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Abstract—Recent advancements in feature selection (FS)
optimization algorithms have influenced the field of epileptic
seizure classification. However, integrating these optimization
algorithms into machine learning (ML) models often creates time
complexity, limiting their clinical deployment. To address this
issue, we propose an innovative adaptive stepwise FS method
tailored for epileptic seizure detection (ESD). First, a discrete
wavelet transform (DWT) was applied to the preprocessed signal
to get three levels of the db4 wavelet family within the frequency
range pertinent to epileptic seizure classification. Linear and
nonlinear features are then extracted from each level of the
DWT. The selected features are initially ranked using the
minimum relevance, maximum redundancy (mRMR) FS
technique. After that, a stepwise FS approach was applied to the
ranked features to optimize the performance of Random Forest
(RF), K-Nearest Neighbour (KNN), and Support Vector Machine
(SVM) classifiers. The experiment was performed on a publicly
accessible CHB-MIT datasets in a patient-independent approach.
The model's performance was assessed using accuracy,
sensitivity, and specificity. The results show an improved
performance of the ML models with the integration of stepwise
algorithm into the mRMR technique. Among the classifiers, RF
exhibited superior performance with accuracy, sensitivity, and
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specificity of 87.69%, 91.53%, and 83.86%, respectively, when 12
features were selected. Our proposed stepwise feature selection
method (PSFS) performs similarly to generalize forward feature
selection (GFFS), with an average accuracy of 88.37% and
88.57%, respectively across selected features with less
computation. This makes PSFS a very efficient and effective FS
in epileptic seizure classification.

Keywords—Electroencephalogram, Discrete wavelet transform,
Machine learning, Minimum redundancy maximum relevance,
Stepwise feature selection

[. INTRODUCTION

Epileptic seizure is a severe neurological disease that
endangers the patients affected by it. Such individuals cannot
take up certain tasks because of the fear of being attacked by
the seizure when performing daily life activities.
Approximately 50 million individuals globally are currently
affected by epilepsy [1], and about 100 million of them have
the probability of a seizure attack at least once a year [2].
Neurologists usually manage patients through continuous
monitoring of electroencephalogram (EEG) signals from their
brains. This approach proved labour-intensive and time-
consuming as some patients' EEG recordings span two to three
weeks. Therefore, computer-aided diagnosis systems (CADs)
have been introduced to aid the process of identifying



epileptiforms from long-recorded EEGs. This procedure
involves the classification of EEG signals into ictal (seizure)
and interictal (normal) states by machine learning (ML). ML
classifiers cannot directly learn EEG signal patterns; therefore,
preprocessing is needed. After the noise and other artifacts
have been removed from the EEG signals, feature extraction
processes are the next stages. Features can be extracted directly
from time domain or frequency domain using fast Fourier
transform (FFT) or time-frequency domain utilizing discrete
wavelet transform (DWT). Moreover, multiple linear and
nonlinear features can be extracted from these domains,
especially when considering multichannel EEG signals. For
example, Abou-Abbas et al. [3] extracted 856 features from 19
EEG signal channels by considering different wavelet
transform decomposition levels. In addition, Yang et al. [4]
likewise extracted 638 features from 22 channels of EEG
signal. The significant number of features often extracted from
multichannel EEG signals makes the machine learning models
computationally intensive and, in most cases, introduces
redundancy into the system. Therefore, various feature
selection techniques have been proposed to select the clinically
representative features for epileptic seizure classifications.
Among the commonly used FS is the correlation FS introduced
by [5]. The authors extracted relevant features from time-
domain, entropy-based, and DWT features. The stability of
various feature selection techniques, such as the Gini Index,
minimum redundancy and maximum relevance (mRMR),
unsupervised graph-based feature selection, etc., were assessed
by [3]. The authors in [6] used correlation coefficient and
distance correlation to perform linear and nonlinear feature
selection. Other commonly used feature selection methods for
EEG-based seizure detection are principal component analysis
(PCA) [7], mutual information base FS [8], etc. However, FS
techniques are biased to inherent properties (linear or
nonlinear) of certain features and pay attention to those
features during computation, affecting their optimum
performance. In this case, features with relevant information
that could contribute to the model's overall accuracy are lost. A
recursive feature elimination (RFE) method is often used to
continuously exclude features with low feature important
scores from the subset to overcome the information loss due to
early feature wvector reduction. However, RFE is
computationally intensive and unsuitable for large feature-size
datasets. Therefore, this study proposed a stepwise feature
selection technique for epileptic seizure detection. A base
feature selection technique such as mRMR is first used to rank
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Fig. 1. Proposed framework of minimum redundancy maximum
relevance stepwise FS (mRMRSFS). BF represents base features
selected by mRMR.

the features according to their relevance in classifying seizure.
After that, a number of initial features are selected, and the
stepwise algorithm is implemented over a specified range to
provide a cost-effective feature selection algorithm. In this
way, the time complexity of the model is reduced for improved
performance for epileptic seizure classification.

II. METHODS

A. EEG datasets description and preprocessing

In this study, the publicly accessible CHB-MIT datasets
from Boston Children’s Hospital were adopted. CHB-MIT
database is a multichannel scalp EEG recording of 22 pediatric
subjects with intractable seizures [9]. Recordings were
acquired at 256 samples per second with 16-bit resolution. The
bipolar montage international 10-20 channel configuration
system was utilized to acquire the EEG datasets. The first ten
patients of the CHB-MIT datasets with similar 23 channels are
combined to achieve patient-independent feature selection
analysis in this study. The multichannel EEG signals of the
ictal interval of each patient with the corresponding preictal
interval are acquired to achieve binary classification. Hamming
window with low and high passband edges of 0.5 Hz and 40
Hz, respectively, was used to remove the noise and other
artifacts.

B. Decomposition and feature extraction

As shown in Fig. 1, DWT was performed to decompose the
signal into relevant frequencies of interest. DWT serves as a
technique in signal processing that breaks down a signal into
various frequency bands, offering insights into both the time and
frequency aspects of the signal [10]. The full description of DWT
decomposition technique can be found in [5]. After the
decomposition, three significant levels corresponding to the
frequency bands of interest of the Daubechies (db4) wavelet
function family are extracted. Since the resulting EEG signal is
already preprocessed in the frequency range of 0.5 Hz to 40
Hz, levels DS, D4, and D3 capture frequency ranges of 0 — 8
Hz, 8 —16 Hz, 16 — 32 Hz, respectively, covering the most
seizure activities (3 — 30 Hz) according to [11]. As shown in
Fig. 1, five linear and five nonlinear features are extracted
from each decomposition level. Thereafter, ten relevant
features are extracted from each channel. Mean, variance,
standard deviation, skewness, and kurtosis describe the linear
property of EEG signal while Hjorth parameters (activity,
mobility, and complexity), Shannon entropy (H(x)) and
approximate entropy (ApEn) describe the complexity and
nonlinear nature of EEG signals. The process of obtaining
linear features and Hjorth parameters are described in [3], [4].

H (x) == P(x))log, P(x)) ey
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C. Feature selection and classification

The feature selection approach is a standard procedure in
machine learning, especially in seizure detection algorithms,
to reduce high-dimensional feature vectors extracted from



multichannel EEG signals to low-dimensional subspaces.
First, the minimum redundancy and maximum relevance
feature selection were used to rank 690 features extracted
from 23 channels from each of the three decomposition levels.
In this study, the mRMR FS largely depends on mutual
information between the features and the target variables
(seizure and normal). It also depends on the correlation among
the features to assess their redundancy. The calculation of
mutual information follows the process described in [12].
Given n-dimensional data X = {X;, X5,...,.X,}, the entropy of
random variable X is given by Eq. 1. The conditional entropy
of two random variables X and Y is

HY | X)==.> p(x,y)log, p(y|x). 3)
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The mutual information (MI) between the two random
variable can be obtained as:

MI(X;Y)=HY)-H(Y|X) “)
The Pearson correlation coefficient between two features X
and Yis
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For a given feature X; and other feature X;, if # is the number
of other features, then, the redundancy is given as:

(X, X))

)

Redundancy(X ) = z’_":l (6)
Finally, the mRMR that determines relevant subset of features
to target variable is

mRMR(X ;)= MI(X;,Y)—Redundancy(X;). (7)

The mRMR stepwise FS is described in algorithm 1.

Three state-of-the-art machine learning classifiers, such as
Random Forest (RF), K-Nearest Neighbour (KNN), and Support
Vector Machine (SVM), are selected in this study based on their
remarkable success in classifying epileptic seizures [1], [3], [4],
[5]. We assess the performance of the proposed mRMRSFS
algorithm with the classifiers using notable metrics such as
accuracy, sensitivity, and specificity through 10-fold cross-
validation.

Algorithm 1: mRMR stepwise feature selection

1. Input: mRMR R ranked features, number of first selected k
features, number of features to select up to n

2. Output: Best features X

3. Initialization: initial feature set Q <« R[:k], next feature set
& «— R[k:n], best accuracy A «<— model accuracy on Q

4 Best features X «— set initial features Q to best features

5. Current features ¥ «— set best features X to current features
6. for i = I to length(®) do

7 ¥ ¥+ @[i]

8 Z « get model accuracy for the set of feature ¥
9. if £ > A then

10. A=

11. X<V

12. end if

13. if length(%?) > n then

14. Break

15. end if

16. end for

17.  Return best features X

ITII. RESULTS AND DISCUSSION

A. Performance of the proposed mRMRSFS method on CHB-
MIT datasets using three ML models

Table I shows the results using only the mRMR feature
selection technique. Here, the first-specified relevant features
are selected according to their mRMR ranking. The selected
features are 15, 30, 40, 50 and 60. It can be observed that the
performance of the classifiers increase when 50 features are
selected and then decreases when 60 features are selected for
RF and KNN. However, SVM performance decreases after 50
features are selected and then increases again for 60 features.
RF shows a significantly better performance than SVM and
KNN. This can be attributed to RF sensitivity values being
higher than the sensitivity of the other two ML classifiers.

Table I: Performance of machine learning model base on mRMR. The scores

are in percentage and “Feat” represents the number of selected features for
typical experiment.

RF KNN SVM

Feat  Acc Sen Spec Acc Sen Spec Acc Sen Spec

15 86.51  91.71 8133 | 86.08 88.38 83.78 | 80.33 9494 66.43
30 87.75 9233 83.19 | 86.15 88.53 83.78 | 86.05 81.38  90.74
40 88.42 9290 8396 | 8.91 89.17 84.65 | 86.45 8254 90.37
50 88.61 93.15 84.08 | 86.08 87.21 8495 | 86.41 8299 89.84
60 88.59 9327 8391 | 85.14 84.06 86.22 | 87.57 8493 90.22

To further improve the performance of mRMR more
efficiently, we added features to already ranked features in a
stepwise manner. For each feature range (FR), the selected
features are sequentially arranged in Table II. The results show
that integrating SFS with mRMR allows the selection of
feature combinations that improve the ML classifiers within
the specified range. When 15 features are used, RF achieved
86.51%, but when optimized within the range (10-15), 12
features achieved an accuracy of 87.69%. Similar
improvements are observed for KNN and SVM by using the
proposed mRMRSFS. From Fig. 2, oscillation in the
performance of the ML classifiers can be observed as the
number of features increases. This shows that the number of
features that improve the performance is within a specific
range, and developing an optimization algorithm to select the
combination of these features is essential.
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Fig. 2. Performance of the three ML classifiers as the number of selected
features increase. The shaded region indicates the standard deviation



Table II: Performance of machine learning models base on mRMR + SFS. The
numbers in the parentheses represents the features selected in each of the
feature ranges (FR) for individual ML.

RF (12, 25,39, 42,54) | KNN (12,21, 39, 46,51) | SVM (15, 30, 37, 48, 60)

FR Acc Sen  Spec | Acc Sen Spec Acc Sen Spec

10-15  87.69  91.53 83.86 | 86.67 88.68 84.68 | 80.33 94.94 6643
20-30  88.06 92.40 84.17 | 86.40 88.85 83.96 | 86.05 81.38 90.74
30-40  88.55  93.12 8398 | 87.23 90.02 84.45 | 86.62 8234 9091
40-50 8878  93.39 84.18 | 87.05 89.42 84.68 | 86.52 82.84  90.22
50-60  88.79  93.52 84.08 | 86.23 87.19 85.27 | 87.57 8493 90.22
KNN achieves optimum performance between 39 to 46

features and then decreases drastically. However, KNN started
improving again after 55 features. SVM had a sharp increase to
86.05% when 30 features were selected. RF achieved little or
no improvement after 60 features, while the performance of
SVM began to drop after 70 features. However, with the
integration of SFS into the mRMR technique, we were able to
identify optimum features within different ranges. In addition,
the accuracy, sensitivity, and specificity achieved with 25
features by RF is higher than the accuracy, specificity, and
sensitivity of 30 features in [4] for patient-independent task.

B. Time complexity comparison of the proposed stepwise FS
approach and generalized forward FS

We further compare the performance of our proposed stepwise
feature selection (PSFS) with the generalized forward feature
selection (GFFS). In GFFS, the ranked features based on mRMR
are iteratively added to improve the model's performance, starting
with no features. This differs from the PSFS, in which the features
are added within the specified range. As shown in Fig. 3, PSFS
has comparable performance with GFFS with slight differences.
However, the proposed SFS algorithm is less computationally
expensive as the maximum time spent is much lower than that for
GFFS. For example, when 54 features were selected, the
computational time of PSFS was one-seventh of that of GFFS. It
can be noticed that the time complexity of the GFFS increases
drastically as the number of features added increases. However,
the computational time for PSFS has steadily increased with
improved accuracy. The wide gap between the computational time
of our PSFS and GFFS suggested its suitability as FS for ESD,
where a fast and accurate system is required. In addition, we
identified Shannon entropy, activity, mean, and variance as the
most relevant features for seizure classification based on the first
54 ranked features from the proposed method. These features are
selected across all the channels of CHB-MIT datasets, but
channels ‘FT9-FT10’ and ‘FT10-T8’ have more occurrences.
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Fig. 3. Comparison of the proposed stepwise feature selection with commonly
used generalized forward feature selection.

IV. CONCLUSION

This study presents a cost-efficient and computationally
efficient optimization FS algorithm for ESD. Initially, the
extracted features are ranked using mRMR. Identifying feature
subsets of these ranked features that enhance ML classifiers'
performance is crucial for improving seizure classification.
However, finding possible feature subset combinations for
optimum performance is computationally intensive. Therefore,
we have stepwisely added new features to initially selected
mRMR features. This strategy resulted in a computationally
efficient FS method. The model achieved comparable
performance with the GFFS approach and used relatively less
time. In the future, we plan to consider the fusion of different
feature subsets within the defined range in an efficient
optimization algorithm. Finally, the proposed FS technique can
be integrated into computer-aided diagnosis systems to
enhance the efficiency of epileptic seizure classification.
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