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Abstract. Some arithmetic properties of the generalized Lucas sequences
are studied, extending a number of recent results obtained for Fibonacci,
Lucas, Pell, and Pell-Lucas sequences. These properties are then applied
to investigate certain notions of Fibonacci, Lucas, Pell, and Pell-Lucas
pseudoprimality, for which we formulate some conjectures.
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1. Introduction

The Fibonacci, Lucas, Pell, or Pell-Lucas sequences are classical examples of
second-order recurrences. Being the subject of intensive research for centuries,
many new properties and applications of these sequences are still discovered.

The Fibonacci numbers are the terms of the sequence (Fn)n≥0 given by

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn.

Fibonacci numbers are linked to data structures [16], search algorithms [21],
various optimality problems [23], [24], or optimal geometric patterns [27].

The Lucas numbers are the terms of the sequence (Ln)n≥0 defined by

L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln.

The Pell numbers are the terms of the sequence (Pn)n≥0 defined by

P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn,

being linked to approximations of
√

2 by rationals and Diophantine equations.
The Pell-Lucas numbers are the terms of sequence (Qn)n≥0 given by

Q0 = 2, Q1 = 2, Qn+2 = 2Qn+1 +Qn,

and are a natural companion to the Pell numbers. These sequences have also
been extended and generalized for quaternions and octonions (see, e.g., [8]).
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The Online Encyclopedia of Integer Sequences (OEIS) [28] has more
than 350000 entries, including the Fibonacci, Lucas, Pell, and Pell-Lucas
sequences indexed as A000045, A000032, A000129, and A002203, respectively.

The terms of these sequences can be obtained directly by the so-called
“Binet formulae”. Besides the ever expanding collection of algebraic relations
between these numbers, there are also numerous arithmetic properties sat-
isfied by the terms of these sequences. Here we outline some recent results
obtained for Fibonacci and Lucas numbers, obtained by Andrica et al. [5].

Proposition 1.1 (Lemma 1, [5]). Let p be an odd prime, k a positive integer,
and r an arbitrary integer. The following relations hold:

2Fkp+r ≡
(p

5

)
FkLr + FrLk (mod p), (1.1)

2Lkp+r ≡ 5
(p

5

)
FkFr + LkLr (mod p), (1.2)

where
(
p
5

)
is the Legendre’s symbol.

Particular instances of these formulae recover some well-known results
and help to derive new properties of the generalized Lucas sequences.

The classical relations (3.7) and (3.8) are shown in [5], to be just the first
in a sequence of divisibility relations, as illustrated by the following result.

Proposition 1.2 (Theorem 1, [5]). If p is an odd prime and k a positive integer,
then the following identities hold:

1. Fkp−( p
5 ) ≡ Fk−1 (mod p);

2. Lkp−( p
5 ) ≡

(
p
5

)
Lk−1 (mod p).

Proposition 1.3 (Remark 2, [5]). For every odd prime p, there exists a pro-
gression a0, a1, . . . with ratio p, such that

1. (Fa0
, Fa1

, Fa2
, ...) ≡ (F0, F1, F2, ...) (mod p);

2. (La0
, La1

, La2
, ...) ≡

(
5
p

)
(L0, L1, L2, ...) (mod p).

In the present paper we study properties of generalized Lucas sequences
and generalized Pell-Lucas sequences reduced modulo a prime. We extend
recent results obtained for Fibonacci and Lucas sequences, while other results
obtained for Pell and Pell-Lucas numbers are recovered as a particular case.

The structure of this paper is as follows. In Section 2 we present some
preliminary results for the sequences {Un(a, b)}n∈Z and {Vn(a, b)}n∈Z, high-
lighting important particular cases like k-Fibonacci and k-Lucas sequences,
investigated in many papers, including [6], [9], [10], and [29]. The main results
presented in Section 3 include extensions of Propositions 1.1, 1.2 and 1.3, and
other results in [5], to the cases when a is an arbitrary integer and b = ±1.
Then, in Section 4 we apply the main results to derive new properties of the
Pell and Pell-Lucas sequences. Finally, we present some results concerning
the pseudoprimality of Pell and Pell-Lucas sequences, completing the results
formulated in [5] for Fibonacci and Lucas numbers.

https://oeis.org/A000045
https://oeis.org/A000032
https://oeis.org/A000129
https://oeis.org/A002203
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2. Preliminary results

The generalized Lucas sequence {Un(a, b)}n≥0 and its companion, the gener-
alized Pell-Lucas sequence {Vn(a, b)}n≥0, are defined by

Un+2 = aUn+1 − bUn, U0 = 0, U1 = 1, n = 0, 1, . . . (2.1)

Vn+2 = aVn+1 − bVn, V0 = 2, V1 = a, n = 0, 1, . . . (2.2)

where a and b are arbitrary integers. The standard method to study these
sequences involves the roots of the characteristic equation

z2 − az + b = 0. (2.3)

For D = a2 − 4b 6= 0, the distinct roots of (2.3) are given by

α =
a+
√
D

2
, β =

a−
√
D

2
.

By Viéte’s relations, we clearly have α+ β = a, αβ = b, while α− β =
√
D.

Using these notations, the following Binet formulae are obtained

Un =
αn − βn

α− β
=

1√
D

(αn − βn) , n = 0, 1, . . . (2.4)

Vn = αn + βn, n = 0, 1, . . . . (2.5)

These formulae extend naturally to negative indices. For example, one has

U−1 =
1√
D

(
α−1 − β−1

)
= −1

b
, V−1 = α−1 + β−1 =

a

b
, (2.6)

and in general, the following relations hold for any integer n ≥ 0:

U−n =
1√
D

(
α−n − β−n

)
= − 1

bn
Un, V−n = α−n + β−n =

1

bn
Vn. (2.7)

Note that the Fibonacci and Lucas numbers are obtained as Fn = Un(1,−1),
Ln = Vn(1,−1) with D = 5, while the Pell and Pell-Lucas numbers are
generated by Pn = Un(2,−1) and Qn = Vn(2,−1), with D = 8.

When b = −1, sequences Un(a, b) and Vn(a, b) present special interest.
Indeed, for any positive real number k, the k-Fibonacci numbers and k-Lucas
numbers are recovered from the formulae

Fk,n = Un(k,−1), Lk,n = Vn(k,−1).

Properties of these sequences and some extensions are studied in [8], [13], [14],
or [15]. Clearly, F1,n and L1,n represent the Fibonacci and Lucas numbers,
while F2,n and L2,n are the Pell and Pell-Lucas numbers, respectively.

Denote by σk = k+
√
k2+4
2 , the positive root of the characteristic equation

z2 − kz − 1 = 0. The following important cases are obtained (see, e.g., [15]):

• If k = 1, σ1 = 1+
√
5

2 is the Golden Ratio;

• If k = 2, σ2 = 1 +
√

2 is the Silver Ratio;

• If k = 3, σ3 = 3+
√
13

2 is the Bronze Ratio.
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The bronze Fibonacci numbers denoted by F3,n, are indexed as A006190 in
OEIS, and begin with the terms

0, 1, 3, 10, 33, 109, 360, 1189, 3927, 12970, 42837, 141481, . . .

The sequence has been linked to lipidomics and the enumeration of fatty acids
in [31], or to the Z-index (see, e.g., Hosoya [18]), used for counting special
classes of graphs (caterpillar, cycle, comb, path) in chemistry.

In the particular case b = 1, the sequences Un(a, b) and Vn(a, b) are
related to important classes of polynomials (see [4, Chapter 2.2]). We mention

• Chebyshev polynomials of the first kind: Tn(x) = 1
2Vn(2x, 1);

• Chebyshev polynomials of the second kind: un(x) = Un(2x, 1);
• Hoggatt-Bicknell-King polynomial of Fibonacci kind: gn(x) = Un(x, 1);
• Hoggatt-Bicknell-King polynomial of Lucas kind: hn(x) = Vn(x, 1).

The terms of Un(a, 1) also have an interesting combinatorial interpreta-
tion. For an integer a ≥ 3, by Corollary 37 in [19], they represent the number
of 01-avoiding words of length n − 1 over the alphabet {0, 1, 2, . . . , a − 1}.
For a = 3, 4, 5, they recover the OEIS sequences A001906, A001353, and
A004254.

On the other hand, the terms of Vn(a, 1) have meanings related to the
solutions to certain special Pell equations (see [2, Section 4.4.2]). For example,
for Vn(3, 1) we obtain the OEIS sequence A005248, giving the non-negative
integer solutions for x to x2−5y2 = 4; Vn(4, 1) is A003500, giving all positive
values of x for which x2−3y2 = 4; Vn(5, 1) is A003501, giving positive values
of x solving x2 − 21y2 = 4. Notice that Un(3, 1) = F2n, and Vn(3, 1) = L2n,
called the bisection of Fibonacci, and Lucas numbers, respectively.

Derived from the generalized Lucas and Pell-Lucas sequences, we have
the Lehmer sequence {Un(

√
R,Q)}n≥0, and the companion Lehmer sequence

{Vn(
√
R,Q)}n≥0, studied in [25], where R and Q are relatively prime integers,

with R > 0. This extension introduced by Lehmer circumvents the limitation
of D = a2 − 4b, which could not be of the form 4n + 2 or 4n + 3. These
sequences have important applications in primality testing. We present a few
key formulae and notations following [20].

The roots of the characteristic equation

z2 −
√
Rz +Q = 0,

are

θ =

√
R+
√

∆

2
, φ =

√
R−
√

∆

2
,

where ∆ = R − 4Q denotes the discriminant. The Lehmer sequence and its
companion can be written explicitly as

Un(
√
R,Q) =

θn − φn

θ − φ
, n = 0, 1, . . .

Vn(
√
R,Q) = θn + φn, n = 0, 1, . . . .

https://oeis.org/A006190
https://oeis.org/A001906
https://oeis.org/A001353
https://oeis.org/A004254
https://oeis.org/A005248
https://oeis.org/A003500
https://oeis.org/A003501
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For simplicity, for a and b arbitrary integers, we denote the terms of the
sequences {Un(a, b)}n≥0 and {Vn(a, b)}n≥0 by Un and Vn. In what follows we
will present some algebraic identities involving the numbers Un and Vn.

Lemma 2.1. The following identities hold for every integer n:

1. aUn − Vn = 2bUn−1;
2. DUn − aVn = −2bVn−1.

Proof. The proofs follow directly from relations (2.4) and (2.5). Clearly

aUn − Vn =
a√
D

(αn − βn)− (αn + βn)

=
α√
D

(
a−
√
D
)
αn−1 − β√

D

(
a+
√
D
)
βn−1

=
2b√
D

(
αn−1 − βn−1) = 2bUn−1,

where we have used the relations a+
√
D = 2α and a−

√
D = 2β. Similarly,

DUn − aVn =
√
D (αn − βn)− a (αn + βn)

= −α
(
a−
√
D
)
αn−1 − β

(
a+
√
D
)
βn−1

= −2b
(
αn−1 + βn−1) = −2bVn−1.

This ends the proof. �

3. Main results

From formula (2.7), one may notice that all the sequence terms Un(a, b) and
Vn(a, b) are integers, if and only if b = ±1. We shall focus on these cases.

The following result is an extension of Proposition 1.1 for the sequences
Un(a, b) and Vn(a, b).

Theorem 3.1. Let p be an odd prime, k be a non-negative integer, and r an
arbitrary integer. If b = ±1 and a is an integer such that D = a2 − 4b > 0
is not a perfect square, then the sequences Un and Vn defined by (2.1) and
(2.2) satisfy the following relations:

2Ukp+r ≡
(
D

p

)
UkVr + VkUr (mod p), (3.1)

2Vkp+r ≡ D
(
D

p

)
UkUr + VkVr (mod p). (3.2)

Proof. We first prove that relation (3.1) holds, using the Binet formulae (2.4),
(2.5) and (2.7). For any integer s, one may write

αs =
Vs + Us

√
D

2
, βs =

Vs − Us

√
D

2
.
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Since b = ±1, the terms Uk, Ur and Vk, Vr are integers. We have

Ukp+r =
1√
D

[
αkp+r − βkp+r

]
=

1√
D

[(
Vk + Uk

√
D

2

)p
Vr + Ur

√
D

2
−

(
Vk − Uk

√
D

2

)p
Vr − Ur

√
D

2

]

=
1

2p+1
√
D

[
(Vk + Uk

√
D)p(Vr + Ur

√
D)− (Vk − Uk

√
D)p(Vr − Ur

√
D)
]

=
1

2p+1
√
D

[
(Vr + Ur

√
D)

p∑
j=0

(
p

j

)
V p−j
k

(
Uk

√
D
)j

− (Vr − Ur

√
D)

p∑
j=0

(
p

j

)
(−1)jV p−j

k

(
Uk

√
D
)j ]

=
1

2p+1
√
D

[
Vr

p∑
j=0

(
1− (−1)j

)(p
j

)
V p−j
k

(
Uk

√
D
)j

+ Ur

√
D

p∑
j=0

(
1 + (−1)j

)(p
j

)
V p−j
k

(
Uk

√
D
)j ]

=
1

2p+1
√
D

[
2Vr

(
Uk

√
D
)p

+ 2Vr
√
DV p

k +

+

p−1∑
j=1

[
Vr
(
1− (−1)j

)
+ Ur

√
D
(
1 + (−1)j

)](p
j

)
V p−j
k

(
Uk

√
D
)j ]

.

Since p divides
(
p
j

)
for j = 1, . . . , p− 1, it follows that

2p+1Ukp+r ≡ 2VrU
p
k D

p−1
2 + 2V p

k Ur (mod p).

By Fermat’s Little Theorem, we have 2p ≡ 2 (mod p), Up
k ≡ Uk (mod p),

and V p
k ≡ Vk (mod p). Since

(
D
p

)
≡ D

p−1
2 (mod p), we deduce that

2Ukp+r ≡
(
D

p

)
UkVr + VkUr (mod p),

hence (3.1) holds.



On some arithmetic properties of the generalized Lucas sequences 7

The relation (3.2) satisfied by Vn follows from similar computations.

Vkp+r = αkp+r + βkp+r

=
1

2p+1

[
(Vk + Uk

√
D)p(Vr + Ur

√
D) + (Vk − Uk

√
D)p(Vr − Ur

√
D)
]

=
1

2p+1

[
(Vr + Ur

√
D)

p∑
j=0

(
p

j

)
V p−j
k

(
Uk

√
D
)j

+ (Vr − Ur

√
D)

p∑
j=0

(
p

j

)
(−1)jV p−j

k

(
Uk

√
D
)j ]

=
1

2p+1

[
Vr

p∑
j=0

(
1 + (−1)j

)(p
j

)
V p−j
k

(
Uk

√
D
)j

+ Ur

√
D

p∑
j=0

(
1− (−1)j

)(p
j

)
V p−j
k

(
Uk

√
D
)j ]

=
1

2p+1

[
2VrV

p
k + 2Ur

√
D
(
Uk

√
D
)p

+

+

p−1∑
j=1

[
Vr
(
1 + (−1)j

)
+ Ur

√
D
(
1− (−1)j

)](p
j

)
V p−j
k

(
Uk

√
D
)j ]

.

Since p divides
(
p
j

)
for j = 1, . . . , p− 1, it follows that

2p+1Vkp+r ≡ 2VrV
p
k + 2UrU

p
kD

p+1
2 (mod p).

Following similar computations as for Un, one obtains

2Vkp+r ≡ D
p+1
2 UkUr + VkVr (mod p)

≡ D
(
D

p

)
UkUr + VkVr (mod p),

hence the relation (3.2) follows. �

Corollary 3.2. Under the hypotheses of Theorem 3.1, we have

1. If k is a nonnegative integer, then

Ukp ≡
(
D

p

)
Uk (mod p). (3.3)

In particular, one has

Up ≡
(
D

p

)
(mod p). (3.4)

2. If k is a nonnegative integer, then

Vkp ≡ Vk (mod p), (3.5)

which for k = 1 yields

Vp ≡ a (mod p). (3.6)
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For a = 1 and b = −1, from (3.3) and (3.5) one obtains the following
known results for Fibonacci and Lucas sequences [5]:

Fkp ≡
(

5

p

)
Fk (mod p),

Lkp ≡ Lk (mod p),

while from (3.4) and (3.6), one recovers the classical relations

p | Fp−( 5
p ). (3.7)

p | Lp−( 5
p ) − 2

(
5

p

)
. (3.8)

Some interesting divisibility properties involving k-Fibonacci and k-
Lucas sequences can be obtained from the relations (3.4) and (3.6) in Corol-
lary 3.2.

For example, when b = −1 and a = 3 we have D = 13 and

p | F3,p−( 13
p ), p | L3,p−( 13

p ) − 2

(
13

p

)
. (3.9)

Also, when b = −1 and a = 5 we have D = 29 and

p | F5,p−( 29
p ), p | L5,p−( 29

p ) − 2

(
29

p

)
. (3.10)

The case when D is prime present special interest. The following result
extends a well known divisibility property of Fibonacci numbers.

Corollary 3.3. Under the hypotheses of Theorem 3.1, whenever k1, k2 are
integers with p | Uk1

− Uk2
, by (3.3), we have p | Uk1p − Uk2p. In particular,

whenever p | Up, it follows that p | Ukp for all integers k ≥ 0.

Corollary 3.4. In the conditions of Theorem 3.1, the following properties hold:

1. p | Up−(D
p );

2. If b = −1 (as for Lucas and Pell-Lucas numbers), then

p | Vp−(D
p ) − 2

(
D

p

)
.

Proof. 1. Taking k = 1 and r = ±1 in (3.1) and using (2.6), we get

2Up+1 ≡
(
D

p

)
a+ a (mod p) (3.11)

2Up−1 ≡
(
D

p

)
a

b
+ a
−1

b
(mod p). (3.12)

If
(

D
p

)
= −1, then from (3.11) we have p | Up+1. On the other hand, if(

D
p

)
= 1, from (3.12) one obtains p | Up−1.
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2. Taking k = 1 and r = ±1 in relation (3.2) and using (2.6), we get

2Vp+1 ≡ D
(
D

p

)
+ a2 (mod p) (3.13)

2Vp−1 ≡ D
(
D

p

)
−1

b
+
a2

b
(mod p). (3.14)

Since D = a2 − 4b, if
(

D
p

)
= −1, then from (3.13) we have p | Vp+1 − 2b. In

the case
(

D
p

)
= 1, from (3.14) one obtains p | Vp−1 − 2. �

3.1. Results for b = −1

The following result generalizes Proposition 1.2 (Lemma 1 in [5]), which was
formulated for the Fibonacci and Lucas numbers. It can also be applied for
Pell and Pell-Lucas numbers, as seen in Section 4.

Theorem 3.5. Let p be an odd prime and k a positive integer. If Un =
Un(a,−1), Vn = Vn(a,−1) and a is an integer such that D = a2 + 4 > 0
is not a perfect square, then the following relations hold:

1. Ukp−(D
p ) ≡ Uk−1 (mod p);

2. Vkp−(D
p ) ≡

(
D
p

)
Vk−1 (mod p).

Proof. 1. Setting in (3.1) r = 1 and r = −1, respectively, by (2.6) we obtain

2Ukp+1 ≡
(
D

p

)
aUk + Vk (mod p) (3.15)

2Ukp−1 ≡
(
D

p

)
a

b
Uk −

1

b
Vk (mod p). (3.16)

By Lemma 2.1, considering
(

D
p

)
= −1 in (3.15), one obtains

2Ukp−(D
p ) ≡ −aUk + Vk ≡ −2bUk−1 (mod p). (3.17)

Furthermore, replacing
(

D
p

)
= 1 in (3.16), we have

2Ukp−(D
p ) ≡

1

b
(aUk − Vk) ≡ 2Uk−1 (mod p). (3.18)

Since b = −1, combining (3.17) and (3.18), it follows that

Ukp−(D
p ) ≡ Uk−1 (mod p).

2. By setting r = 1 and r = −1 in (3.2), respectively, by (2.6) we obtain

2Vkp+1 ≡ D
(
D

p

)
Uk + aVk (mod p) (3.19)

2Vkp−1 ≡ D
(
D

p

)
Uk
−1

b
+
a

b
Vk (mod p). (3.20)
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By Lemma 2.1, replacing
(

D
p

)
= −1 in (3.19), one obtains

2Vkp−(D
p ) ≡ −DUk + aVk ≡ 2bVk−1 ≡ −2b

(
D

p

)
Vk−1 (mod p). (3.21)

Furthermore, setting
(

D
p

)
= 1 in (3.20), we get

2Vkp−(D
p ) ≡ −

1

b
(DUk − aVk) ≡ 2

(
D

p

)
Vk−1 (mod p). (3.22)

Combining (3.21) and (3.22), we deduce that

Vkp−(D
p ) ≡

(
D

p

)
Vk−1 (mod p).

This ends the proof. �

The following result generalises Proposition 1.3, which was originally
formulated for the particular case of Fibonacci and Lucas sequences.

Remark 3.6. From the two statements of Theorem 3.5, we deduce that for
every odd prime p, whenever a is an integer such that D = a2 +4 > 0 is not a
perfect square, there is an arithmetic progression a0, a1, ... with ratio p, such
that the following two relations hold:

(Ua0
, Ua1

, Ua2
, ...) ≡ (U0, U1, U2, ...) (mod p),

(Va0
, Va1

, Va2
, ...) ≡

(
D

p

)
(V0, V1, V2, ...) (mod p).

3.2. Results for b = 1

The following result is a counterpart of Proposition 1.2 (Lemma 1 in [5]),
which was formulated for the Fibonacci and Lucas numbers (b = −1).

Theorem 3.7. Let p be an odd prime and k a positive integer. If Un = Un(a, 1),
Vn = Vn(a, 1) and a is an integer such that D = a2 − 4 > 0 is not a perfect
square, then the following relations hold:

1. Ukp−(D
p ) ≡

(
D
p

)
Uk−1 (mod p);

2. Vkp−(D
p ) ≡ Vk−1 (mod p).

Proof. Similar to Theorem 3.5, but using b = 1 in (3.17) and (3.21). �

Remark 3.8. Also, from the two statements of Theorem 3.7, we deduce that
for every odd prime p, whenever a is an integer such that D = a2 − 4 > 0 is
not a perfect square, there is an arithmetic progression a0, a1, ... with ratio
p, such that the following two relations hold:

(Ua0
, Ua1

, Ua2
, ...) ≡

(
D

p

)
(U0, U1, U2, ...) (mod p),

(Va0 , Va1 , Va2 , ...) ≡ (V0, V1, V2, ...) (mod p).
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4. Applications to the classical Pell and Pell-Lucas numbers

Here we recover arithmetic properties of the Pell and Pell-Lucas numbers.

Theorem 4.1. Let p be an odd prime, k a positive integer, and r an arbitrary
integer. The following relations hold:

2Pkp+r ≡ (−1)
p2−1

8 PkQr + PrQk (mod p), (4.1)

2Qkp+r ≡ 8(−1)
p2−1

8 PkPr +QkQr (mod p). (4.2)

Proof. It follows by Theorem 3.1 used for Pn = Un(2,−1), andQn = Vn(2,−1),

together with the identities α = 1+
√

2, β = 1−
√

2, D = 8, and the properties

of Legendre’s function. Notice the following identity (−1)
p2−1

8 =
(

8
p

)
=
(

2
p

)
,

proved by Euler (see, e.g., [1, Theorem 9.1.2]). �

Below we present some consequences of Theorem 4.1.

Corollary 4.2. If k is a positive integer, then

Pkp ≡ (−1)
p2−1

8 Pk (mod p),

Qkp ≡ Qk (mod p).

In particular, when k = 1, one obtains

Pp ≡ (−1)
p2−1

8 (mod p),

Qp ≡ 2 (mod p).

The proofs follow easily by setting r = 0 in (4.1) and (4.2), respectively.

Corollary 4.3. From relation (4.3) it follows that for two positive integers k
and s, p divides Pkp−Psp if and only if p divides Pk−Ps. Moreover, we have

Pkp − Psp ≡ (−1)
p2−1

8 (Pk − Ps) (mod p).

In particular, since P2 = 2 and P1 = 1, we get

P2p − Pp ≡ (−1)
p2−1

8 (mod p).

Proposition 4.4. Under the conditions of Theorem 4.1, we have

p | P
p−(−1)

p2−1
8

,

p | Q
p−(−1)

p2−1
8

− 2(−1)
p2−1

8 .

Proof. Clearly, for p ≡ 5 (mod 8), we have (−1)
p2−1

8 = −1, while for p ≡
1, 3, 7 (mod 8), we have (−1)

p2−1
8 = 1.

1) Taking k = 1 and r = ±1 in (4.1) we get

Pp+1 = (−1)
p2−1

8 + 1 (mod p), (4.3)

Pp−1 = −(−1)
p2−1

8 + 1 (mod p). (4.4)
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If p ≡ 5 (mod 8) then from (4.3) we have p | Pp+1. In the cases p ≡ 1, 3, 7
(mod 8), from (4.4) one obtains p|Pp−1.

2) Taking k = 1 and r = ±1 in relation (4.2) we obtain

Qp+1 ≡ 4(−1)
p2−1

8 + 2 (mod p)

Qp−1 ≡ 4(−1)
p2−1

8 − 2 (mod p).

This ends the proof. �

From Theorem 3.5 we recover the following property of the Pell and
Pell-Lucas sequences, which represents a counterpart for the results given in
[5] for Fibonacci and Lucas sequences.

Theorem 4.5. Let p be an odd prime and k a positive integer. We have:

1. Pkp−( 8
p ) ≡ Pk−1 (mod p);

2. Qkp−( 8
p ) ≡

(
8
p

)
Qk−1 (mod p).

Proof. One just needs to consider a = 2 in Theorem 2, combined with the
fact that D = 8 is not a perfect square. �

5. Pseudoprimality results concerning the classical sequences

In this section we review some key definitions of pseudoprimality related to
the Fibonacci, Lucas, Pell and Pell-Lucas sequences.

5.1. Review on Fibonacci and Lucas pseudoprimality

We recall some notions of Fibonacci and Lucas pseudoprimality. A composite
integer n is called a Fibonacci pseudoprime if n | Fn−(n

5 ). Lehmer proved

in [26] that there exist infinitely many pseudoprimes. The list of even such
pseudoprimes is indexed as A141137 in the OEIS [28]. The list of known odd
Fibonacci pseudoprimes indexed as A081264 begins with:

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981,

15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, 34943,

35207, 39203, 40501, 50183, 51841, 51983, 52701, 53663, 60377, 64079, . . .

There is no prime such that p2 | Fp−( p
5 ) for p < 2.8×1016, in contrast to

relation (3.7). R. Crandall, K. Dilcher and C. Pomerance called in [11] such
a prime p satisfying p2 | Fp−( p

5 )
a Wall-Sun-Sun prime. There is no known

example of a Wall-Sun-Sun prime and there is also no known way to check
the congruence Fp−( p

5 )
≡ 0 (mod p2), other than through explicit powering

computations. Further remarks on this topic can be found in [3] or [17].
Taking k = 1 and r = 0 in the relation (1.2), we obtain

Lp ≡ 1 (mod p).

https://oeis.org/A141137
https://oeis.org/A081264
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A composite integer n satisfying n | Ln − 1 is called a Bruckman-Lucas
pseudoprime. In 1964, Lehmer [26] proved that the set of Lucas pseudoprimes
is infinite. This sequence indexed in the OEIS [28] as A005845, begins with:

705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251, 24465, 29281,

34561, 35785, 51841, 54705, 64079, 64681, 67861, 68251, 75077, 80189, 90061,

96049, 97921, 100065, 100127, 105281, 113573, 118441, 146611, . . .

A composite integer n is called a Fibonacci-Bruckner-Lucas pseudo-
prime if it satisfies simultaneously the properties

n | Fn−( p
5 ) and n | Ln − 1.

These numbers produce the sequence [28] as A212424, beginning with

4181, 5777, 6721, 10877, 13201, 15251, 34561, 51841, 64079, 64681, . . .

Bruckman proved that there are infinitely many integers n with this property,
in 1994 [7]. These were shown to correspond to the Frobenius pseudoprimes
for the Fibonacci polynomial x2 − x− 1 (see, e.g., [12], [30]).

5.2. New results on Pell and Pell-Lucas pseudoprimality

Some of the results in this section have been included in our book [4].
An odd composite integer n is called a Pell pseudoprime if n divides

P
n−(−1)

n2−1
8

. The Pell pseudoprimes are indexed as A099011 in OEIS [28],

starting with the terms:

169, 385, 741, 961, 1121, 2001, 3827, 4879, 5719, 6215, 6265, 6441, 6479, 6601,

7055, 7801, 8119, 9799, 10945, 11395, 13067, 13079, 13601, 15841, 18241, 19097,

20833, 20951, 24727, 27839, 27971, 29183, 29953, 31417, 31535, 34561, . . .

Kiss, Phong, and Lieuwen [22] showed that this sequence is infinite. By anal-
ogy with Wall-Sun-Sun primes, we call a prime p strong Pell prime if

p2 | P
p−(−1)

p2−1
8

.

Finding examples of such primes and algorithms to check the sequence

P
p−(−1)

p2−1
8

≡ 0 (mod p2)

are interesting open problems.

Definition 5.1. We say that an odd composite integer n is a Pell-Lucas pseu-
doprime if n divides Qn − 2.

The list of the Pell-Lucas pseudoprimes starts with the numbers

169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107, 7801, 8119, 10945,

11285, 13067, 15841, 18241, 19097, 20833, 24727, 27971, 29953, 31417, 34561,

35459, 37345, 37505, 38081, 39059, 42127, 45451, 45961, 47321, 49105, . . . ,

recently indexed in the OEIS as A330276 [28]. Also, it seems that the following
property is true, but at this moment we don’t know a proof.

https://oeis.org/A005845
https://oeis.org/A212424
https://oeis.org/A099011
https://oeis.org/A330276
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Conjecture 1. There exist infinitely many Pell-Lucas pseudoprimes.

We now define another concept of pseudoprimality, for which we formu-
late a conjecture based on numerical experiments.

Definition 5.2. An odd composite integer n is called a Pell-Pell-Lucas pseu-
doprime if it satisfies simultaneously the properties

n | P
n−(−1)

n2−1
8

and n | Qn − 2.

Conjecture 2. There exist infinitely many Pell-Pell-Lucas pseudoprimes.

The list of such pseudoprimes that we know at this moment is

169, 385, 961, 1121, 3827, 6265, 6441, 6601, 7801, 8119, 10945, 13067, 15841,

18241, 19097, 20833, 24727, 27971, 29953, 31417, 34561, 35459, 37345, . . .

which are recently indexed in the OEIS as A327652.
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