stability, maintainability, and lower main-
tenance costs, this study used Microsoft .NET framework as default
environment to develop all the software required by the framework as it

more stable releases and documentation. This approach reduced conflicts
when projects interact with each other and increased maintainability of
the code base. By using Azure SDK for dotnet for client and management
services helped to eliminate many external dependencies which enhanced
the security and stability of the code. This approach contributed to the
implementation phase of this project with less time and improved quality
and control in mind.

In addition, standard or basic features of the Azure platform led to
unique challenges. Such as cold start, the latency of function apps, which
would sleep after inactivity and in some cases took at least 90 seconds to
start. This caused duplication and errors in the conceptual twins as the
digital twins were either not created or did not have updated properties.
Instead of implementing queues in the IoT Hub client, the subscription
plans were upgraded to premium versions and Event Grid trigger functions
were integrated into a single app project to reduce costs and increase
availability. This significantly eliminated data duplication in the
conceptual twins.

Moreover, the barcode readers used Bluetooth to communicate with
the hub application. Which limited the number of patients that could be
covered in the critical care unit. The barriers and interferences, such as the
thick wall dividing the east and west wards and glass dividers restricted the
signal strength of each barcode reader to a maximum of 5 meters. To record
data, the online dashboard and manual forms were used as an alternative to
cover more patients and to supplement the use of barcode readers. During
the production phase nurses and support staff adopted this hybrid method
due to limited access to computers and barcode readers. The other limitation
of the barcode readers is their inability to process data within the device
itself. The hub application managed this limitation by queuing the inputs. In
future phases, the hub application will be used to act as an interface to data
sources such as electronic health records, medical equipment, observation
forms, or custom applications.

Also, Azure uses a global naming schema for identifying its resources.
For example, if a resource can establish connectivity with the outside, its
name is typically permanent and cannot be changed in the future. Each
name also has constraints, such as alphabetical or numerical limits and
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character length restrictions. Using full names to identify each resource can
be complex and may require recreating the entire resource with a different
name. To address this, this study employed a four-part naming strategy and
used the NHS Digital Data Repository to create a standardised, uniquely
readable identification system for naming these resources to overcome the
limitations. First, to identify the project, this study used the “uod-nhs” as
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University of Derby - NHS to distinguish other ongoing projects. Secondly,
to identify the hospital and unit, formatted as “rns-rns01-78h,” which
includes region, hospital, and department identifiers as prefix. Thirdly, two
or three words to identify the project name. Last, initials of the Azure service
name, such as “sqldb” for SQL Database, “wa” for Web App, and “egt-fa” for
Event Grid Trigger Function Apps, were used. This approach streamlined
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Fig. 2 | Technology perspective results. a The number of telemetry events and
routing latency of the Azure Internet of Things service. The graph was created using
data collected during the trial period. The Azure metrices related to number of
telemetry events and routing latency were downloaded from Azure analytics and
metrics service associated with Azure Internet of Things service. The data was taken
from Supplementary Table 9: Internet of Things. Due to lack of activity the graph
was created based on period between 20/06/2024 12:00 and 24/06/2024 12:00. The
orange line shows average routing latency and blue bar chart shows total number of
telemetry events of each time interval. b The number of telemetry events and routing
latency of the Physical Digital Twin Layer. The graph was created using data col-
lected during the trial period. The Azure metrices related to number of function
trigger events and routing latency were downloaded from Azure analytics and
metrics service associated with Azure Digital Twins service. The data was taken from
Supplementary Table 10: Digital Twin Layers (Latency) and Supplementary Table
11: Digital Twin Layers (Triggers) associated with physical digital twin layer. Due to
lack of activity the graph was created based on period between 20/06/2024 12:00 and
24/06/2024 12:00. The orange line shows average routing latency and blue bar chart
shows total number of function events of each time interval. ¢ The number of
telemetry events and routing latency of the Conceptual Digital Twin Layer. The
graph was created using data collected during the trial period. The Azure metrices

related to number of function trigger events and routing latency were downloaded
from Azure analytics and metrics service associated with Azure Digital Twins ser-
vice. The data was taken from Supplementary Table 10: Digital Twin Layers
(Latency) and Supplementary Table 11: Digital Twin Layers (Triggers) associated
with conceptual digital twin layer. Due to lack of activity the graph was created based
on period between 20/06/2024 12:00 and 24/06/2024 12:00. The orange line shows
average routing latency and blue bar chart shows total number of function events of
each time interval. d The number of digital twins allocated in physical and con-
ceptual digital twin layers. The line graph was created using data collected during the
trial period. The Azure metrices related to number of function trigger events and
routing latency were downloaded from Azure analytics and metrics service asso-
ciated with Azure Digital Twins service. The data was taken from Supplementary
Table 12: Digital Twin Layers (Count) associated with both physical and conceptual
digital twin layer. Due to lack of activity the graph was created based on period
between 20/06/2024 12:00 and 23/06/2024 06:00. The orange line shows total
number of physical twin instances created in the physical digital twin layer and blue
line shows total number of conceptual twin instances created in conceptual digital
twin layer during the trial period. This graph proves the dynamic digital twin allo-
cation based on demand.

the naming process, ensuring each resource name was unique among
globally deployed resources, and helped scale each resource without causing
conflicts.

To sum up the technology perspective, this study noticed that Azure
cloud-maintained connectivity with devices throughout the data collection
period. Additionally, the Azure IoT Hub executed operations with latency
below 1 second. This study’s main feature, integrating multiple layers,
performed well with latency of less than 500 milliseconds. Azure Entra’s
application scope helped establish secure, symmetric-key-based applica-
tions for each endpoint to manage resources with its built-in HTTP client.
The built-in features of the Microsoft Azure SDK helped reduce reliance on
external dependencies and facilitated upgrading the source code to more
recent stable releases without conflicts. The Azure Resource Manager SDK
provided a programmable interface to allocate resources in Azure Cloud,
enabling dynamic management of resources. Moreover, the naming strategy
reduced clashes between globally deployed resources and streamlined the
implementation process.

Discussion

From a domain perspective, no data was intentionally collected about
individual patients or specific staff in the first phase. The primary goal was to
focus on tracking and quantifying activity while minimising any potential
influence on data collection and performance. This approach ensured that
the observed behaviours were as close to natural as possible. The Standard
Operating Procedures (SOPs) reviewed during this phase were found to
poorly reflect the actual work being performed. A more effective metho-
dology would have involved interviewing various staff members to gain
insights into their roles and daily activities. This would have provided a more
accurate picture of the work environment and processes. The process
mapping for each activity proved valuable in revealing discrepancies
between how care was intended to be delivered versus how it was delivered.
For example, the analysis of nursing documentation revealed that nurses
were required to complete 15 separate documents totalling over 80 pages
within the first 24 hours of a patient’s admission. Despite the volume, only
three documents contained redundant information. Analysing and elim-
inating these redundancies could save approximately 25 minutes per shift,
translating to a cumulative reduction of five hours of nursing time per shift,
per day. Similarly, more than half of the documentation performed by
physiotherapists was found to duplicate nursing reviews. Additionally, the
review of pharmacists’ roles highlighted that a significant portion of their
time was spent retrieving data already gathered by other systems, resulting
in redundant tasks with limited value. Another key insight was that during
periods of high demand, staff often delayed documentation until after tasks
were completed. This suggests that to track activities in real-time data

collection must extend beyond documentation to include metrics like
changes in patient physiology, position, and interventions provided. As this
study moved into fault point analysis in the next phase, it became evident
that incident investigations disproportionately attributed errors to indivi-
duals, with limited attention given to systemic and process-related factors
that contribute to harmful events. The lack of system and process thinking in
service design was apparent, and when incidents occurred, the absence of
comprehensive data and process maps made it difficult to trace back and
identify the root causes. The proposed framework was envisioned to
incorporate a comparative analysis of activity against an ideal and highlight
discrepancies, helping with a better understanding of root causes around
patient safety events.

The healthcare domain, physical entities were not limited to tangible
physical objects (e.g., blood pressure devices); they could also include live
observations, workflows, patients, clinicians, or clinical guidelines.
Moreover, a single physical entity may be linked to multiple other
physical entities, each with its own representative digital twin model. For
example, in this study, the barcode devices were associated with different
roles (nurses, consultants, etc.), each with its own digital twin model to
track activities within the critical care unit workflows. This has created a
many-to-many relationship between healthcare physical entities and
digital twins, complicating the design and implementation of digital twin
models in this domain. To address these complexities, a novel layered
approach for digital twin design was proposed. The physical digital twin
layer represented twins associated with tangible objects and their com-
plementary components. For instance, the physical department, barcode
scanners, and sessions. The conceptual digital twin layer represented
twins of key domain entities, such as roles (nurses, consultants), work-
flows, observations, and tasks (e.g., observation forms), which were
crucial to fulfil the business requirements. This multi-layered approach
offered two primary advantages: first, it reduced the complexity of
domain modelling; second, it allowed for a more comprehensive rea-
lisation of digital twin capabilities, maximising their benefits in health-
care applications.

The current phase of the digital twin framework was implemented as
an additional task within the existing workflow. This approach limited both
the quantity and type of data the study could collect due to the demanding
environment of the critical care unit. Our focus in this phase was primarily
on capturing the start and end times of tasks, rather than the granular details
of the tasks themselves, due to the complexities of recording data while
administering life-saving treatments. It became clear that collecting data for
a digital twin framework as an extra task for staff was not feasible, especially
as some staff members were initially hesitant to use it. Nevertheless, the
framework’s design is flexible enough to integrate various data sources, and
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in subsequent phases, data from Electronic Medical Records and other data
sources will be incorporated.

From a platform perspective, the existing layered digital twin frame-
work is platform agnostic by design. But the existing framework was
implemented using Azure Cloud to reduce time spent on implementing the
framework due to its extensive documentation and the trustworthy envir-
onment it provides to secure interactions. The key limitation, however, is the
lack of in-house capability to replicate Azure services. The open-source
frameworks such as Eclipse Ditto and Hono offer alternatives for imple-
menting digital twins on-premises”. However, implementing an open-
source framework in a high-risk industry such as healthcare conflicts with its
liability risks. Also, open-source alternatives such as Amazon Web Services
(AWS) and Google Cloud Platform (GCP) were considered due to their
performance in Apache benchmarks™. However, due to the limited time
and scope of the current phase, this study chose Azure Cloud to implement
the digital twin framework. The critical care unit adapts to patient demand
and staff availability, causing fluctuations in the need for barcode readers. To
reflect these changes, this study integrated the daemon application with an
HTTP AP]J, allowing dynamic management of devices in the cloud based on
demand. The endpoint used for managing devices—enabling creation,
reading of symmetric keys, and deletion operations in Azure IoT Hub via the
Device Provisioning Service—was secured to be accessible only by the
daemon application using Azure Entra Scope. Additionally, requiring a
symmetric key in the HTTP request headers further enhanced security,
enabling real-time adjustments to the digital twins based on demand.

From an interdisciplinary perspective, this study has designed the
digital twin to be easily usable in other industries where human resources
and complex rules are an essential part of the delivery of services. Another
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group that would benefit from this approach is where predictive judgement
is required for complex data with limited information for people to make
decisions. These two unique characteristics of our digital twin design mean
that it can, on one hand, improve efficiency and be easily deployable in
complex environments like government departments, such as taxation, and
similarly be useful for entities like small businesses to help with the visua-
lisation and validation of their day-to-day operations. Other examples
would include the insurance industry, where predictive judgement is an
essential part of calculations. This is achievable because this study structured
the information around known models of service design and business
management, with the intention that experts do not need to face a sharp
learning curve to introduce the technology. The next phase of this study is to
build interfaces to allow people with limited knowledge of system design and
processes to easily build a twin without direct expert input. This study’s
motivation remains healthcare, a field that changes how things are done
significantly and regularly, yet such an approach would potentially allow
models to be used in most industries where even people with limited
knowledge of digital twinning can apply the technology to meet their needs.

Methods

At the current phase, real-time activity tracking employed a four-step
process model systematically divided into four distinct phases. Each phase
utilised the four-step process, as illustrated in Fig. 3. Throughout this pro-
cess, the overall design aligned with the foundational criteria and require-
ments specific to the healthcare domain. For instance, domain knowledge
was acquired through rigorous inspection of workflows, observation forms,
protocols, guidelines, and consultations with healthcare professionals. The
design underwent comprehensive validation through testing and baseline

'
'
'
'

2
5
3
2
3
g
g

[2)

EMR (Medical data) Workflow Analysis + i

3
34 CCU - Integrative Knowledge Modeling

R R g

! CDTs and PDTs ! Q

i i

i i

i i

i i oncoy

R — g o= _j

DT4CCU
" Physical Digital Twins Execution
(PDTs)

i
O =
| Diagnostic
| Devices
1
P

i
i Business Processes i
i

%ﬂ %

@
ol T

: Observation

Scaling and Interdepartmental Integration
Phase-5

CCU Insights and Scenario Simulation
Phase-4

Behavioural and Decision Support
. L Phase-3
Digital Twining ase

In Workflow Integration and Benchmarking

Healthcare Phase-2

2 — 3 4 5
1 Resource Knowledge Knowledge Formal i
(Data source, local evidence and idati

Domain Knowledge others)
(Guidelines and others)

Fig. 3 | The four-step model of the framework and future work. 1. Domain
Knowledge Acquisition: The conceptual digital twins were created through a thor-
ough inspection and process mapping of takt time analysis, critical care unit
guidelines, and forms used to document the treatment process and workflows. 2. Key
Resources Knowledge Acquisition: The physical digital twins were developed by
analysing workflows and business processes (e.g., BPMN, schemas, and protocols)
using data sources from EMR systems, diagnostic devices, and observation forms. 3.
Integration of Physical and Conceptual Digital Twins: The physical and conceptual
digital twins were combined into a unified framework that reflects all relationships
and mappings between the components. 4. Design Evaluation and Execution: The
design is validated against artifacts in the target platform (Microsoft Azure in this
case) to ensure robust implementation and execution environments. The future
work of the framework is structured into the following phases. 1. Phase 1 (Real-Time
Activity Tracking): Can the proposed framework track activity live? 2. Phase 2

Real Time Activity Tracking

Phase-1

(Workflow Integration and Benchmarking): Can it embed a data collection strategy
into existing workflows? (with clinical and governance workflows as an example)
and can we compare it against a standard? 3. Phase 3 (Behavioural and Decision
Support) : Can behavioural modification and decision support tools be introduced
into practice? (with a focus on bias and noise around decision making). 4. Phase 4
(CCU Insights and Scenario Simulation): Can the twin be used to implement an
overall management strategy for a unit, by giving insights into system strengths and
vulnerabilities and be used for scenario-based simulations? 5. Phase 5 (Scaling and
Interdepartmental Integration): Can the proposed framework scale for the inte-
gration of different departments of a hospital or Health system with their own digital
twins. The figure contains official Azure architecture icons to communicate design
and relationships between various Azure services used in this study. Microsoft
permits the use of these icons in architectural diagrams. Source: https://learn.
microsoft.com/en-us/azure/architecture/icons/.
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care unit. This showed the type of bedspace required, preadmission checks,

forms, procedures, and handover. This helped to identify the types of observation
forms used to record patient data, staff roles interacting in each stage, and the
workflow of the admission process which were used to categorise observation form
groups.

verification to ensure consistency. Additionally, the design incorporated
criteria for compliance with healthcare standards (e.g., security and com-
munication protocols like Health Level 7). Finally, the knowledge generated
from the digital twin models can be shared across other organisations.

Domain Knowledge Acquisition

Identifying process maps was a key part of creating the conceptual digital
twin layer. During the design phase, this study used scanned observation
forms (n = 116) to classify them according to the related processes carried
out by nurses and doctors. These paper-based observation forms were
empty and contained no patient-related or demographic data and were used
to identify data points and the structure of the diagnosis and treatment
processes. Due to the unstructured nature of tasks performed by doctors,
this study sorted process maps (n = 1) using forms to record daily entries
(n=20). In contrast, the structured nature of tasks performed by nurses led
to the creation of process maps (1 =6) using forms to document 1) daily
entries (n = 22) 2) peri-operative tasks (1 = 6) 3) medical diseases (n = 6) 4)
procedure lines (n = 13) 5) admissions (n = 8) 6) death and dying processes
(n=10). This study had limited in time and scope, focusing on user roles
(n=2), with process maps created for doctors (n=1) and nurses (n = 6).
The Supplementary Table 1 shows classification of observation forms used
in diagnosis and treatment tasks by doctors and nurses based on process
groups. As shown in Fig. 4 the classification was then mapped into process
maps to identify the rules, roles, processes, and standards of each workflow.
Breaking down each task into a flowchart helped to communicate domain
knowledge about tasks and activities in the critical care unit to technical
experts. This study identified forms, tasks, subtasks, patients, staff, and units
as conceptual digital twins within the digital twin framework.

Key resources knowledge acquisition

This study observed non-patient medical data, diagnostic devices, and
observation forms used in diagnosis and treatment processes to analyse the
business and workflow of the critical care unit to build the physical digital

twin layer. In this phase, alternatives such as web, mobile, and desktop apps
were considered to interface physical twins with digital twins. Instead, this
study employed a hybrid approach which utilised barcode readers as edge
devices, paper sheets for recording manual entries, and a web-based inter-
face to record discrete time events of tasks by the staff. The main reason for
this approach was to provide alternative means for clinicians to interface
with the digital twins without changing existing workflows. This study
identified unit, hub, edge, and sessions as physical digital twins within the
digital twin framework.

Integration of physical and conceptual digital twins

This study identified the session digital twin to store information about the
recorded discrete time event. The session twin was designed to store
property values such as identifications of the patient, staff, observation form,
start or end timestamps, and flag. If the flag is true, then the values in the
property fields are matched with existing twins in the conceptual digital twin
layer. For example, if a new staff member initiates a subtask on a task for an
admitted patient, the session is used to create new staff, patient, task, and
subtask twins. The task and subtask are used to record the start and end
timestamps. Every time they interact with the patient, a new subtask twin is
created under their task twin, recording their start and end timestamps. In
the above example, if the staff member completes the subtask, they can set
the flag to true and update the end timestamp property fields. If the staff
member completes a task, the task twin will have the flag set to true, and the
end timestamp property fields will be updated. When a staff member creates
another subtask on the same task twin, a new task twin is created, and
ongoing subtasks are displayed under the new task twin.

Design, evaluation and execution

The Digital Twins Definition Language (DTDL) was used to describe twins.
Each twin was encapsulated in a DTDL model, which is a JavaScript Object
Notation (JSON) file that describes the properties and relationships. These
models were then used to create digital twin instances in both physical and

npj Digital Medicine | (2025)8:376

10


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01738-4

Article

connect

records

Fig. 5 | Physical Digital Twin Layer. The figure shows digital twin nodes and
relationships in the physical digital twin layer. The figure describes conceptual
entities such as unit, host, edge, and session twins. The unit twin is used to identify
the organisation in the knowledge graph in the physical digital twin layer. This is
denoted by the entity code of the critical care unit. This study did not use the
abbreviations which distinguishes other wards such as the Critical Care Unit (CCU)
or Coronary Care Unit (CCU) for staff. Additionally, the name length is limited to 1
KB and each name has to be unique. For this reason, the unit is named based on NHS
guidelines as 78H rather than CCU or Critical Care Unit. Based on scalability, each
unit twin is subdivided into hub twins which were used to identify the data origin
application used to gather data. The hub twin is identified by Hub-{name of the host
computer}. This study used a unique identifier for the name of the daemon appli-
cation. The hub twin has special permissions and authorisations to access the data
sources. Based on demand and distribution, the application stimulates the edge

twins in physical digital twin layer. The edge twin is added to the physical digital
twin layer to indicate which data source attached to the daemon application. The
edge twins were named as CCU{device identification number}. This study used
barcode readers to simulate the data sources. In this study, however, an edge is
defined as an interface for an electronic health record system, medical device, or
observation forms that can be used to feed data into the framework. The session twin
is a temporary 30-second virtual session used to hold information from barcode
readers. During the testing phase, study recorded discrete events with millisecond
accuracy as S-{timestamp in milliseconds}. However, this approach is not sustain-
able in the real world, where events might occur just microseconds or nanoseconds
apart. To create unique names for each digital twin, this study decided to suffix a
GUID as S-{GUID}. This solution addressed the uniqueness problem and avoided
duplication issues even the data is ingested just nanoseconds apart.

conceptual digital twin layers. The property attributes were used to store the
states and changes of a particular digital twin using primary or complex data
types. This study only used primary data types, as these did not store
complex values such as patient treatment details. Each model could then be
used to establish relationships with other models. Due to limitations in the
Azure Digital Twins platform this study used DTDL v2 to describe these
instances and used the Azure Software Development Kit which is a pro-
grammable interface to perform create, read, update, and delete operations
for digital twin instances and their relationships.

The study designed the physical digital twin layer and respective
cohorts as physical twins in the framework based on methods identified for
gathering data. Due to time and scope limitations only barcode readers were
used as a data source in this study, referred to as edge. Figure 5, shows the
digital twin nodes and relationships between physical twins as represented
in physical digital twin layer.

This study used Azure services such as Azure IoT Hub service (to
establish and maintain connectivity between edge devices and the Azure
cloud), Event Grid service (a publish and subscribe message distribution
service to create event-driven serverless applications), and Function App
service (for custom low-code serverless apps to develop custom mid-
dleware or interfaces between services). Also due to scope limitations,
this study used barcode readers as edge devices. The daemon application
was implemented in the host computer to act as a hub to listen for state
changes in the data sources and send telemetry events to the Azure cloud.
When a staff member used the edge device, the daemon application sent
telemetry events regarding the task to the Azure IoT Hub service. Then,
Event Grid service triggered Function App service to create new sessions
and update or replace values for existing valid sessions. The session twins
were used to store each discrete event. These session twins helped to
virtually store and queue relevant information and were set to expire if
the properties within them were incomplete or expired. Each session twin
stored and validated properties such as patient identifier, staff identifier,
form identifier, start time, and end time. Once the session twin validated
the property data and it was mapped with conceptual twins, the session
twin was set to expire and a snapshot of this instance was stored in the
database for validation. The unit, hub, and edge twins were created or
updated based on the telemetry event to point to the data source of the
discrete event for validation purposes.

The conceptual digital twin layer defined conceptual twins, which were
micro-ergonomic data such as rule, role, workflow, process, and standard
twins associated with the critical care unit. The discrete event data originated
from the physical digital twin layer and each snapshot was stored upon
completion in a SQL database. The conceptual digital twin layer had
interfaces with stakeholders, enabling interaction and generating reports
through a web-based graphical user interface. As shown in Fig. 6, digital twin

nodes and relationships between conceptual twins were represented in the
conceptual digital twin layer.

The demand was created by patients when they were admitted to the
unit for diagnosis and treatment. The staff were equipped with process maps
to follow for each patient based on specific criteria. The staff used different
types of observation forms to record these diagnosis and treatment proce-
dures for the patient. Subsequently, the study was able to generate the
framework for the conceptual digital twin layer by creating conceptual
digital twins for these conceptual elements and mapping them based on the
level of interaction using relationships.

Also, this study did not retrieve or store any patient-specific infor-
mation or values from personal records. The form twin was added to the
conceptual digital twin layer to understand the frequency of each observa-
tion form type. These form twins did not contain any patient-related data
and were purely used to identify which form was used by the staff.

In the real-world setting, each observation form was used by several
staff members over a particular period. For example, the “NGV1914 01/18
Critical Care Unit Daily Review” observation form was used by clinicians
and nurses to record observations such as heart rate or blood pressure and
treatments such as medications prescribed for a patient. This form was
allocated every 24 hours and replaced with a new form at the end of the day.
In the conceptual digital twin layer, this event was considered a task twin. If a
patient stayed for 3 days, it means there were 3 task twins. Each task twin was
attached to a patient and form twins recording the start and end times. This
setup helped calculate bed acuity levels, costs per patient, the number of
times a form was used, and the average task completion time. The con-
ceptual digital twin layer only allowed one task twin for one form twin at any
given instance, which helped to identify work duplication and track ongoing
tasks. The task twin was mapped using the discrete event data stored in the
session twin. Each task twin included a flag property which was used by staff
to check if the task was completed or not. This resembled the process of
changing observation forms in the physical setting. If there were no ongoing
tasks, a new task twin would be created in the conceptual digital twin layer.

When a staff member begin treatment procedure, they first recorded
the timestamp at the start of the procedure. They then recorded the second
timestamp at the end of the procedure, which notified the conceptual digital
twin layer that the subtask twin was completed. The conceptual digital twin
layer enforced a rule that only one ongoing subtask is allowed for a specific
task at a time by a staff member. Initially, a new subtask twin was created
with both the start and end timestamps set to the same value. Once the
subtask was completed, the end timestamp was updated, and the flag was set
to true. This approach helped to map individual staff interactions with a
given task, calculate the time a staff member spent on a subtask, assess
whether a particular staff member was busy, track the timeline of interac-
tions with a patient, and evaluate the costs and efficiency of the treatment
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treated

contained

Fig. 6 | Conceptual digital twin layer. The figure shows digital twin nodes and
relationships in the conceptual digital twin layer. The figure describes conceptual
entities such as patient, form, task, subtask, and unit twins. The patient twin in the
framework has an increment value suffixed as P-{increment number}, ensuring that
each twin identification is unique in the conceptual digital twin layer. The patient
identification value is derived from the session twin in physical digital twin layer.
The form twin is named with incremental values such as F-{increment value}, which
is an integer. Instead of using the full name of a form, such as “NGV1717 06/19
Individualised Care at the End of Life - Care Round Record Sheet (To be Used in
Place of Enhanced Care Round Document)” this study shortened it to the form

identification as F-50. This approach helped reduce errors and cleaned up the
knowledge graph representation of the conceptual digital twins. The form identi-
fication value is derived from the session twin in physical digital twin layer. The task
twin is an instance of the form twin. Further, subtask twin is used to record indi-
vidual sessions within a task. The staff twin is used to identify staff members in the
conceptual digital twin layer. These twins were identified using Globally Unique
Identifiers and do not contain any demographic data to identify the personnel
engaged in the trial. The unit twin is used to map each staff member to their
workstation.
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Fig. 7 | Azure cloud architecture. The daemon application establishes connectivity
to the Azure cloud by dynamically generating symmetric keys for each edge device
using application programming interface. This endpoint was protected by Microsoft
Defender for Azure Cloud to identify malicious activities, and Microsoft Entra was
used to secure accessibility to endpoints and scopes. The daemon application then
retrieves symmetric keys to establish connectivity to the Azure IoT Hub Device
Provisioning Service (DPS) dynamically based on the availability of edge devices.
The cloud-based digital twins interfaced with users through edge devices and a web
interface. The dynamic nature of allocating cloud resources required flexibility,
study used Azure Resource Manager (Azure ARM) to allocate and generate security

keys to establish connectivity between the services in real-time. By using function
apps and event grids, the framework captured the event data of Azure IoT Hub and
Azure Digital Twin instances and stored it in an Azure SQL database. The web
interface provided users with accessibility to interact with digital twins. A set of
temporary emails were created using Microsoft Entra to grant users access to the
system. The figure contains official Azure architecture icons to communicate design
and relationships between various Azure services used in this study. Microsoft
permits the use of these icons in architectural diagrams. Source: https://learn.
microsoft.com/en-us/azure/architecture/icons/.

process for each patient at a more granular level. The subtask twin did not
contain any patient-related data and was purely used to record timestamps
of the discrete event. The staff twin did not fetch or store any personal data
such as names, ages, or other personal details. Due to scope and time
limitations, this study did not store user roles either. Each staff twin was
named using the format S-{increment value}. The staff twin would be cre-
ated if it did not already exist, and it was then mapped to the relevant subtask
twin based on the session twin.

Currently, the conceptual digital twin layer mapping was used to
map staff who worked in the critical care unit. However, with scalability
in mind, future staff from cross-departmental interactions—such as
scanning X-rays or blood checking would be mapped based on available

data to build a real-time, sophisticated knowledge graph representation
of the hospital.

The software architecture was shown in Fig. 7, and the daemon
application established interface to manage edge devices. Figure 8 shows
flow diagrams of the daemon and event grid applications. When a staff
member scanned values using an edge device, the daemon application
created a telemetry event containing a JSON payload with information
about the discrete event. Each telemetry event was then filtered by the Event
Grid service to trigger functions to store this event data or ingest it into the
physical digital twin instance based on their parameters. Then a series of
function apps were designed to capture these digital twin update events in
the physical digital twin instance using event grid triggers to modify the
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threads to listen to data sources such as medical devices, electronic health records, or  vation forms were blurred for privacy reasons.
databases. The application continuously sends data to the Azure cloud until a
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Fig. 9 | Data collection using offline method. This study included thumbnail-sized
images of the front page of each observation form in the first column to help staff
members easily identify the correct form. The second column contained a barcode
with the form’s twin identification and descriptive name, allowing staff members to
scan the barcode to automatically enter discrete events. The third column was
designated for written comments or discrete time events. a A system-generated staff
identification was created for each staff member, linked to a barcode. b A list of
observation forms categorised by process groups was distributed to each staff

member, allowing them to choose between using the online or offline method. The
staff members could either record the start and end times of their subtask manually
or use barcode readers. ¢ Due to privacy concerns, this study did not use any real
patient identification. Instead, each patient was assigned an incremental value,
which was printed on a form. Each barcode reader was then assigned to an available
patient based on connectivity, effectively mapping the barcode reader to the patient.
This approach reduced the number of times a staff member had to record the time
from three to two instances.

conceptual digital twin instance accordingly. The web-based dashboard
provided an authenticated user interface for interacting with the conceptual
digital twins, allowing users to generate reports such as identifying bed
acuity, ongoing tasks and activities, costs by each form, costs by each patient,
time taken by each form and staff member, and time spent on each patient.
This study was limited in scope and did not build services such as notifying
staff of ongoing activities or missing activities based on process maps.
However, these potential expansions, such as time triggers, were identified
and mentioned in the architecture for the future development.

In order not to disrupt the critical care unit workflows, this study
deployed the framework on a separate system during the trial and evaluated
it using a custom-built minicomputer to deploy the daemon application and
connect the edge devices. The Supplementary Figs. 69-72 were output from
the test stage and Supplementary Figs. 1-68 were output from the trial stage.

This study used barcode readers (n = 3), specifically Tera 51000 Laser
1D (n=2) and Tera D5100 2D (n =1) wireless barcode scanners as edge
devices. Initially, the plan was to provide a scanner for each patient, but
constraints limited the number due to the coverage limitations of the bar-
code readers. The main wall dividing the east ward and west ward posed a
significant barrier to establishing connectivity between patients in farther
sections with the daemon application. Additionally, the glass walls separ-
ating each bed caused signal disruptions between the daemon application
and edge devices.

The consent forms were collected from the participant doctors (n = 15)
and nurses (n=5) at the Critical Care Unit of Northampton General
Hospital NHS Trust. These consent forms were generic, not specific to
referencing what type of information gathered or the type of task performed
during this study. Each participant was identified by using custom numbers
during the data collection period, which were only used by the staff to track
the tasks performed for each patient. The collected samples did not include

the demographic information of the participants due to privacy concerns.
The study was evaluated using offline and online methods.

The offline method was deployed to overcome network issues caused
by barriers between patients and the daemon application. In this method,
staff members could either use edge devices or simply write on the paper the
start and end times (see Supplementary Figs. 1-68). Later, data points
written on the form were added to the digital twin framework using the
online method. Figure 9 given below shows the process of data collection
using the offline method.

Temporary emails were provided to each staff member to access the
system through the web interface. Each barcode was assigned to a patient to
allow staff to gather start and end times efficiently. This system helped track
patients when they were moved to other beds based on the severity of their
condition. The online method was primarily limited to those who already
had access to computers. The online interface featured three user roles:
managers, administrators, and staff. Figure 10 given below shows the web-
based dashboard designed for staff.

Moreover, based on data collected in digital twins, unit managers could
generate reports such as average time and costs related to each patient, bed
acuity levels at a given time, and the costs generated by forms. Adminis-
trators could manage staff member access, create new users, oversee overall
resource usage, allocate edge devices to patients, and manage resources. The
staff interface allowed users to create, read, and update digital twins, allocate
resources, monitor bed acuity levels, track ongoing tasks and subtasks for
respective staff members, mark tasks or subtasks as complete, and create
new subtasks based on forms.

Dataset
The dataset was extracted using Digital Twins Query Language from Digital
Twins Instances. Each event did not contain any data related to patients or
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Fig. 10 | Data collection using the online method. a Study used Microsoft Entra to
generate custom emails for logging into the system. An email was assigned with the
staff member’s first name to make it easily readable when they logged into the web
user interface. The web user interface was automatically enabled with Microsoft

login, which was saved in their browser and authenticated using a password or the
Microsoft Authenticator app, making it secure and familiar to use. The login screen

ac

) Staff Overview

Recent Activity
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displays additional login options such as custom email or password, default
Microsoft authentication, and Google authentication. b The authentication screen
appears before users accesses the dashboard. ¢ The dashboard contains the user
interface for interacting with the conceptual digital twin layer. The thumbnails of
observation forms were blurred for privacy reasons.

staff, but rather workflows at the Critical Care Unit. This data included start
and end timestamps of subtasks, observation form types, and digital twins’
names for staff and patients. This study cleaned the data in the digital twin
instances into generalised records, showing the number of minutes spent on
each task, categorised by process groups. The dataset was publicly accessible
and was attached as a supplementary file for review purposes.

Data availability
The datasets generated during this study are attached to the Supplementary
Information file.

Code availability

The underlying repositories used in this study are not publicly available for
proprietary reasons. We will make some parts of the framework’s source
code available to the public in the next phases.
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