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ABSTRACT
A Sleptsov net is a discrete-event system, capable of universal compu-
tations, applied as a graphical language of concurrent programming for
HPC and embedded domains. Search for the first fireable transition in a
sequence of transitions, reordered by their priorities, represents a chal-
lenge for mass-parallel devices and a bottleneck of the virtual machine. A
reduction technique for sequential search implementation on GPU, with
less than logarithmic time complexity concerning the sequence length, has
been developed. Together with the conventional reduction of minimum
and cooperative groups, the techniques yield about ten times speed-up on
CPUs and GPUs.
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1. Introduction

Sleptsov net computing [1] mends imperfections of modern HPC architecture [2] and provides a
toolset for reliable embedded system design [3], expanding to other domains as mentioned in [4].
In view of future dedicated hardware implementations of Sleptsov net (SN) computer [5], we offer
a rather good compromise using conventional devices with mass-parallel computing facilities such
as GPUs and FPGAs. In the present paper, observing recent advances in the application of FPGAs for
Sleptsov net based reliable embedded system design [3], we focus on using GPUs.

The SN virtual machine (VM) for GPU, described in [6], has been recently refined with a consider-
able speed-up because of using an ad-hoc format of a sparse matrix, called a matrix with condensed
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columns (MCC) and the transition reordering based on their priorities combined with the first fireable
transition choice, developed in [7]. The SNVM [7] supports compatibilitywithNVIDIAGPU architecture
35 and uses a multiple kernel implementation of an SN step on a GPU.

The general theory of discrete-event systems (DES) simulation [8, 9] covers issues of using paral-
lel and distributed systems, which are further specialized for mass-parallel devices, such as GPUs, in
[10–14], in particular, for Petri nets [15–17]. However, the cited papers offer neither detailed specifi-
cation of solutions nor open source implementations and use rather tiny nets for runs which occupy
milliseconds. Besides, SN VMs possess a series of peculiarities compared with both the simulation and
the calculation of state space for DES in general and, in particular, for the variety of place-transition
(Petri) nets. We use multiple firing of a transition at a step and we are interested in computing, as fast
as possible, a single trajectory, the way of the firing transition choice does not matter because we are
interested in the results of computation on SNs, which are invariantwith respect to the firing transition
sequence. We develop efficient ways of using mass-parallel computing resources for sequential DESs
based on special forms [3, 7] of sparse data [18, 19] representation.

There are certain difficulties in using conventional mass-parallel computing devices, such as GPUs,
for fast simulation of DESs represented by process algebra [20], multiset rewriting systems [21, 22],
place-transition nets [23] and other formal systems. Thus, the present study application domain is
considerably wider than Sleptsov nets. The central problem is represented by the fact that the DES
behaviour bears a sequential character specified as a sequence of steps transforming the DES state.
Having no possibility of modifying the corresponding definitions, we can, at first, parallelize a step
implementation using themaximal required number of GPU [24] threads having the appropriate spa-
tial structure and, at second, implement the loop, that controls the DES sequence of steps, within a
GPU kernel. The second approach was limited by a single GPU block (up to 1024 threads) in early
NVIDIA GPU architecture. With the cooperative group facility [25, 26], we can implement a global
synchronization of the entire grid, which we employ in the present paper.

The purpose of the present paper is to explore modern NVIDIA GPU architecture features [24], in
particular, cooperativegroup facilities, yielding apossibility of global synchronizationoverGPUblocks,
to further speed up SNVM for GPU.We also study the influence of the reduction [27, 28] application on
the VM performance, for both a conventional reduction of minimum and a specially designed reduc-
tion of sequential choice that has definite prospects in the DESs behaviour implementation on GPU.
The results are also compared to SN VMs designed for multicore CPUs, which can compete with GPUs
in view of DESs’ sequential behaviour.

2. Sleptsov net computing overview

A concept of multiple firing of a transition at a step (amulti-channel transition) introduced in [29] for a
timed Petri net has gained its further development for a nontimed place-transition net [1] which was
called a Sleptsov net. The new term is justified by the fact that an SN runs exponentially faster than a
PN [1] and represents a Turing-complete system [30, 31]. Recently, many scientists have used a similar
technique to speed up multiset rewriting systems, spiking P neuron systems, DNA computing, etc.,
referring to it as an ‘exhaustive use of rule’.

2.1. Sleptsov net concept

A Sleptsov net is a bipartite directed graph supplied with a dynamic process. One part of vertexes
depicted as circles (ovals) is called places. The other part of vertexes depicted as squares (rectangles) is
called transitions. Inside places, dynamic elements called tokens are situated. The net runs in discrete
time divided in equal intervals called steps. The net state, represented via the distribution of tokens
over places and called a marking, changes in the moment of the step change as a result of transition
firing. We consider also the arc multiplicity as a natural number. We call a transition incoming arc firing
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multiplicity themarking of its input place divided by the arcmultiplicity; we call a transition firingmulti-
plicity theminimal firingmultiplicity over its incoming arcs. A transition with firingmultiplicity greater
than zero is called a fireable transition. In SN, a single fireable transition fires in its maximal firingmulti-
plicity. At a step, any fireable transition can fire whichmakes the net behaviour nondeterministic. Note
that a Petri net [32] represents a special case of a Sleptsov net.

Though Sleptsov nets are Turing-complete [30, 31], it is not convenient to compose programsusing
them. Because of this fact, we use additional types of arcs – inhibitor andpriority – introducedbyAger-
wala andHack, respectively [33]. An inhibitorarc is directed fromaplace to a transition;we consider it to
have an infinite firingmultiplicity when the placemarking equals zero and zero firingmultiplicity oth-
erwise. The inhibitor arc has a hollow small circle at its end. A priority arc connects two transitions; we
consider the transition from where the arc starts has higher priority than the transition where the arc
ends. It means the lower priority transition does not fire when the higher priority transition is fireable.

Let us formalize the description of SNs and their dynamics based on their verbal definitions. An SN
is a tuple N = (P, T ,A, R,µ), where P = {p} is a finite set of places, T = {t} is a finite set of transitions, a
mappingA : (P × T) ∪ (T × P) → Z

≥−1 defines arcs, connecting places and transitions, their type and
multiplicity, a partial order relation R ⊂ (T × T) specifies priorities of transitions, a mapping µ : P →
Z

≥0 represents marking of places,µ0 is its initial value; a placemarking is depicted as a number inside
the place or as the required number of dots. Mapping A produces either: a zero value that means the
absence of the corresponding arc, a natural value that means a regular arc of specified multiplicity, or
−1 that denotes an inhibitor arc, this value is valid only for arcs connecting places with transitions.

Let us specify the transition input arc fireability multiplicity as (1) and the transition firing multiplic-
ity as (2). Any fireable transition (C(t) > 0) fires at a step in C(t) instances, changing the net marking
according to (3).

C(p, t) =

⎧⎪⎨
⎪⎩

µ(p)/A(p, t), if A(p, t) > 0

∞, if A(p, t) < 0 ∧ µ(p) = 0

0, otherwise

(1)

C(t) = min
A(p,t)�=0

(C(p, t)) (2)

µ(p) = µ(p) − C(t) · A(p, t) + C(t) · A(t, p),A(p, t) �= −1 (3)

For processing by computer, we specify an SN as:

• a pair of numbersm and n, wherem = |P| and n = |T|;
• a pair of matrices of incoming B and outgoing D arcs of transitions, respectively, where b(p, t) =

A(p, t), d(p, t) = A(t, p);
• a matrix of priority relation R, which, in the majority of cases, is more convenient to replace by its

transitive closure R′;
• a vector of markingmu, wheremu(p) = µ(p).

When studying SN properties [33], we consider the net complete behaviour which is nondetermin-
istic and, in the general case, infinite. Basically, three groups of techniques are applicable: state space
analysis, including finite representation of state space and recent symbolic techniques; linear algebra
methods of solving systems of algebraic equations and inequalities; and reductionmethods to reduce
the net size preserving its properties. From a practical point of view, we are most interested in such
properties as boundedness and liveness; liveness can be formulated in a simplified form of deadlock
absence. Thus, with SN programming we have a wide spectrum of formal methods for concurrent
software verification.
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2.2. Sleptsov net computing IDE

Using an SN as a concurrent graphical programming language possesses a series of advantages:
fine granulation of concurrent processes, uniform graphical language, the possibility of computing
memory implementation (without processor-memory bottleneck), and wide applicability of formal
methods for concurrent software verification. Note that compared to a PN, an SN runs exponentially
faster and is Turing-complete. In the early published papers [1, 5, 34], we developed technology of
programming in SNs language and the corresponding IDE [6]. We consider plain (low-level) inhibitor,
priority Sleptsov nets as a machine language implemented either by the corresponding dedicated
hardware (prospect) or by a virtual machine.

For composingprograms,weoffer high-level SNs specifiedbasedon separatingplaces to store vari-
ables, using the transition substitution by a subnet for the hierarchical composition of programs, and
an abbreviation of memory copying and movement operations represented by dashed arcs. At first,
we develop basis subnets that implement arithmetic and logic operations. Then, we develop rules of
sequential and nested program composition. We also specify nets corresponding to basic statements
of a programming language: branching, loops, and parallel execution. We offer a control flow, data
flow, combined, and arbitrary approaches for the program composition. Note that, especially when
using extended Sleptsow-Salwicki transition firing rules, we stop perceiving a sequential way of think-
ing encouraged by a sequence of statements of a textual programming language. In the process of
software design, the main goal is to preserve the original concurrency of the application domain. All
SN transitions are concurrent initially, if we imagine them isolated fromplaces, like actions. Then, using
places and arcs, we applyminimal possible restrictions on the initial maximal concurrency. Thus, there
is no need for subsequent parallelization of developed software. If Sleptsov net machines can execute
all the transitions in parallel, we achieve the maximal possible efficiency of a concurrent run having
certain restrictions ensured by a definite SN.

In Figure 1(a), we represent an SN program composed based on the control flow approach for RSA
encryption/decryption while in Figure 1(b), we show an SN program for mass-parallel solving of the
Laplace equation based on the data flow approach.

Though SN behaviour is a non-deterministic one, when there are alternatives in the firing transition
choice, in the process of an SN program run, we consider a single trace satisfying the transition firing
rules having proven the fact [1] that the computation result is invariant with respect to the valid trace
choice. The invariance is proven for initial nets and the program composition rules.

AnSN IDE (Figure2) hasbeenpresented in [6].WeuseTina toolset [35] as agraphical editor for draw-
ing SN programs and specifying the transition substitution for hierarchical design, applying a wide
spectrum of formal methods for software verification. We developed a dedicated compiler-linker of
SNs for hierarchical design andSNvirtualmachines implementedonCPUandGPU, to run SNprograms
including recent updates [3, 7].

2.3. Sleptsov net virtual machine

The basic algorithm of SN VM work represents processes of computing the fireability conditions and
firing a chosen transition changing the current marking according to (1) – (3). The best-known imple-
mentation [7], uses the corresponding stages (kernels) extended with an additional stage (kernel) for
the firing transition choice. Thus, we have the four following stages:

(1) compute the firing multiplicity of transition incoming arcs;
(2) compute the firing multiplicity of transitions;
(3) choose a firing transition;
(4) fire the chosen transition calculating the next marking.

In the present paper, we are going to implement this algorithm as fast as possible using the
reduction and global synchronization based on CUDA cooperative groups.
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Figure 1. Examples of SN programs [1]. (a) RSA encryption/decryption – control flow approach, transition substitution. (b)
numerical solving Laplace equation – data flow approach.

We specify the algorithmwith a scheme shown in Figure 3 using the mass-parallel algorithm nota-
tion introduced in [36]. Following [36], we depict a loop by a section, a double nested loop – by a
rectangle, a triple nested loop – by a cube, etc. There is a rather straightforward corresponding of
stages I, II, and IV to the formulae (1) – (3), where function m_fire(p,t) implements formula (1),
function RED_min(y,t) implements formula (2), and function new_mu(mu,ft,fc) implements
formula (3). We use an auxiliary matrix y and a vector z to store the firing multiplicities of arcs and
transitions, respectively.
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Figure 2. SNC IDE.

Figure 3. SN VM step mass-parallel chart.

Herewe observe possibilities of applying reduction [27, 28] to enhance VMperformance compared
[36] that is reflected in the chart. At first (for stage II), we apply a reduction of a binary operation, in par-
ticular, minimum. At second (for stage III), we apply our ad-hoc reduction of sequential choice, which
we develop in the present paper. We believe it will find wide application in simulating DES. Thus, we
employ squares and vectors of threads, obtaining an additional speed-up having, at stage II, a log-
arithmic time complexity, instead of the linear complexity, inmm and, at stage III, a logarithmic time
complexity instead of the linear complexity in t, compared to VMdescribed in [36]. Besides, for cooper-
ative groups, supported by recent CUDA architecture, because of using global thread synchronization
over the entire grid, we implement a single kernel with a loop over the SN time (a sequence of steps)
and the sequence of stages I–IV, working on a square grid of sizemm × t.
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Note that actually, having the sparse matrix format MCC [36], we work with a grid of sizemm × n
instead of m × n where mm is the maximal number of nonzero elements in a column over matrices
B and D which specify SN arcs. For nets, which represent SN programs, the magnitude mm is rather
small compared to m and tends to not grow with the growing net size. We omit matrix R because
of the transition reordering based on their priorities. We represent each matrix by a pair of matrices
with the following suffices: _v containing values of nonzero elements and _i containing indexes of
nonzero elements. Such a format is a certain compromise between zero-free row- or column- wide
sparse representation [3] and the convenience of the conventional matrix form for implementation
on GPU. Padding rather a modest number of zeroes, we have an overhead of only one indirect access
via the nonzero element index p = B_i[pi][t] that is optimized for processing incoming and outgoing
arcs of transitions.

3. Reduction of sequential choice

We speed up the solution of the following task on a mass parallel computing device, such as a GPU.
For a given array z over the set {0, 1}, find the first in the sequence element (its index) which equals
to the unit (does not equal to zero for an extended set of nonnegative integer numbers). We apply
the interleaving reduction approach supplied with an early break when the zero element becomes
nonzero, illustrated in Figure 4 for the best, Figure 4(a), an average, Figure 4(b), and the worst, Figure
4(c), cases.

Before the reduction loop, we replace the units with the element index plus one to have a nonzero
representation of indexes. In the first passage, usingn/2 threads,weprocess elements pairwise, replac-
ing the first element in the pair with the second element, in case the first element equals zero and the
second one is greater than zero. Then, we continue in the same way on the obtained array, increas-
ing the step by 2. In case the first element of the array (with zero index) becomes nonzero, we break
the process. For processing an array over natural numbers instead of set {0, 1}, we process an auxiliary
array of the same size which stores indexes of nonzero elements of the source array. The algorithm is
represented in Figure 5.

Statement 1. The algorithm shown in Figure 5 finds the first nonzero element in the sequence.

Proof: If the first element (with zero index) is nonzero at any passage of the loop, we have found it
becauseof thebreak. In the first looppassage, ifwithin eachpair there is anonzeroelement, it becomes
the leftmost, its actual index preserved. In the second passage, the first nonzero element becomes the
leftmost within each four elements, and so on. For the array lengths that are not a power of two, the
index check prevents exceeding the memory bounds. �

Statement 2. The algorithm’s, shown in Figure 5, worst time complexity is O(log2 lz) and average
time complexity isO(log2 lz/(nnz + 1)), where lz is the array length and nnz is the number of nonzero
elements.

Proof: In theworst case,wedonot break the loop, thus it is repeated log2 lz times. For an average case,
we suppose that nnz nonzero elements are spread uniformly within the array z dividing it into nnz+ 1
stretches of zero elements, approximate size of each stretch is lz/(nnz + 1). Thus, an average distance
to the first nonzero element is evaluated as lz/(nnz + 1). It requires approximately O(log2 lz/(nnz +
1)) passages of the loop to process the corresponding sub-array. �

4. Architectural trends and performance characteristics of GPUs and CPUs

This section discusses themain features and progress directions in the architectures of GPUs and CPUs
in recent years, as well as their performance characteristics for Sparse Matrix-Vector Multiplication
(SpMV), which is the core algorithm of SN VM, considering the matrix form of the SN state equation
similar to [33].
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Figure 4. Examples of reduction of sequential choice. (a) best case. (b) average case. (c) worst case.

Figure 5. Mass-parallel chart for reduction of sequential choice.
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4.1. Overview and key features of architectures

While GPUs and CPUs share similar core components, their architectures differ significantly. GPUs
are equipped with thousands or even tens of thousands of very simple cores, making them suit-
able for tasks that handle large amounts of data requiring high parallelism. They are used as co-
processors or accelerators. On the other hand, CPUs have dozens or over a hundred complex cores
with high sequential processing capabilities. They are equipped with many specialized features opti-
mized for low-latency sequential task processing, such as large-capacity cache memory, branch
prediction, and out-of-order execution. It is expected that CPUs will achieve high performance in
general-purpose applications, typical of binary-provided software and not optimized for specific
systems.

Recent GPUs continue to innovate their architectures designed for HPC and AI workloads. They
are equipped with tensor cores that have high computational throughput and HBM memory with
high memory bandwidth, which streamlines large-scale matrix processing. Furthermore, the adop-
tion of NVLink and Infinity Fabric, which accelerate communication betweenmultiple GPUs, improves
scalability in multi (4 or 8) socket configurations.

On the other hand, recent CPUs havememory channels capable of connecting large-capacitymem-
orymodules tomeet the needs of data centres, and they continue to expand the number of cores and
memory channels. The number of cores per socket has increased from tens to over a hundred, and
the number of memory channels per socket has increased from 8 to 12. In addition, in multi (dual,
and rarely quad) socket configurations of CPUs, the CPUs are connected by a special interconnect that
maintains cache coherency, allowing software to transparently utilize cores from different sockets.

4.2. Performance characteristics and bottleneck factors of SpMV

SpMV is a crucial kernel not only in SN VM but also in graph processing and other HPC applica-
tions, and its performance significantly impacts the overall system efficiency. Understanding the
performance characteristics of SpMV is essential for evaluating the architectures of GPUs and CPUs.
Both sequential processing performance and global bandwidth are important for SpMV performance,
and once sequential processing is sufficiently optimized, global bandwidth typically becomes the
bottleneck.

In single-node systems, this global bandwidth bottleneck arises from the bandwidth of the mem-
ory or the inter-socket connection. In contrast, inmulti-node systems, the bandwidth of the inter-node
interconnection network becomes the bottleneck. SpMV presents unique performance challenges
due to its data dependencies and irregular memory access patterns. As a result, various factors such
as memory bandwidth intensity, low instruction-level parallelism (ILP), load imbalance, and memory
latency overhead affect performance. The challenge in optimizing SpMV on different architectures
is complicated by these factors and the trade-offs associated with sparse matrix storage formats.
The SpMV algorithm, with its data-dependent and irregular memory access patterns, serves as an
excellent benchmark for evaluating the memory subsystem and interconnect capabilities of HPC
architectures.

4.3. Analysis of SpMV performance in the Graph500 benchmark

The Graph500 benchmark [37] is a ranking of supercomputers based on large-scale graph analysis,
with SpMV being a central component. Results from Graph500 indicate that single-node execution
of SpMV tends to have higher execution efficiency than multi-node execution, but there are limita-
tions on the problem size. Themaximum problem size for single-node execution is approximately 237

vertices, whereas it is approximately 243 vertices for multi-node execution.
Comparing the performance characteristics of GPUs and CPUs for SpMV in a single node, CPUswith

high sequential processing performance have an advantage in naive implementations, but GPUs with
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highmemory bandwidth canbe advantageous in optimized implementations. Depending on the data
movement required when repeating SpMV, the bandwidth of the inter-socket interconnection net-
work within a single nodemay become a bottleneck, potentially disadvantaging GPU nodeswith high
data movement. However, if there is a high-speed dedicated interconnect such as NVLink between
GPU sockets and it is effectively utilized, GPU nodes may also have an advantage. The results of multi-
node Graph500 show that the inter-node interconnection network plays a crucial role in performance
scalability. TheGraph500 results clearly demonstrate the trade-off between single-node efficiency and
the need formulti-node systems to solve larger problems. They also suggest that the performance dif-
ference between CPUs and GPUs in SpMV varies depending on the level of optimization and specific
hardware characteristics.

4.4. Supercomputer Fugaku and next-generation CPU FUJITSU-MONAKA

The supercomputer Fugaku [38], which has registered the world’s highest performance in the
Graph500 benchmark, is a representative example of an HPC system, employing the A64FX CPU with
48 cores per socket. The A64FX CPU is equipped with HBM for memory, similar to GPUs, and achieves
high SpMV performance not only in naive implementations but also in optimized ones. Fugaku is con-
figuredwith one socket per node, and Tofu Interconnect D [39] is used for inter-node communication.
TofuD not only has high injection bandwidth per socket but also achieves extremely high bisec-
tion bandwidth across the entire system due to its exceptional scalability, connecting over 100,000
low-power A64FX CPUs, contributing to its Graph500 benchmark performance.

FUJITSU-MONAKA [38, 40, 41], scheduled for shipment in 2027, is the successor to the A64FX CPU.
The main features of MONAKA include 144 cores, a dual-socket configuration, chiplet technology,
three-dimensional stacking of the core die and SRAMdie, and 2.5-dimensional implementation of four
3D-stacked units and one IO die. This state-of-the-art packaging technology significantly increases the
number of high-performance cores. MONAKA is a CPU designed with the goal of applying HPC tech-
nology to a wide range of fields, and it will connect large-capacity memory modules instead of HBM
for memory.

5. Enhanced SNmachine for GPU

In this section, we focus on practical aspects of VM modification illustrated with snippets of code.
We pursue not only a narrow purpose of describing our version of VM but also a wider one for
enlightening readers on how to use the global synchronization and reduction [42, 43] to speed up
their software. While the reduction of minimum is rather well-studied as a standard approach to
speed-up computing a binary function over an array of data, the reduction of sequential choice
contains some peculiarities, for instance, preliminary exit that makes its average time complex-
ity lesser than logarithmic in case we consider the number of nonzero elements of the array as a
parameter.

5.1. Applying reduction ofminimum

After computing the firingmultiplicity on all the incoming arcs of transitions employing all the threads
of mm × t rectangle, we compute the firing multiplicity of transitions reducing with minimum the
previous result over the incoming arcs, in particular on the first dimension (over columns) represented
with parameter mm, corresponding to the number of employed threads within a block. Actually, we
start with usingmm/2 threads dividing the number by 2 on each next passage of the reduction loop,
represented with the following code snippet:

int t = blockIdx.x;
int pi = threadIdx.x;
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for(int step=1; step<mm; step*=2) {
if(pi%(step*2)==0)

if(pi+step<mm) y[pi][t] = min( y[pi][t], y[pi+step] );
__syncthreads();

}

Macros min() computes the minimum of its two arguments. Each column corresponds to an SN
transition and is stored on a separate GPU block. The code rewrites matrix y, the result is obtained
in the first row of the matrix. For a small maximal number of the transition incoming/outgoing arcs,
representedwithparametermm, we foresee somepossibilities for additional speed-upwhenunrolling
the loop on a GPU warp and packing a few transitions into a GPU block. Interleaving stages I and II of
the step algorithm (Figure 3) seems inappropriate, yielding a certain slowdown because of additional
synchronization.

5.2. Applying reduction of sequential choice

Reduction of sequential choice, to get the first fireable transition in the sequence, requires a more
sophisticated approach because of a considerably greater number n of transitions than the maximal
number mm among the transition incoming or outgoing arcs. Using a single thread of each block
seems rather inefficient from the point of view of the warp structure of the GPU streaming multipro-
cessors, which are represented by threads of a block. Thus, we divide the array of size n, actually the
first line of the auxiliary matrix y, into sections of size b2, which are implemented on a single block
each and employ a two-level reduction that works for n ≤ 220, which can be easily generalized for a
multilevel variant. We use the following specification of blocks and the reduction calls for themultiple
kernel implementation:

int b2=max_blk_size;
int g2=(n%max_blk_size==0)? n/max_blk_size: n/max_blk_size+1;
dim3 grid20 (g2);
dim3 block20 (b2);
dim3 grid21 (1);
dim3 block21 (g2);
choose_f_trs_l0<<<grid20, block20>>>(mm, n, d_y, dbg);
if(g2>1) choose_f_trs_l1<<<grid21, block21>>>(mm, n, d_y, b2, dbg);

The interaction of two kernels, which implement two-level reduction of sequential choice, is illus-
trated in Figure 6. Note that the kernels interact only via using common data, actually two first rows of
matrix y. The array represented inblue is not actually copied, the correspondingelements of the source
vectors y[0] and y[1] are accessed using the step equal to the partition size. The kernel choose_f_trs_l0
reduces sequential choice within each partition of size max_blk_size of the firing multiplicity vector
represented by the two first (with indexes 0 and 1) rows of matrix y. Its code snippet follows:

// choose_f_trs_l0:
unsigned int t = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int tid = threadIdx.x;
unsigned int tmax = (blockIdx.x+1)*blockDim.x;
int step, goon=1;
y[1][t]=t;
for(step=1; (step<n)&goon; step*=2) {

if(tid%(step*2)==0) {
if(y[0][t]>0) {
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Figure 6. An example of two-level reduction of sequential choice work on four partitions of vector y[0].

if(tid==0) goon=0;
} else if((t+step<tmax)&(t+step<n)){

if(y[0][t+step]>0)) {
y[0][t]=y[0][t+step];
y[1][t]=y[1][t+step];
if(tid==0) goon=0;

}
}

}
__syncthreads();

}

Thus, choose_f_trs_l0processes eachpartition ofb2 transitions on a separateGPUblock, leaving the
first found nonzero element at the beginning of it. Before themain loop, it copies the global transition
number into the second row of the matrix y; remember that its first row contains the transition firing
multiplicity. Variable tid represents a relative number of a thread within the current block to imple-
ment the break condition using variable goon. After choose_f_trs_l0 finishes, the first element of each
partition contains a specification of the first nonzero element within the partition: the element value
– in the row with index zero and its actual index – in the row with index one.

The kernel choose_f_trs_l1 reduces the sequential choice over the previously processed partitions
of sizemax_blk_size of the firingmultiplicity vector represented by the two first (with indexes 0 and 1)
rows of matrix y. Its code snippet follows:

// choose_f_trs_l1:
unsigned int t = threadIdx.x*b2;
unsigned int tid = threadIdx.x;
int step, goon=1;
for(step=1; (step<n)&goon; step*=2) {

if(tid%(step*2)==0) {
if(y[0][t]>0) {

if(tid==0) goon=0;
} else if(t+step*b2<n){

if((y[0][t+step*b2]>0)) {
y[0][t]=y[0][t+step*b2];
y[1][t]=y[1][t+step*b2];
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if(tid==0) goon=0;
}

}
}
__syncthreads();

}

Code choose_f_trs_l1 resembles choose_f_trs_l0with the only change of the indexes t and tid spec-
ification, and using step ∗ b2 for the next element offset. When it finishes, the result is contained in the
first column of matrix y, namely in y[0][0] – the firing multiplicity and in y[1][0] – the firing transition
number.

Note that two levels of the reduction of sequential choice implementation can be united into
one kernel which is called sequentially with different parameters. The basic difference concerns how
we treat the number of blocks within the grid and the number of threads within a block as well as
the corresponding numbers of the current block and current thread. A multilevel reduction can be
implemented using a more sophisticated kernel.

5.3. Composing a single kernel with global synchronization

Global synchronization over groups of blocks, an entire GPU grid, or a fewGPUs in a cluster is provided
with Cooperative Groups facility available starting from CUDA 9.0 [26]. To use Cooperative Groups
classes andmethods,we include the followingheaders and startworkingwith theCooperativeGroups
namespace:

#include <cuda.h>
#include <cuda_runtime.h>
#include <cooperative_groups.h>
#include <cuda_runtime_api.h>
using namespace cooperative_groups;

To check Cooperative Groups support by the actual GPU architecture, we call function cudaDe-
viceGetAttribute after selecting a device with a function cudaSetDevice in the following way:

cudaSetDevice(0);
int supportsCoopLaunch = 0;
cudaDeviceGetAttribute(&supportsCoopLaunch,
cudaDevAttrCooperativeLaunch, DEV);
if(!supportsCoopLaunch) {

printf("*** error: no hardware support for Cooperative
Launch\n");
exit(ERR_NO_COOP_LAUNCH);

}

For the purpose of global synchronization over the entire grid, we create an object grid, which spec-
ifies the entire GPU grid including all blocks. Each time we need a global synchronization, we call sync
method on the object grid.

cooperative_groups::grid_group grid
= cooperative_groups::this_grid();

grid.sync();
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With regard to the previous VM [7] code rearrangement, we move a loop over SN steps inside a
single kernel run_SN and insert the code of all previous VM kernels separated by the global synchro-
nization calls. We run this kernel on the maximal grid structure among the previous VM kernels that
corresponds to a rectangle of size mm × n initially applied to calculate the firing multiplicity on the
incoming arcs of transitions. Note that other stages of the SN step employ this computing structure
only partially. Though switching to a single kernel with a loop on SN steps inside it, speeds up the VM
drastically by dozens of times as it is shown in Section 7.

Using the cooperative groups requires also a special implementation of the kernel call. Before the
call, we specify an array kernelArgs of pointers to the parameters we are going to pass to the kernel.
Then, we specify the block and the grid. In our VM, we use 1D grid of 1D blocks. And finally, we launch
the kernel via function cudaLaunchCooperativeKernel, to which we pass the kernel address (run_sn),
the grid and block specifications, and the list of kernel arguments:

void* kernelArgs[] = { (void*)&m,(void*)& n,(void*)& mm,(void*)& d_bi,
(void*)& d_bv,(void*)& d_di,(void*)& d_dv,(void*)& d_mu,(void*)& d_y,
(void*)&amp; d_f,(void*)&amp; maxk,(void*)& dbg };
dim3 block (mm);
dim3 grid (n);
cudaLaunchCooperativeKernel((void*)run_sn,grid, block, kernelArgs);

Modified in the described way, VM [7] runs a few times faster which makes further amendments
we developed look rather unessential, though they add-on to the VM’s total enhanced performance
as well. As the benchmarks acknowledge, the cooperative group application is limited by the grid size
corresponding to the actual number of GPU streaming multiprocessors and their capacity. Thus, all
the speed-up techniques described in this paper become significant for gaining additional speed-up,
especially on big SN programs.

6. Composing SNmachine for multicore CPU

Having an alternative, multicore CPU implementation of SN VM, brings in diversity and, taking into
consideration the growing number of cores of modern CPU, for instance 288 for Monaka proces-
sor of Fujitsu [41], and the considerably higher performance of a CPU thread over a GPU thread (up
to 10 times), sometimes, it provides better performance as benchmarks show, especially taking into
consideration an overhead required for copying data between CPU and GPU.

The first CPU SN VM implementation [6] uses a conventional matrix representation of SN that limits
its performance and processed data size. Recent implementations of SN VM for microcontrollers [3]
with column-wise sparsematrices show rather good speed-up for runs on a single thread (core). In the
present paper, preserving a uniformSN format, in the formofMCC, for both CPU andGPU,we enhance
CPU SN VM performance by applying OpenMP [44] and the reduction of minimum and sequential
choice. For nonstandard reduction of sequential choice, we develop ad-hoc functions.

Using the general mass-parallel chart of the VM step (Figure 3), we obtained the conventional code
replacing a vector by a single loop and a cube by a nested loop, according to the chart design descrip-
tion [36]. SN VM CPU step, shown in Figure 3, is implemented by the three following code snippets.
The first code snippet represents merged stages I and II to compute the vector y of transition firing
multiplicities:

#pragma omp parallel for private (t,af,pi)
for(t=0; t<n; t++) {

af=arc_firing(0,t);
#pragma omp simd reduction(min:af)
#pragma unroll
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for(pi=1; pi<mm; pi++) {
af=zmin(af,arc_firing(pi,t));

}
y[t]=af;

}

In the above snippet, we also illustrate our work with MCC format using separate matrices to store
indexes (prefix ‘_i ’) and values (prefix ‘_v ’) when computing the next marking. Computing the arc
fireable condition is specified by macros arc_firing. Merging stages I and II of the SN VM step chart
(Figure 3), allowed us to avoid using an auxiliary matrix; instead, an auxiliary vector y is in use. Of
two nested loops, we start the outer loop in parallel mode of OpenMP while using simd facilities and
reduction of minimum over the unrolled inner loop that results in better performance.

The sequential choice reduction can be implemented for a multicore CPU using OpenMP facilities
based on the algorithm described in Section 3; also it can be obtained from the GPU code described in
Section 5.2 via inserting the required number of loops with respect to the GPU grid structure as spec-
ified in [36]. Though the following code snipped of stage III is designed in a different way; it presents
a technique of transforming sequential choice into computation of minimum that allows us to apply
standard OpenMP reduction of minimum.

ipos_min=MU_MAX;
#pragma omp parallel for private (t,ipos) reduction(min:ipos_min)
for(t=0; t<n /* & ipos_min==MU_MAX*/ ; t++) {

ipos=(y[t]>0)?t:MU_MAX;
ipos_min=zmin(ipos_min,ipos);

}

We introduce a variable that stores the minimal index of the positive element of array ipos_min for
the currently processed part of the array y and recompute the index of a ‘current positive element’
ipos that equals to infinity, represented withMU_MAX value, in case the current element equals zero.
Thus, the loop computes the index of the first nonzero element. To optimize performance, we provide
an extra condition for premature exiting the loop on encountering the first nonzero element that is
prohibited in the reduction mode.

When there is a fireable transition indicated by ipos_min value lesser thanMU_MAX, the stage IV for
the marking recalculation, represented with the following code snippet, is run:

(f->c)=y[ipos_min]; (f->t)=ipos_min;
#pragma omp parallel for private (pi)
for(pi=0; pi<mm; pi++) { // next_mu

if(bv[pi][f->t]>0) mu[ bi[pi][f->t] ] -= (f->c)*bv[pi][f->t];
if(dv[pi][f->t]>0) mu[ di[pi][f->t] ] += (f->c)*dv[pi][f->t];

}

Wesuppose that the current stepnumber is countedby theelement f−> k of structure f that speci-
fies the current state of the fireable transition choiceprocess having suchother elements as f−> t – for
the firing transition number and f−> c – for the firing transitionmultiplicity; since the transition index
can equal zero, we use the transition firing multiplicity to check whether there is a fireable transition
at a step, otherwise, we break the basic loop over steps.

Let us consider the basic macros of SN VM. For the scalability of our virtual machines, both for GPU
and CPU, we employ a conditional compilation to choose between int and long, based on the control
symbol _LONG_MU_, for storing a place marking and a transition firing multiplicity:
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//#define _LONG_MU_
#ifdef _LONG_MU_
#define MUTY long
#define MU_MAX LONG_MAX

#else
#define MUTY int
#define MU_MAX INT_MAX

#endif
#define arc_firing(pi,t) ((bv[(pi)][(t)]>0)?

mu[ bi[(pi)][(t)] ] / bv[(pi)][(t)] : (bv[(pi)][(t)]<0)?
((mu[ bi[(pi)][(t)] ]>0)? 0: MU_MAX): MU_MAX)

The precompiler’s conditional choice defines typeMUTY and a constantMU_MAX for the VM code.
To switch from default int to long, we just uncomment the definition of symbol _LONG_MU_. Macros
arc_firing(pi,t) computes the current arc (from place indexed by variable pi to transition t) multiplic-
ity, processing both regular and inhibitor arcs. Note that, we employ additional macros for work with
dynamically allocatedmatrices; thus, the direct matrix indexation was used within simplified snippets
only.

7. Comparative analysis of benchmarks

The developed SN VMs and utility programs, for instance for converting an SN from LSN/HSN format
[6] toMCC format, accepted by the VMs of [7] and VMs described in this paper, have been uploaded for
public use onGitHub [45] together with benchmark nets, that allows a reader to reproduce the bench-
marks. Thedescribed in this sectionbenchmarks havebeenobtainedonHPCcluster Kelvin 2 [46]; basic
dependencies are also confirmedbyVMs’ runs on the laptops anddesktops of the authors. Conditional
compilation features allow us to adjust memory allocated to store a place marking – integer or long
integer type; we prefer signed types to avoid ongoing checks of the overflow.

7.1. Benchmark hardware and SN programs

We have been using HPC cluster Kelvin 2 [46] which brief description follows:

• 102 × 128 core Dell PowerEdge R6525 compute nodes with AMD EPYC 7702 dual 64-Core Proces-
sors (786GB RAM).

• 8 High memory nodes (2TB RAM).
• 32 × NVIDIA Tesla v100GPUs in 8 nodes.
• 16 × NVIDIA Tesla A100GPUs in 4 nodes.
• 4 × AMDMI300XGPU’s in 1 node.
• 4 × Nvidia H100GPUs in 1 node.
• 4 × Intel Max 1100GPUs in 1 node.
• 2PB of lustre parallel file system for scratch storage.

All compute nodes and storage are connected by EDR Infiniband fabric. Compute nodes run
ROCKY8.10 operating system.

For benchmarks, we were using SN programs well described in [3, 6, 7], and briefly specified in
Table 1.

In this paper, we focus on de andmmul benchmarks, which yield computations with rather rapidly
growing computational complexity with respect to the parameter, using other benchmarks for com-
plementary runs on desktops and laptops.We are taking into consideration these personal computing
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Table 1. SN programs for benchmarks.

Net Description Parameter

de Compute double exponent after Lipton Power of double exponent
sadd Sequence of additions Number of additions
smul Sequence of multiplications Number of multiplications
poly Compute polynomial of one variable Power of polynomial
mmul Multiply two square matrices Size of matrix

devices toprovide conditions for thewide spreadingof SNC.Wehavede as a ‘bad’ andmmul as a ‘good’
benchmark from the point of view of mass parallel execution on GPU and multicore CPU.

7.2. Analysis of GPU and CPU benchmarks

We represent the benchmarks obtained on GPU and CPU in graphical form in Figure 7. We use a bar
diagram, avoiding a misleading line approximation, because of the discrete character of the bench-
mark size parameter represented with a natural number. Also, we avoid using absolute values of time
because they grow rather fast to represent a few benchmarks in the same graph without using a
logarithmic scale. Because of this reason, we express information in the times of speed-up. We have
chosen thedouble exponent andmatrixmultiplicationbenchmarks because they are time-consuming
to obtain results almost independent of the operational environment’s current state.

In Figure 7(a), we showbars for only twoparameters, because for n< 3, nets run too fast to consider
them, and for n> 4, nets require toomuch time, beyond one hour. In Figure 7(d), the benchmarks, for
the cooperative group-based single kernel with global synchronization, finish for the matrix size 3,
while themultiple-kernel implementation demonstrates perfect scalability, though its performance is
considerably lower than the cooperative group’s kernel.

Benchmarks for multicore CPU, shown in Figure 7(c) and (d), demonstrate the rather good perfor-
mance of the VMs onmodern CPUs which can compete with GPU implementations of SN VM. Lipton’s
sequential, withmultiple recursive returns, double exponent net demakes use of a single CPU thread’s
great performance to run dozens of times faster as shown in Figure 7(d) and (e). The mass parallel
benchmark for matrix multiplication with the inline implementation of arithmetic operations mmul
shows that with the growing size of the net, application of GPU is more advantageous illustrated with
Figure 7(d) and (f).

7.3. Discussion of benchmarks

Using the cooperative groups feature of NVIDIA GPU architecture 90 increases considerably the num-
ber of threads runningwithin a fewblocks to synchronize, though the approach is limitedby the actual
number of GPU streaming multiprocessors and other GPU resources. Because of the limitation of the
number of blocks for global synchronization, a good deal of speed-up, about 3 times, because of hav-
ing themain loopover SN stepswithin a single kernel is possible to achieve for a rathermodest number
of blocks, actually reducing the maximal number of SN transitions to a few thousand. Thus, the only
option to run big nets is to use a few kernels to implement an SN step and run themwithin a loop over
steps implemented on the CPU.

The reduction ofminimumgives an additional speed-up of about 20–30% for both single andmul-
tiple kernel implementations. An additional speed-up of about 20–40% is achieved for the multiple
kernel implementations of the sequential choice reduction with a few levels of reduction over a block
ofmaximal size. It is rather difficult togain 10%additional speed-up for a single kernel implementation.

We observe also other aspects of the basic alternative using either a multiple kernel implementa-
tion compatible with NVIDIA GPU architecture 35 or a single core based on the cooperative groups
features, in particular, the global synchronization of threads over a group of blocks or entire grid. Hav-
ingmultiple kernels allowsus to adjust flexibly thegrid specification for each kernel. For a single kernel,
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Figure 7. SNVMbenchmarks. (a) double exponent onGPU. (b)matrixmultiplicationonGPU. (c) double exponent onCPU, (d)matrix
multiplication on CPU. (e) double exponent on CPU vs GPU, (f ) matrix multiplication on CPU vs GPU.

we should reach a certain compromise with regard to the grid specification more or less suitable for
each stage of the SN step implementation.

Also,wewould like tomention the fact thatNVIDIA’s rather aggressivemarketingpolicy of stopping
support of certain models of GPU after 5 years since their appearance on the market, makes a mass
customer buying newmodels that is not well justified. In our case, we observed a rather good speed-
up using the global synchronization though its application is restricted by the actual number of GPU
SM to SN benchmark programs of a rather modest size. Benchmarks obtained on a Dell Inspiron 15,
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5000 series laptop of 2015 with NVIDIA GPU RTX 640 for big SN programs (multiple kernel SN VM) are
just about 2 times slower compared to benchmarks obtained on GPU Tesla H100 of Kelvin 2 UK HPC
tier 2 cluster. To launch a CUDA program on RTX 640, we needed to run Linux Ubuntu 18.04 and gcc
5.2 to install CUDA 9.1 which supports our device.

Modern multicore CPUs, having more than a hundred cores, are competing with GPUs for the best
performance when simulating discrete-event systems because of DES’s sequential nature. Though,
when implementing an SN step, we can compute the firing multiplicities on all incoming arcs of tran-
sitions, the following operation of minimum on each transition’s incoming arcs, and, especially, of
the sequential choice of firing transition, diminish the benefits. Even accelerated with reduction, they
represent a bottleneck of VM implementations.

8. Conclusions

In the present paper, we studied the possibilities of SN VM for GPU speed-up usingGPUnovel architec-
ture features, in particular, cooperative groups, and also the application of the reduction technique.
A specific kind of reduction for sequential choice has been introduced and studied which has definite
prospects of application for discrete-event system implementation on GPU. Speed-up of about 1.5–2
times has been obtained.

We found that the application of global synchronization facilities over GPU blocks, provided by the
cooperative groups features of GPU architecture 90, yields 2–3 times speed-up using a single kernel
with an internal loop on SN steps, though its application is limited by the maximal number of GPU
blockswhichmayparticipate theglobal synchronizationoperations to run rathermodest SNprograms
with the number of transitions of a few thousand.
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