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Abstract In this study, the numerical analyses of1

a system, which describes the motion of air parti-2

cles in the cavity of a Helmholtz resonator (HR),3

excited by a sound wave, was conducted. The low-4

frequency (LF) signal in the acoustic field is amplitude-5

modulated by an additive high-frequency (HF) pertur-6

bation, which can enhance the detection of the low-7

frequency, through Vibrational Resonance (VR) phe-8

nomena. The focus was on the combined effect, of9

amplitude and frequency of the acoustic excitation, on10

the motion of particles and induction of resonance. It11

was demonstrated that the system exhibits several non-12
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linear behaviours, VR ceasing to exist for a particular 13

motion of the particles, which is dictated by the exci- 14

tation frequency in relation to the resonator’s geome- 15

try. Furthermore, the regimes in which the performance 16

of the system can be optimized, was identified, which 17

facilitated the design of broadband acoustic resonators, 18

suitable for most applications. 19

Keywords Nonlinear system · Helmholtz resonator · 20

Acoustic waves · Vibrational resonance · Frequency 21

domain 22

1 Introduction 23

Resonance is one of the interesting behaviours that low- 24

order systems, modelled as nonlinear ordinary differ- 25

ential equations, are known to display. This behaviour 26

leads to the creation of unusual attractors, and other 27

phenomena, such as hysteresis and jump phenomenon, 28

and period doubling bifurcation. The knowledge and 29

interpretation of these behaviours, facilitates the under- 30

standing of the complex dynamics of various physical 31

systems, and enables a straightforward analysis [1]. 32

Resonance is one of the significant phenomena dis- 33

played by nonlinear systems, which is due to its abil- 34

ity to store and transfer energy, from an external driv- 35

ing source, as well as to provide a system’s maximum 36

response. While it is beneficial in some applications 37

(e.g., communication, vibration therapy and medicine), 38

it may also cause instability or even disastrous out- 39
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comes in others, when not properly controlled [2].40

Notable importance is given to resonances in biological41

sciences, physical sciences, and engineering. A system42

is said to be in resonance when its inherent vibration43

frequency, matches the frequency of an external driving44

force, thereby increasing the output response. [3,4].45

Resonance has been defined more broadly to include46

all processes involving the optimisation, suppression,47

or amplification of a system’s response by the modu-48

lation of any parameter of the system. Therefore, the49

restriction on solely frequency matching has been mod-50

ified [4,5]. Resonance that occurs in a nonlinear system51

is referred to as nonlinear resonance. In this instance,52

frequency matching is not necessary for resonance to53

occur, unless specified design requirements are met54

[3]. When an external driving force is applied, a sys-55

tem’s maximum response, at low frequency (LF), is56

enhanced. This phenomenon, known as nonlinear res-57

onance, can take many different forms, depending on58

the type of driving force [2,4]. For instance, what is now59

known as vibrational resonance (VR), occurs when the60

force manifests as a high-frequency (HF) periodic sig-61

nal [6,7]. In VR, a nonlinear system responds to a LF62

signal, in a resonant manner, when an ideal amplitude63

of HF stimulation is delivered to it. As a result, the effect64

of a HF excitation is comparable to that of noise, in the65

well-known stochastic resonance (SR) phenomena [8–66

10]. Additionally, several nonlinear systems, subjected67

to external energy sources and particular parameter set-68

tings, exhibit nonlinear resonance, termed parametric69

resonance [11,12]. Autoresonance, also known as self-70

sustained resonance, is the ability of a nonlinear oscil-71

lator to maintain resonance in the face of changes in its72

structural and/or excitation characteristics [3,4,13].73

Vibrational resonance (VR) has generated signifi-74

cant scientific attention in the last two decades owing75

to its potential industrial applications. These are espe-76

cially relevant to communications, signal identifica-77

tion, separation and extraction, noise attenuation, fil-78

tering, optimisation and control of signal output, and79

energy emphasis [4]. Other cutting-edge technologi-80

cal applications include ratchet-like components, such81

as nonlinear mixers, sensors, transducers, amplifiers,82

switches, and filters. When used in VR regimes, these83

components provide better efficiency and operating84

conditions [3,4]. Motivated by the previously indicated85

possible applications, VR has now been demonstrated86

and evaluated in a variety of model systems, theoret-87

ically [7], numerically [6], and experimentally [14].88

These spanned through several fields, including neuro- 89

science, plasma physics, laser physics, acoustics, and 90

engineering. Recently, VR has specifically been inves- 91

tigated in a doubly unique mass distribution function 92

position-dependent mass (PDM) oscillator, which char- 93

acterises the vibrational inversion mode of the N H3 94

molecules [15]. The research demonstrated how the 95

variable mass parameters of the molecules affect the 96

resonance characteristics of the system. 97

In addition, the phenomenon of vibrational reso- 98

nance was investigated in a Rayleigh-Plesset oscilla- 99

tor, for a gas bubble oscillating in an incompressible 100

liquid, excited by a dual-frequency acoustic force, con- 101

sisting of high-frequency, amplitude-modulated, weak 102

signal [16]. The authors, presented convincing proofs, 103

that an acoustically-driven bubble oscillates in a time- 104

dependent single- or double-well potential, the char- 105

acteristics of which are dictated by the liquid’s prop- 106

erties. Furthermore, their findings of multiple reso- 107

nances and their origin for the double-well situation 108

were reported, along with their relationship to the weak, 109

low-frequency acoustic force field. 110

However, research on the occurrence of VR, in 111

acoustic resonators, have been under-explored. It was 112

observed that much attention have not been given to 113

the occurrence of VR, in acoustic resonators. It should 114

be noted that, in acoustical domains, viscoelastic mate- 115

rials, resonators, and porous materials (foams or mul- 116

tilayered systems), are a few examples of the various 117

passive control techniques used for sound absorption, 118

possibly because porous materials remain in viscous 119

regimes, at lower frequencies. Moreover, they are typ- 120

ically more efficient at higher frequencies [17]. 121

For example, metamaterials are customised for 122

improved mechanical, acoustic, electrical or optical 123

processes. To be specific, acoustic metamaterials are 124

designed to control, direct, and manipulate sound 125

waves in gases, liquids, and solids. They can be engi- 126

neered to either transmit, or trap and amplify acoustic 127

waves at specific frequencies. Several acoustic meta- 128

material (AMM) systems can be designed based on 129

Helmholtz resonators (acoustic resonators), which are 130

frequently employed, for sound absorption and ampli- 131

fication, at lower frequencies [18]. The Helmholtz 132

resonator (HR) increases sound pressure level of an 133

audio signal, at a particular frequency band, and then 134

attenuates it at frequencies outside that band, thereby 135

performing as a typical sound absorber. Additionally, 136

acoustic cloaking [19,20], acoustic topological sys- 137
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tems [21,22], sound focusing based on gradient index138

lenses [23,24], perfect absorbers [25,26], and others,139

are some of the developed applications of AMMs. The140

technology have benefited from the study of nonlin-141

ear dynamics, especially, the propagation of acoustic142

waves in a periodic waveguides [27–29]. The nonlin-143

earities of acoustic metamaterials are important to con-144

sider, especially for cylindrical pipe-based metamate-145

rials that have resonance phenomena in tubes or lat-146

tices and intensify nonlinear effects in limited spaces.147

Knowledge of the dynamics of nonlinear acoustic meta-148

materials, have yielded significant progress in modern149

engineering and some of its applications are utilized in,150

nonlinear acoustic superlens [30,31], acoustic diodes151

[32,33], photonics metamaterials [34], and acoustic152

switching and rectification [35].153

The effect of high-amplitude sound wave propaga-154

tion in an acoustic metamaterial was recently reported155

by Zhang et al. [36], demonstrating the system’s poten-156

tial usage as a nonlinear absorber. However, the authors157

noted that the propagation of nonlinear losses cannot158

be disregarded, when both the fundamental and the159

second harmonic are taken into account. Using the160

classical perturbation approach, Lan et al. [37], exam-161

ined the nonlinear effects of acoustic wave propagation162

and dispersion in a cylindrical pipe containing peri-163

odically organised Helmholtz resonators. The analyti-164

cal findings revealed a shift in the resonant frequency165

to the lower frequency side and a widening forbid-166

den bandgap of the transmission spectrum, which were167

caused by the nonlinearity of the Helmholtz resonators168

and the increase in the incident acoustic pressure level.169

To overcome this, many authors studied the nonlinear-170

ities in the system’s restoring force, to enable more171

effective vibration control across a wider frequency172

range [17,38,39].173

More recently, nonlinear damping and nonlinear174

restoring force were proposed, to comprehend the175

dynamic behaviours of the acoustic resonator, and to176

significantly enhance the efficiency of HRs. Singh and177

Rienstra [40], modelled a HR with a linear restoring178

force and a nonlinear damping term, while in a recent179

publication, Forner et al. [41] described various kinds180

of dissipations that might occur in a HR. Both authors181

argue that vortex shedding is primarily responsible for182

the nonlinear dissipation, while thermo-viscous bound-183

ary layers are responsible for the linear dissipation. In184

other studies, the nonlinear damping, caused by the jet185

loss, and the nonlinear restoring force (a quadratic and186

cubic term), caused by the nonlinear elasticity of the 187

cavity air, for large amplitude excitations, were both 188

considered [17,42]. Vakakis [42] reported a slightly 189

softening behaviour for the HR model. However, the 190

work of Meissner [43], confirmed the dependence of 191

the Helmholtz resonator’s frequency on the flow veloc- 192

ity, the type of flow (turbulent or laminar), and the shape 193

of the resonator. Additionally, Forner et al. [41] demon- 194

strated that the geometry of the neck, might affect the 195

appearance and dissipation of vortices, around the neck, 196

and as well, play a vital role on the dynamical behaviour 197

of the system. This implies that, if the vortex and dissi- 198

pation around the neck are minimised, it is possible to 199

investigate, further, in the nonlinear domain, while con- 200

sidering the nonlinear restoring force. Recently, Alamo 201

Vargas et al. [17], developed a method to do this by 202

modifying the neck geometry. In addition to the soften- 203

ing behaviour previously reported, the authors achieved 204

a hardening behaviour, by limiting the vortex shedding, 205

with a customised nonlinear HR neck. Consequently, 206

the governing nonlinear equation, of the Helmholtz res- 207

onator, enabled the calculation of extreme nonlinear 208

response behaviours, of the system. 209

In light of the aforementioned, we investigated and 210

evaluated the VR phenomenon, in a bi-harmonically 211

driven Helmholtz resonator, where, to the best of our 212

knowledge, the influence of a high-frequency excita- 213

tion (auxiliary signal) on a weakly driven HR, has not 214

yet been addressed. In VR, a second high-frequency 215

harmonic, referred to as the fast-signal, usually stimu- 216

lates a nonlinear system driven by a low-frequency sig- 217

nal, such that the high-frequency component, �, has a 218

fundamental higher frequency value, compared to the 219

low-frequency component, ω. The system’s response 220

amplitude, at the slow oscillation frequency, under 221

these conditions (ω � �), is computed as a function 222

of the amplitude of the high-frequency signal. Conse- 223

quently, the response exhibits a curve akin to that of the 224

well-known response of signal-to-noise ratio, found in 225

stochastic resonance (SR) [8,44]. 226

The paper is structured as follows: Firstly, the HR 227

model, and its governing equation, are introduced in the 228

next section (Sect. 2). Section 3 discusses the numeri- 229

cal simulations and the description of vibrational reso- 230

nance phenomenon. Section 4 contains the results and 231

discussions of our findings. Lastly, in Sect. 5, we sum- 232

marise the paper and conclude, with brief discussions 233

on some important applications of our findings. 234
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Fig. 1 A simple description of the HR unit, driven by amplitude modulated acoustic waves, and a schematic of the system’s behaviour
with the displacement of air molecules, along the tailored neck of the resonator

2 Model description235

To study the occurrence of VR in an acoustic resonator,236

we utilised a HR, the mechanical system shown in237

Fig. 1. This is because of its characteristic nonlinear-238

ities. Moreover, to promote the application of acoustic239

resonators, there is a need to investigate the resonance240

dynamics, of the system, in the nonlinear regimes. The241

effect of sound pressure level, which is the varying242

amplitude of the driving force, was investigated, using243

the response behaviour of the system, in [17]. In this244

paper, we assumed that the acoustic force is weak, and it245

is amplitude-modulated. However, it is worth mention-246

ing that, in response to the incident acoustic pressure247

across the resonator’s opening, its resonant frequency248

is determined by the dimension of its cavity volume and249

neck area. Therefore, Ln and Lc are the length of the250

neck and cavity, respectively, while V0 is the volume251

of the HR cavity. The external and internal radii of the252

hyperboloid neck are rext and rin , respectively, and rc is253

the radius of the cavity. These parameters were utilised254

for the derivation of a dimensionless equation. In the255

long wave limit, the air inside the cavity is considered256

as a nonlinear spring, so that the change in pressure257

(�p), resulting from the displacement z of air in the258

neck can be written as259

�p=−υ

(
z− (γ +1)S

2V0
z2+ (γ +1)(γ +2)S2

6V0
z3
)

,260

(1)261

where υ = ρω2
0 Lef f and ρ (kg/m3) is the air den-262

sity. Lef f (m) is the effective length of the neck and263

ω0 (s−1) is the linear resonance frequency of the res- 264

onator, which depends on the cross sectional area, 265

S (m2) of the neck and volume, V0 (m3) of the cavity. γ 266

is the specific heat ratio of air, such that combining the 267

momentum equation and the nonlinear restoring force, 268

with the nonlinear damping and the external pressure 269

increment, the equation of motion with respect to time 270

τ (s), takes the form [17], 271

d2z

dτ 2 +
(

η

2Lef f

)
dz

dτ

∣∣∣∣ dz

dτ

∣∣∣∣+
(

μS

ρLef f

)
dz

dτ
272

+ω2
0z −

(
αSω2

0

V0

)
z2

273

+
(

βS2ω2
0

V 2
0

)
z3 = − p∗

ρLef f
, (2) 274

where η is the coefficient of the total hydraulic resis- 275

tance of the neck, and μ (Ns/m5) accounts for the 276

sum of the acoustic impedance at the inlet of the HR 277

and the friction acoustic impedance. α = (γ+1)
2 , β = 278

(γ+1)(γ+2)
6 , and p∗ (N/m2) is the pressure varia- 279

tion around the atmospheric pressure. By re-scaling the 280

variables in Eq. (2) as 281

t = ω0τ, x = Sz

V0
, σ = ηV0

2SLef f
282

and δ = μS

ρω0 Lef f
, (3) 283

the nonlinear equation, for the motion of air molecules 284

passing through the neck into the HR’s cavity, driven 285

by an external acoustic excitation, is described in terms 286
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of a dimensionless displacement, x , given as287

ẍ + σ ẋ |ẋ | + δ ẋ + V (x)

dx
= p, (4)288

where289

V (x)

dx
= x − αx2 + βx3. (5)290

The external acoustic excitation, p (p = Sp∗
ρV0ω2

0 Lef f
),291

determines the system’s response behaviour. In Eq. (4),292

σ is the nonlinear damping term, due to the jet phe-293

nomenon, while δ represents the linear damping. At294

low sound pressure levels, the nonlinear damping, can295

typically be ignored; however, at high sound pressure296

levels, σ , which is proportional to the ratio of cav-297

ity to neck volume, must be present [17]. Generally,298

a restoring force is created when the air in the cavity299

is compressed, and damping will be produced by the300

friction in the neck, caused by the fast-moving air. Var-301

ious dynamic reactions, result from distinct orderings302

of the system’s parameters. When the driving pressure303

is very low, the linear damping term predominates, and304

the contribution of the nonlinear restoration term, can305

be negligible. Hence, the motion of air molecules, in306

the neck, is reduced to linear vibrations, with linear307

damping (δ) only [40,42].308

The integration of Eq. (5), gives the expression for309

the system’s potential,310

V (x) = 1

2
x2 − 1

3
αx3 + 1

4
βx4. (6)311

Here, the potential parameters, α and β, are dependent312

on the specific heat ratio of air, γ , which describes the313

thermodynamic state of the air molecules. Note that,314

the specific heat ratio of a gas is the ratio of the spe-315

cific heat of the gas, at constant pressure, to its spe-316

cific heat, at a constant volume [17]. The specific heat317

ratio of the air molecules in the neck, is a function of318

the excitation frequency of the acoustic wave, and the319

nature of air molecules. Generally, if the driving fre-320

quency is significantly high, the process becomes adi-321

abatic, due to increasing temperature gradient, in the322

cavity. However, with a low driving frequency, the pro-323

cess becomes isothermal [16,17]. Therefore, an inter-324

mediate value for the specific heat ratio, γ = 1.4, can325

be used, which appropriately describes the thermody-326

namic state, of the air molecules, across the neck and in327

the cavity. Consequently, the estimated values, for the328

potential parameters, are α = 1.20 and β = 1.36, as329

obtained experimentally in [17]. Thus, for this study,330

Fig. 2 The potential structure of the system with α = 1.2 and
β = [0.22, 0.25, 0.30, 0.50, 1.36]

these values are fixed for the associated parameters, 331

throughout our analyses, apart from the potential plots 332

in Fig. 2. Additionally, the values for both linear and 333

nonlinear damping terms, δ = 0.005 and σ = 0.05, 334

respectively, are fixed as well, except otherwise indi- 335

cated. 336

The system’s potential structure is shown in Fig. 2, 337

for different values of β (β = [0.22, 0.25, 0.30, 0.50, 338

1.36]), with fixed value of α (α = 1.2). It is clear 339

that the system exhibits a single-well potential structure 340

with β = 1.36, which implies that the system posses 341

only one equilibrium point, x = 0, for the parameter 342

setting. However, the system can also admit additional 343

equilibrium points, depending on the choice of β. For 344

instance, it exhibits three equilibrium points, two sta- 345

ble equilibria and an unstable equilibrium, a typical 346

asymmetric double-well-single-hump potential struc- 347

ture, when α2 − 4β > 0. The potential plots satisfying 348

this condition, is shown in Fig. 2, with a dash line, a 349

dotted line and a dash-dotted line, for β = 0.22, 0.25 350

and 0.30, respectively. 351

3 Numerical simulations and the description of VR 352

It is worth mentioning that the dynamic regimes of 353

the HR model, can vary greatly, as a function of the 354

system’s parameters of interest. Moreover, the exper- 355

imental results of Alamo Vargas et al. [17], limits the 356

value of the system’s parameters. This appears logical 357

and very realistic, physically. Hence, to investigate the 358

occurrence of VR, with the modelled nonlinear equa- 359

tion, system (4) is assumed to be under the influence 360
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of an amplitude-modulated acoustic excitation, p =361

A cos ωt . This is such that, A (A = (g cos �t + f )), is362

the amplitude of the acoustic wave, comprising; the363

amplitude of a weak low-frequency (LF) signal, f ,364

modulated by a cosine signal, g cos �t , which is a365

high-frequency (HF) periodic signal. It should be noted366

that, ω represents the low-frequency parameter, while367

g and �, are the amplitude and frequency of the high-368

frequency acoustic perturbation. In Fig. 1, we presented369

a well-labelled schematic, for the purpose of implemen-370

tation. The amplitude modulated acoustic waves can371

be achieved by connecting a speaker, to an amplifier372

or directly, to a computer unit, PC1, as shown on the373

left-hand side of the figure (Fig. 1). Microphones, M1374

and M2, can be positioned with the resonator (Fig. 1),375

to measure the input and output sound pressure level,376

respectively. Data from both microphones could be377

logged by connecting them to a computer (PC2), via a378

data acquisition device, DAQ.379

Substituting for p, and dV (x)
dx from Eq. (5), in Eq. (4),380

the modelled nonlinear HR equation can be written as381

ẍ + σ ẋ |ẋ | + δ ẋ + x − αx2 + βx3

= (g cos �t + f ) cos ωt,

}
(7)382

which facilitate the occurrence of VR. Furthermore, we383

have chosen, for convenience, � � ω, as the respective384

frequencies, a condition that must be satisfied, for the385

VR occurrence. Hence, Eq. (7) can be rewritten as a set386

of coupled first-order Ordinary Differential Equations387

(ODEs) of the form388

dx

dt
= ẋ

d ẋ

dt
= −σ ẋ |ẋ | − δ ẋ − x + αx2 − βx3

+ (g cos �t + f ) cos ωt.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8)389

Equation (8) was integrated, using the Fourth-Order390

Runge-Kutta scheme, with a fixed step size, �t =391

0.001. Considering zero initial conditions, that is392

x(t) = 0 and ẋ(t) = 0, and using the output signal’s393

time series, of Fourier sine and cosine components, AS394

and AC , respectively, the response amplitude, Q can395

be calculated from396

Q =
√

A2
S + A2

C

f

θ = −tan−1
(

AS

AC

)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9)397

where, 398

AS = 2

nT

∫ nT

0
x(t) sin ωt dt,

AC = 2

nT

∫ nT

0
x(t) cos ωt dt.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10) 399

The period of oscillation, of the low-frequency input 400

signal, T = 2π
ω

, with n = [1, 2, 3, . . .], number of 401

complete oscillations. 402

4 Result and discussion 403

4.1 Trajectory of the system’s particles 404

To analyse the response behaviour of system 7, firstly, 405

we studied the dynamics of its particles. It should be 406

noted that in many cases, chaotic dynamics can be seen 407

in certain parameter regimes, for many forms of non- 408

linear systems, especially oscillators with quadratic or 409

higher order polynomial potentials. To understand this, 410

the bifurcation diagrams of the system’s dynamics, 411

is presented, with increasing values of f , the ampli- 412

tude of the LF signal, when the fast signal is yet to 413

be activated (g = 0). This is shown in Fig. 3a. It is 414

evident, from the figure, that the possibility of chaos 415

increases with higher values of f . A previous work 416

had reported the possibility of chaos, when homoclinic 417

orbits ceased to exist [17]. However, a periodic regime 418

is observed for small forcing amplitudes, 0 < f ≤ 2, 419

as shown in Fig. 3a. Next, we present the bifurcation 420

diagram of the system presented in Eq. (7), with vary- 421

ing low-frequency, ω, values, when f = 1.0 and 422

g = 0.0, in Fig. 3b. Other system parameters are fixed 423

at α = 1.2, β = 1.36, σ = 0.05, and δ = 0.005. The 424

figure (Fig. 3b), facilitates an explicit knowledge of the 425

significance of ω, on the system’s dynamics. Thus, it 426

paves the way for a better understanding of the signifi- 427

cant influence of frequency, on the theories and concept 428

of the resonance behaviour of the system, particularly, 429

the fundamental changes the air molecules in the HR 430

cavity, under goes. 431

Clearly, the system of Eq. (7), presents three dis- 432

tinct behaviours, as the frequency, ω increases. Stage 433

I, the start-up regime, with a chaotic dynamics in the 434

range, 0 < ω < 0.95. Stage II, is the highly con- 435

trollable regime, with the air molecules in a periodic 436

motion, for 0.95 ≤ ω ≤ 1.60. However, in stage III, 437

the main significant feature of the system is the period- 438
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Fig. 3 Bifurcation diagram
of the HR system with, a
increasing low-frequency
amplitude, f , when the
amplitude of the fast signal,
g = 0. Other system
parameters are
α = 1.2, β = 1.36 and ω =
1.01, σ = 0.05, δ = 0.005;
b increasing low-frequency
component, ω, while
f = 1.0 and g = 0.0. Other
system parameters are
α = 1.2, β = 1.36, σ =
0.05, δ = 0.005

doubling bifurcation, at ω = 2.0. The periodic window439

(stage II), which only exist for a small range of the440

LF component (ω), appears reasonable and very realis-441

tic. This is because typical HRs, exhibit a single reso-442

nant frequency. Additionally, improving the resonance443

behaviour in this regime, is the crux of this research444

findings. It should be noted, that the dynamics of the445

HR, is highly chaotic, and a fundamental feature of446

most complex dynamical systems, is their sensitivity to447

initial conditions, and sets of parameter values [45,46].448

These observable features can be utilised in different449

field applications of the HR. In essence, the bifurcation450

diagram offers a thorough and visual representation of451

the complex dynamics of the system, influenced by the452

frequency fluctuations. Thus, it summarises the com-453

pleteness of our investigations, in this paper. Moreover,454

one of the novelty of our findings is its ability to predict455

motions of the air molecules in the cavity at each stage456

(stage I, stage II or stage III), and their resultant effect 457

on the observed phenomenon (VR). 458

To fully comprehend the behaviour of the system, 459

the motion of the air molecules, in Fig. 4, was exam- 460

ined, for four different values of the amplitude of the 461

LF acoustic wave, f . The phase portraits and the cor- 462

responding trajectory plots, are shown in Fig. 4a and b, 463

respectively. In Fig. 4a(i), the motion is highly periodic. 464

Further increase in the value of f , leads to a multi- 465

periodic orbit, showcased in Fig. 4a(ii), and a quasi- 466

periodic motion, in Fig. 4a(iii). However, with f = 7, 467

a chaotic attractor emerges. 468

Although the attractor adopts a pattern akin to that 469

reported by Alamo Vargas et al. [17] (see Fig. 8a of 470

[17]), when f ≤ 0.4, shown in Fig. 6, the observed 471

dynamics is distinct, particularly, for f > 0.4. It is 472

worth mentioning that, both Fig. 3a and b, show the 473

rich bifurcation scenarios of the system, with changing 474

parameters of the LF acoustic signal and their relation- 475
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Fig. 4 a Phase portraits of
the HR system, before the
activation of the fast signal
(g = 0), for different values
of LF amplitude; (i)
f = 0.01, (ii) f = 1.0, (iii)
f = 2.74, and (iv) f = 7.0;
b The corresponding
time-series plots. Other
system parameters are
ω = 1.01, σ = 0.05, δ =
0.005, α = 1.2, β = 1.36

ship to particle transport, as depicted with phase por-476

traits and evolution plots. They all present the typical477

chaotic behaviour of the HR model, showing the depen-478

dence of the particle’s motion on the acoustic signal.479

This, consequently, shows that asides the previously480

reported softening and hardening behaviours, the sys-481

tem can display other dynamics, due to the significant482

impact of the acoustic pressure on the air molecules.483

Therefore, one would be curious to know if the signa- 484

ture will persist, on the air particles, at different fre- 485

quencies, or if other behaviours would appear, due to 486

frequency variations. This constitutes one of the major 487

focus of this work; to examine the significance of fre- 488

quency change, on the dynamics of the HR. 489

To gain deeper insight into the dynamics of the sys- 490

tem, when subjected to an acoustic signal, we turn our 491
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Fig. 5 a Phase portraits of
the HR system, before the
activation of the fast signal
(g = 0), for different values
of the low-frequency
component; (i) ω = 0.01,
(ii) ω = 0.5, (iii) ω = 1.01,
and (iv) ω = 2.0; b The
corresponding time-series
plots. Other system
parameters are
f = 0.01, α = 1.2, β =
1.36, σ = 0.05, δ = 0.005

attention to the alteration of the phase diagram, in the492

periodic regime (Fig. 4a(i)). This is achieved by adjust-493

ing the LF component, ω. The exploration is showcased494

in Fig. 5a, where the phase portraits are presented for495

four different values of ω (ω = [0.01, 0.5, 1.01, 2.0]).496

To the best of the authors’ knowledge, no prior research,497

in the field of acoustics, has examined the intriguing498

behaviours, displayed by the numerical simulations of499

Eq. (7), shown in Fig. 5a and 5b. Conspicuously, with 500

ω = 0.01 in Fig. 5a(i), the trajectory is novel, despite 501

its chaotic nature. It is very logical to assume that the 502

consequence of different transformations, inside the 503

acoustic resonator, results to the horn-shaped trajec- 504

tory. Note, in an ideal HR, the air molecules inside 505

the cavity, which are considered compressible, move 506

freely [17,40,42]. However, the air column in the neck, 507
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Fig. 6 Bifurcation diagram within a small range of the LF ampli-
tude, f ∈ (0, 3), for a ω = 1.01 and g = 0, while other param-
eters were fixed at α = 1.2, β = 1.36, � = 0.0, σ = 0.05, δ =
0.005; b ω = 1.01 and g = 2.0, while other parameters were
fixed at α = 1.2, β = 1.36, � = 10ω, σ = 0.05, δ = 0.005

which is regarded as an incompressible mass, can only508

oscillate narrowly towards the neck end, and eventually509

diffuse into the cavity, due to the acoustic pressure.510

Increasing the frequency, ω = 0.5 in Fig. 5a(ii), the511

air molecules vibrate conically, and oscillate periodi-512

cally when ω = 1.01 in Fig. 5a(iii). However, there is513

a significant decrease in oscillation amplitude, beyond514

the periodic regime (ω = 2.0), as shown in Fig. 5a(iv).515

These are also captured by the corresponding trajectory516

plots, in Fig. 5b(i)–(iv).517

To gain further insight into the behaviour the sys-518

tem, especially, the effect of the HF signal, on the519

dynamics of the HR, we present the bifurcation dia-520

grams, within a small range of the LF amplitude,521

f ∈ (0, 3), in Fig. 6a and b. Presented in Fig. 6a, is522

the bifurcation diagram without activating the HF sig-523

nal, g = 0.0. On the other hand, Fig. 6b, depicts the524

effect of the HF acoustic signal, on the system’s dynam-525

ics. For both figures, other system parameters are fixed526

at α = 1.2, β = 1.36,� = 10ω, σ = 0.05, and527

δ = 0.005. Although both figures look very alike, they528

are required to unveil the intricate behaviour of the sys- 529

tem. This stems from the fact that, it appears difficult 530

to discern some patterns in Figs. 3a and 6a. Moreover, 531

the scenario of the system, subjected to a HF signal, as 532

shown in Fig. 6b, revealed different array of dynamics, 533

that include periodic, multi-periodic motion, bifurca- 534

tion bubble, reverse period doubling, and even chaotic 535

motions, as f increases. In another words, the periodic 536

regime is distinguishable with the activation of the HF 537

signal. This facilitates the selection of the appropri- 538

ate choice of the LF amplitude, f , which, successfully, 539

enhanced the system’s performance, by modulating the 540

parameters of the HF signal. 541

Next, we examined the possible effect of the HF 542

signal, on the dynamics of the system. For four dis- 543

tinct values of the LF component, similar to Fig. 5a, 544

we studied the behaviour of the system and noted the 545

significant changes in the trajectories. This is shown 546

in Figs. 7a(i)–(iv) and b(i)–(iv). Notably, the chaotic 547

behaviours of the air molecules, are suppressed. Addi- 548

tionally, the system sustained a periodic dynamics, with 549

ω = 1.01, shown in Fig. 7a(iii), and a quasi-periodic 550

motion, when ω = 2.0, as shown in Fig. 7a(iv). The 551

corresponding time evolution, for these trajectories, are 552

shown in Fig. 7b(i)–(iv). 553

4.2 Acoustic vibrational resonance 554

It is evident that the system’s dynamics is chaotic and 555

highly complex. Additionally, we observed that the 556

type of application and the environmental condition, 557

determine the geometry and size of some fundamental 558

parameters, like the length and cross-sectional area of 559

the neck, volume of the cavity, the total hydraulic resis- 560

tance, and acoustic impedance, at the inlet of the HR. 561

More so, the nonlinear damping σ , caused by the jet 562

phenomenon, is a function of the hydraulic resistance, 563

and is proportional to the ratio of the cavity volume to 564

that of the neck [17,42]. For the purpose of examin- 565

ing the nonlinear response of the system, the effect of 566

restoring and damping forces, were also considered, in 567

addition to the influence of the acoustic field. The air 568

inside a resonator’s cavity is primarily where the non- 569

linear restoring force comes from, which is seen as a 570

nonlinear spring in the long wave limit [42]. 571

First, the frequency response curve of system (7), 572

in Fig. 8, is examined. The system’s response curve 573

for different values of the HF component, � = 574
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Fig. 7 a Phase portraits of
the system with g = 0.1, for
four values of the
low-frequency component;
(i) ω = 0.01, (ii) ω = 0.5,
(iii) ω = 1.01, and (iv)
ω = 2.0; b The
corresponding time-series
plots, while other system
parameters are
f = 0.01, σ = 0.05, δ =
0.005, α = 1.2, β = 1.36
and � = 10

[8.0, 9.0, 10.0, 11.0], when the amplitude of the HF575

signal, g = 1.0, is shown in Fig. 8a. However, Fig. 8b,576

depicts the response when the HF acoustic signal is577

not activated. It is clear, from Fig. 8a, that, aside the578

main response curve, observed at ω = 1, for the con-579

sidered values of �, it is possible to have harmonics580

at higher ω, when the HF signal is activated. Next,581

the effect of varying the amplitude of the LF acous-582

tic signal, f , on the system’s response, in Fig. 9, is 583

presented. The response curves, for different values 584

of f ( f = [0.01, 0.05, 0.083]), are shown in Fig. 9a, 585

while Fig. 9b presents a similar effect, for high pres- 586

sure amplitude, f = [1.0, 1.7, 2.74]. Other system 587

parameters were fixed at g = 1.0, α = 1.2, β = 588

1.36,� = 10, σ = 0.05 and δ = 0.005. It is evident 589

that the system responds, significantly, to the chang- 590
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Fig. 8 a The system’s
frequency response curve
for different values of the
HF component,
� = [8.0, 9.0, 10.0, 11.0],
when the amplitude of the
HF signal, g = 1.0. b
Frequency response curve
in the absence of the HF
signal, g = 0.0, � = 0.0.
Other parameters of the
system were fixed at
f = 0.01, α = 1.2, β =
1.36, ω = 1.01, σ = 0.05
and δ = 0.005

Fig. 9 Frequency response
curves, for different values
of the amplitude of the LF
signal; a
f = [0.01, 0.05, 0.083],
and b f = [1.0, 1.7, 2.74].
Other system parameters are
g = 1.0, α = 1.2, β =
1.36, � = 10, σ = 0.05,
and δ = 0.005

ing values of the acoustic wave amplitude. Increasing591

f , reduces the response amplitude, and shifts the res-592

onant frequency to the right. This is a hardening stiff-593

ness behaviour, which has been studied in literature.594

For instance, Alamo Vargas et al. [17] examined the595

behaviour of the system (Eq. (7)) with g = 0, both596

experimentally and analytically, and reported that the597

system exhibited a softening behaviour, at low excita- 598

tion amplitudes. Additionally, it was stated that the res- 599

onance frequency decreased with increasing amplitude. 600

However, when the system’s excitation level increased, 601

the softening characteristic changed to a hardening 602

behaviour. Consequently, the tendency that a system 603

would exhibit a hardening behaviour, increases with 604
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Fig. 10 The system’s
response curves, for
different values of the
amplitude of the HF signal;
a g = [0.1, 1.0, 2.0, 3.5],
and b the insert of response
peaks. Other system
parameters are
f = 0.01, α = 1.2, β =
1.36, � = 10, σ = 0.05 and
δ = 0.005

high amplitude excitations. Evidently, the character-605

istic hardening behaviour is captured in Fig. 9a, par-606

ticularly, when f > 0.05, shown in Fig. 9b. To fully607

comprehend this, f = 0.083, 1.70 and 2.74, are the608

corresponding values of the sound pressure level (SPL),609

89.3, 115.6 and 119.7 dB, respectively, which are real-610

istically high [17,41].611

In Fig. 10, the effect of amplitude of the HF signal,612

g, on the system’s frequency response, was presented.613

Increasing g, reduces the systems response, as shown614

in Fig. 10a. This becomes obvious in Fig. 10b, an insert615

of the zoomed portion of the system’s response curves.616

Similarly, the significant impact of both linear and non-617

linear damping terms, δ and σ , is to decrease Q, the sys-618

tem’s response, shown in Fig. 11a and b, respectively.619

Now, we return to the main focus of this paper; to620

investigate the occurrence of VR in system (7). Next,621

the results obtained for the traditional VR phenomenon,622

are presented. It was shown that the air molecules,623

enclosed in the cavity of a resonator, described by sys-624

tem (7), undergoes VR through the dependence of the625

response amplitude, Q, on the HF amplitude, g, as626

shown in the following figures.627

To emphasis the significance of investigating the occur-628

rence of VR and reflect the impact of the HF signal, on629

the system’s response, we define a gain factor, GV R as630

GV R = Qg(ω)

Q0(ω)
, (11)631

where, Qg(ω) and Q0(ω) are the response amplitude 632

at the LF, ω, in the presence and absence of the HF 633

signal, respectively. Variation of the gain factor, GV R 634

with increasing values of g, for different LF compo- 635

nent, ω = [1.01, 1.05, 1.10], is shown in Fig. 12a. It 636

is clear from the figure, that the quality of the sys- 637

tem’s response is improved, and with the appropriate 638

choice of ω, a desired amplification can be achieved. 639

The maximum gain and the corresponding value of 640

the HF amplitude (g, GV Rmax ), for the plotted val- 641

ues of the LF component, ω = 1.01, 1.05 and 1.10, 642

are (17.5, 1.18), (20.0, 2.33) and (23.0, 6.67), respec- 643

tively. For instance, with a specified value of ω, the 644

response amplitude can be controlled by modulating 645

g. The fact that HR can absorb and amplify acoustic 646

pressure at a particular frequency, determined by its 647

dimension, shows that the size and geometry of the 648

resonator dictates its response dynamics. Otherwise, at 649

resonance, ω = ωr . The resonant frequency, ωr , is cal- 650

culated from the cross-sectional area of the HR’s neck 651

and the volume of its cavity [47,48]. 652

In Fig. 12b, the variation of Q with increasing val- 653

ues of the HF amplitude, g, for four different values of 654

the LF component, ω (ω = [1.01, 1.05, 1.10, 1.25]), 655

is shown. Other system parameters are fixed at f = 656

0.01,� = 6.5, α = 1.2, β = 1.36, σ = 0.05, and 657

δ = 0.005. It is observed that the system’s response, 658

Q, increases with increasing values of ω. The con- 659
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Fig. 11 The system’s response curve for; a five dif-
ferent values of the linear damping parameter, δ =
[0.005, 0.010, 0.050, 0.090, 0.120], with σ = 0.05; and, b
five distinct values of the nonlinear damping parameter, σ =
[0.05, 0.10, 0.30, 0.50, 1.00], with δ = 0.005. Other system
parameters were fixed at f = 0.01, α = 1.2, β = 1.36, ω =
1.01, and � = 10

tribution of the LF parameter, to the observed reso-660

nance behaviour, is clear from the figure (Fig. 12b),661

through the position of the peaks. Also, a double-662

peak resonance curve emerges, when ω = 2.0, as663

shown in Fig. 12c. In Fig. 13, the dependence of the664

system’s response, Q, on the HF amplitude, g, for665

six different values of the HF component, � (� =666

[6.5, 7.0, 7.5, 8.0, 8.5, 9.0]), is presented, with other667

parameters of the system fixed at f = 0.01, ω =668

1.01, α = 1.2, β = 1.36, σ = 0.05, and δ = 0.005.669

Increasing � produced obvious changes in the max-670

imum response; decreased Q, and also shifted the671

peak point towards higher values of g. As earlier men-672

tioned, the LF component of the acoustic excitation,673

ω, imposes three distinct regimes of influence, on the674

dynamics of the system; (i) chaotic, (ii) periodic, and675

(iii) period-doubling, as depicted by Fig. 3b. Interest- 676

ingly, their impacts, on the occurrence of VR, are exam- 677

ined, by varying the LF amplitude, f , in Fig. 14. 678

The effect of increasing the acoustic pressure ampli- 679

tude, on the observed resonance phenomenon, is 680

insignificant, when the particles exhibit choatic motions 681

(ω = 0.01), as shown in Fig. 14a. On the contrary, 682

with an increased LF component (ω = 1.01), shown in 683

Fig. 14b, the system’s response, Q, is well-enhanced, 684

and can be meaningfully controlled by adjusting f , the 685

pressure amplitude. Although, the maximum response 686

amplitude, Qmax , decreases as f increases in Fig. 14b. 687

By contrast, the cases reported in Fig. 14a, correspond- 688

ing to ω = 0.01, show no enhancement, due to increas- 689

ing perturbation, that arises from varying g. Indeed, 690

the maximum response amplitude (Qmax = 1.0), is 691

obtained when the amplitude of the HF signal, g = 0. 692

The response amplitude, Q, monotonously decreases, 693

afterwards, for all values of g. It is worth mention- 694

ing, that the VR phenomenon fails to exist in this case, 695

because the maximum response, Qmax , is obtained 696

without the amplitude of the HF signal (i.e., g = 0). 697

Understanding the response behaviour of the sys- 698

tem, in relation to the LF acoustic excitation, is cru- 699

cial, particularly, the resonant state, which predefines 700

the enhancement regimes of a dynamical system. In 701

other words, since the ability of a Helmholtz resonator 702

to amplify sound pressure at different frequencies, is 703

a function of its resonant frequency, which depends 704

on the resonator’s dimension (ratio of the volume to 705

the neck size), therefore, it is important to under- 706

stand its operational frequency range. Additionally, the 707

significance of exploring this, cannot be overempha- 708

sised. Besides the well-known industrial applications 709

of the HR, for noise control, it has also been recently 710

employed in acoustic energy harvesting [47,49]. The 711

deployment of the HR, to address energy challenges, 712

stems from the fact that the efficiency of a piezoelec- 713

tric transducer, positioned in the resonator’s cavity, is 714

enhanced within the resonant region. 715

However, while using the theoretical formula directly, 716

to calculate the resonant frequency, is straightforward 717

and efficient, there are cases when the computation 718

error is significant or even incorrect. The deficiencies, 719

arising from the estimated resonant frequency of HRs, 720

in the linear regime only, impose several problems in 721

acoustic theoretical research and engineering applica- 722

tions [48]. 723
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Fig. 12 a The gain factor,
GV R versus the amplitude
of the HF acoustic signal, g,
for different values of the
LF component,
ω = [1.01, 1.05, 1.10],
showing the system’s
maximum response in the
absence of the HF signal (i.e
Q0(ω)). b Dependence of
response amplitude, Q, on
the HF amplitude, g, for
different values of the
low-frequency component,
ω =
[1.01, 1.05, 1.10, 1.25], and
c ω = 2.00. Other
parameters of the system
were all fixed at
f = 0.01, � = 6.5, α =
1.2, β = 1.36, σ = 0.05,

and δ = 0.005

In this study, it is observed that the dynamical724

behaviour of the air molecules in the HR cavity, respond725

to both the nonlinearities arising from the resonator’s726

geometry and the acoustic excitation frequency (ω).727

This, as a result, constitutes the basic features that deter-728

mine the significant resonant state of the system, as729

against the size of the HR, alone. Additionally, from730

the principle of conservation of mass and momentum731

perspectives, the constituent nonlinearities - the nonlin-732

ear restoring force, nonlinear damping, and the exter-733

nal pressure incremental fluctuations, that describe the734

behaviour of the particles, can define the resonant state735

of the system, effectively [2,4,45].736

Furthermore, in Fig. 14c, the occurrence of double- 737

resonance peaks, when ω = 2, is presented. With 738

the cooperation between the LF component, ω, and 739

the amplitude of the HF signals, g, the magnitude of 740

the observed bi-resonance curve, can be enhanced or 741

suppressed. This is contrary to the insignificant effect 742

of varying f , on the response amplitude of the sys- 743

tem, shown in Fig. 14a. Therefore, the possibility of 744

controlling the system’s response increases, with an 745

appropriate choice of ω and the HF signal. To com- 746

plement our discussion on the effect of nonlineari- 747

ties on the system’s response amplitude, the varia- 748

tion of Q, with increasing HF amplitude, g, for dif- 749

ferent dissipation values, in Fig. 15a and b, is pre- 750

123

Journal: 11071 MS: 10534 TYPESET DISK LE CP Disp.:2024/11/4 Pages: 21 Layout: Medium



R
ev

is
ed

Pr
oo

f

K. A. Omoteso et al.

Fig. 13 Dependence of
response amplitude, Q, on
the HF amplitude, g, for six
different values of the HF
component, � =
[6.5, 7.0, 7.5, 8.0, 8.5, 9.0],
with other parameters of the
system fixed at
f = 0.01, ω = 1.01, α =
1.2, β = 1.36, σ = 0.05,

and δ = 0.005

sented. In Fig. 15a, the dependence of Q on g, for751

five different values of the linear damping parame-752

ter, δ = [0.005, 0.010, 0.050, 0.090, 0.120] with σ =753

0.05, is shown. Clearly, the maximum response, Qmax ,754

of the single VR curve, decreases with increasing δ.755

Also, varying σ , the nonlinear damping term, pro-756

duced similar effect. This is shown in Fig. 15b, for757

σ = [0.03, 0.04, 0.05, 0.06, 0.10], and δ = 0.005.758

Other system parameters were fixed at α = 1.2, β =759

1.36,� = 6.5, ω = 1.01, and f = 0.01.760

In Fig. 16, a three-dimensional plot, illustrating the761

numerically computed response amplitude, Q, as a762

function of the components of the LF acoustic sig-763

nal, is presented. The dependence of the response764

amplitude, on the LF amplitude, f , and LF compo-765

nent, ω, in the range ( f, ω) ∈ [(0, 2), (0, 2)], with766

α = 1.2, β = 1.36, σ = 0.05, and δ = 0.005, shows767

the significant impact of the amplitude of the HF signal,768

g, on the response dynamics of the system. Aside the769

decrease in response amplitude, the difference between770

the resonance regimes is worth noting, as shown in771

Fig. 16. We remark that the HF amplitude, shifts the772

regimes of strong resonance towards the low values773

of f , as shown in Fig. 16b, compared to the curve in774

Fig. 16a. This implies that the activation of the HF sig-775

nal, favours the oscillation of the particle in the peri-776

odic regimes, thus, corroborating the discussion of our777

Fig. 6b. The curved surface of the HR’s response ampli-778

tude, Q, as a function of the components of the HF sig- 779

nal, is shown in Fig. 17. In addition to the effects of the 780

parameters of the low-frequency forcing, in determin- 781

ing the periodic regimes, it also influences the ampli- 782

tude of the high-frequency acoustic field, g, which is 783

periodic with �, hence, optimizes the amplitude, g, 784

that enhances the system’s dynamics. The enhancement 785

is significantly pronounced, when the high-frequency 786

parameter is such that 5 ≤ � < 15. The occurrence 787

of resonance, in Fig. 17, is consistent with Fig. 13. The 788

induced resonance, by parameters of the HF signal, in 789

Fig. 17, indicates the possibility of controlling the sys- 790

tem’s response, by altering g or �. In practical terms, 791

this could be achieved through an amplifier. More- 792

over, the dark red regions on the plot, clearly indicate 793

the well-enhanced regimes. This implies that, with the 794

cooperation of the LF component, ω, and the compo- 795

nents of the HF signal (g and �), the occurrence of 796

two significant resonance peaks, is possible, particu- 797

larly when the air molecules are in a periodic motion. 798

5 Conclusion 799

In this paper, the oscillations of acoustically-forced 800

air molecules, in a cavity, using the HR model, was 801

examined. Furthermore, the occurrence of VR of the 802

air molecules, describing the resonance behaviour of 803
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Fig. 14 Variation of the
system’s response
amplitude, Q, with
increasing HF amplitude, g,
for varying values of the
components of the LF
signal; a ω = 0.01, and f =
[0.01, 0.05, 0.08, 0.10]; b
ω = 1.01, with f =
[0.01, 0.05, 0.08, 0.10]; c
for ω = 2.00, and f =
[0.01, 0.02, 0.05, 0.10].
Other parameters of the
system were fixed at
α = 1.2, β = 1.36, � =
6.5, σ = 0.05, and
δ = 0.005
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Fig. 15 Dependence of the response amplitude, Q, on the
HF amplitude, g, for varying values of both the linear and
nonlinear damping parameters; a for linear damping, δ =
[0.005, 0.010, 0.050, 0.090, 0.120] with σ = 0.05, and b for
nonlinear damping, σ = [0.03, 0.04, 0.05, 0.06, 0.10]; when
δ = 0.005. Other parameters of the system were fixed at
α = 1.2, β = 1.36, � = 6.5, ω = 1.01, and f = 0.01

the HR, was reported. The influence of dual-frequency804

acoustic forcing, on the system’s response, was numer-805

ically analysed, and it was demonstrated that all the806

components of the incident sound pressure, play vital807

roles in the induction and control of VR. In addition808

to the appearance of single resonance peak, of the tra-809

ditional frequency response curve, the realisation of810

dual-resonance curves, was shown with the appropri-811

ate settings of the acoustic field frequencies.812

Complementing the previous investigations, of the 813

influence of sound pressure level (SPL), where simul- 814

taneous softening and hardening behaviours of the HR 815

was reported [17], it has been demonstrated that the sys- 816

tem exhibits other hidden complex dynamics. In partic- 817

ular, it should be noted that the resonator’s dynamics, 818

is controlled by its geometry, specific heat ratio, and 819

the acoustic excitation, which determines the nonlin- 820

earity and general behaviour of the system. From the 821

application point of view, it is concluded that the roles 822

played by the excitation frequency, is both inductive 823

and contributory. Remarkably, the reported nonlinear 824

behaviours are novel, especially, the system’s dynamics 825

at both low and high excitation frequencies. This sug- 826

gests several design ideas, with advantages that could 827

be explored to maximize the efficiency of acoustic res- 828

onators. 829

Conclusively, the occurrence of VR, with its pres- 830

ence and absence being controlled by the excitation 831

frequency, could facilitate the design of an improved 832

acoustic resonator, an efficient passive sound con- 833

troller. This finds application in different engineering 834

designs, particularly, in simultaneous noise attenua- 835

tion and acoustic energy harvesting, where the pres- 836

sure from acoustic waves vibrates a piezoelectric sensor 837

located in the resonator, to generate electrical energy. 838

Understanding the evolution of air molecules in the 839

resonator and the response dynamics, can increase the 840

amount of energy generated and the efficiency of the 841

acoustic energy harvester. Additionally, the results pre- 842

sented in this paper, provides a logical description of 843

the interaction of the sound waves with the HR. We 844

believe that our new formalism, in describing VR with 845

a HR, and its applications, as enumerated above, paves 846

way to a new body of research and provides a potential 847

application for the development of advanced acoustic 848

metamaterials. Moreover, future work can be focused 849

on investigating the occurrence of VR, analytically, to 850

further elucidate the system’s dynamics. 851
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Fig. 16 Three-dimensional plot showing the dependence of the
response amplitude, Q, on the LF components ( f and ω), for
the HF amplitude; a g = 0 and � = 0.0, and b g = 2.0 and

� = 10, when other system parameters are set at α = 1.2, β =
1.36, σ = 0.05, and δ = 0.005

Fig. 17 Three-dimensional
plot showing the
dependence of the response
amplitude, Q, on the HF
components (g and �),
when other system
parameters are set at
f = 0.083, ω = 1.01, α =
1.2, β = 1.36, σ = 0.05,
and δ = 0.005
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