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Abstract

Spatial heterogeneity in soil deposition poses a significant challenge to accurate geotechni-
cal characterization, which is essential for sustainable infrastructure development. This
study presents an advanced geotechnical data-driven mapping framework, based on a
monotonized and augmented formulation of Shepard’s inverse distance weighting (IDW)
algorithm, implemented through the Google Earth Engine (GEE) platform. The approach
is rigorously evaluated through a comparative analysis against the classical IDW and Krig-
ing techniques using standard key performance indices (KPIs). Comprehensive field and
laboratory data repositories were developed in accordance with international geotechnical
standards (e.g., ASTM). Key geotechnical parameters, i.e., standard penetration test (SPT-N)
values, shear wave velocity (Vs), soil classification, and plasticity index (PI), were used
to generate high-resolution geospatial models for a previously unmapped region, thereby
providing essential baseline data for building infrastructure design. The results indicate
that the augmented IDW approach exhibits the best spatial gradient conservation and local
anomaly detection performance, in alignment with Tobler’s First Law of Geography, and
outperforms Kriging and classical IDW in terms of predictive accuracy and geologic plausi-
bility. Compared to classical IDW and Kriging, the augmented IDW algorithm achieved
up to a 44% average reduction in the RMSE and MAE, along with an approximately 30%
improvement in NSE and PC. The difference in spatial areal coverage was found to be up
to 20%, demonstrating an improved capacity to model spatial subsurface heterogeneity.
Thematic design maps of the load intensity (LI), safe bearing capacity (SBC), and optimum
foundation depth (OD) were constructed for ready application in practical design. This
work not only establishes the inadequacy of conventional geostatistical methods in highly
heterogeneous soil environments but also provides a scalable framework for geotechnical
mapping with accuracy in data-poor environments.

Keywords: geotechnical data-driven mapping; soil characterization; key performance
indicators; resilient building infrastructure; design guidelines
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1. Introduction
The integrity and resilience of built infrastructure are fundamentally linked to the

accuracy of subsurface geotechnical evaluations, especially in regions facing rapid ur-
banization and environmental stressors. Soil characterization in the early stages of site
development accurately determines the foundation design, structural load distribution,
and long-term durability of the constructed infrastructure [1]. Nevertheless, the spatial
heterogeneity at shallow soil strata is shaped through complex depositional conditions and
topographic variability, weathering processes, and anthropogenic alterations [2]. These
spatial heterogeneities lead to severe risks to building structures, i.e., differential settlement
affects load-bearing walls, problematic soils may induce foundation distortion, and lique-
fiable layers may cause catastrophic collapse during earthquakes [3]. To minimize these
risks, geotechnical data-driven maps (GDMs) have been established as a principal tool in
early-stage site appraisal, with the ability to generate high-resolution spatial descriptions
of subsurface characteristics from limited or sparse data. Such GDM plays a critical role
in informing decisions for site selection and anticipated geohazards, e.g., road collapse,
slope failure, and ground subsidence, along with the types and depth of foundations and
permissible bearing capacity [4–6]. Despite GDM’s importance, existing techniques bear
inherent limitations, oversimplify complex soil behavior, and fail to scale in heterogeneous
geotechnical formations.

Despite their widespread application in geospatial interpolation, classical spatial inter-
polation techniques, especially inverse distance weighting (IDW) and Kriging, exhibit major
limitations in dealing with geotechnically heterogeneous environments [7–9]. IDW, as a
pure weight determinant method, distributes weights exclusively with respect to proximity,
without accounting for the spatial structure and directional trends in the data; therefore, it
frequently presents sudden transitions and unrealistic surface characteristics [10]. Kriging,
which is more advanced, likewise largely relies on the assumption of spatial stationarity
and exact semivariogram modeling, with assumptions that are often in conflict in heteroge-
neous soils [11]. In data-scarce regions or irrationally covered terrain, both schemes are
prone to oversmoothing localized variability and obscuring significant anomalies, thereby
deviating from Tobler’s First Law of Geography, which asserts that spatially proximate
entities should exhibit stronger similarity [12,13]. Recent studies have shown that GDMs
developed using classical interpolation techniques often yield considerably higher vali-
dation errors, limiting their practical applicability [14–16]. Moreover, these studies are
typically limited in scale, being applied to small or site-specific areas, and fail to adequately
incorporate the variability of complex geotechnical formations. The evaluation of model
accuracy has also been constrained to a narrow set of statistical parameters, without deeper
uncertainty quantification or stratified performance analysis. Furthermore, most existing
approaches rely on single-parameter datasets, with little integration of multiple geotechni-
cal indicators, thereby reducing the practical value of the outputs for engineering design in
data-scarce regions.

To overcome these limitations, this study focused on an augmented spatial interpola-
tion framework through the modification of Shepard’s inverse distance weighting (IDW)
algorithm. This augmented model incorporates a monotonization step, which provides
spatial smoothness and continuity simultaneously, while preserving the local variabil-
ity that persists, therefore following Tobler’s First Law of Geography [17] more strictly.
However, it is pertinent to mention that Tobler’s First Law of Geography and spatial
autocorrelation, while related, are not interchangeable, as “near things are more related
than distant things” [18]. In this context, classical IDW based on the Shepard formulation
reflects only the distance decay aspect of Tobler’s Law, without formally incorporating au-
tocorrelation with constant exponent weights based solely on the Euclidean distance. This
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results in instability in prediction near data points and a lack of local smoothness. On the
other hand, the augmented Shepard-based IDW approach introduced in this study bridges
these perspectives: (i) it retains the conceptual logic of Tobler’s Law while embedding
gradient-sensitive weighting; (ii) it incorporates adaptive schemes and localized gradient
controls to account for directional dependencies and nonlinear spatial trends. Meanwhile,
the inclusion of monotonization coefficients ensures smooth and continuous transitions
between interpolated points, mitigating the formation of artificial peaks or troughs that
can arise from overfitting or abrupt surface changes. This enhancement is particularly
important in highly complex geologies or data-scarce regions, where classical algorithms
produce unreliable or smooth surfaces [19]. Through enhancing the weighting logic and
spatial autocorrelation with gradient-aware adjustments, the augmented approach more
precisely reflects the geotechnical heterogeneity and consequently generates more reli-
able predictions. This augmented approach not only improves the prediction quality of
GDMs but also offers a scalable platform for risk-informed infrastructure design in varying
subsurface terrain.

To demonstrate the applicability of the proposed interpolation model in a geotech-
nically variable environment, this study focuses on the Muzaffargarh district of Punjab,
Pakistan. This region is positioned in the Indus alluvial plain, marked by stratified deposits
of silts, clays, and sands by active river systems, hence dominated by extensive subsurface
variations across short intervals [20]. Despite the landscape appearing topographically
uniform at the surface level, the subsurface conditions are highly heterogeneous, based on
the influence of fluvial actions, varying groundwater depth conditions, and time-based
saturation. The region has experienced extensive urbanization over the last few years, with
the establishment of residential districts, institutional facilities, and transport corridors
spread across soil-extreme and flood-prone zones. Such constructions are often undertaken
with limited subsurface evaluations and hence enhance the likelihood of structural collapse,
as well as differential settlement and poor foundation performance. Given the absence
of detailed GDMs in the region, this area presents an ideal case study for the validation
of high-resolution spatial modeling tools. The application of the augmented modified
Shepard-based IDW algorithm in the region is intended to provide planners and develop-
ers with reliable geospatial inputs towards the resilient construction of infrastructures and
careful site selection within the administrative boundary.

Based on the aforementioned research gaps, the primary objective of this study is to
develop and validate an advanced geospatial interpolation model for accurate GDMs in
a geologically diverse region. Specifically, the research aims are as follows: (i) utilize the
augmented Shepard-based IDW model with the additional monotonization function for
improved spatial continuity and the minimization of interpolation bias; (ii) generate high-
fidelity GDMs for significant soil properties like SPT-N and the shear wave velocity (Vs), as
well as soil classification and the plasticity index (PI); (iii) compare the augmented approach
with classical IDW and the Kriging model based on key performance indicators (KPIs);
and (iv) demonstrate the practical application of the developed GDMs for foundation
layout, as well as the classification of the site. Based on the above, this study contributes a
scalable, accurate, and field-validated framework to support resilient building practices
and geotechnical risk mitigation in undercharacterized regions.

2. Geospatial Interpolation Techniques
2.1. Classical Inverse Distance Weighting (IDW)

IDW is the most used deterministic spatial interpolation technique, based on the notion
that points close to each other in space will have a greater influence on the estimated value
as compared to points that are far away [21,22]. It is grounded in the spatial autocorrelation
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assumption, as proposed by Tobler’s First Law of Geography: “everything is related
to everything else, but near things are more related than distant things.” In its classical

formulation, IDW estimates the value
∧
Z(x0) at an unknown location x0 based on the

weighted average of known values Z(xi), where the weights are inversely proportional to
the distance between x0 and each known point xi. The governing equation is given as

∧
Z(x0) =

∑n
i=1 ωi(x0).Z(xi)

∑n
i=1 ωi(x0)

(1)

where
∧
Z(x0) is the interpolated value at location x0; Z(xi) is the known value at the sample

point xi; and ωi(x0) is the weight assigned to point xi, calculated as

ωi(x0) =
1

d(x0, xi)p (2)

where d(x0, xi) is the Euclidean distance between the prediction location x0 and the ob-
served location xi, while p is the power parameter (commonly 2), which controls the degree
of influence of nearby points. The selection of the power parameter p greatly affects the
output: larger values of p add more weight to proximate points for more localized in-
terpolation, and smaller values give smoother surfaces with a greater effect from distant
points. Despite its computational simplicity and widespread adoption, classical IDW ex-
hibits several limitations in geotechnical applications. For instance, it does not account for
directionally varying spatial trends [23]. For extremely heterogeneous terrain, the adoption
of a global power parameter typically does not hold well. In addition, it does not account
for fine structures or local gradients other than the distance. Moreover, IDW results in
the development of sharp discontinuities along interrelated surfaces when the sampling
distributions are sparse or irregular. Such constraints necessitate the implementation of
better approaches, such as the monotonization-incorporating modified Shepard-based IDW
approach, to deal with subsurface geotechnical complexities. Additionally, the documented
studies on IDW are limited to small regions, which are unable to account for the geological
heterogeneity; this limits the true efficacy of the classical IDW technique.

2.2. Augmented IDW

To overcome the limitations of classical IDW, the current study adopts an augmented
formulation through the modification of the Shepard method, primarily proposed by
Shepard (1968) and then extended for various geospatial applications [22]. The essential
extensions are coupling with adaptive weights, gradient-corrective adjustments, and a
monotonization step to improve the spatial continuity and uphold the regional heterogene-
ity in complex geotechnical formations. In contrast to classical IDW, which is primarily
based on isotropic inverse distance-based weights, the augmented IDW is equipped with
localized control functions that incorporate the spatial configuration of the adjacent points
and their relative gradients. The general formulation of the augmented method is presented
as follows:

∧
Z(x0) =

∑n
i=1 Wi(x0).Z(xi)

∑n
i=1 Wi(x0)

(3)

where Wi(x0) is dynamically modified to include both distance-dependent and gradient-
sensitive components:

Wi(x0) =

(
1

d(x0, xi)p + ϵ

)
.G(xi, x0) (4)
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Here, d(x0, xi) is the Euclidean distance between the prediction and a known point, p is the
adaptive power parameter, ϵ is the regularization term, and G(xi, x0) is the gradient-based
adjustment function to control the influence of directional variability and is defined in
Equations (5)–(7):

G(xi, xo) = 1 + λ.|∆Qx(x o)| (5)

Qk(x, y) = fk + ak2(x − xk) + ak3(y − yk)+ak4(x − xk)
2 + ak2(x − xk)(x − xk) + ak6(y − yk)

2, k = 1, . . . , N (6)

âk2 =

∑N
i=1
i ̸=k

[ ai2
(pi+ f )2 ]

∑N
i=1
i ̸=k

[ 1
(pi+ f )2 ]

(7)

Here, λ controls the strength of the gradient influence; |∆Qx(x o)| indicates the local
gradient magnitude, derived from the partial derivatives of Qx(x o); and the coefficients
(ak2, ak3,. . .) represent local directional derivatives and curvature information estimated
around each node. Meanwhile, smooth variation and the control of spatial diffusion across
the prediction grid is ensured through the integration of monotonization coefficients (âk2)

to adjust the coefficient fields using the weighted average, as delineated in Equation (7).
This critical addition to the above framework uses a monotonization step to apply

spatial smoothness without compromising the natural transitions in geotechnical properties.
This step ensures that the values to be interpolated will not fluctuate randomly between
the nearest observations, especially where data are concentrated or sparse. Monotonization
is achieved through the alteration of the gradient of the interpolated surface in such a
manner that preserves the relative ordering of known values. This constraint prevents
the generation of artificial peaks or troughs, which commonly occur in classical IDW and
Kriging when data sampling is irregular.

2.3. Ordinary Kriging

Ordinary Kriging is a geostatistical interpolation technique that provides the Best
Linear Unbiased Estimator (BLUE) of spatial variables based on the use of both the distance
between known points and the spatial autocorrelation structure of the dataset [24]. Unlike
a deterministic approach, such as IDW, Kriging incorporates a model of spatial variance,
which is specified through a semivariogram, estimating unknown values to minimize the
estimation error. The basic Kriging estimator for the location of interest x0 is given by

∧
Z(x0) = ∑n

i=1 λi.Z(xi) (8)

where
∧
Z(x0) is the interpolated value at location x0; Z(xi) is the known value at the sample

point xi; λi is the Kriging weight assigned to Z(xi), derived by solving the Kriging system;
and n is the number of neighboring observations. These weights λi are calculated by
solving the set of linear equations derived from the function of the semivariogram γ(h),
quantifying how data similarity decline with a rising distance of separation h. Ordinary
Kriging assumes that the mean of the spatial variable is unknown but remains constant
within the neighborhood.

The semivariogram γ(h) is central to Kriging’s performance and is defined as

γ(h) =
1

2N(h)

i=1
N(h)

∑ [Z(xi)− Z(xi + h)]2 (9)

where h is the lag distance and N(h) is the number of point pairs separated by h. Common
semivariogram models include the spherical, exponential, and Gaussian models, each
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characterized by the following parameters: nugget, sill, and range. Despite its statistical
strengths, ordinary Kriging often underperforms in geotechnical mapping due to its as-
sumptions of stationarity, sensitivity to variogram fitting, and tendency to oversmooth
spatial variability. It also struggles with sparse or irregular data and is computationally
intensive, limiting its reliability in heterogeneous subsurface conditions.

2.4. Performance Evaluation of Interpolation Algorithms

To assess the accuracy and reliability of the interpolation algorithms, this study em-
ploys four key statistical metrics: the root mean square error (RMSE), mean absolute error
(MAE), Nash–Sutcliffe efficiency (NSE), and Pearson correlation coefficient (PC) [25,26].
These indicators provide a comprehensive evaluation of model performance by measur-
ing both the magnitude of prediction errors and the strength of agreement between the
observed field data and predicted geotechnical values. The mathematical expressions for
each performance metric are detailed in Equations (10)–(13):

RMSE =

√
∑n

i=1(Ei − Mi)2

n
(10)

MAE =
∑n

i=1|Ei − Mi|
n

(11)

NSE = 1 − ∑n
i=1(Ei − Mi)

2

∑n
i=1

(
Mi − Mi

)2 (12)

R2 =
∑n

i=1
(
Ei − Ei

)(
Mi − Mi

)√
∑n

i=1
(
Ei − Ei

)2
∑n

i=1
(

Mi − Mi
)2

(13)

Here, Ei denotes the predicted value, Mi indicates the observed value, Mi is the of
observed values, and n shows the total number of observations.

3. Study Region and Research Methodology
3.1. Study Region

The Muzaffargarh region, located between 28.50◦ N–30.45◦ N latitude and
70.30◦ E–71.90◦ E longitude, lies in the southwestern part of Punjab, Pakistan. Cover-
ing an area of approximately 8249 km2, the region is bounded by the Indus River to the
west and the Chenab River to the east, forming part of the broader Indo-Gangetic alluvial
plain [27]. Although the surface terrain appears relatively flat, the underlying geotechnical
conditions exhibit significant spatial heterogeneity due to historical fluvial deposition [28],
variable erosion processes, and anthropogenic modification (Figure 1a–c). This is a semiarid
to arid region with maximum summer temperatures above 40 ◦C and intense rainfall within
the monsoonal months of July–September (Figure 1d) [29]. Such a climatic regime leads to
seasonal variation in groundwater levels and soil moisture conditions, with implications for
subsurface strength parameters, and hence contributes to soil volumetric change behavior,
foundation instability, and drainage-related failures, especially in fast-growing urban areas.
It is important to note that the study area’s selection was based on it being a geotechnically
sensitive zone with a higher incidence of reported geotechnical failures in recent years [30].
Moreover, it remains underexplored, with limited or no geotechnical mapping studies,
and it is experiencing rapid infrastructure development, creating a strong need for reliable
design maps to support engineering practice.
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Figure 1. Study region: (a) Muzaffargarh region within Pakistan; (b) Muzaffargarh region
within Punjab Province; (c) boundaries of Muzaffargarh region; (d) annual temperature and
precipitation variations.

3.2. Geotechnical and Environmental Attributes

Figure 2 displays the most significant environmental variables for the study area. The
digital elevation model (DEM) (Figure 2a) (SRTM, 30 m resolution, 2020 release) shows
minimal elevation gradients within the northwest–southeast directions, ranging between 88
and 180m above the mean sea level (MSL). Meanwhile, the slope map (Figure 2b) shows that
a large part of this region falls within 0–3◦, estimating generally non-padded terrain with a
potential slow flow and waterlogging within lower catchments [31]. The soil erosivity map
(Figure 2c) detects foci of high erosion potential, mainly around riverside and bare surface
areas [32]. Land cover investigation (Figure 2e) shows cropland prevalence (64%), as well
as sparse vegetation (22%), reflecting the impact of farming activity upon soil compaction
and erosion processes [33].

3.3. Soil and Subsurface Properties

A critical problem within this region pertains to high geotechnical variability at shallow
layers, as can be seen from Figure 3. The volumetric content of sand varies between 0 and
72% (Figure 3a), with prevalent impacts of sand being experienced within the western
and southern parts, while higher clay content (Figure 3b) occurs within the eastern parts,
with uneven bearing capacity within the district [34]. The bulk density of soil (Figure 3c)
reaches up to 9 kg/m3, with an impact upon the shear capacity and compressibility as
well. The texture classification of the soil (Figure 3d) shows a patchwork combination of
loamy and clayey textures, further emphasizing the non-uniform conditions within the
subsurface profile.
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Figure 2. Spatial characteristics of the study region: (a) elevation (DEM), (b) slope, (c) soil erosivity,
(d) geological formations, and (e) land cover with areal percentages.
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Figure 3. Soil physical properties across the study area: (a) sand content, (b) clay content, (c) bulk
density, and (d) USDA-based soil texture classification.

3.4. Geotechnical Database

A spatially detailed geotechnical database repository has been developed for this
study to facilitate the interpolation and verification of the subsurface soil conditions within
the study region. The dataset integrates recent site explorations, laboratory tests, site inves-
tigation reports from completed projects, and historical subsurface profiling surveys [35].
The internationally compatible approach employed followed mainly that of the American
Society for Testing and Materials (ASTM) to ensure the consistency, accuracy, and replicabil-
ity of the methods. The geotechnical properties selected for spatial modeling were based on
their significance in foundation engineering, seismic response assessments, and infrastruc-
ture performance under varying subsurface conditions. For instance, standard penetration
test (SPT-N) measurements serve as substitutes for the soil relative strength and density
and are widely used within empirical relations for bearing capacity, liquefaction potential,
and settlement predictions (ASTM D1586) [36]. The shear wave velocity (Vs) is used for
seismicity evaluations and defines the dynamic stiffness, and it is one of the main inputs in
site classification for seismic code design (e.g., IBC, Eurocode 8) [37]. The plasticity index
(PI), representing the soil’s potential for plastic deformation, is important to assess volume
change tendencies and shrink–swell properties (ASTM D4318). The classification of soil by
the Unified Soil Classification System (USCS) is used to direct geotechnical classification in
engineering applications. The collected data consist of 350 discrete sites of geotechnical
measurements, randomly distributed within the area under investigation, with a depth
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range of 0–10 m (Figure 4). The data are spatially irregular due to the effects of practical
constraints associated with borehole installation and past sampling densities, representing
a realistic but challenging scenario in which to assess the spatial interpolation algorithm’s
robustness. The preprocessing of the data included outlier detection, normalization to
unit scales, the removal of inconsistent records, and stratification by depth as required.
The datasets for the geotechnical parameters were georeferenced to ensure the precise
positioning of borehole logs. The final dataset is a heterogeneous but technically valid
foundation for the development of high-resolution GDMs.

 

Figure 4. Spatial distribution of borehole locations across the study region.

3.5. Research Methodology

This study employs an integrated geospatial modeling technique for the development
and evaluation of GDMs with augmented as well as conventional interpolation techniques.
The methods involve five core phases: (i) preprocessing and collating geotechnical datasets;
(ii) the implementation of spatial interpolation models; (iii) surface prediction by using a
grid pattern layout; (iv) performance benchmarking using standardized metrics; and (v)
spatial interpretation for planning and infrastructure development. These models were
executed via the Google Earth Engine (GEE) platform by using a custom-coded JavaScript
environment for raster-based visualization.

3.5.1. Data Structuring and Input Preparation

Geotechnical data with spatial location were acquired from field investigations that
were conducted at different construction sites within the study region, as presented in
Figure 4. Key soil attributes responsible for foundation design and structural response



Buildings 2025, 15, 3211 11 of 24

were acquired, including SPT-N, Vs, PI, and USCS classification. The data from boreholes
were spatially referenced to enable seamless integration into the GEE environment. Prior
to spatial modeling, all inputs were formatted to point vector layers and then subjected to
quality control procedures like checking for outliers, consistency checking, and the deletion
of null or anomalous values. The data were then converted to raster-ready inputs by means
of a point-to-grid transformation with an optimized spatial resolution to capture local
variability without inducing interpolation noise.

3.5.2. Implementation of Spatial Interpolation Algorithms

Three spatial interpolation models were employed in this study to produce GDMs,
i.e., classical IDW, with a constant exponent distance-weighted function; standard ordinary
Kriging by semivariogram modeling; and augmented modified Shepard-type IDW, with
a gradient-sensitive weighting function and a monotonization step to reduce artificial
discontinuities. These approaches were implemented with independently parameterized
modules to allow consistent control of the spatial resolution, neighborhood radius, and
interpolation kernel. For Kriging, an exponential semivariogram model was selected after
comparison with spherical and Gaussian options, with the empirical best-fit performance
being resolved by residual variance and spatial continuity.

3.5.3. Model Calibration and Validation Protocol

To ensure an unbiased performance evaluation, the dataset was divided randomly
into training and validation sets, ensuring that the uniform geographic distribution was
maintained. The data were cross-validated against each observed value to comprehensively
validate the prediction surfaces generated by the utilized algorithms against the field
observations. This approach helped to quantify the predicted accuracy across the densely
and sparsely distributed sample regions. The predicted values across the generated grids
were extracted from raster to point extraction tools, which were cross-validated through
key performance indicators (KPIs). Four KPIs were used to estimate model accuracy
numerically: (i) the RMSE measures the mean magnitude of the predictive error; (ii) the
MAE calculates the absolute error with reference to observed values; (iii) NSE considers
the model’s ability to recreate the variability of field data; and (iv) R2 indicates the level of
linearity between predicted and measured values. Such measures collectively provided
data concerning the model’s predictive ability, as well as the spatial representativeness of
the surfaces that were interpolated.

3.5.4. Geospatial Processing and Visualization

All interpolation and validation was conducted using the GEE platform, which pro-
vided scalable, high-speed parallel processing. The GDMs were generated as raster tiles of
all the geotechnical parameters, which can be interpreted visually and directly utilized by
engineers for application. Additionally, spatial overlay between values that were predicted
with land uses served to create risk-informed plans for infrastructure.

3.5.5. Integration with Foundation Design Guidelines

To extend the applicability of the GDMs for engineering design purposes, interpolated
parameters such as SPT-N, Vs, and PI were transformed systematically into foundation-
related parameters, i.e., safe bearing capacity (SBC), load intensity (LI), and optimal depth
(OD) of foundation. These design parameters were derived using standard empirical
correlations and established geotechnical practices and reclassified into suitability zones
for practical interpretation. The outcomes were then superimposed over ancillary spatial
coverages (e.g., slope, land cover, erosion risk) to define foundation suitability zones and
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offer a spatial decision support platform for risk-informed infrastructure planning. Figure 5
presents the detailed methodological framework of the study.

Figure 5. Methodological framework of the study.

4. Results and Discussion
4.1. Statistical Analysis of the Database

A multivariate statistical analysis of the subsurface geotechnical data was carried out
to assess the characteristics of their distribution, their depth-wise variability, and their
suitability for spatial interpolation. The key geotechnical parameters, namely SPT-N, Vs,
soil type, and PI, were investigated across standard depth increments (1.5 m, 4.5 m, and
7.5 m) with a set of robust statistical measures, as can be seen in Table 1 and Figures 6 and 7.

Table 1. Statistical summary of key geotechnical parameters across depths.

Variable Depth Mean SD SE * of Mean Skewness Kurtosis MAD * IQR * RCV *

SPT-N
1.5 6.4 2.4 0.1 1.1 1.6 1.8 3.0 0.2
4.5 12.1 3.5 0.2 0.8 0.7 2.7 5.0 0.2
7.5 16.3 3.9 0.2 0.9 0.4 3.0 5.0 0.3

Soil Type
1.5 13.4 3.5 0.2 −1.4 0.5 2.7 1.5 0.0
4.5 14.5 2.7 0.2 −3.8 14.9 1.4 1.5 0.0
7.5 14.8 2.6 0.2 −3.8 14.6 1.4 2.0 0.0

PI
1.5 1.5 3.7 0.2 2.4 4.8 2.5 0.0 -
4.5 0.7 3.7 0.2 5.4 28.7 1.4 0.0 -
7.5 0.0 0.0 0.0 - - 0.0 0.0 -

* SE: Standard Error; * MAD: Mean Absolute Deviation; * IQR: Interquartile Range; * RCV: Robust Coefficient of
Variation.

4.1.1. Depth-Dependent Behavior and Variability

The SPT-N values, indicative of the resistance and density of soils, sharply increased
with depth, with a distinct upward trend, from a mean of 6.4 at 1.5 m to 16.3 at 7.5 m
(Figure 6a–c). This implies that, throughout alluvial plains, strata become more consoli-
dated with increasing depth. The standard deviations and skewness values corresponding
to them, between 0.8 to 1.1, indicate distributions with a moderate right-skew shape, sug-
gesting a higher frequency of lower-strength soils near the ground. The gradual reduction
in kurtosis indicates a shift from peaked to more normally distributed patterns with depth.
On the other hand, the soil type, numerically encoded, was less variable and skewed with
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an increase in depth. However, its kurtosis rose significantly at 4.5–7.5 m (up to 14.9),
indicative of heavy-tailed distributions that are likely a consequence of interbedded layers.
Notably, values of −3.8 for skewness indicate a severe left skew, a trait that hints at the
predominance of small numerical codes or possibly cohesive soils within center depth
layers (Figure 6d–f). Meanwhile, PI, a significant predictor of volume change behavior and
the percentage of clay, was highly erratic. It had significant skewness (5.4) and kurtosis
(28.7) at 4.5 m, indicating a dataset that consisted largely of very small PI values with a
few high-plasticity zones. The absence of any variability at 7.5 m suggests homogeneous
low-plasticity deposits (Figure 6g–i). Overall, the geotechnical variables exhibited depth-
dependent trends, highlighting the statistical consistency and confirming the dataset’s
suitability for geotechnical mapping and for the evaluation of classical versus augmented
interpolation algorithms.
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Figure 6. Histograms and density plots showing distribution patterns by depth: (a–c) SPT-N, (d–f)
soil type, and (g–i). PI.

4.1.2. Distribution and Range Analysis

The histograms, cumulative distribution, and violin plot, as presented in Figure 7,
confirm that the geotechnical parameters are non-normal with depth. For instance, the
SPT-N distributions positively shift with depth but are still leptokurtic (peaked), further
supporting their non-Gaussian character. The soil type exhibits multimodality, reflecting
shifting lithologies even within narrow depth bands. The PI values are highly skewed,
with a large number of data points near zero, highlighting non-plastic behavior, whereas a
small number of extremely high values shift the distribution. These patterns are of central
importance to interpolation, as data that demonstrate heavy-tailed or skewed distributions
could compromise prediction models by causing bias, especially where techniques such
as Kriging assume underlying normality and stationarity. This observation provides a
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solid reason to include an improved IDW protocol with local weighting, since it is able to
accommodate spatial anomalies without being overly constrained by strict distributional
assumptions. The presence of widespread heterogeneity reveals a pervasive need to use
data-based, high-resolution interpolation techniques with the ability to cope with local
heterogeneity. Moreover, depth-dependent data spread increments (e.g., IQR and MAD
measures of SPT-N) suggest that deeper strata are spatially more complicated, with a
greater need to utilize advanced modeling approaches.
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Figure 7. Violin plots illustrating depth-wise variability and spread: (a) SPT-N, (b) soil type, and
(c) PI.

4.2. GDMs Based on SPT-N

Figure 8 presents the GDMs based on SPT-N and Vs across three different depth
intervals (1.5 m, 4.5 m, and 7.5 m), derived from three interpolation methods, namely
augmented IDW, ordinary Kriging, and classical IDW. To capture the variability in soil
consistency and stiffness with depth, both SPT-N and the corresponding Vs were strati-
fied. SPT-N was classified into seven classes, i.e., 1–5, 5–10, 10–15, 15–20, 20–25, 25–30,
and >30. Correspondingly, Vs is grouped as 91–139, 139–186, 186–226, 226–262, 262–293,
293–321, and >321 m/s. These ranges enable the joint interpretation of strength and stiffness
characteristics across the depth profile.

At a 1.5 m depth, augmented IDW demonstrates better spatial continuity and the
accurate delineation of discrete regions with low-strength soil (SPT-N: 1–5; Vs: 91–139 m/s),
as can be seen in Figure 8a, with high fidelity, especially in peripheral and riverine zones. In
contrast, Kriging appears to overgeneralize spatial trends, leading to excessive smoothing
to suppress weak zones (e.g., SPT-N < 5 and Vs < 140 m/s), which may compromise
the reliability of load-bearing capacity and seismic vulnerability assessments. Classical
IDW (Figure 8c) demonstrates stepping transitions and radial artifacts away from sample
locations, due to its vulnerability to non-uniform data densities and intrinsic inability to
delineate gradients. For instance, high-SPT-N and -Vs zones appear exaggerated near dense
sampling clusters, violating geophysical plausibility.

At a depth of 4.5 m, the differences become considerably larger. Augmented IDW
(Figure 8d) still preserves the continuity of stratified low-strength zones, especially within
subregions in the south and east. For instance, it delineates transitional ranges in SPT-N
(15–25) and the corresponding Vs values (226–293 m/s), effectively capturing the geologi-
cally plausible changes without developing artificial discontinuities. Kriging (Figure 8e) still
maintains average variability but, again, oversmooths crucial transition regions. Classical
IDW (Figure 8f) still fails, with fragmented surfaces of prediction and visual interpolation
bias near data clusters, producing abrupt shifts in SPT-N and Vs that do not align with
known lithological processes. At a 7.5 m depth, augmented IDW’s advantages (Figure 8g)
are particularly apparent. It retains satisfactory grades over weak and strong regions of
soil and accounts for the directional heterogeneity existing within depositional grounds.
High-SPT-N and -Vs zones (≥30 and ≥321 m/s) are well localized, supporting better site
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differentiation for foundation depth decisions. The interpolated patterns of SPT-N and
Vs evolve smoothly with depth and across the horizontal plane, ensuring spatial conti-
nuity and avoiding the abrupt artificial discontinuities typical of classical IDW. Kriging
(Figure 8h), although visually smoother, skips several significant anomalous locations of
low strength, misleading the load-bearing and seismic assessment. Classical IDW (Figure 8i)
has wide homogeneous areas and does not exhibit sensitivity to subsurface variability.
Overall, augmented IDW outperforms Kriging and classical IDW in SPT-N and Vs mapping
by enforcing gradients and retaining the stratigraphic continuity due to Shepard-based
smoothing. This improves the reliability in key design aspects, such as site classification and
seismic response. Kriging’s oversmoothing and model dependency, and classical IDW’s
interpolation artifacts, however, limit their reliability, particularly in outlining SPT-N- and
Vs-sensitive transitions.

Figure 8. GDMs based on SPT-N and Vs at 1.5 m, 4.5 m, and 7.5 m using augmented IDW (a,d,g),
Kriging (b,e,h), and classical IDW (c,f,i).
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4.3. GDMs Based on Soil Type

Figure 9 reveals the GDMs based on the soil type at three different depths (1.5 m,
4.5 m, and 7.5 m), obtained by employing the augmented IDW, classical Kriging, and
classical IDW techniques. The capability of each technique to preserve the lithological
boundaries and spatial heterogeneity is critically assessed. Based on the geotechnical
database, the study area was delineated into seven soil classes as per the USCS, includ-
ing fine-grained soils, i.e., CL, CL-ML, and ML, and coarse-grained soils, i.e., SC, SP,
SP-SM, and SM-SC. This classification captures the region’s lithological variability, reflect-
ing its geotechnical behavior in terms of plasticity, drainage, erodibility, and compaction
characteristics. At a 1.5 m depth, augmented IDW (Figure 9a) delineates unit limits with
high spatial coherence, successfully outlining areas with low-plasticity silts (ML) and
clayey–silt association (CL-ML), especially within the eastern and western floodplains. It
maintains sharp limits with local variability, without forming radial or smoothing artifacts.
Kriging (Figure 9b), on the other hand, gives smoother limits but suffers from edge bleeding
and clustering artifacts, especially where data are scarce. Classical IDW (Figure 9c), while
outlining major broad classes including SP (poorly graded sands), has a problem with
contouring bias and does not outline small inclusions. At a 4.5 m depth, augmented IDW
(Figure 9d) remains robust, outlining buried cloddy soil pockets (CL, SC) and clayey sands
(SM-SC) within dominant sandy conditions. Its ability to delineate isolated-lens areas and
transition areas, central to foundation hazard assessment, significantly surpasses that of
the other methods. The interpolated distribution of soil types exhibits gradual transitions
with depth and across the horizontal plane, ensuring spatial continuity and minimizing the
abrupt, artificial boundaries often produced by classical techniques. Kriging (Figure 8e)
overextends clusters, with a propensity to inaccurately delineate the northern depositional
transitions. Classical IDW (Figure 9f) shows poor definition again, with very simplified
spatial patches. At a 7.5 m depth, the subsurface variability reduces, but augmented
IDW (Figure 9g) performs better, especially when incorporating the tiny ridges of buried
clay-rich strata. Kriging (Figure 9h) introduces spatial artifacts and loses delineation in
low-density sampling zones, while classical IDW (Figure 9i) does not account for deeper
changes within stratification, exhibiting a very homogenous soil matrix. Overall, the
augmented IDW technique exhibits increased classification fidelity, spatial realism, and sen-
sitivity to local lithological variation. These aspects are critically important in foundation
planning, where soil transitions and anomalies directly influence the bearing capacity, set-
tlement behavior, and seismic response. Whereas Kriging’s smoothing effect and classical
IDW’s abrupt radial distortions are undesirable, the monotonic extension utilized within
the augmented Shepard algorithm exhibits better continuity without compromising the
geological precision.

4.4. GDMs Based on PI

Figure 10 presents the GDMs based on PI using the augmented IDW, Kriging, and
classical IDW algorithms, respectively, corresponding to depths of 1.5 m, 4.5 m, and 7.5 m.
The performance of each technique is compared by considering their ability to delineate
fine changes in plasticity and to display acceptable subsurface behavior. PI was classified
into four categories, i.e., non-plastic (PI = 0), minimally plastic (0–7), moderately plastic
(7–17), and highly plastic (17–30), reflecting gradations in soil plasticity behavior. At a
1.5 m depth, augmented IDW (Figure 10a) depicts distinct zonation of PI classes, particularly
within southern and southeastern regions, where small clumps of highly plastic clays
(PI > 17–30) are delineated with crisp boundaries. This local sensitivity proves critical to
estimate volumetric change behavior and foundation integrity in swelling soil regions.
Kriging (Figure 10b), although capturing the overall north–south differentiation, imposes
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spurious patch-like clustering and smooths transitions, with probable underestimation
within high-risk zones. Classical IDW (Figure 10c) results in spatially homogenized maps
with less defined transitions, with a likelihood of missing microzones of medium to high
plasticity, critical to estimate differential settlement.

Figure 9. GDMs based on soil type at 1.5 m, 4.5 m, and 7.5 m using augmented IDW (a,d,g), Kriging
(b,e,h), and classical IDW (c,f,i).
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Figure 10. GDMs based on PI at 1.5 m, 4.5 m, and 7.5 m using augmented IDW (a,d,g), Kriging (b,e,h),
and classical IDW (c,f,i).

At 4.5 m, better contrast and resolution are exhibited by augmented IDW (Figure 10d).
It effectively outlines subsurface inclusions of moderately to highly plastic strata embedded
within a dominant non-plastic region, an important factor to consider during long-term
deformation behavior assessment. Kriging (Figure 10e) and classical IDW (Figure 10f)
exhibit regions with constant values with extremely wide transitions, which fail to account
for the spatial variability manifested in the field data. In particular, Kriging introduces
steep gradients within boundary regions due to its reliance on global variogram models.
At a 7.5 m depth, the difference in prediction is more prominent. Kriging and classical
IDW (Figure 10h,i) inherently map to a uniform non-plastic state across a wide region,
which is inconsistent with the known geological complexity in alluvial depositional sys-
tems. Meanwhile, augmented IDW (Figure 10g) identifies residual areas of highly and
moderately plastic soils within the central and southeastern pockets, an indication of per-
sistent clay lenses, which are significant for deep foundation design and seismic response.
In conclusion, augmented IDW consistently outperforms the other two approaches by
virtue of its spatial continuity, indication of local plasticity anomalies, and suppression
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of oversmoothing—traits that are essential for geotechnical design. Kriging’s smoothing
bias and variogram dependency make it less reliable within sparsely sampled domains.
Classical IDW, by virtue of its simplicity, fails to offer sufficient adaptive monotonic control
to mimic large PI gradients, especially in heterogeneous depositional environments like the
Indus Basin alluvium.

4.5. Model Validation and Comparison: A Discussion

To precisely examine the predictive reliability of the interpolation techniques, quanti-
tative cross-validation was performed. The augmented IDW, Kriging, and classical IDW
models were tested regarding several KPIs—Pearson’s correlation coefficient (PC), the
coefficient of determination (R2), the regression slope, and the RMSE, MAE, and NSE—and
the results are presented in the form of scatter plots in Figure 11, with performance metrics
in Figure 12. The RMSE and MAE for augmented IDW for various geotechnical parameters
range between 0.502 and 1.74, while NSE and PC ranged between 0.88 and 0.95. Overall,
augmented IDW outperforms Kriging and classical IDW at all depths and variables. It
possesses the highest values in terms of correlations with field data and unity slope values,
denoting the best agreement between the observed and estimated values. Note that the
model exhibits minimal dispersion around the regression line, particularly for SPT-N and
Vs, implying the greatest fidelity in subsurface consistency and stiffness mapping. NSE val-
ues near 0.9 further validate its strength in prediction. The resultant superior performance
is due to its intrinsic gradient conservation and localized smoothing, which preserves the
global and localized spatial structure. Meanwhile, Kriging, while statistically grounded,
exhibits variable performance. The accuracy of its predictions shows average strength
(R2 ~0.45–0.82) but it tends to underestimate regional variability in the form of underfit
regression slopes (e.g., ~0.6). This poor performance results from the semivariogram-
induced sensitivity in its prediction estimates, which significantly compromises localized
geotechnical transitions. Classical IDW exhibits the lowest validation results. The weaker
correlation coefficients (R2 ~0.45–0.65) and higher scatter show poor generalization and
overprediction around densely populated borehole regions. The interpolation bias around
the data clusters leads to large RMSE and small NSE values (often <0.5), and so it is not
appropriate for spatially highly complex or data-scarce regions. Overall, compared to
classical IDW and Kriging, the augmented IDW algorithm achieved up to a 44% average
reduction in the RMSE and MAE, along with an approximately 30% improvement in NSE
and PC. Thus, this comparative validation emphasizes the superiority of augmented IDW
in the estimation of the magnitudes and spatial trends of geotechnical parameters.

In conclusion, by integrating gradient-sensitive weighting and a monotonization step,
the augmented IDW method preserves local anomalies while ensuring regional continuity,
thereby reducing interpolation artifacts such as radial bias and abrupt transitions, which are
common in classical IDW. Compared with Kriging, it is less constrained by strict statistical
assumptions and performs particularly well in heterogeneous and data-scarce regions.
Moreover, its ability to produce engineering-ready thematic maps, such as those of the
safe bearing capacity, load intensity, and optimum depth, demonstrates its practical value
in bearing capacity zoning, seismic site classification, and urban infrastructure planning.
Nonetheless, augmented IDW is more computationally demanding than classical IDW and
requires careful parameter tuning to balance smoothness and local detail. While robust
under typical geotechnical conditions, in extremely sparse datasets, its ability to capture
directional variability may be reduced. Looking ahead, challenges remain in establishing
standardized guidelines for consistent adoption in engineering practice and in validating
their performance through large-scale field applications across diverse geological settings.
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Addressing these issues will be critical in consolidating its role as a reliable tool in future
geotechnical and infrastructure planning.
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Figure 11. Validation performance of interpolation models across key geotechnical parameters using
regression plots and KPIs: (a,d,g) Augmented IDW, (b,e,h) Kriging, and (c,f,i) classical IDW.
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Figure 12. Comparative evaluation of interpolation models based on average performance metricsus-
ing KPIs: (a) SPT-N, (b) Vs, and (c) PI.

4.6. Foundation Design Guideline Mapping

In this section, this study translates the results of geotechnical interpolation into useful
engineering information through the identification of three critical foundation design
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parameters: the load intensity (LI), safe bearing capacity (SBC), and optimum depth (OD)
of foundation. Figure 13 presents the spatial distribution maps of the indices, which could
serve as a decision assistance layer for preliminary foundation planning.

Figure 13. Spatial distribution maps for foundation design parameters—(a) load intensity (LI), (b) safe
bearing capacity (SBC), and (c) optimum depth (OD)—across the study region.

4.6.1. Load Intensity (LI)

Figure 13a presents the spatial distribution of LI, based on the interpolated values of
SPT-N, and reveals that a vast extent of the study area is capable of handling light to moder-
ate loads (<2.5 tsf/ft), indicating soft to medium-density soil. Clusters of relatively higher
LI values (≥5 tsf/ft) are localized and coincide with higher values of SPT-N, particularly in
the southern and northwestern regions. These regions are suitable for shallow footings of
low- to medium-rise structures. However, the localized nature of the regions justifies the
need for intensive site-specific validation, especially for the transition regions.

4.6.2. Safe Bearing Capacity (SBC)

Figure 13b presents the SBC map, which is critical for engineering-oriented interpreta-
tion for practitioners. The vast majority of the district is located in moderate-bearing areas
(0.75–1 tsf), and higher-SBC pockets (≥1 tsf) mainly occur wherever SPT-N and Vs also
exhibit higher values. Note that areas of SBC < 0.75 tsf are common in the river proximity
and southern subregions and need soil improvement or deep foundation measures. The
SBC map thus serves as a useful early-stage screening tool for design possibilities, especially
for infrastructure in flood-prone or alluvial regions.

4.6.3. Optimal Depth (OD)

Figure 13c presents the OD map, demonstrating the depth at which the soil proper-
ties become geotechnically suitable, considering the stratified layers. The regions with
OD > 5 ft cover the southwestern and corridor central areas and indicate deeper deposition-
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competent strata and possibly related fluvial sedimentation dynamics. Regions with
OD < 3.2 ft appear scattered but offer economic opportunities for shallow footings. The
apparent demarcation in the OD facilitates the rational selection of excavation depths and
eliminates the risk of under-designed footings and overexcavation.

Overall, the maps represent a clear geotechnical-informed design framework. By ac-
counting for a range of indicators (LI, SBC, and OD) on the basis of reasonable interpolation
schemes, the maps enable subtle zoning so that economic and safe structural design is
possible. The visually represented results bridge the gap between geostatistical simulation
and usability in engineering and enable accurate application, particularly in semiurban or
data-scarce regions undergoing rapid growth.

5. Conclusions
This study presents an advanced geospatial modeling technique for the development

of high-resolution geotechnical data-driven maps (GDMs) considering an unexplored
region. The approach integrates classical and augmented interpolation techniques in order
to capture the spatial variability in subsurface parameters that are significant for foundation
design, like the standard penetration test (SPT-N), shear wave velocity (Vs), soil type, and
plasticity index (PI). The key outcomes of this study are as follows.

1. Augmented IDW outperforms classical IDW and Kriging in preserving the local
heterogeneity and gradient continuity across all depths (1.5 m, 4.5 m, and 7.5 m).
Constraining the smooth monotonic behavior while retaining the important localized
anomalies proves essential for subsurface interpretation that is credible.

2. Despite its theoretical validity, Kriging’s performance was undermined by its semivar-
iogram sensitivity and stationarity assumptions. This resulted in overgeneralization,
particularly in regions with soils that are soft (SPT-N < 5 and Vs < 139 m/s), and these
play important roles in seismic design and settlement estimation.

3. Classical IDW produced interpolation artifacts and radial biasing effects due to its
inverse distance exponent function. It could not model the realistic geotechnical
property transition and thus is limited in its usage in stratified or heterogeneous
soil settings.

4. Descriptive and inferential statistics, like skewness, kurtosis, and robust measures
of variation, revealed pronounced vertical and lateral variability in geotechnical
properties. These findings highlight the benefit of data-informed zoning in vertically
and laterally heterogeneous depositional settings.

5. Quantitative validation with the RMSE, MAE, NSE, and PC consistently ranked
augmented IDW highest across all key performance indices. Compared to classical
IDW and Kriging, the augmented IDW algorithm achieved up to a 44% average
reduction in the RMSE and MAE, along with an approximately 30% improvement
in NSE and PC. Moreover, scatterplots indicated better predictive consistency with
field observation values from the boreholes, through cross-validation, demonstrating
tightly packed clusters of predicted values along the trend line.

6. The derived spatial maps of the load intensity (LI), safe bearing capacity (SBC), and
optimum depth (OD) offer a translational connection between geostatistical modeling
and the design of civil infrastructure. The thematic maps support early-stage planning,
reduce excavation depth uncertainty, and offer cost-saving foundation planning.

7. Augmented IDW offers computational scalability and rapid prototyping for geotech-
nical evaluations over large scales. The method can be extended to other regions
facing geologic sparsity or variability.

This work highlights the need for geotechnical interpolation method refinement. By
demonstrating the practical advantages of augmented IDW, it not only enhances the ability
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to predict more accurately but also produces results that are useful for engineers, planners,
and decision-making officials in rapidly urbanizing and hazard-prone settings.
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