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Condition Parameter Estimation for Buck
Converters based on Model Observers

Zhaohui Cen and Paul Stewart (Senior Member IEEE)

Abstract—DC-DC power converters such as Buck converters
are susceptible to degradation and failure due to operating
under conditions of electrical stress and variable power sources
in power conversion applications such as electric vehicles
and renewable energy. Some key components such as elec-
trolytic capacitors degrade over time due to evaporation of
the electrolyte. In this paper, a model-observer based scheme
is proposed to monitor states of Buck converters and to
estimate their component parameters such as capacitance and
inductance. Firstly, a diagnosis observer is proposed, and the
generated residual vectors are applied for fault detection and
isolation. Secondly, component condition parameters such as
capacitance and inductance are reconstructed using another
novel observer with adaptive feedback law. Additionally, the
observer structures and their theoretical availability are ana-
lyzed and proven. In contrast to existing reliability approaches
applied in Buck converters, the proposed scheme perform
online-estimation for key parameters. Finally, Buck converters
in conventional DC-DC step-down and Photo-Voltaic applica-
tions are investigated to test and validate the effectiveness of
the proposed scheme in both simulation and laboratory ex-
periment. Results demonstrate the feasibility, performance and
superiority of the proposed component parameters estimation
scheme.

Index Terms—Buck converters, condition monitoring and
fault diagnosis, model observers, adaptive estimation

I. INTRODUCTION

AS a key power systems component, power converters
have important functions such as DC-DC conversions

and DC-AC inversions to feed power into local loads
or power grids. However, the power converters are also
subject to degradation and ageing, which is exacerbated
by running under uninterrupted operating regimes and
unstable or unsteady power inputs in conventional power
systems, typically in the applications areas of, for example,
electric vehicles(EV), wind energy conversion systems,
photo-voltaic(PV) systems and smart-grid systems [1]–
[9]. Also, mismatches among different PV modules often
occur, when modules in an array do not exhibit fully
identical electrical properties , or they are exposed to arid
environmental conditions such as strong irradiance, high
levels of airborne dust particles and high temperatures,
often leading to a different maximum power point (MPP)
for each module. Furthermore, If PV modules are installed
in strings, the string systems will lower the string’s output
to the level of the lowest performing module, due to
the unbalance of PV cells caused by power electronics
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performance degradation [10]. Therefore, it is essential to
monitor conditions of the PV module-level power convert-
ers and to further estimate the degradation status in real-
time or in advance to avoid fatal failures and improve the
reliability of the overall power system.

Currently, most reliability studies on power convert-
ers and power systems are focused on fault mechanism
analysis, characteristic signal analysis and qualitative fault
mode identification because of limited measurable state
signals [11]–[17]. The possible faulty components involved
in power electronics are shown in Fig. 1 [18], [19]. The
left pie chart in Fig. 1 shows that capacitors are the most
vulnerable components. Also, the semiconductor compo-
nents such as MOSFETs and IGBTs have a large proportion
of failure distributions [20]. Based on these failure and fault
types in power electronics, some diagnostic techniques
focus on converter terminal quantities such as output
voltage frequency analysis and motor stator current time-
domain response. The current vector trajectory in the Con-
cordia frame [21]–[24], has been adopted to identify faulty
components, and detect and diagnosis converter failures
at system level [25]. However, because these approaches
utilize off-line signals or periodic duration signals, they
are not real-time, which generally depends on complicated
artificial fault analysis. In addition, some real-time diag-
nostic techniques based on voltages or currents of power
electronics devices were studied in [26], [27], but they are
only applicable to faults of switch components such as
IGBTs and MOSFETs. [28]–[30] studied fault diagnosis of
power inverters based on artificial intelligence and data-
driven methods such as artificial neural networks (NN).
These approaches are able to diagnosis typical component
faults based on the measured voltage and current signals.
However, they are only applicable for specified faults and
device conditions. Also, because the NN needs to be
trained first based on its sample data from the historical
fault-free and faulty signal, the diagnosis efficiency closely
depends on the diversity of sample date signals.

Although most studies described above focus on fault
mechanism analysis and qualitative diagnosis of power
converters, few quantitative approaches are proposed to
monitor the states of the power converter and its compo-
nents in real-time. Conventionally, the components such
as capacitors and inductors can be off-line measured and
detected based on LCR metering devices. However, the
LCR metering measurement is not executed in real-time,
limiting its applicability for online reliability monitoring
and feedback control in real-time. Also, it is a challenge
to estimate C and L based on online signals because
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Fig. 1. Failure and stress distributions in power electronics systems. [18],
[19]

both the circuit dynamics and diversity of time-varying
signals is complex. In order to address the challenge
for online monitoring, a model-based fault detection ap-
proach was proposed in [31], [32], but the studied models
do not correlate well with transient behaviors of power
electronics. [33]–[36] proposed a model observer for Buck
converters and inverters, which can detect and isolate
components fault in real-time. However, all the published
quantitative works are not able to accomplish a high-level
and real-time accurate Condition Parameter Estimation
(CPE), which can indicate condition factors of components
in power electronics.

Compared to studies mentioned above, the main contri-
bution of this paper is to demonstrate monitoring and es-
timation of the condition parameters of power converters
in real-time. Residual vectors generated from the proposed
model observer are applicable for fault detection and
isolation. Additionally the component condition parame-
ters can be reconstructed based on the observer adaptive
feedback law, which can estimate unknown states and
parameters based on limited measurable states. Unlike
former reliability approaches applied in power electronics,
it can not only monitor the condition of power convert-
ers in real-time, but also estimate the parameters of its
components. This capability is useful for isolating the
faulty components of power systems and improving the
reliability and efficiency of PV system with grid integration.

This paper is organized as follows. In Section II, the
mathematical model of a buck power converter and
problem formulation are elaborated. Section III presents
the model observers with an adaptive law for condition
parameters estimation. Section IV shows the simulation
results obtained for various fault components and fault
scenarios when the proposed scheme works for the buck
power converter. A conventional buck converter hardware
setup and experimental results for inductance and capaci-
tance estimation are presented in Section V. Validation for
Buck converters under PV MPP Tracking(MPPT) control is
investigated in Section VI. Finally, a conclusion is provided
in Section VII.

II. MODEL FRAMEWORK AND PROBLEM FORMULATION

Because of its representativeness and popularity in PV
power systems, a single-phase DC-DC buck converter in
Fig. 2 is considered to build the model and hardware in
this paper, subsequently the CPE problem is formulated
and defined.

A. Single-phase buck converter with resistor load

Considering the single-phase DC-DC power converter
in Fig. 2 and Fig. 3, it is comprised of a semiconductor
switch Q, an inductor L, a capacitor C, a diode D and a
resistor Load R. The basic operation of the buck converter
is controlling the inductor current by two switches (the
transistor Q and the diode D). The conceptual model
of the buck converter is best understood in terms of
the relation between current and voltage of the inductor.
Therefore, a power electronics converter can be thought
of as a switched system, i.e., a continuous-time system
with discrete (isolated) switching events, and (in general),
its dynamics can be described by a linear-switched state-
space model of the form.
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Fig. 2. Topology of Buck converter.
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Fig. 3. Buck converter in charging Mode (left) and Buck converter in
discharging (right).

The nominal (Pre-Fault) system state-space model of the
buck converter can be denoted as:
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where L is the inductance of the inductor, C is the
capacitance of the capacitor, R is the load resistance.
σ : [0,∞)→{0, 1} is the binary switching signal governing
the Switch Q. the description in (2) can be completed with
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�T
=C

′
x (3)
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where C
′
= I2×2, x = [IL ,Uo ]

′
and the superscript m denotes

measurement value, describing the measurements avail-
able to the controller. Also, (1) and (2) can be denoted as
the standard format of state-space model ẋ = Ax + B u ,
where

A =

�

0 − 1
L

1
C − 1

R C

�

, B =

�

σ(t )/L
0

�

, u =Ui (4)

If a fault or parameter variation has occurred in the
system, these factors will cause a change in the matrices
of any or all subsystems in (1) and (2). Without loss of
generality, faults in the inductor L and the output filter
capacitor C are considered. The faults may cause the
inductor or the capacitor to degrade slowly over time,
which would result in a gradual decrease of inductance or
capacitance (soft fault), or it may cause a sudden failure
open or short (hard fault). Thus, the variation caused by
faults can be denoted as Ã = A +∆A and B̃ = B +∆B .
Also, the condition parameters of the buck converter can
be denoted as θ =

�

L C
�′

. Consequently, the post-fault
system Model can be described by
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It can also described in the format of state-space model
as

ẋ = (A+∆A)x + (B +∆B )u

y =C
′
x

(6)

B. Condition parameter estimation problem formulation

Considering (6), the condition parameter estimation
problem consists of designing a detection filter that takes
u and y as inputs and generates a residual vector with
the following properties: i) when there is no fault, the
residual is identical to zero, and ii) when a fault occurs, the
residual is clear enough to differentiate between different
faults from the capacitor, inductor, and switch. iii) If the
soft faults of capacitors and inductors occur, the condition
parameters θ =

�

L C
�′

can be estimated for condition
monitoring.

III. FAULT DIAGNOSIS AND CONDITION MONITORING USING

MODEL OBSERVER

In this section, a fault diagnosis and condition monitor-
ing scheme comprised of a module of the fault diagnosis
observer and corresponding modules of parameter esti-
mation observers is proposed. Firstly, the fault is detected
and isolated by the fault diagnosis observer. Secondly, the
corresponding parameter estimation observer module is
triggered by the FDI result. The overall scheme process
can be seen in Fig. 4.

A. Fault diagnosis observer

Following the notation of section 2, a fault diagnosis
observer for the system in Fig. 2 is given by
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Fig. 4. Fault diagnosis and condition parameter estimation scheme.

where σ(t ), Ui , y are same as in (1), and the third term
in the right side is feedback of observer with gain K , which
works to keep the observer states tracking the real states.
Also, (7) can be represented as

˙̂x = Ax̂ +B u +K (y − ŷ )

ŷ =C
′
x̂

(8)

Although C
′
= I2×2 and the system of (1) has a full

rank, the system is only theoretically observable when
σ(t ) = 1, otherwise it is not observable. In order to
guarantee that the observability property is preserved, it is
necessary to consider σ(t ) as a regularly persistent input .
Consequently, the error dynamics e = x− x̂ can be defined
as

ė = (A−K C )e (9)

A further theorem based on analysis above is given as
follows:

Theorem 1. If there exists a certain symmetric positive
definite matrix P ∈ R2×2, P = P T and some ρ ∈ R>0, the
Linear Matrix Inequality (LMI) below is satisfied as

(A−K C )T P +P (A−K C )<−ρP (10)

Then the error dynamics (9) are globally asymptotically
stable.

The proof of Theorem 1 can be referred to Theorem 4.4
in [31]. The solution of the inequality (10) can be obtained
from the following Theorem 2.

Theorem 2. If there exists a certain symmetric positive
definite matrix P ∈ R2×2, P = P T and some ρ ∈ R>0, the
LMI below is satisfied as

(PA−Y C )T + (PA−Y C )<−ρP (11)

Then the inequality (10) is satisfied with P and by taking
L = P −1Y .

The proof of Theorem 2 can be referred to Lemma 4.5
in [31].

Remark: based on the residuals e = x − x̂ generated
by the fault diagnosis observer, fault detection and fault
isolation can be implemented based on the time-domain
property of the residual signal, which is further demon-
strated in section IV.
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B. Inductance estimation for the inductor

If a fault for the inductor is detected and isolated by
the fault diagnosis observer, an inductance estimation
observer is triggered to estimate the accurate value of
inductance offset. Denoting the estimation errors as x̃ =
x̂ − x and L̃ = L̂ − L , the observer is designed as follows.
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�

C , L̂
�

x̂ +B
�

C , L̂
�

u +K (y − ŷ )

ŷ =C
′
x̂

(12)

Denoting the matrices errors as

A
�

C , L̂
�
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�
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�
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We also can denote (12) as
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�
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The error dynamics are described by

˙̃x = (A−K C ) x̃ + F

F = fA(
δA

δL
, L̃ )x̂ + fB (

δB

δL
, L̃ )u

(15)

A further theorem on how to obtain τL above is given
below.

Theorem 3. With the observer gain K in Theorem 1 and
a defined matrix Q(2×2) > 0 , and positive parameter ΓL , if
there exists two matrices P2×2 and G2×2 satisfying

P (A−K C )+ (A−K C )T P + ΓL P =−Q

P B =C T G T (16)

Then the observer given in (12) with the adaptive fault
estimation law as follows:

˙̂L = ΓL G
�

y − ŷ
�

(17)

can lead to lim
t→∞

x̃ (t ) = 0 and lim
t→∞

L̃ (t ) = 0, where ΓL is a

positive constant value.

Proof. Set η(t ) = x (t )−ΘL̃ (t ) and Ξ(L̃ ) = (A−K C )ΘL̃+F (L̃ ).
For writing convenience and as long as there is no ambi-
guity, the time derivable t shall be omitted in the sequel.
From (15) One can get

η̇= (A−K C )η+ (A−K C )ΘL̃ + F (L̃ ) (18)

Set V1 = ηT Pη and V2 = L̃ T Γ−1
L L̃ where P is given in (16)

and Γ−1
L is given in (17). Let V = V1 + V2 be a Lyapunov

candidate function. One can obtain
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Where c1and c2 are coefficients which depend on the set
of P , K and ΓL . Let us now derive the time derivative of
V2. One obtains

V̇2 = ˙̃L
T
Γ−1

L L̃ + L̃ T Γ−1
L
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Where c3 and c4 are coefficients which depend on the set
of G and Θ. Hence, using (19) and (20), one obtains

V̇ = V̇1+ V̇2
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p
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By setting appropriate c1, c2, c3 and c4, one derives that
V̇ is negative semi-definite. From the Lyapunov candidate
function V , one can obtain
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consequently V is lower bounded. Synthesizing (21) and
(22), based on Barbalat’s lemma for stability analysis, it
is concluded that the system (14) is an adaptive observer
with exponential convergence. This ends the proof.

C. Capacitance estimation for the output capacitor

If a fault for the capacitor is detected and isolated by the
fault diagnosis observer, a capacitance estimation observer
is triggered to estimate the accurate value of capacitance
offset. As can be seen from (5), the capacitance variance
only affects the matrix A and the lower equation of (5).
For the sake of convenience, we can denote only the faulty
subsystem as

U̇o =
IL

C +∆C
−

Uo

R (C +∆C )
(23)

Also, it can be represented in state-space format as
follows:

ẋ = a (C +∆C ) x + b (C +∆C , R )u

y = x
(24)

where x =Uo , u = IL , a =− 1
R C , and b = 1

C . So, the observer
is designed as follows:
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�
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�
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�

(25)

Where K22 is the elements of the matrix K , denoting the
coefficient errors as follows:

a (C +∆C ) = a (C ) + ã (C +∆C )

b (C +∆C , R ) = b (C , R ) + b̃ (C +∆C , R )
(26)
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Then, if the estimation error can be denoted as eC (t ) =
∆C −∆Ĉ , the error dynamics is described by

ė (t ) = (a −K22c )e (t ) + F

F = [−ã (C +∆C )] x̂ − b̃ (C +∆C , R )u
(27)

A further theorem on how to get µC above is given as
follows:

Theorem 4. With the observer gain K in theorem 1 and
a defined constant QC > 0 , and positive parameter γC , if
there exist two constant PC and GC satisfying:

2PC (a −K22) +γC PC =−QC

PC BC =GC
T (28)

Then the observer given in (12) with the adaptive fault
estimation law is stated as follows:

∆Ĉ =τC

∫

�

y − ŷ
�

(29)

can lead to lim
t→∞

e (t ) = 0 and lim
t→∞

eC (t ) = 0, where τC is a

positive constant value.

Proof. the proof of Theorem 4 is similar to Theorem 3 and
can be seen as a corollary and single-dimension case of
ODE. This ends the proof.

IV. SIMULATION RESULTS

In order to verify the feasibility and effectiveness of
the proposed observers,we designed a DC-DC converter
with parameters listed in TABLE I for verification. Firstly,
different component faults are injected into the buck con-
verter, and the corresponding FDD results are analyzed.
Secondly, the variable inductance fault and capacitance
fault are respectively injected into the buck converter,
and the inductance and capacitance estimation results are
analyzed. Finally, a mixed fault scenario with parameters
drifts of both inductance and capacitance is performed,
and the corresponding parameter estimation results are
discussed.

TABLE I
SIMULATION BUCK CONVERTER PARAMETERS.

R [Ω] 7 Vi n [V ] 20
L [H ] 5×10−4 Vo u t [V ] 8
C [F ] 5.8×10−5 io u t [A] 8/7

F [k H z ] 10 PWM Duty Ratio 0.4

A. Fault diagnosis result

The fault diagnosis observer is firstly used to detect
and isolate the different component faults based on the
residuals. In order to make the residual signals clear
enough to discriminate between different faults, we set
the FD observer gain K as

K =

�

1 0
0 1

�

(30)

The state variables, estimate and residuals of the buck
converter in fault-free mode can be seen in Fig. 5. As can
be seen from Fig. 5, the inductor current displays as a
small ripple because of the PWM controlling effect, while
the output voltage is more stable because of the output
filter’s smoothing. The observer estimation can track the
system states very closely because of the feedback gainąŕs
effect. Also, the residuals converge to zero very quickly,
which is useful to detect faults.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

−4

−2

0

2

4

6

8

10

12

14

t(s)

c
u

rr
e

n
t(

A
)/

v
o

lt
a

g
e

(V
)

 

 

Inductor current

Output voltage

Estimated inductor current

Estimated output voltage

residual for inductor current

residual for output voltage

Fig. 5. States of the buck converter,observer estimation and residuals in
fault-free mode.

The residuals under different fault modes can be seen
in Fig. 6. An open-circuit fault and a short-circuit fault
are respectively injected at the instant 0.05 s. A constant
capacitance variation from C to 2C is injected at the
instant 0.03 s; also a constant inductance variation from L
to 2L is injected at the instant 0.03 s. From the residuals
subjected to different faults, we can see that the residuals
are no longer zero at the instants when faults occur,
and also the fault signatures off different components are
different. Fig. 6(a) and Fig. 6(b) depict the residuals under
switch faults. It is clear that open-circuit fault and short-
circuit fault have different effects on the residuals. Fig.
6(c) and Fig. 6(d) depict the residuals under capacitor and
inductor faults. It is obviously clear that capacitor fault
and inductor fault have different effects on the residuals.
The residuals are also simple to identify from the residuals
under the switch Q faults.

B. Condition parameter estimation result

Once the FD observer detects and isolates the faulty
components, the corresponding parameter estimation ob-
server is triggered to estimate the condition parameter. In
order to verify the tracking performance subjected to faults
with different temporary signatures, we consider two types
of fault: constant parameter drafting and time-varying
parameter drafting. The capacitance estimations under
constant parameter drafting and time-varying parameter
drafting are shown in Fig. 7, the inductance estimations are
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Fig. 6. Residuals under different fault modes(solid green line: FD observer
error of inductor current[A], blue dash line: FD observer error of output
voltage[V]).

shown in Fig. 8. Also, a compound scenario comprising of
both capacitance and inductance parameter drafting are
considered for verification, which is shown in Fig. 9.

1) Capacitance estimation: The capacitance estimation
observer parameters are designed as follows:

τC = 5
k22 = 1

(31)

The constant parameter drafting of capacitance from C
to 2C occurs at the instant 0.03 s. As can be seen from
Fig. 7(a), the observer estimation can track the parameter
drafting at 0.03 s very quickly and matches the target value
closely.

The time-varying parameter drafting of capacitance be-
gins at the instant 0.03 s. As can be seen from Fig. 7(b),
the observer estimation can track the parameter drafting
at 0.03 s very quickly keep to the target value closely.
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Fig. 7. Condition parameter drafting estimation for capacitance(solid
line: real capacitance, dash line: estimation value).
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Fig. 8. Condition parameter drafting estimation for inductance(solid line:
real inductance, dash line: estimation value).
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Fig. 9. Compound fault estimation results(solid line: real value, dash
line: estimation value).

2) Inductance estimation: The inductance estimation
observer parameters are designed as follows:

K =

�

1 0
0 1

�

µL = [ -2.5 -1.09 ]

τL = [ -0.0001 -0.000001 ]

(32)

The constant parameter drafting of inductance from L
to 2L occurs at the instant 0.03 s. As can be seen from Fig.
8(a), the observer estimation tracks the parameter drafting
at 0.03 s very quickly and keep to the target value closely.

The time-varying parameter drafting of inductance be-
gins at the instant 0.03 s. As can be seen from Fig. 8(b),
the observer estimation can tracks the parameter drafting
at 0.03 s very quickly keeping to the target value closely.

3) Compound fault estimation: In order to verify the
compound fault estimation performance, a compound
fault is considered. Firstly, the inductance parameter draft-
ing from L to 2L occurs at the instant 0.05 s. Secondly,
the capacitance parameter drafting from C to 2C occurs
at the instant 0.1 s. As can be seen from Fig. 9, the cor-
responding estimation observer can track the parameter
drafting quickly and closely. There is almost no interfer-
ence between the componentsąŕ failure to the observer
estimation.
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V. EXPERIMENT VALIDATION FOR CONVENTIONAL BUCK

CONVERTERS

A. Experiment setup

In order to validate the effectiveness of the proposed
method, a buck converter experiment platform is setup
for demonstration. In this platform, a conventional and
inexpensive DC-DC buck converter module (shown at
the bottom-right of Fig. 10 is utilized and modified for
demonstration. The DC-DC buck converter employs an
HRD05003 IC module as the controller to generate PWM
signals and driver switch-on and switch-off of the circuit.
The main electrical parameters of the buck converter
are listed in Table. II. For test convenience, the inductor
and capacitor in the original buck converter circuit are
moved to a dedicated self-made circuit for test (shown
in Fig. 11), and an LEM current sensor is embedded and
additional power circuit is deployed in the circuit loop
to acquire the inductor current. As can be seen from
Fig. 11, four node signals (Input voltage, PWM modulated
Voltage, inductor current, output voltage) are observed and
recorded by the NI Compact RIO measurement device
and the oscilloscope. Fig. 12 displays a snapshot of the
recorded node signals. As can be seen from the waveforms
displayed in Fig. 12, the converter operates at a frequency
301.397 kHz, which follows well with the rated switching
frequency 300 kHz. Due to on-off effects of the MOSFETs,
the measured output voltage and inductor current com-
prise some disturbance and offset error but the output
voltage is almost stable and acceptable for applications.

Fig. 10. Experimental Setup of the buck converter circuit.

B. Inductance estimation

A snapshot of recorded signals for inductance estima-
tion is shown in Fig. 13. The three-node signals including

PWM Duty ratio

Fig. 11. Probe observing Nodes in the converter circuit.

 

Fig.  19 A snapshot of recorded signals
Fig. 12. A snapshot of recorded signals.

PWM modulated Voltage, inductor current, output voltage,
are utilized for signal processing based on the model
observer approach. For comparison and validation, the
inductor (with ferrite core) is taken from the setup circuit
and tested separately by an LCR meter, which is shown
in left side of Fig. 14 while the inductor is shown in
the right side of Fig. 14. As can be seen from Fig. 14,
The LCR meter indicates that the actual inductance is
41.36 uH, while the rated inductance printed at the top
of the inductor is 27 uH (270 means 27*100=27 uH) .
The difference between the actual value and rated value is
normal because of fabrication factors; it is also the reason
accurate inductance validation and estimation is usually
needed in such cases.

According to the observer theory in Section 3.2, the
inductor current and output voltage is the state variables
of the observer. The comparison between real states and

TABLE II
EXPERIMENTAL BUCK CONVERTER PARAMETERS.

R [Ω] 16 Vi n [V ] 24
L [H ] 4.1×10−5 Vo u t [V ] 5.3
C [F ] 8.4×10−4 io u t [A] 5.3/16

F [k H z ] 300 PWM Duty Ratio 0.25
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Fig.  20 A snapshot of recorded signals for inductance estimation
Fig. 13. A snapshot of recorded signals for inductance estimation.

 

Fig. 14. Tested inductor and test value by LCR meter.

observer estimated states is shown in Fig. 15. As can be
from Fig. 15, the observer state estimations track well
with its real states at a fast convergence speed, while the
observer residuals are also bounded and stable, which
means that the feedback adjustment and adaptive law
of the observer works well. The inductance estimation
results are shown in Fig. 16. In order to test the robustness
of estimation performance, different estimation results
subjected to three initial values (70 uH, 60 uH and 50 uH)
are shown together for comparison. As can be seen from
Fig. 16, the estimation converge into the actual value at a
fast speed and the error due to measurement disturbance
is bonded, which means the proposed observer still works
well to estimate the real inductance in real experiment
scenarios.

Comment 1: It is difficult to re-implement the parameter
drafting or degradation for components in hardware be-
cause generally component degradation is a slow process.
In order to validate the effectiveness and robustness of the
proposed condition parameter estimation scheme under
various scenarios, setting various initial values for the
estimation is generally an acceptable alternative approach.
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Fig. 15. Observer estimated states and residuals.

For this reason we set three different initial values for
validation instead of changing the estimated component
parameters, to match the simulation scenarios.
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Fig. 16. Inductance estimation results.

C. Capacitance estimation

A snapshot of recorded signals for inductance estima-
tion is shown in Fig. 17. Because different capacitance at
the stable stage of the Buck converter operation has weak
effects at node signal variations of the Buck converter,
the node signal waveforms acquired at the start stage will
be better and feasible for engineering implementation.
Hence, the node signal waveforms at the start stage are
utilized for capacitance estimation. As can be seen from
Fig. 17, the output voltage and inductor current converge
into a stable value because the capacitor is charged pro-
gressively.

For comparison and validation, the capacitor is taken
from the setup circuit and tested separately by an LCR
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Fig.  24 A snapshot of recorded signals for capacitance estimationFig. 17. A snapshot of recorded signals for capacitance estimation.

meter, which is shown in left side of Fig. 18 while the
capacitor is shown in the right side of Fig. 18. As can
be seen from Fig. 18, The LCR meter indicates that the
actual capacitance is 839.2 uF, while the rated capacitance
printed at the skin of the capacitor is 1000 uF. As can
be drawn from literature about capacitor reliability, the
difference between the actual value and rated value of
capacitance is generally normal and caused by variable
factors such as manufacturing tolerances, fabrication, ag-
ing and degradation.

 

Fig. 18. Tested capacitor and test value by LCR meter.

According to the observer theory in Section 3.3, the
output voltage is the only state variable of the observer.
Because the internal resistance of the real capacitor, the
measured voltage is different from the capacitor voltage, a
filtered and compensated output voltage is utilized for ca-
pacitance estimation. The comparison between real state,
filtered value and observer estimation is shown in Fig. 19.
As can be from Fig. 19, the observer state estimation tracks
well with the filtered value at a fast convergence speed
which means that the feedback adjustment and adaptive
law of the observer work well.

The capacitance estimation results are shown in Fig. 20.
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Fig. 19. Comparison among real value, filtered value and observer
estimation.

In order to test the robustness of estimation performance,
different estimation results subjected to three initial values
(600 uF, 700 uF and 800 uF) are shown together for
comparison. As can be seen from Fig. 20, the estimation
converges into the actual value at a fast speed and the
error due to measurement disturbance is bounded, which
means the proposed observer still works well to estimate
the real capacitance in real experiment scenarios .
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Fig. 20. Capacitance estimation results.

VI. VALIDATION FOR BUCK CONVERTER UNDER PV MPPT
CONTROL

Due to its penetration in Maximum Power Point Track-
ing (MPPT) applications, Buck converters generally work
as a MPPT power charger for batteries or solar panel
optimizers. In order to validate the proposed scheme
under MPPT control for Buck converters and check its
applicability for variable power inputs such as PV panels,
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we design a typical solar panel DC-DC conversion topol-
ogy to test the MPPT control and the proposed condition
parameter estimation scheme. Fig. 21 depicts the topology
of a Buck converter under MPPT control. In Fig. 21, due
to time-varying and insolation-sensitive characteristics of
PV panels, the input capacitor C1 is normally important
and necessary to regulate the PV panel output voltage, but
not an essential component for general Buck converters
depicted in Fig. 2. In this section, we can see the input
capacitor C1 as an external component and only consider
to monitor the capacitor C2.

The parameters for the PV panel, buck converter and
MPPT controller in the proposed topology are listed Table
.III.

A. Simulation results

Based on the parameters defined as Table .III. The Buck
DC-DC conversion variables under MPPT can be seen in
Fig. 22. Fig. 22(a) and(c) show how the PV panel output
voltage and current is controlled to track the value at the
MPP point, the PV panel output starts from open-circuit
voltage and keeps stable at the MPP voltage(17.2 V) while
the PV panel current starts from zero current and keeps
stable at the MPP current(4.95 A). Fig. 22(b) depicts the
converter output voltage for load and Fig. 22(d) depicts
the inductor current, both of the two variables have
high-frequency ripples, making the condition parameter
estimation more challenging. From the two variables, we
can see that the Buck converter works and output power
is stable under MPPT control. Due to its inherit drawback
of the P&O algorithm, the PV panel output voltage and
current will keep oscillating in a small range, but it is
acceptable for Buck converter DC power output.
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Fig. 22. Input and Output of MPPT Buck converter.

Fig. 23 depicts the condition parameter estimation re-
sults under MPPT with constant insolation. From Fig. 23(a)
we can see that the P&O MPPT algorithm works very fast
to track the MPP at 17.2*4.95=85 W. Fig. 23(b) depicts that

the duty ratio converges into a bonded boundary around
0.23-0.25, which means that the DC-DC conversion is
precisely executed by the buck converter. The capacitance
and inductance estimation results are shown in Fig. 23(c)
and (d). From the tracking results, we can see the proposed
condition parameter estimation scheme can track the real
capacitance and inductance although the power input (PV
panel output) for Buck converter is not constant.
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Fig. 23. Condition Parameter Estimation Results under MPPT with
constant insolation.

Fig. 24 depicts the condition parameter estimation re-
sults under MPPT with time-varying insolation, which
varies from 1000 to 800 at the instant 0.002 s. From
Fig. 24(a) we can see that the P&O MPPT algorithms work
very fast to track two-stage MPPs at 85 W and 65 W in-
dividually. Fig. 24(b) depicts that the duty ratio converges
into two stable range due to the insolation variation. The
capacitance and inductance estimation results are shown
in Fig. 24(c) and (d). From the tracking results, we can
see the proposed condition parameter estimation scheme
can track the real capacitance and inductance although
the buck converter output voltage is oscillating and the
insolation is time-varying.

B. Experiment results

In order to validate the effectiveness of the proposed
scheme under real-time control and real-world power
analogue signal measurement, a real-time controller-based
prototype MPPT buck converter system is built at a
dSPACE/ControlDesk-based lab setup, which is shown
in Fig. 25 and 26. As can be seen from Fig. 26, both
the MPPT Buck conversion topology and condition es-
timation scheme are executed in the dSPACE real-time
target system, the two physical units interact with real-
world analogue acquiring signals, which is connected by
corresponding analogue signal cables and connectors. The
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Fig. 21. Designed topology of a buck converter under MPPT control.

TABLE III
DESIGNED MPPT BUCK CONVERTER PARAMETERS.

Vo c [V ] 22.2 T [◦C] 25
Is c [A] 5.45 Rp [Ω] 98.7192

Vma x [V ] 17.2 Rs [Ω] 0.4716
Ima x [A] 4.95 I n s o l a t i o n [w /m 2] 1000

R [Ω] 2 F r e q ue n c y [H z ] 10000
L [H ] 3×10−4 P W M D u t y R a t i o 1000
C2[F ] 1×10−4 C1[F ] 3×10−4

D u t y R a t i o St e p 0.001 M P P T a l g o r i t hm P e t u r b a nd O b s e r v e
I ni t i a l V a l ue o f D R 0.5 Sa mp l i ng R a t e 10000
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Fig. 24. Condition Parameter Estimation Results under MPPT with time-
varying insolation.

interaction signals including output voltage, inductor cur-
rent, and diode voltage are monitored by a scope, which
is shown in Fig. 25.

The real-time condition parameter estimation experi-
ment results can be seen in Fig. 27-30. As can be seen
from Fig. 27-29, the waveform and dynamics match the
corresponding signals of the real-world buck converter

Condition parameter

Monitoring UI in

Controldesk

Analogue Signal

Interface

PV MPPT conversion

topology+ Model observer

DS 1103 PPC Controller

Board

Fig. 25. dSPACE/Controldesk-based lab setup for MPPT buck converter
system.

in Section V. The condition parameters are monitored in
real-time by ControlDesk platform that runs on the host
PC. As can be seen from Fig. 30 which is a screenshot
from ControlDesk, the capacitance and inductance are
estimated and monitored in real-time with high accuracy.

VII. CONCLUSION

This paper proposes a condition parameter estimation
scheme based on model observers for Buck converters.
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Host PC

ControlDesk UI

Condition Parameters Real-time Monitoring

Target DS 1103 PPC

Analogue Signals Interaction

Vo, Il, Vs

PV Buck Conversion

Topology with MPPT

control

Model observer DSP

Module

DAC IO ADC IO

Fig. 26. Real-time controller-based prototype diagram for MPPT buck
converter system.

 

 

 

Fig. 27. Solar panel output voltage and current.

 

Fig. 28. Enlarged picture of Solar panel output voltage and current.

 

Fig. 29. Real-time Monitoring Variables used for Condition parameter
estimation.

 

Fig. 30. Real-time Monitoring UI for Condition Parameters in ControlD-
esk.

Two novel observers in the CPE scheme are proposed and
theoretically proved. With the FD observer, Fault detec-
tion and isolation for components can be availed based
on the residual signals. With the corresponding adaptive
parameter estimation observers, an accurate estimation of
parameter drafting can be addressed for condition mon-
itoring and reliability analysis. Real-world Buck converter
experiments for conventional DC-DC conversion and PV
MPPT control are set up to validate the effectiveness of
the proposed model observer method. A further study of
general online monitoring approach on separate capac-
itors in any circuit typologies is on-going. Future work
will consider more components such as IGBT and more
types of converters applied in PV systems such as boost
converters and other inverters.
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