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ABSTRACT Intrusion Detection System (IDS) plays a pivotal role in safeguarding network security. The
efficacy of these systems is rigorously assessed through established metrics including precision, recall,
F1 score, and AUC score. When subjected to rigorous testing on well-known datasets like AWID and
AWID3, individual IDS models consistently deliver exceptional performances, boasting F1 scores ranging
from 0.98 to 1 and AUC scores spanning 0.97 to 0.99. However, the true challenge surfaces when the
objective is to extend the transferability of these high-performing models to entirely novel, unseen datasets.
This endeavor unravels a diverse performance landscape, demonstrating that the outstanding performance
observed on a particular dataset doesn’t guarantee the transferability of features across dissimilar datasets
nestled within different network environments. In order to evaluate the feature transferability, we turn to
AWID and AWID3 datasets as the main distinction between AWID (potentially referring to AWID2) and
AWID3 lies in their specific focuses and contexts within the field ofWi-Fi intrusion detection. Although both
datasets are centered on the general goal of detecting Wi-Fi intrusions, AWID3 has been carefully designed
to meet the specific needs of corporateWi-Fi applications. A comprehensive evaluation involvingMultilayer
Perceptron(MLP), and Convolutional Neural Networks (CNN) models has been executed, uncovering that
CNN conspicuously outshines the MLP model.

INDEX TERMS Transferability assessment, performance evaluation, intrusion detection system (IDS), deep
learning, wireless security.

I. INTRODUCTION
The worldwide cyber security environment has faced rising
threats in recent years. Cyber fraudsters took advantage
of misaligned networks as firms migrated to remote work
settings during the epidemic. Malware assaults climbed
358 percent in 2020 compared to 2019 [1]. In 2020,
cyber-attacks were anticipated to be the sixth most serious
concern, and are now considered to be the new norm in
the private as well as the public arenas. In 2023, this
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risky industry will continue to grow, with IoT cyberattacks
alone expected to triple by 2025. Cyber-attack is a hostile
attempt by one or more attackers to exploit vulnerabilities
in a network in order to obtain unauthorized access, steal
sensitive information, or disrupt usual network operations.
Globally, cyberattacks surged by 38 percent in 2022 versus
2021 [2]. In an era marked by the pervasive integration of
wireless communication technologies into our daily lives,
the security of Wi-Fi networks has become paramount.
With the exponential growth of connected devices and
the continuous evolution of network threats, IDS plays a
pivotal role in safeguarding the integrity and confidentiality
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of data transmitted over Wi-Fi networks. Traditional IDS
techniques have shown remarkable efficacy in detecting
known attacks; however, they often struggle to adapt to the
dynamic and ever-evolving landscape of wireless network
intrusions [3], [4]. In the realm of wireless communication,
the security of Wi-Fi networks remains a paramount concern,
spanning across a wide spectrum of applications, from
small-scale home networks to large-scale industrial and
enterprise systems. The effective detection of intrusions and
anomalies in such networks is indispensable to ensure the
confidentiality and integrity of transmitted data. Traditional
IDS have exhibited noteworthy efficacy in detecting known
threats within specific network contexts. However, their
transferability to the diverse and dynamic landscape of Wi-Fi
network environments remains a persistent challenge [5].
Feature transferability refers to the ability of features learned
in one domain or dataset to be successfully utilized or
transferred to a distinct domain or dataset. It refers to the
concept that features extracted or acquired from one r dataset
can potentially be reused or transferred to another dataset,
even if both are not explicitly the same, in the context of
machine learning and deep learning [6]. The idea of feature
transferability is especially important in situations where
getting labeled data for a new job is prohibitively expensive,
time-consuming, or impossible. Researchers explore the
prospect of utilizing information learned from a pre-trained
model on a related job rather than beginning from scratch
and training a new model from the ground up. This is also
known as transfer learning or domain adaptation. The purpose
of testing feature transferability is to discover the strongest
and most advantageous features that can be efficiently trans-
ferred or generalized across various network environments,
especially between a general network environment and an
enterprise network environment. This transferability is vital
for developing IDS models that can effectively recognize
intrusion patterns in a variety of network scenarios, ranging
from small-scale residential networks to large-scale industrial
and enterprise networks.

The main objectives of this research are to:

• Investigate the transferability of dataset features across
diverse network environments.

• Analyze the factors influencing the transferability of
features and their impact on model performance.

• Reduce the False positive rate to develop a model that
has a better prediction rate than the existing models.

II. LITERATURE SURVEY
In the ever-expanding landscape of wireless communication,
Wi-Fi IDS stand as sentinels guarding the integrity of
networks against an array of threats. The efficacy of these
systems relies profoundly on their ability to detect intrusions
and anomalies within the intricate tapestry of Wi-Fi network
traffic. With the advent of Deep Learning, the promise of
more robust and adaptable Wi-Fi IDS has come to the fore.
A critical aspect of harnessing the potential of Deep Learning

in this context is the evaluation of the transferability of dataset
features across different network environments. Particle
Swarm Optimization (PSO) with Deep Belief Network
(DBN) is used to detect network intrusions in NSL-KDD
[7]. Although 82.3 percent accuracy is achieved on the test
dataset, it takes longer training time and detection time which
affects the fitness function of the model due to the large size
of hidden layers and high computational cost. [H] In order
to enhance network security through intrusion detection,
a Deep Residual Convolutional Neural Network (DCRNN) is
proposed in this work [7].The ImprovedGazelle Optimisation
Algorithm (IGOA) is used to optimise the DCRNN. In order
to exclude unnecessary features from the network data
utilized for intrusion detection, feature selection is done.
Using theNovel BinaryGrasshopper OptimisationAlgorithm
(NBGOA), the key features are selected. The CIC-IDS-2017,
Cicddos2019, and UNSW-NB-15 datasets are used in the
experiments. The experimental results showed that, in terms
of false alarm rate and processing time, the proposed model
outperformed state-of-the-art methods. DeepNeural Network
(DNN) is applied on several benchmark datasets NSL KDD,
KYOTO, CIC IDS2017 for intrusion detection [8]. Despite
high accuracies for every dataset, complexDNNarchitectures
are not applied because of high computational costs and
longer training/prediction time. Both NSLKDD and KYOTO
are out dated datasets. The work in [9] proposed a hybrid
technique to detect intrusions based on feature selection
and classification using UNB ISCX 2012 and CIC IDS2018
datasets in the Apache Spark environment. Stacked Auto
Encoder (SAE) performed feature selection and SVM for
intrusion detection. Results demonstrated that 90.2 percent
accuracy has been achieved with reduced training time.
One disadvantage is that both of these datasets are highly
imbalanced. One shortcoming is that UNB ISCX 2012 is
an outdated dataset and consists of 6 attacks only. In this
work [10], multiple supervised techniques such as ANN,
DT, RF and unsupervised techniques such as k-means, self-
organizing map (SOM), and expectation maximization (EM)
algorithms are applied on CIC IDS2017. Some algorithms
demonstrated high accuracy while others such as SOM
and EM failed to detect attacks. The main drawback of
this paper is that the dataset is highly imbalanced and has
multiple features up to 80 but dimensionality reduction or
feature selection is not considered. Furthermore, ROC and
FAR scores are not given. In this work [11], the author
investigated the application of machine learning within the
context of two public datasets, with a specific focus on
Denial-of-Service (DoS) attacks. The author trained three
promising IDS — namely decision tree, random forest, and
deep neural network— using flow records from the CIC-
IDS-2017 dataset, encompassing both legitimate traffic and
DoS attacks. Initially, they assessed the performance of
each IDS model on separate data from the CIC-IDS-2017
dataset, achieving recall scores ranging from 0.97 to 0.99.
This research proposed an effective machine learning-based
automated intrusion detection system [12]. First, features
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TABLE 1. Critical summary of literature.

are extracted by the use of Modified Singular Value
Decomposition (M-SvD). From the supplied data, M-SvD
extracts important information such as basic, content, and
traffic features. The Opposition-based Northern Goshawk
Optimisation algorithm (ONgO) is then used to optimize
these extracted features in order to increase their efficacy.
Following feature selection, a hybrid machine learning model
known as the Mud Ring assisted multilayer support vector

machine (M-MultiSVM) is used to classify attacks. With
the CSE-CIC-IDS 2018 dataset, the system obtained 99.89%
accuracy, and with the UNSW-NB15 dataset, it scored
97.535% accuracy, according to evaluation metrics. Another
research proposed GSAFS-OQNN model [11], a novel
approach to intrusion detection and classification, is pre-
sented in this work. It selects the most significant features
by applying the GSAFS model. Next, to find intrusions,
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a Quantum Neural Network (QNN) is employed. The
Sandpiper Optimisation (SPO) method is used to modify
the QNN model’s parameters. Standard Intrusion Detection
System (IDS) datasets are used to evaluate the GSAFS-
OQNN model. The GSAFS-OQNN method outperforms
other current approaches, according to the results. To identify
KRACK assaults, three gradient boosting techniques are
used: LightGBM, XGBoost, and CatBoost, which passively
monitor numerous wireless channels [12]. This technique,
known as kTRACKER, achieves an accuracy of approxi-
mately 93.39% with a false positive rate of 5.08%. The novel
Ensemble Binary Detection Model (EBDM) model proposed
in another research [13] aims to transform thewaywe identify
various kinds of threats. EBDM employs distinct models for
every kind of attack, as opposed to attempting to identify
multiple attack types simultaneously. Then, in comparison
to conventional techniques, it mixes the best outcomes from
different models to increase accuracy. The results demon-
strate that, in comparison to previous techniques, EBDM is
more effective at identifying three types of wireless attacks
in the AWID dataset. The work [14] proposed a new method
for detecting wireless intrusions that employs a Wrapper
Based Feature Extraction Unit (WFEU) and a Feed-Forward
Deep Neural Network (FFDNN). The system was evaluated
using two separate intrusion detection datasets and compared
to typical machine learning algorithms. The FFDNN with
WFEU outperformed other approaches, attaining accuracies
of 87.10% and 77.16% for binary and multiclass assaults,
respectively, using a feature vector of 22 attributes in
UNSWNB15 and a reduced feature vector of 26 attributes.
Accuracy of 99.66% and 99.77% for binary and multiclass
attacks, respectively, were achieved using a reduced feature
vector of 26 characteristics using the AWID dataset. In this
research, a new approach is proposed for detecting network
intrusions on computers: Autoencoder-Soft Actor-Critic
(AE-SAC) [15]. It uses reinforcement learning to learn from
the environment. By competing against itself, the proposed
approach is trained to make the appropriate decisions by
giving different incentives for different types of attacks.
AE-SAC exhibited sustainable results with an accuracy of
84.15% and an F1-score of 83.97% on the AWID dataset,
as well as accuracy and a f1-score above 98.9%. Another
suggested approach [16] consists of two consecutive steps
that collaborate to determine if network records are normal
or belong to specific attack classes. Machine learning models
such as Random Forest (RF), Naïve Bayes (NB), SHAP,
Extra Trees (ET), XGBoost, Bagging, and LightGBM are
used in each stage to analyze the AWID dataset. Despite
having fewer features, this two-stage Wireless Network
Intrusion Detection System (WNIDS) achieves an astounding
99.42% accuracy for multi-class categorization. Another
research presented a smart intrusion detection system that
detects Internet of Things-based threats using a deep learning
algorithm [17]. The approach ensured network security while
also supporting IoT connectivity standards. The proposed
approach recognizes global intruders and detects them using

a neural network. The autoencoder model is outperformed,
with 99.76% accuracy, illustrating the efficacy of user-centric
cybersecurity solutions in 5G networks. Similarly, another
research study [18] predicted binary and multiclass classi-
fications using 13 and 76 feature sets, respectively. Deep
Learning techniques, such as CNN, RNN-LSTM, DNN (3),
and DNN (5), achieved accuracies ranging from 88% to 97%,
whereas Machine Learning approaches achieved 88% to 98%
accuracy. Another study [19] compared intrusion detection
methods across numerous nominal, numeric, and binary
categories. Feature selection strategies are used to enhance
performance. Amachine learning-based technique is applied,
with boosted decision trees demonstrating higher perfor-
mance and Logistic Regression achieving 99% accuracy.
The proposed WiFi Intrusion Detection System detects WiFi
attacks that traditional approaches miss using a lightweight
machine learning model and optimized feature selection
[20]. It employs a Light Gradient Boosting Machine and
Gradient-based One Side Sampling to improve accuracy,
precision, recall, and F1 score while shortening training
and testing timeframes. The evil twin attack on AWID3
is explored in another study using data science methods
[21]. The optimized LightGBM model achieved a False
Positive Rate (FPR) of 0.00602 and 0.00898, indicating the
potential for an effective Intrusion Detection System. A novel
WiFi intrusion detection framework is presented in the study
[22], utilizing artificial neuron training and the bio-inspired
optimization algorithm, Harris Hawks optimization (N-
HHO). The framework outperforms other models, suggesting
its potential for enhancing network security on the AWID
dataset. A reinforcement-learning-based intrusion detection
approach is described in the research [23], utilizing the
adaptive sample distribution with the dual-experience replay
to address concerns regarding uneven data distribution
and enhance classification accuracy in minority attacks.
Another paper [24]proposed a wrapper-based feature extrac-
tion strategy that used the Extra Trees classifier on the
NSL-KDD intrusion detection dataset, resulting in improved
performance with a validation accuracy of 99.35%, an F-
Measure of 99.67%, and a test accuracy of 88.42%. The
study [25] presented an IDS that used multiple deep rein-
forcement learning agents to identify and categorize new and
sophisticated attacks, with higher accuracy and lower False
Positive Rate (FPR) than existing systems, as tested on three
benchmark datasets. In this paper [26], the top percentile
and recursive features were selected using the second
percentile methodology, and recursive feature removal was
performed using data from NSL-KDD, CIC-IDS-2017, and
AWID, resulting in reduced computing time and complex-
ity. In addition, a sparse autoencoder with swish-PReLU
activation was used to categorize traffic kinds in datasets.
Experimental results show a 4.77% improvement in classi-
fication accuracy.Similarly, another research [27] introduced
an intrusion detection technique for WiFi networks that
incorporated convolutional neural networks. The Dropout
approach minimized training time and overfitting risk.

VOLUME 13, 2025 11251



S. Yonbawi et al.: Transferability Evaluation in Wi-Fi Intrusion Detection Systems

The experimental findings demonstrated 99% accuracy on
AWID dataset. This research [28] presented two approaches
for detecting intrusions in WiFi datasets, an incremental
semisupervised graph-based clustering methodology and a
quick outlier identification method, and demonstrated their
usefulness in network security. Experiments on datasets from
AWID and UCI demonstrated the high performance of the
proposed strategies. The study [29] found that a weight-based
machine learning model beats filters in feature selection
such that 99.72% F1 score on AWID and that combining
this method with a basic classifier increases performance.
In this study [30], two-dimensional data cleansing is used,
with 18 key qualities chosen from a larger collection of
154. A support vector machine (SVM) is then used to
detect attacks using the cleaned data. Experimental analysis
showed that flooding attacks are correctly identified 89.18%
of the time, injection attacks 87.34% of the time, and
normal traffic 99.88% of the time. The study implemented
a multi-step feature selection approach [31], beginning with
32 features based on manual selection and previous research.
The Correlation feature set (CFS) method was combined
with the Harmony Search technique, yielding five features.
The CFS evaluator was combined with the Classification
with AntSearch method, resulting in 7 features. The CFS
algorithm was then combined with BeeSearch, yielding
ten characteristics. The experimental evaluation utilized
AWID with seven machine learning classifiers: AdaBoost,
Random Forest, Random Tree, J48, logit Boost, Multi-Layer
Perceptron, and ZeroR. The system obtained a maximum
accuracy of 99.64% using the Random Forest method with
32 features, and 99.53% using logit Boost with five features.
This paper [32] presents a hybrid neural network (HNN)
model that combines multi-feature correlation with temporal-
spatial analysis. It uses a contribution-based feature selection
method, CNN and LSTM for temporal-spatial information,
and a Deep Neural Network (DNN) for intrusion detection.
Another paper [33] presented a deep autoencoder dense
neural network model that detects vulnerabilities in 5G
and IoT networks using the AWID dataset with 99.9%
accuracy rate. In this work [34], two feature selection
techniques were used to detect injection attacks: constant
removal and recursive feature elimination. The effectiveness
of these techniques was evaluated using three classifiers
Random Forest, SVM and Decision Tree. Experimental
results utilizing the AWID dataset showed that the Decision
Tree classifier performed the best in detecting injection
assaults. When using the Decision Tree classifier with only
eight features, the proposed technique for detecting injection
attacks achieved 99% accuracy, 95% precision, and 90%
F1 score. Another study [35]applied two environments to
collect training and testing data for zero-day attacks. The
data was generated to resemble real-time attacks, and features
were ranked using an explainable AI(XAI) model. A time
series generative adversarial network (TGAN) was used to
analyze the top 12 features. The training data was integrated

with the AWID dataset, and a hybrid deep learning model
CNN-LSTM was used. The combined dataset performed
better, with 93.53% accuracy using only the AWID dataset.
The study [36] proposed a Fuzzy C-Means (FCM) feature
selection method for wireless intrusion detection. It computes
the difference between normal and attack center points
and uses this information to choose features. The method
has been evaluated on the AWID dataset, displaying high
accuracy in binary classification of flooding, impersonation,
and injection attacks. The research [37] proposed a multitask
learning framework for traffic data that includes attack
clustering, sample reconstruction, and sample classification.
This approach extracts clustering attributes for various sorts
of attacks, unique attributes for anomalous data, and latent
features for classification. It also includes an enhanced
Binary Cross-Entropy loss based on Focal Loss to solve
imbalances in intrusion detection datasets. Experimental
results showed that that method outperformed existing
methods through extensive trials on the NSL-KDD, AWID,
and BOT-IOT datasets. The work [38] proposed an effective
intrusion detection system that employs feature interaction
learning and implicit deep representation learning. The
invention of a triplet-generating and learning mechanism
increases representation and decision boundaries while also
addressing uneven data distribution. This approach attained
3.9% accuracy, 4.1% precision, 3.9% recall, and 4.2% F1
score. The current research on intrusion detection emphasizes
improving the accuracy by training and testing on the
same dataset having the same network environment. The
shortcoming of this kind of approach is that it achieves
high accuracy during testing with similar data but cannot
detect unseen attacks while testing with different datasets
based on various network environments. The work in [39]
evaluates the feature transferability wit,h 30, 27, 13 and
5 feature set with training and testing with AWID and
AWID 3 respectively. However, the 30 and sets feature set
did not achieve sustainable results its whereas the 13 and
5 feature sets achieved better results with 95 percent F1-
score. Nevertheless, this work did not provide a detailed
discussion on the misclassification of samples such as falsely
classified instances such as false positive or false negative.
This research [40] analyzed transferability in a federated
setup on CIC-IDS-2017. The deep neural network is trained
on one class of attack data and all available Normal data.
the transferability relationships are then evaluated by testing
other attack classes which were not included in training
phase. Results demonstrated that proposed methodology is
transferable with IDS trained with one class with the ability
to attain 70% accuracy when tested with unseen attack.
Another work [41] introduced a framework for evaluating
the transferability of adversarial training using DNN, CNN,
and LSTM on the Survival dataset. The performance of the
attacks is examined by evaluating the accuracy and F1 scores
of the models when tested on adversarial datasets in white-
box, gray-box, and black-box scenarios. The transferability
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results are satisfactory, with attacks proving effective in both
gray-box and black-box scenarios. Similarly, another work
[42] examined the results of transferability using Domain
Adversarial Neural Network(DANN) using simulated attacks
and normal operation files. The proposed methodology
attained high accuracy and RMSE lower than 4.2%. This
research [43] evaluates the transferability of adversarial
examples. Several adversarial examples were given to well
trained models and results showed that transfer attacks share
similar attributes with whitebox attacks. While substantial
research has emerged in the domain of attack detection,
we introduce an innovative ‘‘feature-centric’’ perspective for
evaluating the adaptability of deep learning models. This
perspective revolves around the identification of specific
features that are commonly shared and potentially versatile
across a spectrum of Wi-Fi deployments, irrespective of their
types or versions. In simpler terms, it is essential to figure out
which specific features are useful for spotting intrusions in
Wi-Fi networks and how well these features work in different
Wi-Fi setups. Table 1 illustrates the previous work for this
domain.

III. METHODOLOGY
The objective of this research is to explore a suitable feature
set that is transferable across various network environments.
Figure 1 demonstrates the methodology to evaluate the trans-
ferability across different network conditions. Algorithm 1
illustrated the methodology steps.

Algorithm 1 Intrusion Detection System (IDS) With CNN
for Feature Transferability
Require: Network traffic data,Training of CNN model
1: procedure Preprocessing
2: Format data, Remove missing values, Normalize,

Select important features
3: end procedure
4: procedure Intrusion Detection
5: Utilize 10-fold cross-validation to address imbal-

anced class distributions
6: Split data for training, Extract features using CNN,

Classify into normal or attack (e.g., normal vs.
flooding attacks)

7: end procedure
8: procedure Output and Evaluation
9: Output: Classification label, Confidence score

10: Evaluate F1-score and misclassification rate on
different network environments (e.g., enterprise
Wi-Fi like AWID3)

11: end procedure

A. DATASETS
Aegan Wi-Fi Intrusion Detection(AWID) datasets have been
used for training and evaluation purposes. The primary dis-
tinction betweenAWID [44] (potentially referring toAWID2)
and AWID3 [45] lies in their specific focuses and contexts

within the realm of Wi-Fi intrusion detection. While both
datasets revolve around the detection of Wi-Fi intrusions,
AWID3 is purposefully tailored to cater to the specific
needs of corporate applications of the Wi-Fi protocol. These
corporate contexts typically demand more robust security
measures. The key variances between the two datasets can be
summarized as follows:NetworkComplexity:AWID3 takes
into account the wide range of network architectures that are
commonly encountered in commercial organizations. As a
result, this dataset includes information derived from more
complicated and multidimensional network configurations
common in business Wi-Fi deployments. Protocol Focus:
AWID (AWID2) focuses on scenarios related to traditional
Wi-Fi intrusion detection, spanning a broad range of generic
use cases. AWID3, on the other hand, is strategically directed
towards the use of the Wi-Fi protocol in commercial and
enterprise environments.Enhancement of Security:AWID3
lays a strong emphasis on adding modern security features
that are routinely used in business settings. This includes
the use of Protected Management Frames (PMF), a feature
introduced by the 802.11w amendment that is expressly
designed to improve the security of Wi-Fi networks.
While both AWID (AWID2) and AWID3 are pertinent to the
domain of Wi-Fi intrusion detection, AWID3 stands out as
a dataset meticulously tailored to meet the requirements of
detecting intrusions in enterprise-level Wi-Fi environments.
Its specialized focus on heightened security measures and the
intricate network designs commonly found in the corporate
sector renders it particularly relevant and valuable for
real-world applications in these settings.

B. DATA PRE-PROCESSING
Before training the model, the input data must be
pre-processed separately such as data formats for features
including timestamps, numbers, hexadecimal digits and
strings should be converted into correct format to increase
the model’s detection performance and convergence speed.
Feature data can encompass various formats such as
timestamps, numeric values, hexadecimal digits, strings, and
more.

1) CLASS DISTRIBUTION
The AWID3 dataset has an imbalanced record distribution.
The dataset’s imbalance attribute is not changed for this
study. Figure 2 and 3 depicts the distribution of the number
of occurrences of normal and flooding attacks in AWID2
and AWID3. However, their imbalance property has not
been modified in order to better results even with uneven
distribution of classes.

2) DEALING WITH IMBALANCED DATA
Real-world scenarios often entail imbalanced wireless traffic,
where the occurrence of attack frames may significantly
outnumber normal frames. For instance, in 802.11 networks,
DoS attacks such as de-authentication or disassociation could
result in an excess of attack frames relative to regular
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FIGURE 1. Methodology diagram.

FIGURE 2. Class Distribution of AWID3.

frames. In this research,the original imbalance property of
both datasets is retained, refraining from employing sampling
techniques to alter their distribution. Instead, the stratified
k-fold validation technique with a value of 10 is used to
ensure that samples are distributed evenly throughout each
class in the validation sets. It’s worth mentioning that we
combined the training and testing sets into a single dataset
to construct the 10-fold validation sets for AWID2. Given the
uneven distribution of wireless datasets, the F1-score should
be prioritized and explicitly reported in work [18].

3) DEALING WITH MISSING VALUES
Missing or null values appear in AWID datasets for a variety
of reasons, such as network outages or insufficient data
collection during an assault. So, we remove missing and
null values from our dataset for better model performance
and attack detection. To address this, any occurrences with
missing values are eliminated. Additionally, the attribute
‘‘wlan.fc.ds,’’ initially consisting of hexadecimal strings,

FIGURE 3. Class Distribution of AWID2.

is converted to a numerical format to enhance processing and
facilitate subsequent analysis and modeling procedures.

4) DATA NORMALIZATION
The ranges of feature values in the AWID datasets vary signif-
icantly. For example, the feature ‘‘radiotap.dbm_antsignal’’
consists of negative values such as -47,-64,-21 etc., whereas
‘‘wlan.duration’’ consists of high positive values such as
47,90,100. These feature range discrepancies can affect the
training process. Min-max scaling is a popular approach for
data normalization. This approach rationalizes a wide variety
of data values by converting them to a common scale of 0 to 1
[12]. Here, in Eq. 1, Xmin represents the minimum value of
the feature X, and Xmax denotes the maximum value for the
feature.

X ′
=

X − Xmin

Xmax − Xmin
(1)

By employing min-max scaling, the model mitigates biases
introduced by variables with larger scales, resulting in
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enhanced accuracy and generalization. This approach pro-
motes fair consideration of all characteristics, fostering a
more robust learning process.

5) FEATURE EXTRACTION
Time based features which refers to the time series/timing
of data packets such as frame.time delta (time difference
between packets) and frame.time (timestamp of the packet).
These features are essential for understanding the tem-
poral behaviour of the packets to detect certain patterns
such as anomlies, delays or traffic outburst. Models like
Recurrent Neural Network(RNNs) or Long Short Term
Memory(LSTM) are designed to capture dependencies over
time and are suitable to deal with sequential data. In order to
analyze these features, they need to be properly pre-processed
as required for time series analysis. However in this research,
these time based features are eliminated for simplification
of the model’s complexity which is why RNNs have not
been included in the experimentation. Therefore, only those
features are selected that are independent from each other
which ultimately helps in minimizing multicollinearity.

For feature selection,the Random Forest algorithm was
used. Gini impurity is used byRandomForest, a decision tree-
based ensemble classifier, to determine the importance of the
class samples within a specific node. This weight adjustment
technique helps determine the significance of features in
the face of unbalanced data, guaranteeing that the classifier
divides the total samples of all the classes efficiently. After
the classifier computed the Gini impurity i(τ ) 2, a weight
adjustment mechanism inside the Random Forest framework
was utilized in this feature selection process to determine the
feature importance concerning the unbalanced dataset output.
The Gini impurity is a measure of a split’s ability to divide the
total number of samples of binary classes in a node.

i(τ ) = 1 − p2p − p2n (2)

The reduction in Gini impurity resulting from each optimal
split △if (τ,M ) is computed and aggregated across all M
weighted trees at each node τ in the forest, where pp
represents the fraction of positive samples, pn represents
the fraction of negative samples, and N represents the
total number of samples. Since each feature is analyzed
independently, it is possible to thoroughly assess how well
each split contributes to raising the purity of the final node
designs. It is denoted in 3

Ig(f ) =

∑
M

wpn

[∑
τ

△If (τ,M )

]
(3)

The Gini importance, denoted by Ig in this equation, indicates
the frequency with which a particular feature (f ) is selected
for splitting as well as the significance of the feature’s
overall capacity to discriminate between classes in the binary
classification job. To address unequal class distributions
inside the learning method, weight w is assigned.

6) DATA SPLITTING
To counter Unbalanced Distribution of Attacks The imbal-
anced nature of the datasets has been retained and analyzed
using 10 k-fold cross-validation.

C. CLASSIFICATION MODELS
Several machine learning models have been evaluated
whereas Multilayer Perceptron (MLP) and Convolutional
Neural Network (CNN) attained remarkable performance.
Here is a quick introduction to give for every algorithm.

1) MULTI-LAYER PERCEPTRON (MLP)
MLP architecture is crucial in artificial neural networks. It is
made up of a complex network of interconnected artificial
neurons or nodes organized into layers. An input layer, one
or more hidden layers, and an output layer are included in
these layers.
Input Layer: This is the first layer that allows raw data

or features into the neural network. This layer’s nodes each
relate to a different input characteristic or variable.
Hidden Layers: The MLP’s hidden layers are located

between the input and output layers.
Output Layer: The final layer, known as the output layer,

is responsible for producing the network’s predictions or
classifications.

FIGURE 4. Illustration of multi-layer perceptron.

The input data for using an MLP model for intrusion
detection in the AWID dataset includes critical information
such as packet sizes, flow durations, source and destination IP
addresses, port numbers, protocols, and numerous network-
related variables. The MLP model goes through a training
procedure using labeled data to distinguish between regular
network operations and instances of intrusion in the dataset
as shown in Figure 4. While ‘‘FC’’ stands for ‘‘Fully
Connected’’ layer. Specifically, FC1 refers to the first fully
connected layer, FC2 to the second fully connected layer, and
FC3 to the third fully connected layer.

a: TRAINING OF MLP CLASSIFICATION
In order to perform classification, the MLP model is trained
to label specific occurrences of network traffic as either
‘‘normal’’ or ‘‘flooding’’, and set values 0 for normal class
and 1 for flooding class. Each labeled instance in the training
set is a sequence of network traffic data collected during a
given time range. frame.len, radiotap.length, radiotap.dbm
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and signal are included in the features of the traffic data.
To implement an MLP (Multi-Layer Perceptron) model for
intrusion detection within the AWID dataset, key MAC
address features are given the input data. Subsequently, using
labeled examples, the MLP model is trained using the Adam
optimizer and the Rectified Linear Unit (ReLU) activation
function, which is distributed across five layers. The goal of
this training procedure is to teach the model whether a given
sequence represents normal network activity or indicates
the existence of an intrusion, specifically flooding attacks.
This architecture is made up of numerous dense (completely
linked) layers with ReLU activation functions interspersed
by regularization dropout layers. After the initial thick layer,
a dropout layer with a dropout rate of 20 percent is applied to
prevent overfitting. Dropout improves model generalization
by randomly deactivating a subset of neurons during training.
Following that, the data is routed through another dense layer
with 128 neurons and ReLU activation, followed by a dropout
layer with the same dropout rate. This pattern is repeated
with denser layers, including one with 64 neurons, one with
32 neurons, and one with 16 neurons, all of which use ReLU
activation functions. Throughout the training phase, the MLP
model learns to recognize detailed patterns within input
sequences, allowing for a clear distinction between normal
network behaviors and the manifestation of flooding attacks.
By leveraging previous events inside network traffic data, the
model improves its ability to capture the different features
and behaviors quirks associated with flooding attacks, thus
enhancing its intrusion detection skills within the AWID
dataset.

2) CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN is designed primarily to detect complicated spatial
and temporal patterns in datasets. When applied to intrusion
detection, CNNs are essential for grasping complicated
patterns within the dataset’s different attributes. The critical
convolutional layer, which performs a foundational role,
is located at the core of CNN design. Following the feature
extraction step, pooling layers are used to further scrutinize
the data, with the twin goal of improving data analysis
and lowering the spatial dimensions of the resulting feature
maps. Then, fully connected layers take over, resulting in the
ultimate classification. It’s important to note that the weights
of the filters, as well as those of the fully connected layers,
are polished and fine-tuned by an arduous training procedure,
which frequently employs a labeled dataset.

This model is depicted graphically in Figure 5 below:
It is important to note that CNN does not detect these

patterns indiscriminately; rather, it learns them through
rigorous training on labeled datasets. For example, in the
context of intrusion detection, if the dataset includes network
packets as independent features, CNN can deduce patterns
from the header fields of these packets. These fields
could include crucial information including source and
destination IP addresses, port numbers, and protocol kinds.
By adeptly absorbing and recognizing these patterns, the

CNN transforms into a skilled guardian, capable of identify-
ing anomalies within network traffic that may indicate future
intrusions. It has the following components:

a: INPUT LAYER
In the case of intrusion classification, the input layer of a
CNN receives data from network traffic or log files. This data
could involve packet sizes, durations, source and destination
IP addresses, port numbers, and protocol types.
Convolutional Layer: In intrusion classification, the

convolutional layer applies filters or kernels to input data
to identify patterns that indicate various types of network
attacks. These patterns could indicate anomalous traffic
behavior, unreliable connections, or known attack features.

b: ACTIVATION LAYER (RELU)
Following convolution, the ReLU activation function is
implemented to the feature maps resulting from the convolu-
tional layer. This provides nonlinearity to the model, allowing
it to capture complicated correlations between input features
and intrusion classes.

c: POOLING LAYER
The pooling layer in intrusion classification decreases the
spatial dimensionality of feature maps while keeping critical
information about observed patterns. This aids in focusing
on the most important elements for intrusion detection while
eliminating extraneous details.
Output Layer: The output layer is designed to take the

features extracted and processed by the preceding layers of
the neural network and produce probabilities for the two
possible classes in the AWID dataset. These probabilities are
generated using the sigmoid activation function, allowing the
model to make classification decisions.

d: TRAINING OF CNN CLASSIFICATION
The first layer of this model is a 1D convolution (Conv1D)
with 128 filters, a kernel size of 3, and ReLU activation.
It uses ‘‘same’’ padding to maintain the input sequence length
of (8, 1). This suggests the model is designed for sequences
with 8 elements. Following the convolution is a max-pooling
layer (MaxPooling1D) that reduces the sequence length by
half (pool size of 2) while capturing the most significant
features. A second convolutional layer with 64 filters, kernel
size 3, ‘‘same’’ padding, and ReLU activation is applied. Sim-
ilar to the first layer, it maintains the sequence length. Another
max-pooling layer follows this convolution. A flatten layer
then transforms the 2D feature maps from the convolutional
layers into a 1D vector, preparing the data for fully connected
layers. These dense layers process the flattened vector to
make the final prediction. These layers of data learn to
recognize patterns and relationships. The ReLU activation
function is used in the first dense layer, which includes
128 neurons. Because it assists the network in modeling
complicated patterns, ReLU is a popular choice for activation
functions in hidden layers. The second dense layer contains
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FIGURE 5. Illustration of a convolutional neural network.

32 neurons that are activated by ReLU. The third dense layer
contains 16 neurons that are activated by ReLU. Finally,
an output layer with two neurons and a softmax activation
function is present. Softmax is used to determine class
probabilities in this classification (normal or flooding attack).

D. FEATURE TRANSFERABILITY
In the realm of IDS, the assessment of their effectiveness
relies on keymetrics like precision, recall, F1 score, and AUC
score. As expected, when these IDS models are individually
trained and tested on well-known datasets like AWID and
AWID3, they exhibit remarkable performance, boasting high
F1 scores ranging from 0.98 to 1 and AUC scores ranging
from 0.97 to 0.99. However, the true challenge arises
when attempting to transfer these high-performing models
to entirely new and unseen datasets. Here, the performance
landscape becomes more diverse, suggesting that the out-
standing performance achieved on a particular dataset doesn’t
automatically guarantee the model’s ability to generalize to
novel datasets within unique network environments. This
brings us to a pivotal question: Can the set of selected features
seamlessly adapt across different datasets? To investigate this,
the model, having been trained on these chosen features,
undergoes rigorous testing using previously unseen network
traffic data. This evaluation extends to real-time scenarios
and diverse network environments, providing researchers
with insights into the enduring effectiveness and wide
applicability of these selected features beyond the boundaries
of the original dataset. This evaluation is of paramount
importance as it validates the feasibility and adaptability
of the proposed cyber-attack detection model in dynamic
and varied network conditions. In essence, it tests whether
the model can maintain its effectiveness and relevance
when faced with the complexities of real-world network
scenarios. In this research, feature transferability is evaluated
by training deep learning models on selected features of
AWID dataset and testing with AWID3. AWID3 is the
reformed version of AWID dataset and designed on enterprise
network environment. Consequently, the purpose of testing
feature transferability is to discover the strongest and most

advantageous features that can be efficiently transferred or
generalized across various network environments, especially
between a general network environment and an enterprise
network environment. Particularly, this includes evaluation
of the models’s ability to maintain its efficacy when applied
to both a general network environment(AWID) and an
enterprise network environment(AWID3). In this way, this
study attempts to discover features that remain successful
when transferred from a general WiFi network environment
to a corporate WiFi network environment in the context of
AWID3, which focuses on enterprise versions of the protocol.
The inclusion of stronger security measures and various
network topologies in the workplace context could require
the use of particular features to detect intrusions efficiently.
Transferability is essential for developing Wi-Fi IDS models
that can accurately detect intrusion patterns across a wide
range of network scenarios, from small residential networks
to large industrial and enterprise networks. Using data from
AWID2, we trained a couple of classifiers, and we evaluated
their performance using AWID3. For training, we employed
the AWID2-CLS-R data, which contained just the Normal
and Flooding classes. the AWID-CLS-F-Trn and AWID-
CLS-F-Tst files, which together comprised the whole AWID2
dataset, were merged. De-authentication attacks are the
common attack in both datasets. The training set consisted
of just the Normal and Flooding classes, Next, we tested
the classifiers on the Normal and De-authentication traffic
found in the AWID3 De-authentication attack instances.
In this research, de-authentication attacks are denoted by
flooding.od

IV. RESULTS AND DISCUSSION
The application of Multilayer Perceptron (MLP) and Con-
volutional Neural Network (CNN) involves the utilization
of eight MAC address features that are independent of the
channel used for capturing network traffic.

A. PARAMETER CONFIGURATION
The parameter values for CNN methods can vary based
on implementation and issue domains. These settings are
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not exhaustive and may require additional adjustment and
testing depending on the specific situation and dataset. When
choosing parameter values for CNNs and MLPs, it is crucial
to carefully assess the trade-offs between exploration and
exploitation, consider network design, and account for other
relevant factors.

1) LEARNING RATE
In the MLP model, the optimizer employed was the Adaptive
Moment Estimation (Adam) method, with a learning rate set
at 0.0001. For both the CNN andMLPmodels, a learning rate
of 0.001 was utilized with the Adam optimizer.

2) OVERFITTING PREVENTION
Various techniques were implemented to counteract over-
fitting. Initially, an early stopping strategy was employed,
permitting the models to undergo two additional rounds
before cessation to mitigate overfitting to the training data.
Additionally, dropout layers were incorporated, randomly
deactivating specific neurons during training to prevent their
dominance in the learning process.

3) ACTIVATION FUNCTION
The Rectified Linear Unit (ReLU), a simple and effective
activation function, is used in this research. ReLU displays
monotonic behavior, which means that both the function
and its derivative follow a consistent pattern. When given
negative input values, ReLU returns 0, successfully sup-
pressing negative signals. In contrast, for positive input
values (x), ReLU just outputs the input value without any
changes. As a result, ReLU’s output ranges from 0 to
infinity, providing a large range of possible values. Eq. 4
expresses the mathematical transition made by the ReLU
activation function. This transformation accelerates model
generalization and improves overall accuracy by allowing for
rapid learning of complicated patterns in the data.

f (x) = max

{
0 for all x < 0
x for all x > 0

(4)

4) BATCH SIZE
The quantity of was selected randomly from the replay buffer
during each training iteration, with typical values ranging
from 32 to 256.

5) NUMBER OF HIDDEN LAYERS
The count of hidden layers in the neural network architecture
between input and output layers. This varies depending on the
complexity of the task, typically ranging from one to three
layers.

6) NUMBER OF FILTERS
The number of filters specifies the number of channels in each
CNN layer. In this research, 2 convolutional layers have been
use. 128 and 64 number of filters are used in in these layers
correspondingly. Thismeans that CNNwill learn 128 features

in first convolutional layer from input and 64 features in
second convolutional layer from output of the previous layer.

7) KERNEL SIZE
It is the length of 1D convolutional window. 3×3 kernel size
is used in this research to capture local patterns and extract
relevant features.

8) PADDING
It specifies how the borders of the whole data are handles.
In this research, padding is set to ‘‘same’’ which means input
and output has same length by adding zeros at the edges.

9) MAX POOLING
It selects the highest value from each pool of values leading
to dimensionality reduction in feature maps. A pool size of
2 has been selected in this work, which means 2 values will
be examined and the maximum will be selected.

B. FEATURE SELECTION
Table 2 illustrates the MAC and Physical layer features
extracted using Random Forest. The MAC attributes chosen
were carefully chosen for their relevance and usefulness in
aiding the creation of an effectiveWi-Fi cyber threat detection
system.

1) FRAME LENGTH
It aids in the detection of abnormal packet sizes which is
an essential feature in detection of flooding attacks. These
attacks involve ample amount of frames to keep the system
occupied. So if the Wi-Fi network.

2) RADIOTAP.DBM.ANTSIGNAL
This feature measures the strength of the Wi-Fi signals at
the receiving end. Attackers who are distant from the main
location have weaker signals. If frequently weak signals are
noticed in the setup then it seems to have been attacked.

3) WLAN.DURATION
If the frame transmission is taking an unusually long time
then it could jam the network and can be the indication
of flooding attack in the network. radiotap.channel.freq:
the frequent variation in channel frequency can indicate an
anomaly often associated with attacks.

4) WLAN.FC.TYPE/SUBTYPE
These are flags. These flags identify the type of frames
such as deauthentication and disassociation frames etc.
The flooding attack in this dataset also includes net-
work traffic of deauthentication and disassociation attacks.
Now assume that a large number of deauthentication or
disassociation frames are transmitted over the network,
this pattern can indicate an attack as attackers use these
frames to disconnection and reconnection to rogue access
points.
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5) WLAN.FC.RETRY
This flag can indicate the deviation in a usual pattern when
the frames are retransmitted. For example, a sudden rise in
retry frames can indicate that the devices are encountering
any deviation.

6) WLAN.FC.MOREDATA
if a then a device shows more data flag repetitively at a time
then it can be an indication of attack.

These features are preferred over other features as they
capture a wide range of characteristics of the network
traffic and analyze high-level traffic patterns to detect
potential attacks. The features like radiotap.present.tstf,
radiotap.length or other specialized flag-like features such as
radiotap.pwrmgt provide limited information. These features
provide highly specific information of the network behavior
and can be tightly related to certain cases only. The extracted
features are suitable for both home and enterprise-based
environments. For example, radiotap.dbm.antsignal is crucial
for reliable connection whether it is a single access point
for home-based environment or multiple access points in
an enterprise environment.frame.len is essential in both
environments for monitoring the bandwidth. wlan.fc.type
identifies the type of traffic such as management or control
frames for both network environments. wlan.fc.subtype
determines the purpose of frame such as beacon frame,
authentication or association requests etc. This feature aid in
tracking associations and disassociations caused by attackers
in home based environment whereas it aids in recognizing
association requests between access points in an enterprise
environment [44].

TABLE 2. MAC and physical layer features.

C. PERFORMANCE EVALUATION METRICS
The evaluation of the CNN and MLP-based model’s
effectiveness and precision in identifying and categorizing
network intrusions is conducted as part of the performance
assessment for feature transferability in Wi-Fi intrusion
detection.

1) CONFUSION MATRICES
The assessment of the proposed approach for cyberattack
detection involves the utilization of a confusion matrix,
providing crucial insights into the system’s performance. The
four fundamental metrics in the confusion matrix include true

positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN).

a: TRUE POSITIVES
True positives (TP) represent instances where the system
correctly identified incidents as cyberattacks. These are
situations where the system has successfully recognized the
presence of a cyberattack.

b: TRUE NEGATIVES
True negatives (TN) are the instances correctly categorized
as normal or routine network traffic. These occurrences are
accurately identified as benign, showcasing the system’s
ability to distinguish between regular and malicious data.

c: FALSE POSITIVES
False positives (FP) denote the instances that are inaccurately
categorized as a form of cyberattack. These incidents are
wrongly identified as assaults when they are not, leading to
misclassification.

d: FALSE NEGATIVE
False negatives (FN) represent the instances of cyberattacks
that escape detection by the intrusion detection system.
As these occurrences are not flagged as attacks, detrimental
actions remain unidentified.

An evaluation of the proposed methodology’s effective-
ness involves examining its ability to accurately identify
cyberattacks (TP), appropriately classify normal traffic
(TN), minimize false alarms (FP), and prevent overlooking
legitimate attacks (FN). Analyzing these metrics provides
a comprehensive assessment of the system’s performance,
aiding in the determination of its reliability and efficiency in
detecting cyberattacks.

2) EVALUATION MEASURES
This study employed various evaluation criteria to assess the
system’s performance, which depended on the characteristics
of the confusion matrix. In this research, the concept of
transferability is evaluated by reusing learned features across
diverse validated dataset with in similar domain which is
why standard performance metrics sufficiently capture the
performance of feature transfer instead of transfer accuracy
or domain adaptation methods. These metrics encompass
precision, recall, and the F1 measure.

a: ACCURACY
A commonly employed metric for gauging the overall
accuracy of the system’s predictions is to calculate the ratio of
correctly classified instances (TP and TN) to the total number
of instances using eq. 5. This metric offers insight into
the system’s performance across both positive and negative
classifications.

Accuracy =
Truep + TrueN

Truep + TrueN + Falsep + FalseN
(5)
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Transferability evaluation measures the accuracy of catego-
rizing cases, including both normal and cyberattacks, in the
dataset. It provides an assessment of how well the CNN and
MLP-based models make correct predictions overall.

b: PRECISION
Cyberattack detection precision is the ratio of correctly iden-
tified cyberattacks to all instances categorized as intrusions
by the CNN and MLP-based model.It is calculated using eq.
6 This metric evaluates the model’s capability to accurately
discern intrusions, ensuring that it does not misclassify
regular cases as cyberattacks.

Precision =
TrueP

TrueP + FalseP
(6)

c: RECALL
The CNN and MLP-based model’s recall, also known as
sensitivity or true positive rate, quantifies the percentage of
accurately identified cyberattacks using eq. 7 This metric
assesses the model’s efficacy in detecting intrusions among
all the actual incursions present in the dataset.

Recall =
TrueP

TrueP + FalseN
(7)

d: F1 SCORE
The F1 score integrates accuracy and recall into a unified
metric, providing amore equitable assessment of the system’s
performance. It represents the harmonic mean of accuracy
and recall, assigning equal importance to both measures.
In situations where there is an uneven distribution between
positive and negative instances, the F1 measure becomes
particularly valuable. This score serves as a comprehensive
performance metric, encapsulating both accuracy and recall,
to gauge the overall success of the CNN-based model in
detecting cyberattacks and calculated by eq. 8.

F1score =
2TrueP

2TrueP + FalseP + FalseN
(8)

D. PERFORMANCE ANALYSIS
1) TRAINING PHASE ANALYSIS
CNN-based network intrusion detection techniques out-
perform traditional approaches in terms of f1-score and
classification accuracy. The benefit arises from their capacity
to efficiently extract local feature information [13]. This
advantage enables CNNs to outperform MLPs in clas-
sification tasks. During training with the AWID dataset,
CNN exhibited an f1-score of 99.96 and an accuracy of
99.94%, slightly surpassing theMLP,which achieved 99.83%
and 99.84% respectively. Precision and recall also follow
this trend, with CNN achieving 99.92% and 99.95% and
MLP reaching 99.81% and 99.80% for precision and recall
respectively. The AUC-score is 99.94% for CNN and 99.80%
for MLP.

Table 3 presents the training analysis of the two deep
learning models, MLP and CNN, conducted through 10 k-
fold cross-validation on the AWID dataset. The results
demonstrate that the selected features exhibit robustness and
efficiency in detecting attacks, achieving a 99% f1-score and
accuracy rate with the AWID dataset.

TABLE 3. Training evaluation on AWID dataset.

Figures 6, 7 show the accuracy and loss graphs of CNN
and Figures 8, 9 illustrate the MLP respectively. Figures 6, 7
show that training and validation loss and accuracy of CNN
are equivalent whereas train loss and accuracy of MLP are
lower than validation loss and accuracy. This implies that the
MLP model is leveraged to overfitting whereas CNN proved
to be the ideal model for transferability evaluation.

FIGURE 6. CNN Accuracy Graph.

2) TESTING WITH AWID3 TO EVALUATE FEATURE
TRANSFERABILITY
Our primary objective is to evaluate the transferability of the
selected attributes across diverse network settings. Despite
this focus, we diligently conducted and reported evaluations
that achieved exceptionally high predicted accuracy. The
examination of feature transferability is crucial as it enables
us to discern whether the chosen features can be effectively
utilized in network contexts beyond their original creation
environment. This research contributes valuable insights
into the generalizability and robustness of the feature set,
allowing us to gauge the potential application of the intrusion
detection system across various scenarios. Table 4 illustrates
the analysis of feature transferability in terms of accuracy,
precision, recall, and F1-score. CNN exhibited promising
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FIGURE 7. CNN loss graph.

FIGURE 8. MLP accuracy graph.

FIGURE 9. MLP loss graph.

results, achieving an impressive accuracy and F1-score of
97.28% and 98.53%.

When evaluating the performance of the models on unseen
data from different network environments, CNN performed

TABLE 4. Testing evaluation on AWID3 dataset.

better than MLP when comparing their respective perfor-
mances on unseen data from various network configurations
demonstrated in Figures 10 and 11. CNN specifically showed
a notable decrease in incorrect classifications, especially
when correctly differentiating flooding attacks from regular
traffic. The difference in performance between CNN and
MLP was almost 4000 cases, highlighting CNN’s improved
accuracy and flexibility in various network scenarios. MLP
performs well in classifying normal traffic with high true
negative count. However, as the dataset is imbalanced, 18,180
instances are falsely classified as normal instances usingMLP
leading to a high rate of false negatives for the minority class.
Due to class imbalance, false positives can also be affected as
normal traffic is falsely classified as an attack overwhelming
the IDS. Here, the number of false positive instances is
3593 which is relatively small compared to true negatives.
CNN has shown better results in terms of class imbalance
as it has a comparatively lower number of false negatives.
Furthermore, it has higher true negatives which means CNN
attained better accuracy for normal traffic instances. This way
CNN is performing better under class imbalance problem as
it correctly classifies minority class without increasing false
positives.

FIGURE 10. MLP with testing data.

The promising performance of both models on the original
dataset indicates their potential to be effectively applied
in real-world intrusion detection scenarios. Nevertheless,
CNN handles spatial patterns using convolutional layers that
can capture local dependencies in the network traffic by
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FIGURE 11. CNN with testing data.

TABLE 5. Performance comparison with state of the art techniques.

applying filters. These filters can detect any deviation in the
network traffic. Unlike MLP which handles all the features
independently, CNN look for local dependencies [46]. The
superior transferability of CNN, as demonstrated by its
capacity to handle unseen data from different network
environments more accurately, suggests that it may be a
more suitable choice for practical applications in dynamic
and varied network settings. In conclusion, both CNN
and MLP exhibit strong predictive capabilities, but the
higher transferability and reducedmisclassification of attacks
observed in CNN underscore its prominence as a reli-
able choice for intrusion detection across diverse network
conditions.

E. COMPARISON WITH STATE OF ART TECHNIQUES
Current research on Wi-Fi IDS lacks the exploration and
evaluation of the transferability of features for different
Wi-Fi network environments. Table 5 compares the proposed
methodology with state-of-the-art techniques. The previous
research with AWID3 is based on supervised learning
and cannot comprehend the ever-changing nature of cyber-
attacks.

V. CONCLUSION
Our study introduced two models, CNN and MLP, they
achieved highly promising results in cyber-attack detection,
with F1-scores and accuracies reaching up to 97%. This sig-
nifies the efficacy of both models in accurately recognizing
and categorizing attacks within the dataset they were trained
on. While the commendable performance of all models on
the original dataset suggests their potential for effective
application in real-world intrusion detection scenarios, the
superior transferability of CNN, as evidenced by its more
accurate handling of unseen data from different network
environments, suggests it may be a more suitable choice for
practical applications in dynamic and varied network settings.
In conclusion, both CNN and MLP demonstrate excellent
prediction skills; nevertheless, CNN is more dependable for
intrusion detection under a variety of network situations
due to its higher transferability with higher f1-score and
decreased misclassification of attacks. Subsequent investiga-
tions inside this field ought to go into methods for boosting
model transferability, guaranteeing effectiveness in practical
settings with diverse network attributes. Future research in
this domain should further explore techniques to enhance the
transferability of models to ensure their efficacy in real-world
environments with varying network characteristics.
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