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Abstract: This work concerns a study of the thermomechanical behaviour of a commercial
thruster for aerospace use. The thruster, operated using a bipropellant liquid mixture, is
used for the motion and in-orbit altitude control of small telecommunications satellites.
The mixture used in the combustion process is composed of propylene and nitrous oxide,
while the wall of the thruster is made of PH15-5 stainless steel. A computational fluid
dynamics analysis of conjugate heat transfer determines the spatial–temporal distribution
of temperature within the thruster wall. This information is passed to a finite element
mechanical model that simulates the stress and the equivalent plastic strain distribution
within the thruster wall.

Keywords: aerospace thruster; liquid propellant; thermal-stress analysis

1. Introduction
Over the last decade, several studies based on numerical simulations have been per-

formed to evaluate both the combustion process and the thermomechanical behaviour
of thrusters for aerospace use [1–8]. Small-satellite and thruster solutions have been pro-
posed [9–12], despite severe limitations in their functionality inherent to their limited mass
and volume, as they turn out to be economically convenient compared to traditional satel-
lites, which have the disadvantage of having high launch vehicle costs. In addition, a thrust
of a few Newtons may be sufficient to move small satellites into orbit, and this depends
on the orbital position, on the vehicle’s weight and on the needs of the mission [13,14]. In
general, in thrusters for aerospace use, the nozzle is also a critical component as it allows
the expansion and acceleration of the gases produced in the propellant combustion process.
Any structural failure in this component directly translates into a loss of thrust. Therefore,
material selection and structural analysis are critical moments in the design of these compo-
nents [15]. Combustion chambers and nozzles work in extreme conditions with combustion
product temperatures reaching or exceeding 3000 K, with variable pressures up to 3 MPa
and supersonic flow speeds. The temperatures of both the combustion chamber and the
nozzle increase very rapidly after ignition of the propellant, and therefore, the thermal
shock makes the inner wall of the thrusters susceptible to erosion and cracking [16,17].
Thermochemical erosion by oxidising species of combustion products [18] and combustion
instabilities [19,20] significantly accelerate this process. Above all, the nozzle throat rep-
resents one of the most critical parts. Therefore, a simulation of the combustion process
followed by a thermomechanical analysis for the evaluation of the material behaviour
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of the thruster is fundamental in the design phase [21]. In this study, the thruster under
investigation is a 20N class bipropellant rocket engine developed by the ATLAS consortium
(ATLAS—Advanced Design of High-Entropy Alloys Based Materials for Space Propulsion,
Horizon 2020). The thruster used nitrous oxide (N2O) as an oxidiser and propylene (C3H6)
as fuel. These are so-called green propellants [22–27], which means they are non-toxic
and are relatively safe to use compared to conventional rocket propellants. Furthermore,
these propellants are self-pressurising, which means that their vapour pressure in satu-
ration conditions is high enough to act as supply pressure. Thus, a separate pressurised
gas or a mechanical pressurisation system is not required to drive the propellants to the
combustion chamber. The thruster is currently made of Inconel or PH15-5 stainless steel
and can work for a maximum duration of approximately 10 s before thruster cooling is
required to prevent overheating. In many cases, this time would be enough to guarantee
the correct functioning of the thruster; however, a longer operating time could be required
to carry out more complex manoeuvres in orbit, and therefore, it would be necessary to
increase the combustion time. In view of the above, the material used for the thruster’s wall
must resist intense thermo-mechanical stresses as well as corrosion by nitrous oxide and its
combustion products in combination with propylene. Thus, in this work, the modelled B20
thruster does not integrate a cooling system, and the authors want to demonstrate that it is
possible to study the thermo-mechanical behaviour of the thruster in the thermal transient
using a finite element mechanical model by introducing one-dimensional heat flux on the
inner part of the thruster wall in a specific time. This heat flow is obtained at equilibrium of
the combustion process in a CFD analysis. Subsequently, the initial heat flux is scaled with
a heat flux decay law calculated with CFD analysis. To validate the mechanical model, a
comparison of the temperature fields on the inner wall of the thruster calculated with CFD
and finite element analysis is carried out. The proposed investigation provides a baseline
for future improvements to the B20 thruster, aimed at prolonging its operating time while
preventing structural damage.

2. Geometry
A 3D CAD model of the B20 thruster without a cooling system was provided by the

ATLAS consortium, and the cooling system is a radiation-cooled thrust chamber. As shown
in Figure 1, on the outside, a perforated anchoring plate for the thruster and the covering
of the propulsion unit are highlighted. Two independent toroidal-shaped distribution rings
collect the fuel and the oxidiser, respectively, which are fed therefrom to the combustion
chamber through fifteen inclined injection ducts, distributed in five groups of three injectors
each—two for the oxidiser, one for the fuel—as shown in Figure 1.
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microstructure. Specifically, the heat treatment was performed in an oven for four hours 
at a constant temperature of 593 °C (1100 °F) followed by air cooling. Furthermore, the 
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The injectors conveying the oxidiser are inclined by 70◦ to the symmetry axis of the
thruster and lie on radial planes. This configuration has proven particularly suitable in
small-sized thrusters as it can increase the turbulence produced during the combustion
of the mixture. Figure 2 presents a 2D representation of the thruster. The thruster has
an overall length of 0.09 m, while the wall thickness is non-uniform along the thruster
with a maximum value of 0.0045 m corresponding to the combustion chamber. Finally, the
diameter of the nozzle throat is 0.01 m.
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3. Materials and Methods
The thruster was built with PH15-5 H1100 stainless steel, specifically intended for

high-temperature applications. PH15-5 is a martensitic steel with mechanical properties
particularly suitable to produce small thrusters. PH15-5 is a steel that initially had an
austenitic microstructure which, following heat treatment, evolves into a martensitic mi-
crostructure. Specifically, the heat treatment was performed in an oven for four hours
at a constant temperature of 593 ◦C (1100 ◦F) followed by air cooling. Furthermore, the
thruster was obtained using additive technologies through a Selective Laser Melting (SLM)
process. Therefore, the thruster was built in layers, starting from the fusion of a bed of very
fine-grained metal powder. The mechanical properties of PH15-5 H1100 were provided by
the ATLAS consortium, as reported in Table 1, and refer to parts produced with Additive
Manufacturing (AM). Both the mass density and the specific heat were independent of
temperature in the reported simulations.

Table 1. PH15-5 H1100 material data.

Young’s Modulus [GPa] Poisson’s Ratio [-] T [K] Plastic [GPa] Strain [-] T [K] Density [kg/m3]

196 0.27 300 0.246 0 300 7800

183 - 422 0.544 0.49 300 -

165 - 500 0.153 0 600 -

147 - 588 0.433 0.49 600 -

113 - 773 0.1319 0 900 -

94.1 - 800 0.330 0.49 900 -
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Table 1. Cont.

Young’s Modulus [GPa] Poisson’s Ratio [-] T [K] Plastic [GPa] Strain [-] T [K] Density [kg/m3]

75.1 - 973 0.125 0 1200 -

42.9 - 1173 0.158 0.49 1200 -

Linear Expansion
Coefficients [m/m K] T [K] Conductivity

[W/m K] T [K] Specific Heat [J/kg K] T [K]

1.13 × 10−5 294 18.25 300 420 300

1.17 × 10−5 366 19.65 400 - 400

1.19 × 10−5 477 22.3 600 - 600

1.22 × 10−5 589 24.89 800 - 800

1.22 × 10−5 774 30.82 1200 - 1200

Reference data for the mass flow rates of fuel and oxidiser entering the combus-
tion chamber and for the rocket thrust were taken from the technical data sheet of the
B20 propulsor.

3.1. The CFD Model

Taking advantage of the axial symmetry of the thruster’s geometry, a 2D model of the
B20 thruster was created with the wall thickness and shape following the actual geometry
of the 3D model. After a thorough convergence study, the final geometry of the CFD model
was meshed with 150,000 quadrilateral linear elements, where the minimum edge length
was 4 × 10−4 m. A commercial software for fluid dynamic analysis was used to simulate
the combustion process. From this simulation, the heat fluxes, pressures and shear stresses
on the inner wall of the B20 thruster were calculated. To simulate the combustion process,
a PDF table was built using lookup tables [28]. The parameters and values reported in
Table 2 were introduced into the lookup tables to model the combustion process of the
liquid mixture.

Table 2. Parameters and values to model the combustion process.

Parameters Values

Fuel Stream Rich Flammability Limit (stoichiometric 0.18) 0.36

Gauge Pressure—Inlet Fuel—C3H6 1,470,000 Pa

Gauge Pressure—Inlet Oxidiser—N2O 7,200,000 Pa

Temperature—Inlet Fuel 300 K

Temperature—Inlet Oxidiser 300 K

Operating Equilibrium Pressure 100,000 Pa

Outlet Pressure 0 Pa

The K-ε model is one of the most common turbulence models. It is a two-equation
model, which means it includes two extra transport equations to represent the turbulent
properties of the flow. It is also appropriate to consider that in the 2D model of the thruster
proposed in this work, the propellant mixture was introduced through inlets that have
an area equal to that reported in the 3D CAD model. Hence, the lookup tables were built
starting from the percentage of the mole fraction composition of the combusted gases
during the ignition time provided by ATLAS consortium. As previously stated, propylene
(C3H6) and nitrous oxide (N2O) were used as the fuel and oxidiser, respectively. Propylene
is considered a green propellant because, if burned, it theoretically should not produce
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NOx. However, this statement is true only if the decomposition of propylene occurs at
a minimum temperature of 900 ◦C. In this study, the temperatures were high enough to
enable the complete decomposition of propylene. Moreover, it is worth noting that the
possible presence of NOx would be irrelevant for the calculation of heat fluxes.

3.2. CAD Model for Thermo-Structural Analysis

The CAD model of the B20 thruster without a cooling system was imported into a com-
mercial software based on the FE. The model was subsequently partitioned and discretised
using the FE code. Then, the model was meshed with 166,320 quadratic hexahedral ele-
ments with reduced integration, for thermo-structural analyses. As the model of the rocket
is axisymmetric, a quarter of the full model was used when simulating thermomechanical
behaviour. Hence, both the symmetry conditions on cutting planes and constraints on the
external surface of the combustion chamber, to prevent rigid body degrees of freedom,
were applied (see Figure 3).
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Moreover, on the external surface of the thruster, another boundary condition related to
radiative heat exchange towards the environment was applied. In this latter case, emissivity
was established by the ATLAS consortium and set to 0.8. The heat fluxes, pressures and
tangential stresses produced by the burnt gases, varying along the thruster axis, were
applied on the inner surface of the thruster (see Figure 3). Hence, the thermomechanical
analysis was carried out in three sequential steps. The first step related to the ignition
phase, which ended in a time of 0.05 s. The second step related to the heating of the wall
in a maximum time of ten seconds from the end of ignition. The third step related to the
shutdown time, which was equal to 100 ms.

3.2.1. Operating Cycle

CFD simulation of the combustion process of the liquid mixture allowed the calculation
of convective heat fluxes, pressures and shear stresses on the boundary of the fluid control
volume. Therefore, these loading conditions were considered to enter through the inner
wall surface of the 3D mechanical model. Therefore, the thermal-stress analysis was carried
out considering the thermal and nonlinear transient behaviour of the wall material with
the operating cycle defined by the ATLAS consortium. A qualitative representation of the
cycle is shown in Figure 4. Initially, a uniform temperature of 298 K was applied to the wall.
Next, convective heat fluxes, pressures and shear stresses were applied along the length of
the thruster by three field functions defined in the FE commercial code.
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Figure 4. Operating cycle.

Three consecutive steps were used to define the thermal cycle described in Figure 4.
Step 1 related to the onset of combustion, when the maximum values of heat fluxes,
pressures and shear stresses were applied on the inner surface of the wall during the first
50 ms. In step 2, the wall of the thruster was heated up by conduction up to a maximum
time of 10 s, and finally, in step 3, the shutdown of the thruster (100 ms) was modelled by
removing all the loads previously applied.

3.2.2. The Law of Decay of Heat Flux

The maximum value of the wall heat flux was calculated along the longitudinal axis
(X-axis) of the thruster. This point of maximum heat flux was found at the nozzle throat.
Subsequently, the heat flux values at different instants of time up to 10 s were calculated at
this throat location. These values were plotted on a heat flux-versus-time graph, as shown
in Figure 5. Interpolation of these values permitted us to obtain the lowest point of decay of
heat flux. Indeed, the heat flux values decay over time because heat flux coefficients decay
over time. In Figure 5, it is worth noting that the behaviour of heat flux over time is quite
oscillating. This behaviour is related to some pressure oscillations within the volume of the
burnt gas. Hence, the law of decay of heat flux can be obtained through the interpolations
of data reported in Figure 5 with a power law. The use of a power law can permit us to
quickly simulate the heat flux decay in the mechanical model.
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The equation of the power law shown in Figure 5, y = 3 × 106 a−0.127, was used to
calculate the decay of the heat fluxes on the inner wall of the thruster over time. It is worth
noting that a stationary condition appeared at two seconds from the start of the burn.

4. Results and Discussion
The CFD analysis was carried out considering a two-dimensional model of the thruster.

Furthermore, the percentage composition of the mole fraction of the flue gases provided
by the ATLAS consortium was used to write the lookup tables. The CFD analysis also
returned the temperature distribution within the thruster’s wall. Then, the temperature
distribution on the inner surface of the wall along the axial direction was compared with
that obtained from the mechanical model. In Figure 6, the temperature distribution within
the fluid volume and wall is shown at 50 milliseconds.
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The wall heat flux q was applied along the X-direction, in the nozzle throat, at a
distance equal to x = 0.026 m from the mixture inlets (x = 0.0 m). In Figure 7, the temperature
distribution along the X-axis at 2 s is shown.
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In Figure 8, the temperature field inside the thruster is shown after 10 s from the start
of the combustion.

These temperature fields, relating to different instants of time, were compared with
the corresponding temperature fields obtained from the thermo-mechanical analysis car-
ried out with the 3D mechanical model (see Figure 9). Looking at the graph shown in
Figure 9, the differences between the temperature values calculated by the CFD analysis
and those correlated to the power law, used to interpolate the points shown in Figure 9,
highlight a maximum difference in the order of 6%. Thus, the proposed approach is
considered acceptable.
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Figure 8. Temperature distribution at the end of combustion (10 s).
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Thermal-Stress Analysis

The elastoplastic properties were used to model the material behaviour of the thruster
wall. These material properties were introduced into the mechanical model in the form
of a bilinear law, as reported in Table 1, and for different values of temperature, adopting
the elastoplastic von Mises criterion and isotropic hardening. Heat flux, von Mises stress,
plastic strain, total strain, thermal strain (THE) and equivalent plastic strain (PEEQ) were
also calculated through nonlinear thermal–structural analysis. This work demonstrated
that the maximum peaks of heat fluxes, temperatures, von Mises stresses and, finally,
inelastic deformations were found in the nozzle throat region. In Figure 10, the maximum
value of PEEQ in the wall at two seconds is shown. By observing the PEEQ, it is possible to
identify the most damaged area of the thruster wall.

It is worth noting that two seconds into combustion, there is no numerical evidence that
plastic strain has increased. Since total strain is the sum of thermal strain and mechanical
strain, total strain can be written as the sum of elastic strain, inelastic strain and thermal
strain. Furthermore, inelastic deformation is the sum of plastic deformation and viscous
deformation and was not considered in this work.

Therefore, the plot of equivalent strain, PEEQ, shows the amount of plasticity in
the nozzle throat in relation to the total strain and, therefore, due to both mechanical
and thermal loading. However, considering equivalent plastic strain and thermal strain
separately, most of the plasticity is related to thermal strain.
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5. Conclusions
An explicit CFD analysis was performed to model both the combustion process of

a liquid propellant and to calculate the heat fluxes on the inner surface of the wall of a
commercial thruster. Then, the heat fluxes were used to calculate the temperature field in the
thruster wall in the thermal transient. Subsequently, using a heat flow decay law calculated
at the end of the CFD analysis, a mechanical model of the thruster was used to perform an
implicit thermomechanical analysis considering the properties of the elastoplastic material.
The procedure proposed in this work allowed us to identify the regions of the wall that were
most damaged by the thermomechanical load and therefore most critical for its operation
under thermal shock conditions. Furthermore, this procedure can allow us to compare the
thermomechanical behaviour of the thruster wall using different materials without having
to repeat the CFD analysis, assuming that for these materials, the difference in the values of
thermal conductivity is negligible. Finally, this approach can be used as a starting point for
the analysis of the fatigue behaviour of the thruster wall.
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