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Abstract. The development of the behaviour cloning technique allows 

robots to mimic human experts' behaviour by observation. The technique is 

mainly based on model architecture's design and associated training 

mechanisms. İt is believed that such an approach will impact the importance 

of robotics applications in the coming future. The ongoing research 

presented in this paper has investigated the use of behaviour cloning with 

image and video data streaming to improve robot learning using imitation of 

human experts' behaviour. The investigation has focused on the 

methodology, algorithms, and challenges associated with training robots to 

imitate human actions solely based on visual data inputs. An overview of the 

process of collecting diverse and annotated image and video datasets 

depicting various human actions and behaviours is presented. To provide 

efficient and consistent data representation, the preprocessing process 

includes feature extraction using convolutional neural networks (CNN) and 

normalization techniques. The CNN model for learning action mappings 

from visual inputs is described. These models' training focuses on 

optimization algorithms and loss functions. A thorough examination of data 

quality, overfitting, and model generalization issues is addressed and 

presented. The research's initial results showed the effectiveness of image 

and video-based behaviour cloning and how it is leading to more 

sophisticated and adaptive robotic systems. The limitations of the research 

are also discussed and presented in this paper. 

Keywords. Behaviour Cloning, Imitation Learning, CNN, Visual Data,  

Robotics. 

1 Introduction 

Imitation learning is the process of observing, acting, and then repeating it. İt is learning from 

demonstration (LfD) process and is renowned for its extensive range of Artificial İntelligence 

technology [1]. Imitation learning has its roots in mimicking experts behaviour and will 

significantly transform robotics into the realms of human-like functionality [2]. It enhances 

universal robotic advancements by displaying robots that mimic expert behaviour, indicating 

a transformation in robotics [3]. Robots have traditionally learnt by trial and error in 

controlled situations, progressively evolving within a reward function [4]. However, 
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imitation learning is characterised by its reliance on datasets containing demonstrations 

selected mainly by human experts [5].  These demonstrations serve as a blueprint for robots 

to follow, to replicate the expert's actions in similar situations or scenarios [2]. The relevance 

of this finding is not only based on the mimicking of the same behaviours of experts, but also 

on the extraction and comprehension of the underlying patterns [3]. Robots with imitation 

learning capabilities go above the basic replication by observing and learning from these 

demonstrations. Robots acquire the core and complexity of human behaviour, enhancing their 

ability to adapt and engage in a more human-like manner in efficiency and comprehension 

[5].   

A key component of imitation learning is behaviour cloning, which is a bridge for robots 

to learn, incorporate and replicate human action scenarios [2]. The use of visual data, such as 

images and videos, increases this imitation process by collecting accurate data that is 

necessary for producing complex human patterns [6]. This study focuses on the combination 

of behaviour cloning and visual data inputs to improve robots' ability to mimic human actions 

[7]. In addition, it tries to identify the potential and limitations of this developing subject by 

scrutinizing approaches, algorithms, and issues related to training robots only from visual 

data [6].  

The robotics operating environment is changing, and this study using visual-based 

behaviour cloning for task acquisition is an important step towards enhancing the synergy 

between imitation learning and robotics [7]. It explores the potential and limitations of 

training robots, especially from visual data, by examining methodologies, algorithms, and 

challenges associated with this emerging field. [6]. The field of robotics is in constant 

evolution, and this exploration into visual-based behaviour cloning for task acquisition marks 

a significant advancement in fostering improved synergy between imitation learning and 

robots [7]. 

2 State of the art of imitation learning and robotics   

This research explores the state-of-the-art in imitation learning and robotics, focusing on its 

significant contributions and methodological innovations, particularly in visual-based 

behaviour cloning methods, which are crucial for improving robot capabilities. AI, imitation 

learning, big data, and distributed computing are key tools in digital and smart manufacturing. 

Challenges include AI algorithms, complex coding, and updating manufacturing facilities. 

Imitation learning can simplify these issues, while deep imitation learning can help develop 

self-learning robotic systems. Collaboration between self-learning robotic cells enhances the 

manufacturing environment [8]. 

The Integrated Architecture for Situated Learning initiates speech-supported imitation 

learning, enabling flexible grasping by replicating human hand positions [9]. The 

interdisciplinary project for Goal-Directed Imitation explores goal-directed imitation, 

allowing robots to imitate observed grasping-placing sequences from human models [10]. 

Human-like movement generation makes a significant step forward by developing a 

framework that completes humanoid robots with real-time human-like motions, combining 

motion imitation learning with database-driven generation [11]. The Kernel Treatment of 

Imitation Learning proposes a revolutionary kernel-based technique that provides robots with 

adaptability and flexibility, which are important attributes in complicated situations [12]. 

Self-Imitation Learning pioneers SILCR, a practical alternative to reinforcement learning that 

is suited for contexts with few incentives [13]. Further advancement is made possible using 

unstructured natural language in imitation learning [14], which is influenced by human 

teaching techniques and aims to bridge communication gaps between experts and robots [14]. 

Imitation Learning for Robot therapy expands the application range by demonstrating 

how imitation learning contributes to mental health therapy by learning human behavioural 
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responses [15]. Visual Imitation Learning enables robots to learn manipulation tasks simply 

from human demonstrations, overcoming state estimation problems in the absence of prior 

object knowledge [16].  Deep Imitation Learning for Autonomous Manipulation pushes for 

the incorporation of deep learning into autonomous manipulation, utilising gaze prediction 

for memory-dependent tasks [17]. Finally, Interaction Warping for Robotic Manipulation 

demonstrates effective object rearrangement tasks by introducing SE3 robotic manipulation 

strategies via one-shot imitation learning. These methodologies represent the ongoing growth 

of imitation learning, moving robots towards greater flexibility, learning efficiency, and real-

world application [18]. 

Several pivotal contributions have emerged in the realm of advancements and 

methodological innovations within imitation learning.  A benchmark aimed at Behaviour 

Cloning Scalability was introduced, shedding light on crucial aspects such as dataset bias, 

overfitting, and training instabilities, thereby bringing further research into these areas [19]. 

This reformulated representation learning as a bi-level optimization problem, bolstering 

robustness in imitation learning setups by tackling challenges in joint representation learning 

[20] [21]. [22] proposed an innovative imitation learning algorithm capable of learning from 

noisy demonstrations without direct environment interactions or annotations, significantly 

increasing the applicability of imitation learning. It demonstrated a novel data-augmentation 

approach that facilitated data-efficient learning from parametric experts, particularly in 

reinforcement and imitation learning situations. [23] contributed by revealing a scalable 

method for directly inferring robot actions from visual representations, emphasising the 

distinction between generic visual representations and task-specific robot action inference. 

[24] developed a framework for few-shot policy transfer between domains via observation 

mapping and behaviour cloning, showing adaptability even in tasks with semantic 

dissimilarities. This delved into the robustness challenges inherent in learning from 

incomplete trajectories. [25] proposal, Trajectory-Aware Imitation Learning from 

Observations (TAILO), aims to foster more stable learning in such scenarios. Finally, [26]  

addressed catastrophic failures in behaviour cloning due to past action leakage by proposing 

Past Action Leakage Regularization (PALR), a principled approach enhancing the stability 

of imitation learning methods. These diverse contributions collectively mark significant 

strides in refining imitation learning methodologies, tackling challenges related to scalability, 

robustness, data efficiency, and stability, thereby paving the way for more resilient and 

adaptable learning frameworks in artificial intelligence. This comprehensive investigation 

underscores the evolution of imitation learning within robotics, elucidating foundational 

approaches, innovative methodologies, and key advancements. From speech-supported 

imitation to novel approaches addressing learning challenges, these studies collectively 

highlight the strides made in leveraging visual data for behaviour cloning. As robotics 

continues to evolve, these insights pave the way for more adaptable, responsive, and 

sophisticated robotic systems through imitation learning paradigms. 

3 Behaviour cloning for  robotics systems   

Behaviour cloning is an imitation learning approach in which a robot learns to mimic a 

desired behaviour by observing demonstrations rather than receiving specific instructions or 

rewards [27] [28]. In the context of visual datasets, this means learning a mapping between 

visual inputs such as images or video frames to actions performed by an expert [29]. 

Behaviour cloning, in a mathematical formulation, involves modelling a mapping function 𝑓 

that learns to replicate a behaviour [5]. In a simple form, if you have expert demonstrations 

represented as input-output pairs (𝑥𝑖  −  𝑎𝑖). where (𝑥𝑖) is the input as sensory data, state 

information and (𝑎𝑖) is the corresponding desired output as an action or behaviour, behaviour 

cloning aims to learn a mapping function 𝑓 such that 𝑓(𝑥𝑖)  approximates (𝑎𝑖). This can be 
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represented as a supervised learning problem where aim to minimize the discrepancy between 

the predicted output 𝑓(𝑥𝑖)  and the expert demonstration (𝑎𝑖). Mathematically, express this 

as a loss function [30] [31]: 

𝐿(𝜃) =  ∑ 𝐿(𝑓(𝑥𝑖), 𝑎𝑖)
𝑁

𝑖=1
(1) 

Where L is a loss function that indicates the difference between the predicted output and the 

actual demonstration for each input-output pair. Commonly used loss functions include mean 

squared error (MSE), categorical cross-entropy, or other task-specific loss functions [32]. 

The goal during training is to find the parameters (weights and biases) of the function 𝑓𝜃 that 

minimize this loss function [33]. This is typically achieved through optimization techniques 

such as gradient descent or its variants, where the parameters are updated iteratively to reduce 

the overall loss [34]. The mathematical equation for behaviour cloning lies in optimizing the 

parameters of the function 𝑓𝜃 to approximate the expert behaviour by minimizing the loss 

function associated with the disparity between predicted outputs and expert demonstrations 

[35].  

4 Behaviour cloning implementation using CNN 

As shown in Figure 1, the Convolutional Neural Networks (CNNs) are particularly 

advantageous in behaviour cloning due to their adeptness in handling spatial relationships 

within data.  

In tasks like behaviour cloning, where understanding visual inputs such as images or 

video frames is crucial, CNNs excel. Their architecture, built on convolutional layers that 

extract features hierarchically, enables them to discern patterns, textures, and shapes in the 

input data. This capability is pivotal in tasks like robotics, where replicating human behaviour 

from visual cues is essential. CNNs' ability to automatically learn and generalize from visual 

data makes them a robust choice for behaviour cloning applications, facilitating the 

replication of complex behaviours by learning from demonstrations. 

 

Fig. 1. Algorithm of behaviour cloning for robotic system pick and place 

MATEC Web of Conferences 401, (2024)

ICMR2024
https://doi.org/10.1051/matecconf/20244011200612006 

4



4.1 Dataset collection and processing 

The Integrated Architecture for Situated Learning initiates speech-supported imitation 

learning. To initiate the behaviour cloning process for the robotic arm's tasks (i.e., pick and 

place), an extensive dataset acquisition phase is fundamental. This involves capturing a 

diverse array of images or videos showcasing the robotic arm executing pick-and-place 

manoeuvres from multiple perspectives and environmental conditions. Gathering around 500 

images and 20 videos to ensure the model comprehensively learns to generalize across 

various scenarios. Once collected, preprocessing steps become critical. These encompass 

meticulous actions such as cropping images to focus solely on the arm and object, resizing to 

a uniform dimension, and standardising the images to ensure consistency in colour, lighting, 

and orientation. The labelling process is crucial, where each image or video frame is paired 

with the corresponding action performed by the robotic arm for picking an object, placing it 

at a designated location, or other relevant manoeuvres [36]. This annotated dataset forms the 

basis for training the convolution neural network to simulate the robotic arm's behaviour 

accurately. 

4.2 CNN model architecture and design 

The designed convolutional neural network (CNN) begins by accommodating 480x480 RGB 

images in the input layer, processing them through two convolutional layers. The first layer 

employs 32 filters sized 3x3 with ReLU activation, maintaining the spatial dimensions 

through the same padding. Subsequently, a max pooling layer with a 2x2 pool size and stride 

of 2 downsamples the features. The process continues with a second convolutional layer 

using 64 filters of the same size and activation, followed by another max pooling layer [37]. 

The resulting feature maps are then flattened into a 1D vector. This information feeds into a 

fully connected layer comprising 128 neurons activated by ReLU. Finally, the output layer, 

determined by the specific classification or action task, employs SoftMax activation to 

classify the output into respective classes or actions. This architecture helps in hierarchical 

feature extraction, downsampling, and interpretation, which is crucial for tasks like image 

classification or action recognition. 

4.3 Training CNN model 

During the training phase, the first step involves splitting the dataset into distinct training and 

validation sets, a crucial aspect for evaluating model performance. Once the data is 

partitioned, the CNN begins its training journey. Input data, images and or sensor data, are 

fed into the CNN architecture, initiating the optimization process. CNN’s primary objective 

lies in minimizing the Mean Squared Error (MSE), which measures the average squared 

difference between the predicted actions by the model and the expert actions in the dataset. 

In training, the CNN's parameters are adjusted to minimize the MSE. The network intends to 

generate predictions that are as close to the expert actions observed in the training data. 

4.4 CNN model deployment on robotic system 

The deployment process for robotics involves two primary stages. Initially, the trained model 

undergoes a precise conversion to align with the technical specifications of the Jetson Nano-

based robot, ensuring harmonious integration and optimal functionality within the system. 

Subsequently, a meticulous interfacing procedure is executed between the adapted model and 

the robotic arm, consolidating diverse datasets. This integration serves to fortify the model's 

capacity to efficiently process incoming data and issue precise directives to control the 
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actions of the robotic arm. Consequently, this facilitates a cohesive and responsive 

operational framework within the robotic system. Figure 2 shows the flowchart of the 

processing. 

Start: Represents the beginning of the process. Expert Demonstration: Demonstrate the 

actions of human experts. Input Layer: This rectangle signifies the initial input data, typically 

images in this case, with dimensions of 480x480 pixels and three channels (RGB). 

Convolutional Layer 1: This layer applies 32 filters of size 3x3 to the input data using 

Rectified Linear Unit (ReLU) activation and the same padding, extracting features from the 

input image. It's connected from the Input Layer. Max Pooling Layer 1: Following 

Convolutional Layer 1, this layer performs max pooling with a 2x2 window size and a stride 

of 2, reducing the spatial dimensions of the features while retaining important information 

[38]. Convolutional Layer 2: The second convolutional layer applies 64 filters of size 3x3 

with ReLU activation and the same padding, further extracting higher-level features from the 

output of Max Pooling Layer 1. Max Pooling Layer 2: Similar to Max Pooling Layer 1, this 

layer reduces the spatial dimensions of the features obtained from Convolutional Layer 2 

using a 2x2 window size and a stride of 2. Flatten Layer: This layer reshapes the output from 

the previous layers into a one-dimensional vector, preparing it for the fully connected layers. 

Fully Connected Layer 1: A dense layer with 128 neurons and ReLU activation. It processes 

the flattened output to further extract intricate patterns and features. Output Layer: The final 

layer of the network, which is customized based on the specific task—possibly the number 

of classes or actions needed. It uses a SoftMax activation function for classification purposes. 

Behaviour Cloning Process: A diamond-shaped box indicating the process of training the 

CNN model using behaviour cloning techniques. This involves feeding input data and 

corresponding desired actions or behaviours to teach the network to replicate those actions. 

End: End of the process as shown in figure 2. 

  
Fig. 2. Flowchart of behaviour cloning for robotic system pick and place 
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5 CNN model testing, validation, result and analysis 

The model is trained using CNN architecture and fed with the CIFAR-10 dataset to train the 

robotic system at various levels, enhancing its capabilities to imitate. Based on this training, 

the robotic system can learn about several common objects. As the model has been previously 

described in the above sections, its training accuracy is 92.86%, while its validation accuracy 

stands at 88.2% as shown in figure 3.  

      The model undergoes training using custom datasets comprising a diverse range of data 

types, including RGB images, shapes, and real-time objects such as pens, pencils, balls, cubes, 

fruits, vegetables, ...etc. This comprehensive dataset encompasses approximately 500 images 

and 20 videos, providing a rich and varied set of visual information for the model to learn 

from. As a result of this training regimen, the model attains varying levels of accuracy across 

different categories. It achieves an accuracy as stated in figure 4 of 69% in recognizing certain 

objects, 85% in identifying specific shapes, and 67% in classifying various real-time items. 

This broad array of accuracies reflects the model's proficiency in differentiating and 

understanding distinct classes within the custom dataset, showcasing its ability to learn and 

generalize across multiple categories. 

 

 

Fig. 3. Training model using CIFAR10 datasets 

 

Fig. 4. Testing model customise datasets 
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6 Conclusion 

This ongoing research programme's initial outcomes highlight the crucial role of 

convolutional neural networks in enabling robots to imitate and learn from various human 

behaviours depicted in visual datasets. Despite obstacles such as overfitting or underfitting, 

the study's meticulous approach emphasizes the potential of visual-based behaviour cloning 

in shaping more sophisticated and adaptable robotic systems. The work has shown promising 

results and considerable contribution to the advancement of robotics, paving the way for 

enhanced human-like cognitive learning in robots. 
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