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A B S T R A C T   

The Kimmeridge Clay Formation (KCF) forms the source rock for most conventional hydrocarbon accumulations 
within the UK North Sea. However, only a few previous studies have analyzed the potential of the KCF for 
unconventional resources (i.e., shale oil and gas). 

Here, we use machine learning techniques combined with established rock property equations to generate 
geochemical, petrophysical and geomechanical logs for 16 wells within Quadrant 15 of the Outer Moray Firth, 
UK North Sea. The neural network models used to generate geochemical logs are trained using the Levenberg- 
Marquardt backpropagation algorithm. The generated well logs and new KCF depth maps, constrained by an 
existing Base Cretaceous Unconformity (BCU) map of the UK North Sea and well top information from 48 wells, 
are used for 3D geostatistical modelling of KCF properties across the area. The resulting KCF property maps allow 
us to assess the shale oil and gas play potential across the region. 

Our results suggest good organic richness and hydrocarbon yield potential for the KCF within the study area, 
with up to 9 wt% original total organic carbon (TOCo), 48 mg/g original hydrocarbon yield (S2o), and 607 mg/ 
gTOC original hydrogen index (HIo). Modelled total porosity values range between 2 and 13%, and brittleness 
indices lie between 25 and 65%, within the range reported for proven shale oil and gas plays. 

A sweet spot map, created by integrating our modelled KCF properties, indicates prospective areas for shale oil 
and gas exploitation within the central Witch Ground Graben, and to a lesser extent areas of the Piper Shelf and 
Claymore-Tartan Ridge. These areas show good potential based on all investigated properties, with respect to 
industry standards.   

1. Introduction 

Assessment of the potential for residual shale oil and gas exploitation 
from geological formations can be conducted by 3D geostatistical 
modelling of the distribution of key geochemical, petrophysical and 
geomechanical properties (Johnson et al., 2018; Alshakhs and Rezaee, 
2019). Traditionally, geostatistical property modelling allows estima
tion of the distribution of properties between available wells, while 
preserving the realistic reservoir heterogeneity present in well data 
(Schlumberger, 2019). This modelling process requires continuous 
values (logs) for the properties to be investigated. 

Hydrocarbon source rocks are characterised by high amount of Type 
I or Type II organic matter that is normally investigated using total 
organic carbon (TOC), hydrocarbon yield (S2) and hydrogen index (HI) 
parameters (Cornford, 1998; Johnson et al., 2018). However, in addition 
to the organic matter content, successful shale oil and gas plays have 

good hydrocarbon retention and hydraulic fracturing capabilities based 
on their porosities and brittleness (Jarvie, 2012a, 2012b; Hu et al., 
2021). These key parameters have been utilized in the evaluation of the 
Kimmeridge Clay Formation (KCF) potential for shale oil and gas plays 
in this study. 

Recently, various machine learning techniques including fuzzy sys
tems, functional neural networks, and support vector machines have 
been employed by several authors (Kadkhodaie-Ilkhchi et al., 2009; 
Mahmoud et al., 2017; Yu et al., 2017; Johnson et al., 2018) to estimate 
continuous values for total organic carbon and other geochemical pa
rameters of hydrocarbon source rocks based on wireline log responses 
(e.g. gamma ray, density, neutron, resistivity and acoustic). However, 
continuous values for petrophysical and geomechanical properties are 
normally estimated using established property equations (e.g. Jin et al., 
2014; Labani and Rezaee, 2015; Alshakhs and Rezaee, 2019). 

The KCF is the main source rock for the numerous conventional oil 
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and gas discoveries in the UK North Sea Basin (Cornford, 1998) and may 
present a substantial unconventional resource for the UK particularly 
during the transition to net-zero energy. Whilst onshore production of 
shale oil and gas has not materialised in the UK and alternative forms of 
energy are increasing, the exploration of shale oil and gas in the UK 
North Sea could reduce environmental and safety concerns, while 
existing infrastructure (i.e., platforms and pipelines) could also help in 
the economics of offshore production (Cornford et al., 2014). 

This study therefore utilises 3D geostatistical modelling of the dis
tribution of key geochemical, petrophysical and geomechanical prop
erties for the KCF from 16 drilled well locations to investigate the 
potential of shale oil and gas plays within Quadrant 15 in the Outer 
Moray Firth region of the UK North Sea. These wells have been selected 
based on the availability of appropriate wireline log data for estimating 
continuous data for the investigated reservoir properties. Geochemical 
properties include original total organic carbon (TOCo), hydrocarbon 
yield (S2o) & hydrogen index (HIo), while total porosity (TP) and the 
brittleness index (BI) form our petrophysical and geomechanical prop
erties, respectively. 

The study area covers six blocks (blocks 16–18 and 21–23) within 
Quadrant 15 in the Outer Moray Firth region of the UK North Sea (Fig. 1) 
with an area extent of 1200 km2. The KCF is well-developed in the study 
area and consists of predominantly shale lithologies with reported 
thicknesses of up to 600 m in wells within the Witch Ground Graben. 

In general, geostatistical property modelling processes directly allow 
for the realistic integration of shale reservoir properties and identifica
tion of prospective area(s) for shale oil and gas plays (i.e., sweet spots), 
particularly after application of the industry standard thresholds for 
unconventional resources shown in Table 1 (Wang and Gale, 2009; 
Jarvie, 2012a; Perez and Marfurt, 2013; Andrews, 2014; Jiang et al., 

2016; Alshakhs and Rezaee, 2019). It is worth noting that there are other 
economic criteria that need to be evaluated, including hydrocarbon 
saturation and in-place volumes. However, the richness of the data al
lows for a case study that develops a technique for application in more 
economically prospective areas. 

2. Geological setting 

The North Sea Basin is a proven oil and gas basin that developed as a 
triple junction rift system between the Moray Firth, Viking Graben, and 
Central Graben basins (Erratt et al., 1999; Mackay et al., 2005; Underhill 
and Richardson, 2022). The development of the North Sea basin has 
been mostly attributed to Permo-Triassic and Late Jurassic-Early 
Cretaceous rifting events, including accompanying episodes of thermal 
subsidence (Fig. 2). 

The main structural elements of the North Sea Basin were developed 
during the Late Jurassic to Early Cretaceous extensional phase, which 
strongly influenced the deposition of Jurassic sediments, together with 
locally occurring rift associated halokinesis (Johnson et al., 2005). The 
highly organic-rich KCF was deposited during this extensional phase 
under restricted marine conditions in water depths of about 150 to more 
than 200 m (Fraser et al., 2002; Gallois, 2004). 

The KCF consists of dark-grey brown to black shales, of calcareous to 
non-calcareous nature, interbedded with thin siltstone and sandstone 
layers (Fig. 2). It has a maximum depositional thickness of ~1400 m in 
depocenters within the Central and Northern North Sea regions (British 
Geological Survey, 2022). Within the study area, the KCF is composed of 
predominantly shale lithology, and is found across the basin with re
ported thicknesses between 20 and 600 m (Oil and Gas Authority, UK, 
2019). 

Further details of the geological evolution of the North Sea Basin are 
discussed widely elsewhere, and the reader is referred to the wider 
literature (e.g. Evans et al., 2003; Glennie, 1998; Johnson et al., 2005; 
Erratt et al., 2010; Raji et al., 2015; Underhill and Richardson, 2022). 

3. Modelling inputs and processes 

3D geostatistical modelling of the distribution of reservoir properties 
for the KCF has been conducted with Petrel reservoir modelling soft
ware. The main inputs are top and base KCF depth structure maps, for 
defining model boundaries, and estimated well logs of investigated 
properties from 16 wells. The key steps involved in building the property 

Fig. 1. Structural element map of the study area (purple box) showing selected wells for modelling inputs. The study area encompasses Blocks 16–18 and 21–23 in 
Quadrant 15, Outer Moray Firth region of the UK North Sea (inset modified after Raji et al., 2015). The well correlation A-A’ (Fig. 11) is indicated by blue circles and 
black line. 

Table 1 
Evaluation criteria for unconventional resource plays.  

Reservoir 
property 

Industry 
threshold 

Comments 

TOCo (wt%) >2 >5 wt% indicates very rich shales 
S2o (mg/g) 10–20 >20 mg/g suggests excellent hydrocarbon 

yield 
HIo (mg/gTOC) >250 Typically between 250 and 800 mg/gTOC 
TP (%) 3–15 Typically between 4 and 7% 
BI (%) >32 >48% suggests high frackability  
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Fig. 2. Tectono-stratigraphic chart showing the regional events and KCF (dark red dashed box) in the UK North Sea (modified from Patruno and Reid, 2016).  
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models are well correlation, structural modelling and petrophysical 
modelling. 

3.1. Modelling inputs 

3.1.1. KCF depth structure maps 
The top and base KCF depth structure maps used in this modelling study 

were created using well top information from 48 wells within the study 
area and grid- and isopach-creation tools in ZetaWare’s Trinity software. 
For the top KCF map (Fig. 3.), available well top data was interpolated 
geologically by correlation gridding with an existing Base Cretaceous 
Unconformity (BCU) map of the UK North Sea. The well top data and BCU 
map were obtained from the Oil and Gas Authority data repository that was 
published in 2019. The top KCF depth map and thickness information 
created from 48 wells that penetrated the KCF interval in the study area 
were then used to generate a base KCF depth map (Fig. 4). 

3.1.2. Geochemical property logs 
Trained neural network models have been created to predict 

continuous total organic carbon (TOC), remaining hydrocarbon yield 
(S2) and hydrogen index (HI) values for the KCF in 16 well locations 
within the study area (Figs. 3–4) using the Neural Net Fitting application 
in MATLAB. Neural networks are one of the regression methods within 
supervised machine learning where a model can be trained to predict 
future output based on previous known numeric input and output data 
(MathWorks, 2020). Neural networks provide a variety of benefits, 
including ability to satisfactorily model highly nonlinear systems and 
recognise all possible interactions between input and output variables, 
accessibility to various training algorithms and the ability for trained 
models to be constantly updated with new data ((Tu, 1996) Kadkho
daie-Ilkhchi et al., 2009; MathWorks, 2020). 

This process has used wireline logs and measured geochemical data 
as the training inputs and outputs respectively. Inputs are related to the 
desired outputs by a number of interconnected neurons, and the network 
is trained by iteratively modifying the strength of the connections to 
correctly map the given input to output response. 

The training algorithm for the networks is the Levenberg-Marquardt 
backpropagation algorithm, which requires less training time compared 
to other algorithms (e.g. Bayesian Regularization, or Scaled Conjugate 
Gradient (MathWorks, 2020)). The performance of the networks have 
been evaluated using the regression R value, which measures the cor
relation between actual and target outputs. 

3.1.2.1. Network training data. The training of the networks was con
ducted using a large set of KCF geochemical data (225 data points) from 
the analysis of core plugs from 64 wells in the larger Central North Sea 
region of the UK with known depth locations, allowing for determina
tion of the corresponding wireline log value with low uncertainty 
compared to drill cuttings (Johnson et al., 2018). Examples of measured 
geochemical data and their corresponding wireline log values used in 
training neural network models in four wells locations are indicated in 
Table 2. Geochemical parameters normally relate to wireline log data 
(Fig. 5), where, in theory, the stronger the relationship between 
geochemical parameters and wireline logs, the more accurate the pre
dictions (Kadkhodaie-Ilkhchi et al., 2009; Johnson et al., 2018; Alshakhs 
and Rezaee, 2019). 

3.1.2.2. Network training process. Three neural network models have 
been trained for predicting continuous TOC, S2 and HI data with each 
network having 10 hidden layer neurons (Fig. 6). For the training, the 
available wireline log and measured geochemical data were randomly 
divided into three sets in MATLAB, with 70% of the data used for 
training the network, 15% used for validation in order to minimise 
overfitting and the remaining 15% of the data used to ascertain the 
accuracy of the network. 

Fig. 3. Top KCF structural depth map. This map has been created using well 
top information from wells that penetrated the KCF interval in the study area. 
Wells used for training the machine learning algorithms/predicting rock 
properties are indicated in red circles. 

Fig. 4. Base KCF structural depth map. This map has been created using 
thickness information from wells that penetrated the KCF interval in the study 
area. Wells used for training the machine learning algorithms/predicting rock 
properties are indicated in red circles. 
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Several training iterations were performed to achieve optimum 
trained networks while observing the regression R values, which mea
sure the correlation between outputs and targets for training, validation 
and test data sets. Overall, the optimum trained networks produced 
good quality regression lines with R values mostly greater than 0.80 for 
training, validation and test iterations (Figs. 7–9). The optimum target 
and output of R obtained for the trained networks fall within the range 
reported in published literature (e.g. Kadkhodaie-Ilkhchi et al., 2009; 
Khoshnoodkia et al., 2011; Johnson et al., 2018). Therefore, the model 
precision is considered to be satisfactory. However, it is noted that the 
model could be updated to further improve this precision once more 

training data is available in the future. 
The trained neural network models were then used to estimate 

continuous TOC, S2 and HI data (logs) for the KCF in 16 wells selected 
for modelling in this study. The estimated datasets show good correla
tions with the available laboratory measured geochemical values from 
the analysis of KCF samples in the studied wells (Fig. 10), and were 
subsequently corrected for maturity and restored to their original values 
(TOCo, S2o & HIo) prior to modelling. 

3.1.3. Petrophysical and geomechanical property logs 
Alongside the geochemical properties determined above, 

Table 2 
Geochemical and wireline log data used in model training in four well locations.  

Well Location Depth TOC S2 HI T-max Density Neutron Acoustic Gamma 

(m) (wt%) (mg/g) (mg/gTOC) (◦C) (g/cm3) (v/v) (μs/ft) (gAPI) 

12/23- 2 Inner Moray Firth Basin 950.37 10.80 22.12 205 423 2.01 0.45 126.67 90.39 
12/23- 2 Inner Moray Firth Basin 1149.10 5.70 22.20 389 429 2.28 0.37 115.38 112.56 
12/23- 2 Inner Moray Firth Basin 1250.14 6.70 17.69 264 417 2.26 0.38 111.00 119.13 
12/23- 2 Inner Moray Firth Basin 1340.82 7.70 29.87 388 422 2.27 0.39 111.00 132.00 
12/23- 2 Inner Moray Firth Basin 1378.46 6.40 11.82 185 410 2.24 0.39 103.56 203.88 
13/27- 1A Inner Moray Firth Basin 1763.27 10.00 42.00 420 430 2.39 0.38 86.72 107.11 
13/27- 1A Inner Moray Firth Basin 1805.33 5.90 18.60 315 429 2.47 0.16 96.81 60.02 
13/27- 1A Inner Moray Firth Basin 1822.70 9.10 42.30 465 434 2.32 0.34 98.96 114.26 
13/27- 1A Inner Moray Firth Basin 1838.55 7.00 26.00 371 427 2.30 0.33 103.53 87.37 
13/27- 1A Inner Moray Firth Basin 1887.93 6.80 22.70 334 427 2.41 0.27 91.42 83.57 
13/27- 1A Inner Moray Firth Basin 1943.10 4.80 20.70 431 428 2.43 0.26 93.62 99.86 
13/27- 1A Inner Moray Firth Basin 2025.09 6.10 27.00 443 427 2.34 0.38 101.26 152.61 
13/27- 1A Inner Moray Firth Basin 2048.26 7.70 27.60 358 429 2.34 0.40 107.81 168.94 
13/27- 1A Inner Moray Firth Basin 2060.45 7.90 32.10 406 426 2.39 0.40 105.83 158.32 
13/27- 1A Inner Moray Firth Basin 2065.02 7.80 18.00 231 416 2.38 0.41 107.48 164.46 
14/19- 3 Witch Ground Graben 2347.57 7.10 36.30 511 418 2.21 0.45 115.94 86.66 
14/19- 3 Witch Ground Graben 2363.11 6.70 34.40 513 422 2.34 0.38 106.98 93.69 
15/24a- 2 Witch Ground Graben 3784.40 1.60 2.01 126 441 2.42 0.29 99.73 156.24 
15/24a- 2 Witch Ground Graben 3787.14 6.00 10.79 180 450 2.44 0.31 99.67 151.86 
15/24a- 2 Witch Ground Graben 3789.88 2.40 3.78 158 445 2.54 0.20 80.78 97.52 
15/24a- 2 Witch Ground Graben 3802.68 2.40 2.65 110 443 2.52 0.20 79.61 91.85 
15/24a- 2 Witch Ground Graben 3811.83 2.70 4.15 154 450 2.57 0.19 80.05 103.94 
15/24a- 2 Witch Ground Graben 3816.71 3.10 5.63 182 447 2.58 0.21 82.60 95.67 
15/24a- 2 Witch Ground Graben 3822.80 1.00 0.73 73 450 2.63 0.13 71.71 67.81  

Fig. 5. Cross plots showing relationship between measured TOC and density (A), neutron (B), acoustic (C), and gamma ray (D) from core plugs, UK Central 
North Sea. 
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petrophysical and geomechanical rock parameters normally considered 
for evaluating successful shale oil and gas plays include the porosity and 
brittleness index (e.g. Labani and Rezaee, 2015; Peters et al., 2016). In 
this study, we have estimated continuous values for these properties for 

the KCF using wireline log data (density and neutron porosity) and the 
established property equations of Labani and Rezaee (2015), Alshakhs 
and Rezaee (2019), and Jin et al. (2014). 

Fig. 6. Schematic of the trained neural network in MATLAB. W represents weight; b represents bias (MathWorks, 2020).  

Fig. 7. Regression plots showing the correlation coefficients between target and predicted TOC values (wt%) for training, validation and test iterations.  
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3.1.3.1. Porosity. The total porosity values for the KCF have been esti
mated from density logs of selected wells using the relationship adapted 
from Labani and Rezaee (2015). 

∅density=

(ρma − ρb)+ρb

(

WTOC − ρma
WTOC
ρTOC

)

ρma+ρf
(1)  

where Ø density is the total porosity, ρ ma is the solid matrix density, ρ b is 
the bulk density log reading, W TOC is TOC weight fraction, ρ TOC is the 
KCF kerogen density and ρ f is the fluid density. 

TOC input values for Equation (1) have been estimated using the 
machine learning techniques discussed in Section 3.1.2. Solid matrix, 
KCF kerogen, and fluid density values are taken from the relevant well 
reports and published literature (e.g. Andrews, 2014; Labani and 
Razaee, 2015; Alshakhs and Rezaee, 2019), with values of 2.6, 1.26, and 
0.8 g/cm3respectively, as determined. 

3.1.3.2. Brittleness index. Although various methods can be used to 
determine BI based on mineralogical, log, and elastic properties of rocks 
(Mews et al., 2019), the BI has been derived for the KCF interval in this 
study using the neutron porosity log correlation proposed by Jin et al. 
(2014) (Equation (2)). 

BI = ( − 1.8748 × NPHI) + 0.9679 (2)  

where BI is the brittleness index, and NPHI is the neutron porosity log 
reading. 

Equation (2) is a global correlation derived from the combination of 
Barnett Shale, Eagle Ford Shale and Woodford Shale which is applicable 
to formations with high clay content, and correlates well with BI values 
obtained from mineralogical analysis (Mews et al., 2019). 

Continuous total porosity and brittleness index values have been 
estimated for the KCF in 16 well locations (Figs. 3–4), as for the 
geochemical property logs. 

Fig. 8. Regression plots showing the correlation coefficients between target and predicted S2 values (mg/g) for training, validation and test iterations.  
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Fig. 9. Regression plots showing the correlation coefficients between target and predicted HI values (mg/gTOC) for training, validation and test iterations.  
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Fig. 10. Comparison between measured geochemical data (TOC, S2 & HI) from drill cuttings and logs of estimated data using trained neural network models for well 
15/18a-6 in the study area. This well was not included in the initial model training. 

Fig. 11. KCF correlation across the study area (location shown on Fig. 1) showing top, base, and thickness variations, alongside estimated TOCo and BI reser
voir properties. 
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3.2. Modelling processes 

3.2.1. KCF correlation 
The top and base KCF have been correlated across the study area 

using available well top information compiled from the open file data
base of the UK Oil & Gas Authority (OGA) and the gamma ray logs 
(Fig. 11). In addition to the gamma ray logs, the estimated geochemical, 
petrophysical and geomechanical logs for the KCF have also been 
correlated across the study area (Fig. 11). 

3.2.2. Structural modelling 
Due to the limited quality of available seismic data, the structural 

framework for the 3D geostatistical property model has been defined 
using the simple gridding technique, which does not require fault in
terpretations (Schlumberger, 2019). The boundary, top and base limits 
of the 3D grid for modelling are defined by the input KCF maps 
(Figs. 3–4). 

3.2.3. Petrophysical modelling 
This step involves the interpolation of estimated property logs 

(TOCo, S2o, HIo, TP & BI) throughout the 3D model grid. These property 

logs have been upscaled, and the model for each property has been 
simulated using the Sequential Gaussian Simulation (SGS) algorithm in 
Petrel. It is the most used method of simulation in petrophysical 
modelling, which normally honours more aspects of the input data, 
particularly the variability of the input data and maintains trends (Fegh 
et al., 2013; Schlumberger, 2019). More detail description of the pro
cedures involved in petrophysical modelling can be found in Ringrose 
and Bentley (2015). 

4. Results and discussion 

4.1. Geochemical properties 

4.1.1. Original total organic carbon 
Property modelling predicts TOCo values varying between 3 wt% to 

9 wt% for the KCF (Fig. 12), indicating a very good original organic 
richness for the KCF across the study area. The highest levels of organic 
richness are found in the central part of the Witch Ground Graben, 
where the KCF has undergone up to 4.6 km of burial and has a thickness 
of up to 600 m. High levels of organic richness are also predicted for 
smaller regions of the Piper Shelf, although here the KCF is thinner and 

Fig. 12. 3D model showing original TOC distribution for the KCF across the study area.  

Fig. 13. 3D model showing original S2 distribution for the KCF across the study area.  
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buried to less than 3.8 km depth. In these areas, TOCo values of pre
dominantly greater than 5 wt% are observed (Fig. 12), which is likely 
attributed to better organic matter preservation. Charpentier and Cook 
(2011), Andrews (2014), and Jang et al. (2016), suggest that potentially 
producible shale oil and gas resource plays require TOCo values greater 
than 2 wt%. 

Our model also predicts up to 5 wt% TOCo within the Halibut Trough 
and on the Renee Ridge areas (Fig. 12), although these regions may be 
subject to higher levels of uncertainty due to reduced well control in these 
areas. The few wells that are drilled within these areas (Figs. 3–4) lack the 
complete wireline log data required for estimating the continuous 
geochemical parameters used in 3D geostatistical property modelling. 

4.1.2. Original hydrocarbon yield 
In the study area, S2o values ranging between 8 and 48 mg/g have 

been modelled for the KCF, suggesting very good to excellent original 
hydrocarbon yield (Fig. 13). The best shale areas are indicated within 
the central and south-eastern parts of the Witch Ground Graben and 
localised areas of the Piper Shelf, reflecting the distribution of TOCo in 
the study area, with S2o values mostly greater than 20 mg/g (Fig. 13). 

4.1.3. Original hydrogen index 
The modelled HIo values for the KCF source rock within the study 

area range between 270 and 607 mg/gTOC (Fig. 14), suggesting pre
dominantly Type II kerogen content (Peters et al., 2005), and are within 
the suggested industry threshold for shale plays. Again, the highest 
values are modelled within the central part of the Witch Ground Graben 
and Piper Shelf, similar to the trends observed for TOCo and S2o, 
(Figs. 12 and 13). 

4.2. Petrophysical and geomechanical properties 

4.2.1. Total porosity 
The 3D model indicates porosity values ranging between 2 and 13% 

for the KCF within the study area (Fig. 15), with the highest porosity 
values in the central part of the Witch Ground Graben and Piper Shelf. 
Overall, the porosity values indicated for the KCF in the study area fall 
within the range reported for proven shale oil and gas plays, which 
range from 3% to 15% (e.g. Wang and Gale, 2009; Jarvie, 2012a; 
Andrews, 2014; Jiang et al., 2016; Alshakhs and Rezaee, 2019). 

Fig. 14. 3D model showing original HI distribution for the KCF across the study area.  

Fig. 15. 3D model showing shale porosity distribution for the KCF across the study area.  
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4.2.2. Brittleness index 
The modelling results suggest average BI values for the KCF of be

tween 25 and 62%, with the highest values indicated within the south- 
eastern and central to northern parts of the Witch Ground Graben 
(Fig. 16). These values are similar to those reported for the Upper 
Jurassic to Lower Cretaceous Draupne and Hekkingen Formations in the 
Norwegian North Sea and Barents Sea (Johnson et al., 2022). Normally, 
shales with BI values of between 32 and 48% are considered to have 
moderate frackability, while BI values greater than 48% would indicate 
high frackability (Perez and Marfurt, 2013). Therefore, modelled BI 
values suggest favourable conditions for hydraulic fracturing of the KCF 
across a large section of the study area. 

4.3. Sweet spot identification 

Sweet spots are the best areas with ideal reservoir properties that 
make it suitable for the optimum extraction of residual oil and gas from 
unconventional resource plays (Raji, 2018). A sweet spot map has been 
created to only identify the successful shale areas where the analyzed 
reservoir properties have prospective overlaps, while the 
non-prospective areas that do not meet standard industry cut-offs for 
unconventional resources for all the reservoir properties have been 
eliminated. 

In order to capture shale areas with high levels of original organic 
richness and hydrocarbon yield potential, cut-off values of 5 wt %, 20 
mg/g and 300 mg/g TOC were assigned to TOCo, S2o and HIo respec
tively. The cut-off for TP was set to 3%, while the BI cut value was given 
to be 32%. The average map generated for each analyzed property, with 
standard industry cut-offs applied, has been normalized by dividing each 
map by its maximum estimated value for conversion to a volume frac
tion map (Fig. 17A–E). An overall sweet spot map is then generated by 
combining the normalized maps (Fig. 17F). 

The sweet spot map shows that the best areas for potentially pro
ducible shale oil and gas are located within the central part of the Witch 
Ground Graben, where the KCF shows greater burial depths of up to 4.6 
km and thickness values of up to 600 m, and on parts of the Piper Shelf 
and Claymore-Tartan Ridge, where the KCF is thinner (<250 m) and 
shallower with burial depths less than 3.8 km. 

It is essential to note that while present-day thermal maturity and 
residual hydrocarbon saturation have not been modelled for the KCF, 
the results of previous 1D basin modelling study conducted for four well 
locations (15/17-8A, 15/17-9, 15/21a-35 and 15/22-7) within the 
identified sweet spot area have indicated present-day vitrinite 

reflectance maturity and residual oil saturation values between 0.7 and 
1.0 %Ro and up to 6.4 mg/g respectively, for the KCF (Akinwumiju and 
Satterfield, 2024), which fall within the range reported for proven shale 
oil plays. 

5. Conclusions 

Five key reservoir properties have been analyzed for the KCF in this 
study in order to identify sweet spot areas after the application of in
dustry standard cut-offs for the modelled parameters in unconventional 
plays. 

Our sweet spot map created by integrating the analyzed KCF reser
voir properties using 3D geostatistical modelling, suggests that the best 
areas for the potential exploitation of shale oil and gas are located within 
the central part of the ~4.6 km deep Witch Ground Graben, as well as 
subsidiary regions of the ~3.8 km deep Piper Shelf and Claymore-Tartan 
Ridge. These areas show the best organic richness and hydrocarbon yield 
potential with TOCo, S2o & HIo values up to 9 wt%, 48 mg/g and 607 
mg/gTOC respectively, which is likely attributed to better organic 
matter preservation. The modelled total porosity values up to 13% and 
brittleness indices up 65% for the KCF also fall within the range reported 
for proven shale oil and gas plays in these sweet spots. 

Furthermore, the 1D basin models previously constructed for wells 
15/17-8A, 15/17-9, 15/21a-35 and 15/22-7 within the identified sweet 
spot area show that present-day vitrinite reflectance maturity and re
sidual oil saturation values for the KCF vary between 0.7%Ro to 1.0 %Ro 
and up to 6.4 mg/g respectively (Akinwumiju and Satterfield, 2024). 
These values are within the range reported for proven shale oil plays. 

The integrated sweet spot map incorporates key parameters for shale 
oil and gas assessment not previously investigated for the KCF in the UK 
North Sea. The map simplifies the identification of areas for potential 
shale oil and gas exploitation from the KCF by interpolation of estimated 
data from drilled locations, a resource which may prove essential to UK 
energy security during the net-zero transition. 
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