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Abstract
The study aimed to explore the influence of a sports-specific intermittent sprint 
protocol (ISP) on wheelchair sprint performance and the kinetics and kinematics 
of sprinting in elite wheelchair rugby (WR) players with and without spinal cord 
injury (SCI). Fifteen international WR players (age 30.3 ± 5.5 years) performed 
two 10-s sprints on a dual roller wheelchair ergometer before and immediately 
after an ISP consisting of four 16-min quarters. Physiological measurements 
(heart rate, blood lactate concentration, and rating of perceived exertion) were 
collected. Three-dimensional thorax and bilateral glenohumeral kinematics 
were quantified. Following the ISP, all physiological parameters significantly 
increased (p ≤ 0.027), but neither sprinting peak velocity nor distance traveled 
changed. Players propelled with significantly reduced thorax flexion and peak 
glenohumeral abduction during both the acceleration (both −5°) and maximal 
velocity phases (−6° and 8°, respectively) of sprinting post-ISP. Moreover, players 
exhibited significantly larger mean contact angles (+24°), contact angle asym-
metries (+4%), and glenohumeral flexion asymmetries (+10%) during the ac-
celeration phase of sprinting post-ISP. Players displayed greater glenohumeral 
abduction range of motion (+17°) and asymmetries (+20%) during the maximal 
velocity phase of sprinting post-ISP. Players with SCI (SCI, n = 7) significantly in-
creased asymmetries in peak power (+6%) and glenohumeral abduction (+15%) 
during the acceleration phase post-ISP. Our data indicates that despite inducing 
physiological fatigue resulting from WR match play, players can maintain sprint 
performance by modifying how they propel their wheelchair. Increased asymme-
try post-ISP was notable, which may be specific to impairment type and warrants 
further investigation.

K E Y W O R D S

asymmetries, fatigue, upper-body kinematics, wheelchair sprinting

www.wileyonlinelibrary.com/journal/sms
https://orcid.org/0000-0001-6043-3607
https://orcid.org/0000-0002-4294-6086
mailto:
https://orcid.org/0000-0001-7203-4144
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:v.l.tolfrey@lboro.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fsms.14423&domain=pdf&date_stamp=2023-06-06


2  |      BRILEY et al.

1   |   INTRODUCTION

Wheelchair rugby (WR) is a popular Paralympic team 
sport originally developed for individuals with cervical 
spinal cord injury (SCI), known as tetraplegia.1 However, 
wheelchair users with non-SCI impairments such as limb 
deficiency, neurological impairment (cerebral palsy), and 
neuromuscular disorders are now eligible to compete.1 
The sport is characterized by frequent and intermittent 
bouts of high speed and/or sprint propulsion relative to 
impairment severity. Thus, the ability to accelerate rap-
idly and attain a high maximal velocity are key indicators 
of WR performance.2 That said, these activities rely on 
the small muscle mass of the upper limb, which impose 
a large mechanical demand on the shoulder and coin-
cide with detrimental glenohumeral kinematics linked 
to reduced subacromial space.2–5 WR match-play con-
sists of four 8-min quarters separated by 2, and 5 min for 
half time. When the ball is out of play, the game clock is 
stopped exposing players to ~16-min of active propulsion 
per quarter, with only short periods of recovery. Earlier 
work by Sarro et al6 noted both reduced distance traveled 
and average velocities in the second half of WR match 
play, indicating players may experience impaired sprint 
performance, particularly toward the end of the game due 
to fatigue. That said, the playing standards have changed 
considerably, data were presented only as two halves of a 
working clock of 66.8 min and only 8 players investigated. 
In contrast, to more recent evidence2 incorporating larger 
cohorts of players (n = 100) where no significant differ-
ence in activity profiles over the course of match play were 
found. Thus, this topic warrants clarification.

The influence of fatigue on wheelchair propulsion bio-
mechanics has been investigated during both steady-state 
and start-up propulsion at low speeds during daily wheel-
chair propulsion of experienced non-athletic individuals 
with SCI and non-wheelchair users.7–10 Wheelchair users 
maintained prescribed submaximal speed and average 
power output when fatigued by compensating with larger 
push-rim contact angles and trunk forward flexion.7–9 
Moreover, during start-up propulsion in a fatigued state 
reductions are evident in push-rim contact time resulting 
in reduced applied forces.11 These findings, suggest that 
fatigue-induced alterations in propulsion biomechanics 
are present11 but may not be transferable to a sporting 
context since the constraints of these aforementioned 
studies were specific to the task of daily propulsion. It 
is well-known that wheelchair propulsion biomechanics 
vary according to speed and wheelchair design3 and that 
the underlying mechanisms of fatigue vary based on the 
constraints of the task.12 Hence further work is warranted 
to gain a thorough understanding of the biomechanical 
alterations induced by WR match play.

Recent evidence suggests the biomechanical character-
istics of wheelchair sprinting in wheelchair sports athletes 
are adaptable to varied task constraints and shoulder pain 
thereby facilitating task performance (peak velocity and 
distance traveled).3 WR players with cervical SCI typically 
have limited trunk function and display different physio-
logical responses to simulated WR activities to those with 
non-SCI impairments.13 Thus, distinct biomechanical al-
terations may exist between these groups because of WR 
match play and warrant investigation. WR players exhibit 
asymmetries in both kinetics during sprinting14,15 and 
shoulder kinematics during submaximal propulsion16 in 
a non-fatigued state, highlighting the value of quantifying 
asymmetries for sports performance and injury surveil-
lance. From a theoretical perspective, asymmetries indicate 
the unequal distribution of forces. Thus, if simulated WR 
match play negatively amplifies these asymmetries even 
further, the uneven acute and chronic stress imposed by 
wheelchair sprinting throughout a game may be substan-
tial. Therefore, the purpose of this study was to: (1) estab-
lish whether a sports-specific intermittent sprint protocol 
(ISP) decreases wheelchair sprint performance; and (2) 
examine alterations in the kinetic, joint kinematic, and the 
asymmetries therein, during wheelchair sprinting in elite 
WR players with or without SCI. It was hypothesized that 
peak velocity and distance traveled during sprinting would 
decrease and biomechanical modifications including re-
duced shoulder motion and greater kinetic and kinematic 
asymmetries would be present following WR match play.

2   |   MATERIALS AND METHODS

2.1  |  Participants

Fifteen male international WR rugby players (mean ± stand-
ard deviation: age: 30.3 ± 5.5 years; body mass: 
65.5 ± 14.6 kg; years competing in WR = 7.8 ± 3.9 years) 
volunteered to participate in this study. Participants pro-
vided written informed consent for the study which was 
approved by the University's Ethical Advisory Committee. 
To achieve a statistical power of 80% with an alpha cri-
terion level of 0.05 based on previous wheelchair sprint-
ing kinematic data,3 a minimum of 12 participants was 
required (G*Power, 3.1.9.2). Players were divided into two 
groups: Individuals with SCI (n = 7, level = C5-C7 World 
Wheelchair Rugby [WWR] classification range = 0.5–2.0) 
and those with non-SCI health conditions (n = 8) includ-
ing double below-knee amputation (n = 3), cerebral palsy 
(n = 1), Roberts syndrome (n = 1), arthrogryposis multi-
plex congenita (AMC) (n = 1), polyneuropathy (n = 1) and 
osteogenesis imperfecta type II (n = 1), WWR classifica-
tion range = 1.5–3.5.
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      |  3BRILEY et al.

2.2  |  Experimental protocol

Players were asked to refrain from strenuous exercise, 
caffeine, and alcohol 24 h prior to their laboratory visit. 
All trials were performed on a dual roller wheelchair er-
gometer (Lode Esseda, m988900), which simultaneously 
collects spatio-temporal and kinetic parameters of wheel-
chair propulsion from each side and shows good agree-
ment with that of instrumented measurement wheels.17 
Players completed the test in their own individualized 
rugby wheelchair used in training and competitions. 
Dimensions ranged with chair mass 17.4 ± 3.9 kg; wheel 
diameter 0.60 ± 0.01 m; rim diameter 0.54 ± 0.02 m and 
wheelbase 0.74 ± 0.04 m.

Following a 10-min warm-up (consisting of self-
selected propulsion, dynamic stretching, 3-min bout of 
submaximal propulsion and 2-min rest), two 10-s sprints 
from a rolling start were completed (Figure 1), separated 
by a 5-min rest. A rolling start of 1 m s−1 was employed 
to minimize wheel slippage when propelling from a sta-
tionary position on the ergometer. Standardized verbal 
encouragement was provided throughout to maximize 
players' efforts during the sprint trials. These two sprints 
were repeated immediately after completing a sports-
specific ISP, to examine propulsion following simulated 
WR match-play (Figure 1).

The ISP protocol began with a further warm-up (16-
min) to replicate competitive match-play preparations 
followed by the main protocol (73 min in duration).13 In 
brief, this consisted of four 16-min quarters which incor-
porated prescribed propulsion speeds at various percent-
ages of participant's peak velocity (Vmax) determined from 
the pre-ISP sprint trials (Figure  1). Each quarter, play-
ers performed 11 blocks of very low speeds (≤20% Vmax), 

low speeds (21%–50% Vmax) and moderate speed (51%–
80% Vmax) propulsion, for 35, 30 and 25 s, respectively. 
Throughout each quarter, submaximal propulsion was 
separated by 5 and 10 s sprints representing high (81%–
95% Vmax) and very high speed (≥95% Vmax) propulsion. 
Speed zones were distributed across each quarter to repli-
cate the interval nature of match-play and were based on 
relative speed profiles of WR players during international 
competitions.2

2.3  |  Physiological and biomechanical 
measurements

After each participant voided their bladder, body mass 
was recorded to the nearest 0.1 kg using a digital platform 
scale (Detecto 6550 Wheelchair Scales). Before and imme-
diately after the ISP, a capillary blood sample was taken 
from the earlobe to determine blood lactate concentration 
(BLa) (Biosen C-line, EKF Diagnostics). Heart rate (HR) 
(Polar Team2, Polar Electro Oy) was recorded continu-
ously throughout the testing session and was reported as 
an average for pre-ISP and post-ISP sprints. Rating of per-
ceived exertion (RPE) was verbally reported immediately 
following each sprint using Borg's 6–20 RPE scale.18

Upper body kinematics were measured using a 
10-camera Vicon motion analysis system (200 Hz: MX T40-
S, Vicon Motion Systems Limited) alongside ergometry 
data during the Pre-ISP and Post-ISP protocols. Eighteen 
retro-reflective markers (14 mm, B&L Engineering) were 
placed on the anatomical landmarks of the trunk (seventh 
cervical vertebrae, eighth thoracic vertebrae, incisura 
jugularis and xiphoid process), and bilateral upper limbs 
(medial and lateral epicondyle) of the players according 

F I G U R E  1   Experimental procedure. Physiological data and biomechanical measurements of submaximal and sprint propulsion were 
taken before and immediately after a wheelchair rugby specific intermittent sprint protocol (ISP). HR, heart rate; RPE, Rating of perceived 
exertion; UL, Upper limb.
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to International Society of Biomechanics (ISB) recom-
mendations.19 Single markers were attached using sports 
adhesive spray and double-sided hypoallergenic tape. A 
four-marker cluster was placed on each upper arm using 
strapping. The acromion marker cluster (AMC) method 
was used to track scapular motion to enable the estima-
tion of glenohumeral kinematics.20 Previous work has es-
tablished the validity and reliability of the AMC method 
for humeral elevation up to 90°20,21 and as a reliable 
method during wheelchair propulsion.16 The Optimal 
Common Shape Technique (OCST)22 was used to account 
for soft tissue artifacts of the upper arms during a bilateral 
shoulder circumduction trial. In addition, glenohumeral 
joint centres were determined by the Symmetrical Centre 
of Rotation Estimation (SCoRE) method from the circum-
duction trial23 in accordance with previous wheelchair 
sprinting research.3 Where possible, markers remained in 
situ during the entire data collection and subject calibra-
tion were repeated Post-ISP.

2.4  |  Data analysis

Sprint performance outcome parameters (peak veloc-
ity and total distance) and kinetic and kinematic data 
were extracted for both groups during two phases of the 
sprints, the acceleration phase represented by the first 
three pushes and the maximal velocity phase which in-
cluded the propulsion cycle during which peak velocity 
was reached and one cycle on either side3,15 (see Figure 2 
for an illustration and parameters calculated). The start 
and end of each propulsion cycle was identified using an 
ergometer roller torque cutoff of 1 Nm based on previ-
ous studies.3,15 Custom written MATLAB scripts (Matlab 
R2021a, The Mathworks Inc.) were used for all further 
data processing and analysis. Spatio-temporal and kinetic 
data derived from the dual roller wheelchair ergometer 
included bilateral contact angles, peak forces, and peak 
powers.3,15 An eighth-order Butterworth filter with a cut-
off of 10 Hz filtered force data. A fourth-order, low-pass 
Butterworth filter with a cutoff frequency of 7 Hz filtered 
motion analysis data. Filter cutoff frequencies were de-
termined by residual analysis and in line with previous 
wheelchair sprinting research.3,24 The orientation of the 
thorax (thorax to global) was calculated in accordance 
with ISB recommendation19 and glenohumeral (humerus 
to scapular) joint motion was determined using a ZXY 
rotation sequence.25 Discrete kinematic data selected for 
analysis were peak angles and range of motion (ROM) 
for thorax flexion, glenohumeral flexion, and abduc-
tion as these parameters have previously been associ-
ated with alterations with pain, propulsion speed, and 
fatigue.3,8,26,27 Inter-limb asymmetries were calculated for 

the biomechanical parameters described above using the 
symmetry index (SI) (Equation  1).14,15,28 The SI reports 
asymmetry as a percentage whereby, 0% denotes perfect 
symmetry.

Note: SI = Symmetry index, Dom = Value from the 
dominant limb, NDom = Value from the non-dominant 
limb.

2.5  |  Statistical analysis

All statistical analyses were performed using the 
Statistical Package for Social Sciences (SPSS version 27, 
IBM Corporation). Separate two-way mixed analyses of 
variance were used to determine main effects for time 
(Pre_ISP, Post_ISP), impairment (SCI, Non-SCI), and 
a time × group interaction for each dependent variable. 
Data normality, homogeneity of variance, and sphericity 
were assessed by Shapiro–Wilk tests, Levene's test, and 
Mauchly's test of sphericity, respectively. Differences in 
how each group altered propulsion biomechanics parame-
ters over time were identified as significant (time × group) 
interactions. The alpha level was set at p < 0.05. For pa-
rameters that had a significant interaction effect post hoc 
t-tests, with a Bonferroni correction, were performed for 
each participant group to establish where differences oc-
curred. This enabled the change in propulsion biomechan-
ics to be evaluated for each impairment group separately 
via paired t-tests. Independent t-tests examined group dif-
ferences at each time point. Effect sizes were calculated 
using Partial eta squared (η2) for the ANOVA outputs and 
Cohen's d was to determine the magnitude of the post hoc 
effects, which were classified as small (d = 0.2), moderate 
(d = 0.5) and large (d = 0.8).29

3   |   RESULTS

3.1  |  Physiological and sprint 
performance changes

Significant main effects for time (Post ISP-Pre ISP) in-
dicated that BLa, HR, and RPE increased post-ISP com-
pared to pre-ISP levels (Table  1). No significant main 
effect for group or interaction effect was observed for 
BLa, HR, and RPE. No significant main effect for time, 
impairment, or interaction effect was observed for any 
sprint performance outcome variable (Vmax or distance) 

(1)SI =
∣ Dom −NDom ∣

Dom
× 100
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during the acceleration phase or maximal velocity phase 
(Table 1).

3.2  |  Propulsion biomechanical changes

Significant main effects for time (pre-ISP vs. post-
ISP) were identified for nine biomechanical param-
eters of sprinting (Tables  2 and 3). Post ISP, players 
significantly reduced peak thorax flexion (p = 0.016, 
η2 = 0.373, mean change = −5.1°) and glenohumeral 
(GH) abduction (p = 0.001, η2 = 0.565, mean change 
−5.1°) but increased contact angles (p < 0.001, 
η2 = 0.650, mean change −5.1°), contact angle asym-
metries (p = 0.044, η2 = 0.277, mean change −5.1°), 
and GH flexion asymmetries (p = 0.041, η2 = 0.283, 
mean change = 1.5°) during the acceleration phase of 
sprinting. During the maximal velocity phase of sprint-
ing players reduced peak thorax flexion (p = 0.003, 
η2 = 0.497, mean change = −5.8°) and GH abduction 
(p = 0.031, η2 = 0.311, mean change = −8.1°) but in-
creased GH abduction ROM (p = 0.007, η2 = 0.444, mean 
change = 16.9°) and abduction asymmetries (p = 0.046, 
η2 = 0.273, mean change 20.2%) following the ISP.

Significant main effects for impairment (Table  3) 
showed players with non-SCI impairments displayed 
greater GH peak abduction during both the post-ISP 
acceleration phase and post-ISP max velocity phase of 
sprinting than those with SCI (p = 0.018, d = 1.4, mean dif-
ference = 12.1° and p = 0.027, d = 1.3, mean difference = 6°, 
respectively). Players with non-SCI displayed signifi-
cantly greater glenohumeral flexion ROM (p = 0.029, 
d = 1.3, mean difference > 10.9°) and abduction peak an-
gles (p = 0.010, d = 1.6, mean difference >8.1°) during the 
pre-ISP and post-ISP maximal velocity phase of the sprint 
than those with SCI.

Significant interaction effects (Tables 2 and 3) and pair-
wise comparisons revealed players with SCI significantly 
increased asymmetries in both peak power (p = 0.003, 
d = 1.9, mean change = 6.9°) and GH abduction ROM 
(p = 0.009, d = 1.5, mean change = 15.1°) during the accel-
eration phase of sprinting post-ISP. However, neither pa-
rameter differed significantly in individuals with non-SCI 
(p = 0.152 and p = 0.785) for peak power and GH abduction 
ROM asymmetries, respectively. The different patterns of 
peak power and GH abduction asymmetries alterations 
between two players (SCI and non-SCI) are clearly shown 
in Figure 3.

4   |   DISCUSSION

This novel study evaluated the ISP-induced physiologi-
cal changes as well as performance and biomechanical 
alterations of wheelchair sprinting in elite WR players. 
Contrary to the first study hypothesis players maintained 
peak velocity and distance during wheelchair sprinting 
post-ISP. In support of the second hypothesis, players dis-
played alterations in kinetics, joint kinematics, and asym-
metries of wheelchair sprinting following the ISP. Thus, 
this work provides insights into WR rugby players' wheel-
chair propulsion technique following simulated match 
play to maintain sprint performance.

Players significantly increased blood lactate concentra-
tion, RPE, and HR following the ISP, indicating the devel-
opment of physiological fatigue. Yet, sprint performance 
was not impaired. Specifically, all players reported a high 
level of exertion (RPE >16) which was comparable to peak 
values reported during WR match play.30 Furthermore, the 
increase in blood lactate values (pre- to post-ISP) exceeded 
those reported by athletes with greater physical capac-
ity than the current study during wheelchair basketball 

F I G U R E  2   Representative mean velocity, distance, and power (dominant limb and nondominant limb) data of the whole 10-s sprint 
before the intermittent sprint protocol (Pre-ISP) and immediately following the ISP (Post-ISP). Highlighted view of the first three pushes 
(Acceleration phase) and the maximal velocity phase analyzed in this study.
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match play.31 Given these significant physiological re-
sponses, the absence of sprint performance changes was 
partially unexpected. High-intensity intermittent sports, 
such as WR match play, have been associated with fatigue 
development which is typically reflected in a functional 
decline in the ability to express maximal force and power, 
possibly impairing sprint performance.32 Indeed, Sarro 
et al.6 reported reductions in distance traveled and average 
velocities in the second half of WR match play. However, 
the current findings support more recent work from our 
laboratory whereby activity profiles of elite WR players did 
not change during match play2 and repeated sprint ability 
was maintained throughout simulated match play on an 
ergometer.13 One possible explanation for these findings is 
the advancement of sports science support, training time, 
and higher standard of playing nation, competition and 
coaching compared to Sarro et al's6 work in 2008. Thereby, 

leading to better physical capabilities and propulsion skills 
which facilitate players' ability to adapt to the demands of 
WR match play and maintain performance.

During the acceleration phase of sprinting, players 
propelled their wheelchairs with reduced peak thorax 
flexion and glenohumeral abduction but utilized larger 
contact angles, alongside greater contact angle asymme-
tries, and glenohumeral flexion asymmetries following 
the ISP. These kinematic alterations are likely interre-
lated. Increasing contact angles can facilitate the high 
push rim forces and power which are necessary to over-
come the inertia of the wheelchair-user and maximally 
accelerate the wheel. Evidence suggests, wheelchair 
athletes typically achieve these favorable technique al-
terations by increasing thorax flexion and to a lesser ex-
tent shoulder flexion during the acceleration phase of 
sprinting when in an unfatigued state.3,33 Furthermore, 

T A B L E  1   Physiological and wheelchair sprint performance changes following the intermittent sprint protocol (ISP) overall (n = 15), 
those with SCI (n = 7) and non-SCI (n = 8). Data reported as mean(SD).

ANOVA

Variable Group Pre ISP Post ISP Time Imp. Time × Imp.

Physiological changes

Blood lactate 
(mmol l−1)

Overall 1.35 (0.54) 5.43 (2.87) <0.001 0.174 0.088

SCI 1.31 (0.53) 4.22 (2.22)

Non-SCI 1.39 (0.58) 6.49 (3.07)

RPE Overall 15 (2) 17 (2) 0.001 0.764 0.788

SCI 15 (2) 17 (2)

Non-SCI 15 (2) 17 (2)

Heart rate (b min−1) Overall 116 (21) 132 (21) 0.027 0.718 0.203

SCI 113 (25) 139 (24)

Non-SCI 119 (17) 127 (18)

Sprint performance changes

Acceleration phase

Peak Vel.(m s−1) Overall 2.34 (0.28) 2.43 (0.39) 0.268 0.310 0.530

SCI 2.19 (0.33) 2.23 (0.41)

Non-SCI 2.47 (0.15) 2.61 (0.28)

Distance (m) Overall 2.1 (0.5) 2.2 (0.6) 0.927 0.320 0.464

SCI 2.1 (0.5) 2.0 (0.6)

Non-SCI 2.2 (0.3) 2.3 (0.6)

Overall

Peak Vel. (m s−1) Overall 3.79 (0.62) 3.79 (0.59) 0.991 0.087 0.227

SCI 3.47 (0.65) 3.54 (0.67)

Non-SCI 4.07 (0.46) 4.00 (0.44)

Distance (m) Overall 41.4 (9.3) 42.3 (8.5) 0.510 0.172 0.995

SCI 38.1 (12.4) 39.1 (8.9)

Non-SCI 44.2 (4.7) 45.2 (7.6)

Note: Bold text indicates statistical significance p < 0.05.
Abbreviations: Imp, Impairment; RPE, rating of perceived exertion.
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previous work investigating submaximal daily propul-
sion reported that individuals increased both trunk and 
shoulder flexion and push rim forces when fatigued.8 
In contrast, the current study suggests increases in con-
tact angle and the maintenance of propulsion forces 
post ISP coincide with larger contact angle and gleno-
humeral flexion asymmetries during the acceleration 
phase of sprinting. Thus, these alterations may reflect 
a specific kinematic strategy to maintain acceleration 
performance whereby WR players shift toward the dom-
inant hand to facilitate a larger contact angle to meet 
the force/power expression demand of accelerating the 
wheelchair.

During the maximal velocity phase of sprinting, 
players exhibited lower peak thorax flexion and gleno-
humeral abduction but increased both the ROM and 
asymmetries of glenohumeral abduction/adduction 
following the ISP. The large number of biomechanical 
alterations during both phases of sprinting alongside 
the absence of changes in sprint performance follow-
ing the ISP, suggest that players can maintain the gross 
features of sprinting but propel their wheelchair dif-
ferently. The decreased peak thorax flexion and gleno-
humeral abduction during the maximal velocity phase 
were comparable alterations to that observed during the 
acceleration phase. Previous studies indicate that lower 
glenohumeral abduction may increase subacromial 
space in which structures such as rotator cuff and biceps 

tendon reside, potentially reducing acute stress on these 
structures.34,35 This alteration is comparable with that 
exhibited by athletes with greater shoulder pain during 
sprinting3 and aligns with the protective response hy-
pothesis.36 This theory proposes that during tasks that 
may provoke painful/fatigue symptoms the nervous 
system searches for movement patterns that are less 
painful by constraining motion at the painful/fatigued 
joint/area.36 Consequently, it appears WR players adapt 
to physiological fatigue, induced by an ISP by reducing 
shoulder abduction, thereby minimizing acute pain/
perceived threat of pain/fatigue at the shoulder during 
sprinting. However, it should be noted that players did 
not change either contact angle and glenohumeral flex-
ion asymmetries during the maximal velocity phase 
instead became more asymmetrical in glenohumeral ab-
duction. This subtle alteration is likely due to the lower 
forces and smaller contact angle requirements during 
this phase of sprinting resulting from a higher wheel 
velocity and coupling difficulties between the hand and 
push-rim,3 meaning large asymmetrical technique ad-
justments are not required.

Regarding impairment-specific alterations, during 
the acceleration phase of sprinting players with SCI sig-
nificantly increased asymmetries in both peak power 
and glenohumeral abduction post ISP. Whereas these 
parameters were not significantly altered in those with 
non-SCI. Several explanations for this finding may exist. 

F I G U R E  3   Typical example of the different alterations in peak power and glenohumeral (GH) abduction asymmetries following the 
intermittent sprint protocol (ISP) between two players (spinal cord injury [SCI] and non-spinal cord injury [Non-SCI] impairment). Power 
and GH abduction over the dominant arm and non-dominant arm displayed over the first three propulsion cycles of the Pre-ISP and Post-
ISP sprint.
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The SCI group consisted of individuals with tetraplegia 
(levels C7 to C5) who possess less muscle mass because 
of impairment.37 As a result, SCI players may be suscep-
tible to earlier physiological fatigue leading to a greater 
duration of the ISP performed with adjusted propulsion 
biomechanics. Additionally, there are inherent differ-
ences in propulsion techniques between WR players 
with SCI and non-SCI. For instance, high-point players 
contact the push rim with the palm of their hands, while 
low-point players are more likely to adopt a backhanded 
technique and contact the push rim with the dorsum 
of their hands.15 Thus, the use of the backhanded tech-
nique may be more susceptible to simulated match play 
induced alterations to kinetic and kinematic of sprint-
ing. Finally, the lack of trunk function in the SCI group 
may lead to athletes relying more on inter-limb asym-
metries to adapt wheelchair propulsion biomechanics. 
It is widely known that during movement tasks, such 
as wheelchair propulsion, individuals with low trunk 
muscle strength often compensate for lack of trunk con-
trol by increasing the recruitment of shoulder and arm 
musculature.38,39 Contrary to this, we speculate that the 
non-SCI group may possess a wider range of options to 
achieve the movement task outcomes during the ISP. 
This was reflected by the large inter-individual differ-
ences in biomechanical alterations within the non-SCI 
group compared to those with SCI. Nevertheless, these 
findings indicate the need for coaches and researchers 
to consider players' impairment type when monitoring 
and developing sports propulsion skills under fatigue.

A notable finding of the current study was the 
propensity for players to propel with larger kine-
matic asymmetries during sprinting following the ISP. 
Greater kinematic asymmetry may unequally distrib-
ute the forces within the upper limbs thereby influenc-
ing chronic stress imposed by wheelchair propulsion. 
However, little empirical data are available to support 
this hypothesis. Although, recent evidence from our 
laboratory suggests that WR athletes with SCI possessed 
thicker supraspinatus tendons than those with non-SCI 
thereby implicating differences in chronic tendon ad-
aptations between these groups.40 Thus, the additional 
asymmetrical alterations reported in those with SCI 
compared to those without SCI may be one factor that 
contributes to these tendon differences.40 Alternatively, 
increased asymmetries may be another aspect of the 
wider strategy utilized by WR players to protect the 
upper limb and maintain sprint performance following 
an ISP. Furthermore, these findings may indicate that 
each limb responds differently to physiological fatigue. 
That said, it should be clarified that the cause and con-
sequence of these biomechanical alterations during 
sprinting cannot be stated with confidence.

4.1  |  Limitations

An assumption of this work was that the ISP could in-
duce fatigue resulting in a decline in forces generated by 
shoulder muscles. However, changes in muscle activity 
and/or strength were not assessed. Thus, no comment can 
be made regarding ISP-induced neuromuscular fatigue. 
Nevertheless, it should also be reiterated that the purpose 
of this research was to investigate sprint performance and 
biomechanical alterations following simulated WR match 
play. Despite efforts made to minimize markers falling off, 
unfortunately, due to excessive sweating in some players 
some markers did become detached and fell the markers 
fell off. Where this occurred the markers were replaced by 
the same investigator who had originally positioned the 
markers at the start of the protocol. Furthermore, the bi-
lateral circumduction and anatomical trials were repeated 
post-ISP. Due to the use of glenohumeral kinematics 
rather than humerothoracic angles, caution is necessary 
when interpreting our findings. Although validated for 
typical upper limb movements during wheelchair propul-
sion,21 the accuracy of the AMC method for fast sporting 
motions, such as wheelchair sprinting, remains unclear 
and warrants further investigation. In accordance with the 
wider literature the testing protocol examined propulsion 
biomechanics before and immediately after the ISP with-
out quantifying any alterations during the ISP. Therefore, 
further work is necessary that investigates sprinting bio-
mechanics throughout the ISP which would help estab-
lish if there is a pivotal period where sprint propulsion 
biomechanics change during the ISP or whether changes 
are gradual. Furthermore, the ISP was designed to reflect 
an entire match on court. However, due to laboratory 
constraints no ball handling and other technical skills rel-
evant to on court match play were performed. That said, a 
strength of this study was that these biomechanical altera-
tions were observed despite the constraints of sprinting on 
an ergometer. Finally, it should be noted that in competi-
tion for tactical purposes and if performance is deteriorat-
ing players would be substituted.

5   |   PERSPECTIVES

Coaches, practitioners, and researchers should note that 
despite physiological fatigue, induced by the total du-
ration of an ISP, elite WR players can maintain sprint 
performance outcomes (peak velocity and distance) by 
modifying how they propel their wheelchair. Overall, 
players appear to reduce peak thorax and glenohumeral 
abduction but increase kinetic and kinematic asym-
metries following simulated match play. Therefore, 
WR practitioners should consider quantifying these 
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biomechanical parameters when monitoring and 
developing sports propulsion skills under fatigue. 
Furthermore, given specific alterations in asymmetries 
differ between impairment types and phases of sprint-
ing any applications of this work should account for a 
player's impairment type.
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