ﬂ buildings

Article

Optimizing Subsurface Geotechnical Data Integration for
Sustainable Building Infrastructure

Nauman Ijaz !, Zain Ijaz 2%, Nianqing Zhou !, Zia ur Rehman

and Muhammad Hamza ©

check for
updates

Academic Editor: Erwin Oh

Received: 7 November 2024
Revised: 19 December 2024
Accepted: 26 December 2024
Published: 5 January 2025

Citation: Ijaz, N.;Jjaz, Z.; Zhou, N.;
Rehman, Z.u.; ljaz, H.; [jaz, A.; Hamza,
M. Optimizing Subsurface
Geotechnical Data Integration for
Sustainable Building Infrastructure.
Buildings 2025, 15, 140. https://
doi.org/10.3390/buildings15010140

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

39, Hamdoon Ijaz 4, Aashan Ijaz 5

School of Civil Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China;
nauman_ijaz99@hotmail.com or nauman_ijaz@qzuie.edu.cn (N.L); nq.zhou@tongji.edu.cn (N.Z.)

Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of
Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
School of Engineering, College of Science and Engineering, University of Derby, Derby DE22 3AW, UK;
engr.zrehman@gmail.com

Department of Civil Engineering, The Hong Kong University of Science and Technology, Hong Kong;
hijaz@connect.ust.hk

Communication and Works Department, Government of Punjab, Lahore 54000, Pakistan;
aashanijaz@gmail.com

School of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China;
hamza30@szu.edu.cn

*  Correspondence: zain@tongji.edu.cn

Abstract: Sustainable building construction encounters challenges stemming from esca-
lating expenses and time delays associated with geotechnical assessments. Developing
and optimizing geotechnical soil maps (SMs) using existing data across heterogeneous
geotechnical formations offer strategic and dynamic solutions. This strategic approach
facilitates economical and prompt site evaluations, and offers preliminary ground models,
enhancing efficient and sustainable building foundation design. In this framework, this
paper aimed to develop SMs for the first time in the rapidly growing district of Gujrat using
the optimal interpolation technique (OIT). The subsurface conditions were evaluated using
the standard penetration test (SPT) N-values and soil classification including seismic wave
velocity to account for seismic effects. Among the different geostatistical and geospatial
models, the inverse distance weighting (IDW) model based on an optimized spatial analyst
approach yielded the minimum error and a higher association with the field data for the
understudy region. Overall, the optimized IDW technique yielded root mean square error
(RMSE), mean absolute error (MAE), and correlation coefficient (CC) ranges between 0.57
and 0.98. Furthermore, analytical depth-dependent models were developed using SPT-N
values to assess the bearing capacity, demonstrating the association of R? > 0.95. Moreover,
the study area was divided into three geotechnical zones based on the average SPT-N
values. Comprehensive validation of different strata evaluation based on the optimal IDW
for the SPT-N and soil type-based SMs revealed that the RMSE and MAE ranged between
0.36-1.65 and 0.30-0.59, while the CC ranged between 0.93 and 0.98 at multiple depths. The
allowable bearing capacity (ABC) for spread footings was determined by evaluating the
shear, settlement, and seismic factors. The study offers insights into regional variations in
geotechnical formations along with shallow foundation design guidelines for practitioners
and researchers working with similar soil conditions.

Keywords: sustainable building foundations; geotechnical soil maps; standard penetration
test; site characterization; bearing capacity
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1. Introduction

The safety and durability of any building structure are intrinsically linked to the
geotechnical characteristics of the underlying soil [1,2]. In the absence of a thorough
geotechnical investigation, the stability and load-bearing capacity of subsoil layers is inde-
terminate, presenting considerable risks to structural integrity, serviceability, and overall
building performance, which may result in impaired functionality or structural failure [3].
However, such investigation procedures are cumbersome and require plenty of money
and time, considerably escalating the project cost. Conversely, despite swift technological
progress in the construction sector, urban subterranean regions remain predominantly un-
explored and unutilized [4]. Additionally, in many urban and developing areas, plenty of
projects have been executed in the past, and their geotechnical investigation reports (GIRs)
ultimately became part of the documents rather than as guidelines for future projects. Such
GIRs and subsequent structural design are based on real-time data, tedious laboratory and
field testing, and decades of experience, which provide an in-depth understanding of soil
behavior for a proposed project. Moreover, for projects of this magnitude, the preliminary
feasibility evaluations are typically founded on fragmented information from multiple
geotechnical reports instead of systematic data [2]. Conversely, in numerous small-scale
construction projects, particularly within the urban residential expansion, geotechnical
investigations are frequently bypassed due to economic constraints and the absence of
comprehensive foundation design guidelines tailored to site-specific spatial characteris-
tics [5]. Consequently, incidents of structural failure in small-scale buildings are prevalent
in developing South Asian countries, often due to inaccurate estimations of the founda-
tion design parameters [6]. To overcome these problems, the development of optimized
SMs that account for varying geological formations and geotechnical settings can provide
critical insights for site-specific foundation design. Such maps provide a more systematic
approach by integrating data from earlier geotechnical studies and customizing it for future
usage, improving the dependability of both small and large-scale building projects. This
study aimed to create optimized geotechnical soil maps (SMs) for the rapidly expanding
district of Gujrat as well as a geotechnical zonation map and design recommendations for
shallow foundations.

In the past few years, the district of Gujrat has undergone a rapid development of
infrastructural work as the population has been increasing at a tremendous rate. This
district is pivotal in terms of agriculture and industrial trade; moreover, this area is planned
to be connected to the China Pakistan Economic Corridor (CPEC) in the near future [7]. To
meet the demand of the growing population, development works have been expedited,
and various housing projects have been initiated by the Government of Pakistan under
public-private partnerships in recent years. Present and future development work in the
regions have given attention to the significance of SMs as these maps aid designers in
delineating soil strength and qualities, offering essential pre-assessment and appraisal of
the allowable bearing capacity (ABC). Moreover, they can also provide guidelines for local
and international practitioners as well as researchers dealing with similar soil conditions
for various infrastructure development work, where the project cost is insufficient to
independently set up a geotechnical investigation.

Many researchers around the world have worked on soil mapping [8-11]. Neverthe-
less, there has been a scarcity of studies undertaken in the past that concentrated on several
regions of Pakistan as research areas. The research conducted on the spatial interpolation
of the district of Multan, Pakistan by using a large set of geotechnical data led to the
development of shallow foundation design guidelines for the subjected area [12]. Likewise,
the geotechnical zonification maps of the district of Faisalabad split the area into three
zones based on the SPT-N ranges of soil (i.e., soft, medium, and stiff consistency soil) [13].
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These maps provide reliable information on the geometry and engineering properties of
underground layers that would make projects safer and more economical, thus helping
to reduce the cost of geotechnical investigations, or at the very least, to have an initial
understanding of the soil properties at the proposed project site. Consequently, the authors
underscore the need to build such SMs, especially in quickly evolving urban areas or
regions of considerable agricultural and economic significance such as the district of Gujrat.
It is important to mention that no previous studies have been undertaken in this region
to formulate foundation design recommendations for researchers and practitioners in the
district of Gujrat in Pakistan. Such investigations are essential as they allow local and
international practitioners to use data from adjacent or geologically similar places to create
preliminary ground models. Accurate data on the subsurface geometry and qualities will
improve safety, lower the project expenses, and offer a preliminary comprehension of the
soil characteristics for new construction initiatives.

Numerous researchers have utilized diverse methodologies for the advancement of
SMs, with geographic information systems (GISs) emerging as a formidable instrument
for the collection, storage, retrieval, transformation, and visualization of spatial data from
the physical space [14,15]. Studies show three diverse but overlapping views regarding
the database, spatial analysis, and maps. Recent research has investigated the applica-
tion of GISs in geotechnical engineering, employing spatial interpolation techniques to
analyze geotechnical data [16,17]. GIS software encompasses various techniques of in-
terpolation, but perspectives of its selection vary among different researchers. Previous
research revealed that the ordinary kriging is less accurate in comparison to the inverse
distance weighting (IDW) technique since it requires larger numbers of uniform spatial
distributed data, which are rarely met in geotechnical data interpolation. Moreover, the
efficacy of the IDW technique becomes evident in situations where the spatial distribution
of data cannot be effectively modeled using variogram functions, as required in the ordi-
nary kriging technique. Furthermore, GIS interpolated zonation maps of Surfers Paradise
in Australia were explored via the IDW technique, revealing the varying spatial ranges
of the geotechnical database without consideration of the efficiency of the prediction at
unknown locations. Additionally, other researchers are of the view that the IDW method is
relatively suitable for computing the results because of its straightforward interpretation
as well as adjustment of the diminishing strength of the relationship over the study area
via constant power or a distance decay parameter [17,18]. Many researchers have also
developed geological, geophysical, and geotechnical maps using GIS-based coding and
the analysis of soil investigation data [19,20]. Such maps are essential for guiding design
principles, construction practices, and building regulations. Providing accessible data on
the subsoil characteristics reduces the soil exploration costs and offers solutions to antici-
pated geotechnical challenges. Additionally, the development of these maps contributes
significantly to regional and global geotechnical data repositories.

With the rapid expansion in infrastructure development in Pakistan, there is a strong
urge to develop SMs for its major cities and districts to promote sustainable construction
and geotechnical planned urban expansion in the region. The current study is an effort to
develop such multi-stratified SMs for the unexplored district of Gujrat based on a field and
laboratory investigated database entailing crucial parameters, such as the soil compressive
resistance against the loading and soil type, to geospatially identify and comprehend the
feasible and non-feasible zones for the prospective planned urban expansion. Further-
more, the study incorporates an extensive assessment of various interpolations with an
optimization approach to identify the optimal interpolation technique (OIT). In addition,
cross-validation was carried out based on critical performance metrics (CPMs) to ensure a
quantification assessment of the accuracy of the generated SMs to ensure on-field applica-
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tions. Moreover, the design considerations for shallow foundations based on ABC under
the settlement, shear, and seismic criteria were also analyzed, which act as a guideline for
local and international practitioners and researchers working on lightly loaded structures.

2. Description and Methods
2.1. General Description of the Study Area

The district of Gujrat is the tenth-major district of Punjab, Pakistan, comprising an
area of about 3192 km?, with a highly diverse environment. The district of Gujrat is located
between 32°35' north latitude and 73°45 east longitude. The district is positioned on
average about 233 m above sea level surrounding the two main rivers, the Chenab and
the Jhelum. The trunk road network has been extended all over the district, which will be
linked with the CPEC to create a trade course for the area. Figure 1 presents the location of
the district of Gujrat on a map of Pakistan and its administratively divided tehsils, along
with the average climate of the study area. Table 1 presents the distribution of land cover
of Gujrat in km? carried out via survey by ALTAS Pakistan [21].
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Figure 1. Spatial details of the district of Gujrat. (a) Location of the district of Gujrat on a map of Pak-
istan, (b) district of Gujrat map in Punjab province, (c) district of Gujrat map with the administrative
controlled tehsils Sarai Alamgir, Kharian, and Gujrat, and (d) average climatic conditions.

Table 1. Distribution of land covers of the district of Gujrat.

Distributed Land Cover for the District of Gujrat

km? %
Crop irrigated 0.83 0.026
Crop marginal 2134 66.85
Flood plains 0.09 0.002
Crop rainfed 284 8.89
Forest 292 9.152
Vegetation 18.08 0.59
Rangelands 160 5.01
Built-up areas 212 6.64
Bare areas 20 0.62
Wet areas 71 222
Total 3192 km? 100
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The district of Gujrat is underlain by a thick alluvial soil stratum comprised of clays,
silts, and sand accumulated by the Chenab and Jhelum Rivers, which currently stream
in the direction of the northern and southern sides of the study area, respectively. As
per the geological survey of Pakistan, the project area lies in sub-piedmont deposits of
the Indus flood plain, which is predominantly comprised of fine-textured unconsolidated
soil deposits as deep as 900 m [22]. As per the United States Geological Survey (USGS),
the district of Gujrat contains Neogene and Quaternary sediment deposits. The Neogene
sediments are predominantly characterized by weathered clayey facies alternated by sand
layers [23]. On the other hand, the quaternary deposit encompasses the environmental
deposits (i.e., alluvial, fluvial, aeolian, lacustrine, and peat) as per the soil genesis. The
United Nations Educational, Scientific, and Cultural Organization (UNESCO), in partner-
ship with the Food and Agriculture Organization (FAO), has created the World Soil Map,
which classifies soils according to their chemical, physical, and biological properties [24].
According to the UNESCO/FAO world soil maps, the district of Gujrat is governed by
eutric cambisols, lithosols, calcaric fluvisols, orthic luvisols, and haplic xerosols represent-
ing weak weathered rocks, hard weathered rocks, flood plain alluvial deposits, illuvial
clay deposits, and semi-desert soil, respectively [25]. The nomenclature of different soil
groups along with its distribution within the boundary of the district of Gujrat is presented
in Figure 2b. As per the UNESCO/FAQO, the validity of the soil map was limited to the
top 50 cm below the existing ground level. It should be noted that the network of lined
and unlined irrigation channels is the main source of groundwater recharge [26]. Figure 2a
represents the geology of the district of Gujrat.

73350'E  73400'E  73450°E THS00'E  73S50E  74°00'E 7450 74°100'E  74°1SO°E 74°200°E  74°250°E  74°300°E

Geology of

Legend
Boundary

300°N  32°350°N  32°40'0'N  32°45'0°N  32°50'0°N  32°550°N  33°00°N

8 Sediment deposits

District Gujrat

¥ r
32°250°N  32°30'0°N  32°350"N  32°40'0°N  32°450°N  32°50'0°N  32°550"N  33°0'0"N

-

-

Legend

T

Soil Nomenclature
Eutric Cambisols
M Lithosols

I Calcaric Fluvisols

r

32°250°N  32°300°N  32°350°N  32°400'N  32°450°N  32°50'0°'N  32°550°N  33°0'0°N
32°250°N  32°300°N  32°350'N  32°400'N  32°450°N 32°50'0°N  32°550°N  33°0'0°N

z
g - Neogene L wies Orthic Luvisols Miles
8 Quaternary 0 32565 13 195 26 Haplic Xerosols O Sent 1 21 2
r J 3 7 r - " 3 . r ¥ 73°35'0"E  73°40'0"E  73°45'0"E  73°50'0°E  73°55'0"E  74°0'0°E T4°50"E  74°100°E  74°15'0°E  74°20'0°E  74°25'0"E  74°300'E
73°35'0"E  73°40'0"E  73°45'0"E 73°50'0"E 73°55'0°E  74°0'0'E  74°5'0'E  74°10'0°E 74°150'E 74°20'0'E 74°25'0"E 74°30'0'E
(@ (b)

Figure 2. (a) Geological map of the study area, (b) UNESCO/FAO soil classification.

2.2. Description of the Seismicity

As per the revised Building Code of Pakistan (BCP) (2007), the study area falls in
seismic zone-2B. The peak ground acceleration (PGA) of zone-2B has a range of 0.16 g
to 0.24 g [27,28]. The study area in the Punjab Plain shows the medium-intensity stage
of seismicity. It is therefore recommended that the project structures should be intended
to serve the constraints of zone-2B after giving due consideration to the foundation soil
material. The characteristics of earthquake motion depend upon shear wave velocity, vs
(m/s), which is an important parameter to calculate the seismic allowable bearing capacity.
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2.3. Description of the Database

Geotechnical investigation reports collected from various certified public—private
design firms, which are regulated by engineering governing bodies, contain information
regarding the geographical, geological, or geotechnical data in both numerical and alphanu-
merical forms. Table 2 elaborates on the detailed information retrieved from GIRs. In
this study, the GIRs from 130 different construction projects that fell within the jurisdic-
tion of the district of Gujrat were extracted, and the average information of the borehole
was retrieved and compiled for further analysis. The borehole coordinates were marked
based on the information acquired from the GIRs, as seen in Figure 3. The subsoil data
obtained from each borehole comprised the thickness and position of each stratum as well
as the SPT-N at different depths. It is important to note that the SPT-N values used for
the development of SMs were corrected for hammer energy, tendon length, water table,
and overburden pressure as part of the GIRs. These corrections ensured the accuracy
and reliability of the SPT-N data, effectively standardizing and normalizing the values to
facilitate comparability across various datasets. Furthermore, major data from 103 sites
were employed for the development of SMs, and the remaining data were designated for
validation purposes, which were strategically distributed uniformly throughout the study
region to ensure comprehensive coverage. The choice of the selection of 80% of the data
for SM development, with the remaining 20% for validation purposes, was guided by
the data availability and aligns with common practices to prioritize model development,
ensuring the efficacy of the resulting SMs [29]. To further evaluate the data distribution, the
haversine approach was used to analyze the minimum and maximum distance between
the two closest points. The minimum and maximum distance between the two closest
points between boreholes were found to be 1.1 km, and 5.5 km, respectively (Equation (1)).
Furthermore, the model’s performance was evaluated and quantified via CPMs such as
RMSE, MAE, and CC to confirm the suitability of the data distribution. This distribution
was found to provide an optimal balance between model training and validation accuracy.

d = 2 Rarcsin (\/sin2 (Al;t) + cos(laty) cos(laty)sin? (Alzon) ) (1)

Here, R = 6371 km is the Earth’s radius, while Alat = laty — lat; and Alon = lony — lony,
respectively.

Table 2. Data extracted from the geotechnical investigation reports.

Contains general details about the borehole including identification
Borehole ID number, project name, point, depth, location, contractor, and other
relevant information.

Groundwater Records the water table depth and its variations over the
table monitoring period.

Provides a detailed description of soil layers encountered including
thickness, consistency, and color. For rock layers, additional
information such as aperture, roughness, discontinuities, and
weathering effects is included.

Lithology

Contains data from various tests conducted within the borehole,
In situ tests offering reliable insights. Established correlations further aid in
understanding the soil’s mechanical properties.

Includes test results from laboratory analyses on the soil and rock
Lab tests samples. Details on the sample quality, depth, sampling method, and
physical and mechanical parameters are also provided.
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Figure 3. Study area with the locations of the borehole points.

3. Results and Discussion
3.1. Statistical Analysis of the SPT-N

A statistical analysis of the SPT-N dataset was performed to evaluate its homogeneity,
variability, and distribution trends, as presented in Table 3. Descriptive statistics including
the mean and standard deviation (S.D) revealed a direct relationship with depth, indicating
stiffer strata beyond 3 m below the existing ground level (EGL). This increased hetero-
geneity reflects transitions in geological strata and the presence of denser interbedded
layers. Furthermore, thee analysis of variance (ANOVA) confirmed statistically signifi-
cant differences in the SPT-N values across depth intervals, providing strong insights into
depth-dependent soil behavior, as detailed in Table 4. It was evident from the results of the
analysis that the values of variance and S.D increased down the depth due to the higher
dispersion of SPT-N data. The majority of SPT-N values at shallow levels (i.e., 1-3 m) fell
under the soft to medium consistency limits of soil, which depicted lower values of S.D and
variance. Beyond a 3 m depth, soil from soft to stiff consistency ranges was observed, indi-
cating that a larger gap among the lower and higher extremities of SPT-N values resulted
in higher deviation.

Table 3. Statistical descriptors of the SPT-N data.

Statistical Descriptor of SPT-N Data

Depth (m)
Mean value
St. deviation
Minimum
Maximum
Data count

1 2 3 4 5 6 8 10
4.66 6.06 7.5 9.57 11.62 13.023 15.65 20.81
2.34 2.63 3.37 4.704 5.10 5.66 5.67 5.76

1 1 1 1 3 4 5 11

13 15 16 31 34 36 39 39
130 130 130 130 130 130 128 128
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Table 4. ANOVA analysis of SPT-N data.
Analysis of Variance of SPT-N Data

Groups/Depth Count Sum Average Variance
1m 130 470.65 4.66 5.519
2m 130 612.43 6.063 6.93
3m 130 758.28 7.5 11.37
4m 130 966.57 9.57 22.14
5m 130 1174.1 11.62 26.09
6m 130 1315.33 13.02 32.09
8m 128 1424.42 15.65 32.14
10 m 128 1706.9 20.81 33.21

Results of ANOVA analysis for the district of Gujrat
Source of Variation SS dF MS F-stat p-value
Between groups 18,270.04 7 2610.006 124.6194 0
Within groups 16,168.62 772 20.9438
Total 34,438.67 779

The frequency distribution of the SPT-N values at various depths is plotted in
Figure 4a—i. These graphs ensured that the dataset accurately represented the geotech-
nical characteristics, while the statistical analysis validated the interpolation assumptions.
Trends in cumulative frequency provide key insights for soil consistency and foundation
design. The results showed that the frequency of the SPT-N values for 1 m, 2 m, and 3 m
depths were less scattered over the range of the x-axis in contrast to those at the depths
of the SPT-N values beyond 3 m. Similarly, Figure 4i shows that the frequency of SPT-N
values ranging between 0 and 4 became more pronounced at shallow strata (i.e.,, 1-3 m
depth below the EGL), while at a higher depth, the frequency distribution was relatively
scattered over a wide range of SPT-N values, which indicates that the study area adheres to
the trend of high variance beyond 3 m depth. Figure 4j shows the maximum and minimum
deviation that can occur from the average mean SPT-N values at a particular depth. In
addition to various linear regression models, which were established and documented
in Table 5, geotechnical data were utilized to forecast the SPT-N values by incorporating
the depth factor (see Figure 4j). Additionally, the regression models demonstrated a high
coefficient of determination, suggesting that it can be reliably used to estimate the SPT-N
values at different depths during the early planning and design stages of future projects in
the study area.

Table 5. Formulation regression correlations with depth.

Regression Formulations of SPT-N Values with Depth

Profile Correlation R2

Average N =1.753 (D) + 2.565 0.992
Average — S.D N =2.172(D) + 4.926 0.989
Average + S.D N=1.334(D) + 0.203 0.956

where N = SPT-N value, D = depth.
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Figure 4. (a—f) SPT-N histogram at corresponding depths. (i) Comparison of SPT-N distribution at
various depths. (j) Descriptive changes of SPT-N with depth.

3.2. Selection of Optimum Interpolation Technique (OIT)

The various interpolation techniques were evaluated to assess the accuracy of pre-
diction, and integrated with a geotechnical dataset based on SPT-N dispersed across the
unexplored study region. The geotechnical database was joined via a linkage algorithm to
associate it with the spatial location of the borehole for the precise formulation of spatial
autocorrelations. The SPT-N database at a 1.0 m of depth below the EGL was evaluated via
various geostatistical and spatial analyst approaches to access and quantify the accuracy for
the subsequent development of SMs to ensure its practical implementation in the field. The
spatial analyst approach entails the assessment of the IDW, spline, and radial basis function,
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while the kriging, diffusion, and polynomial interpolations under the geostatistical analyst
approach were evaluated in terms of CPMs that involve the evaluation of the root mean
square error (RMSE), mean absolute error (MAE), and correlation coefficient (CC), respec-
tively. The optimal interpolation method was chosen for the further development of SMs
based on the SPT-N values and soil types at various depth intervals, specifically from 1 to
10 m below EGL at 1 m intervals. During the extensive iterations of various input variables,
the spatial analyst-based IDW found, with a power parameter of ‘2’, integrated with five
neighboring boreholes, accounting for the radius of influence, and was identified to be
optimal with the RMSE, MAE, and CC ranges between 0.57 and 0.98 (Figure 5). On the
other hand, the RMSE, MAE, and CC were found to be in the range between 0.73 and 2.5
for the spline, radial basis function, kriging, and diffusion, with the least desired techniques
identified, to the polynomial interpolation technique with a higher magnitude of error and
the least association with the actual field database. Based on the CPM values, the IDW
interpolation technique based on the spatial analyst approach was subsequently selected
for the development of geotechnical soil maps for the unexplored study region.
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Figure 5. CPMs of the various interpolation techniques.

3.3. Development of Soil Maps

Geotechnical data were gathered from various locations across the district, with
sampling points uniformly distributed across all three administratively controlled tehsils
(Figure 3). The site coordinates, elevation above mean sea level, SPT-N values, and soil
type at different depths were numerically recorded from the GIRs and imported into
ArcGIS as input data. ArcMap was then utilized to develop soil maps using the Spatial
Analyst tool with the IDW interpolation technique. Based on a detailed evaluation of
different interpolation methods, the IDW spatial interpolation approach was selected,
which estimates the value at an unknown point as a weighted average of values from
nearby points within a specified cut-off distance or from a set number of closest points. For
this analysis, an IDW power parameter of “2” was applied.

3.4. Development of SPT-N Maps

Figure 6 presents the soil resistance against compressive loading at depths of 1 m, 2 m,
3m,4m,5m, 6 m, 8 m, and 10 m under the EGL. These SMs indicate the soil resistive
capacity and soil stability against the loading at different intervals of the stratum. The
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classification of SPT-N values was based on the soil stiffness as suggested for soft, medium,
and stiff soil. Eight maps were developed to analyze the stratigraphical changes of SPT-N
across the shallow and deep intervals of depth. The observed ranges of SPT-N values,
namely 1-16 for 0-3 m, 1-34 for 3-6 m, and 5-39 for 6-10 m, revealed increasing resistance
with depth, consistent with stratigraphical densification. Ata depth of 1.0 m, the majority of
the area consists of soft zones with SPT-N values ranging from 1 to 4, indicating weak strata
unsuitable for foundation placement. As the depth increases, these soft zones diminish,
giving way to stiffer strata. For instance, at a 2 m depth, the SPT-N values increased to a
range of 5 to 8, reflecting improved soil strength. This transition from soft to stiff behavior
became more pronounced with depth; by 10 m, the majority of the area was characterized
by significantly higher SPT-N values ranging from 9 to 16 and exceeding 16.
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Figure 6. SPT-N variation up to a 10 m depth at each 1 m interval of the stratum.

Furthermore, as the study area is prone to peak ground acceleration in the range pf
0.16-0.24 as per the building code of Pakistan, the analysis incorporated the shear wave
velocity in the soil maps. The predominant vs values ranged from 83 to 272 m/s for
shallow depths (0-3 m), while depths beyond 3 m exhibited vs values ranging from 165 to
over 272 m/s. This variation highlights the differences in the seismic wave propagation
characteristics, which are crucial for assessing the seismic site response. It is pertinent to
mention that shallow soil layers exhibit weak zones with low compressive resistance to
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loading, necessitating careful consideration during the early stages of construction to ensure
the stability and reliability of foundation designs for future building infrastructure projects.

3.5. Soil Maps Based on Geotechnical Soil Type

SMs were created based on soil types identified at different stratigraphical layers of
the study area. Soil types were classified according to the Unified Soil Classification System
(USCS) and assigned numerical codes as follows: (1) CL, lean clay; (2) CL-ML, silty clay;
(3) ML, silt; (4) SP-SM, poorly graded sand with silt; (5) SP, poorly graded sand. Based
on the observed pattern of soil variation together with depth, nine maps were created, as
shown in Figure 7. The depth intervals of the soil maps were 0 m, 1 m,2m, 3 m,4 m,5m,
6 m, 8 m, and 10 m, respectively. The developed SMs demonstrated the predomination
of CL and CL-ML soil in the shallow stratification (i.e., up to 3 m), which is consistent
with the alluvial deposits formed by the sedimentation from the Chenab River and its
tributaries, contributing to the fine-grained interbedded stratigraphical layers. Between
4 m and 6 m, the stratigraphical composition shifted significantly, with SP and SP-SM
soils becoming more prevalent, indicating the presence of coarser-grained alluvial layers,
possibly reflecting historical fluctuations in sediment deposition regimes.
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Figure 7. Geotechnical properties of soil based on soil type.
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Moreover, the deeper layers exhibited a transitional behavior, where the SP-SM soils
were gradually predominated by CL or CL-ML soils, demonstrating a mix of fluvial and
lacustrine depositional environments influenced by historical river migration and flooding
events. Figure 7 illustrates this transition, highlighting the complexity of soil layering and
the influence of the region’s geological history on its geotechnical characteristics.

3.6. Validation of Soil Maps

To assess the accuracy of the SMs at specific depths and locations, actual SPT-N values
and soil types were compared with interpolated predictions generated via the optimized
IDW technique. The borehole points reserved for validation were well-distributed across
the study region to ensure comprehensive coverage, revealing only minor differences
between the observed and predicted values, confirming the reliability and robustness of
the IDW method for the development of SMs. Such SMs are critical to providing regional
variation considering the regional variation in geological and geotechnical variation other
than local anomalies. Figure 8 demonstrates the scatter plot of the field observations and
predicted values, showing a more concentrated alignment at shallow depths (1-3 m below
the EGL) that gradually became more dispersed at depths beyond 3.0 m. It is pertinent to
mention here that the maximum variability between the actual and predicted SPT-N values
in the first 3 m ranged between +3. In order to further analyze the strength of the predicted
SPT-N values and soil type, the RMSE, MAE, and CC were computed for various depths,
as can be seen in Table 6.
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Figure 8. Validation of SPT-N and soil type.
Table 6. Statistical assessment of the predicted and field values.
Depth SPT-N Soil Type
m RMSE MAE CC RMSE MAE CC
1 0.57 0.36 0.98 0.41 0.33 0.98
2 0.79 0.60 0.98 0.44 0.42 0.98
3 0.86 0.61 0.98 0.54 0.46 0.98
4 0.92 0.80 0.97 0.57 0.49 0.98
5 1.10 0.90 0.97 0.59 0.51 0.97
6 1.16 0.92 0.96 0.48 0.49 0.97
8 1.50 1.28 0.94 0.3 0.32 0.94
10 1.65 1.32 0.93 0.3 0.38 0.94

3.7. Generalized Geotechnical Zoning for Lightly-Loaded Structures

Laying the foundation of lightly-loaded structures within the first 3 m of the EGL is a
common practice in Pakistan. Therefore, it is necessary to develop generalized geotechnical
zones for the SPT-N value for the average of the first 3 m overburden, which provides
a quick estimation of the soil parameters and bearing capacity for the local practitioners
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dealing with lightly-loaded structures, keeping in mind the economical constraints. In
this context, an average SPT-N-based SM was incorporated based on the average SPT-N
values of the first 3 m below the EGL, as seen in Figure 9. The stratification reflects the
influence of the depositional environment and overconsolidation ratio, which directly
impact the soil stiffness and strength properties. A total of three zones were proposed
for soft, medium, and stiff consistency soils. For the top 3 m, the average SPT-N value in
zone-I was 1-4; for zone-1l, it was 5-8; and for zone-1II, 9-16. Tables 7-9 present the average
subsurface soil parameters based on field and laboratory investigations for the design of
shallow foundations.
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Figure 9. Average SPT-N zonation map.

Table 7. Foundation design parameters for zone-I.

Soil Depth Bulk Density Undrained Coefficient of
Identification P “y) Cohesion (c)  Compressibility (m,)
(m) (kg.cm?) (kg/cm?) (cm?/kg)
CL 0-1 0.0016 0.2 0.02
CL-ML 1-3 0.00165 0.3 0.017
CL-ML 3-4.5 0.0017 0.45 0.015
CL-ML 4.5-10 0.00175 0.6 0.013
Table 8. Foundation design parameters for zone-II.
Zone #2
. Coefficient
Soil Identi- Bulk Undral.ned of Com- Angle of
. . Depth . Cohesion 1 Internal
fication Density () pressibility .
(c) Friction (¢)
(mv)
(m) (kg.cm®) (kg/cm?) (cm?/kg) (Degrees)
CL-ML 0-3 0.00175 - 0.0018 -
SP-SM/SP 3-5.5 0.00185 0.7 - 28
CL/CL-ML 5.5-10 0.0019 - 0.0012 -
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Table 9. Foundation design parameters for zone-IIL

Zone #3
. Coefficient
Soil Identi- Buk ~ Undrined - Copcoy,.  Angleof
. . Depth . Cohesion 1 Internal
fication Density (y) pressibility .
(o) Friction ()
(my)

(m) (kg.cm®) (kg/cm?) (cm?/kg) (Degrees)

SP-SM 0-4.5 0.0018 - - 30

M]i/fEL_ 4.5-7.5 0.00185 0.75 0.0012 -

CL/CL-ML 7.5-10 0.0019 0.85 0.001 -

Spread footings such as square footings are more appropriate for lightly-loaded struc-
tures. In addition, for these types of footing, the influence zone falls within 2B, with an
average footing width ranging between 0.5 and 2.5 m, which is a common practice in
Pakistan. Therefore, the developed SMs up to 10 m depth well incorporated the influence
zones of spread footing that fells within the above-mentioned range. Furthermore, the
ABC for spread footing was evaluated based on the shear and settlement criteria. For the
shear criteria, the ABC was calculated against the factor of safety (FOS) 3.0, while for the
settlement criteria, the ABC against 25 mm settlement was assessed. The bearing capacities
were computed by varying the foundation width between 0.5 and 2.5 m by keeping the
depth of footing to 1 m. The Terzaghi equation was used to evaluate the safe bearing
capacity in terms of the shear strength of the soil whereas the settlement was computed by
incorporating the finite element method software known as the Plaxis 3D Foundation. A
typical illustration of the simulation results on the footing model is presented in Figure 10.
The governing values of bearing capacity are the lowest of two criteria (i.e., shear and
settlement). Moreover, as the study area falls under the medium-intensity seismic zone,
a third criterion based on seismicity was also incorporated into the current study. The
governing equation used to calculate the seismic allowable bearing capacity is presented
in Equation (2) [30]. Furthermore, a comparison was drawn between the ABC computed
based on the SPT-N values and shear wave velocity.

9 = 0.0257 V. @)
where g, is the allowable bearing capacity, <y is the unit weight of soil, vs is the shear wave

velocity, and B is the correction factor for footing width (B), as shown in Equations (3)-(5).
The suggested values of B for various footing widths (B) are as follows:

B=10for00< B < 1.2 3)
f=113-011B.for12< B < 3 4)
B =0.83—-001Bfor3.0 < B < 12.0 5)

Figure 10 presents the ABC curves for the spread footing based on the SPT-N values
and shear wave velocity for all three zones. In general, the ABC for spread footing based
on the SPT-N values was higher than the seismic ABC for all three zones (i.e., I, II, and
III). Furthermore, zone-1I exhibited a lower ABC for spread footing due to the presence
of soft strata, while zones-II and -III presented reasonably good strata for spread footing.
Among all of the zones, zone-III presented the highest ABC based on SPT-N values. In
addition, the ABC of spread footing in zones-I and -II was controlled by the shear criteria
at a footing width <2 m; conversely, beyond 2 m, the settlement criteria prevailed. In the
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Allowable bearing capacity (kg/cm?)

case of zone-III, the ABC of spread footing was controlled by the settlement criteria. On the
other hand, the ABC based on the shear wave velocity for zones-, -1I, and -1II was found to
be in the range of 28-40%, 45-51%, and 38-48%, respectively, lower than the ABC based
on the SPT-N values. This implies that seismicity has a major influence on the bearing
capacity calculations and must be incorporated into the design. For comparison purposes,
the ABC was further compared with the study pertaining to the Faisalabad region. It was
found that the ABC curves for the spread footing of Faisalabad district were relatively
higher compared to the district of Gujrat and predominantly comprised of cohesionless
soil with shear criteria that significantly controlled the ABC of the district, as can be seen
in Figure 11a—c. It is pertinent to mention here that in medium- to high-rise buildings
where structural loads are significant and settlement control is critical, mat footings could
be a more appropriate choice to ensure uniform load distribution and reduce the risk of
differential settlement.

o

O
T
!

[ 1]
I
Ty

T
I

Figure 10. Illustration of the simulation results computed from Plaxis 3D. (a) Isometric view of the
model after the application of the load, (b) cross-sectional view of the model, (c) cumulative settlement.
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Figure 11. Allowable bearing capacity curves for a spread foundation for zones-I, -II, and -III

4. Conclusions

This article focused on the development and optimization of geotechnical SMs of an
unexplored region to analyze the spatial variability in geotechnical settings, which were
further used to establish recommendations and suggest potentially appropriate areas for
the construction of lightly-loaded structures with shallow footings. The key outcomes of
this study are as follows:

o  The extensive iteration, the spatial analyst approach-based IDW, was found to be the
most effective interpolation technique (OIT) with an RMSE, MAE, and CC ranging
from 0.57 to 0.98. The least desirable method was polynomial interpolation, with an
RMSE, MAE, and CC ranging from 0.73 to 2.5.
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o  The SMs showed that the top 3 m deposit was mostly composed of lean clay, clayey
silt, and/or silt with an average SPT-N value of 1-16 and a shear wave velocity of
83-272 m/s, resulting in soft to hard strata. For construction in soft strata regions,
the thickness, depth, and seismicity factors should be considered for a safe and cost-
effective design. The strata between 3 and 6 m were mostly comprised of poorly
graded sand with silt, based on the soil types. Beyond 6 m, this trend changed to lean
clay, clayey silt, or silt, with typical mean SPT-N values ranging between 9-16 and >16,
which is suitable ground support for most civil engineering constructions.

e The comprehensive validation of the developed SMs at each interval, quantified
through CPMs, demonstrated RMSE and MAE ranges of 0.57-1.65 and 0.30-0.59,
respectively, for SPT-N and soil type. Additionally, the CC ranged from 0.93 to 0.98,
ensuring the reliability and applicability of these models for preliminary design phases
in construction projects.

e Based on the spatial variation, three geotechnical zones were identified based on
SPT-N values up to a 3 m depth, with averages of 1-4, 5-8, and 9-16 in zones-I, -1I,
and -III, respectively. The shallow footing designs in zones-I and-II were governed
by shear criteria, while the settlement criteria dominated in the zone-III designs. The
ABC with seismic consideration was found to be 28-51% lower than the ABC based
on the shear and settlement criteria across all zones, emphasizing the significance of
dynamic soil properties in the design.

e The SMs and geotechnical zone classifications provide valuable guidelines for local
practitioners and researchers offering insights into key geotechnical parameters
along with geotechnical variability across the study region, which is critical for
the initial phase of project planning, site selection, and the design of a preemptive
response system.
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