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Abstract

Personal safety applications enable users to communicate emergency situations to relevant
third parties and local authorities. Location-Based Services play a crucial role in the capture
and exchange of data, including location and personal identifiable information, to better
inform emergency response efforts. Maximising the effectiveness of these safety applications
requires the data to be accurate and informative yet prevent the exposure of sensitive user
information. Current solutions often fail to adequately protect this sensitive data in the
attempt to maintain accurate and useful information for emergency response. Therefore,
personal safety solution safety applications should be able to protect the privacy of individuals
without compromising the overall utility and accuracy of the data. This thesis presents a Risk-
Based Differential Privacy Model for Location Data that is designed to assess safety-critical
factors and attributes associated with users and scenarios to provide a dynamic balance for
trajectory data utility and privacy trade-off. The model assesses the safety-critical factors
facing the user from the data and quantifies the risk in the Hazard Assessment Module.
The quantified risk informs the level of privacy parameters in the Privacy Preservation
Module, which will determine the levels of noise to be added to the dataset in the Noise
Application Module to ensure that lower risk levels can afford maximum privacy, whereas
high-risk scenarios will result in reduced privacy without losing data utility. The resulting
noise-injected trajectory dataset is processed using the Linear Regression model to validate
this concept and evaluate the impact of data utility and privacy trade-off in the dataset
during processing. The performance of the dataset to retain utility while ensuring privacy
during processing is analysed using evaluation criteria metrics that explore the efficiency,
generalisation, and robustness of the dataset. The metrics outcome show that the noise-
injected dataset can maintain good data utility while safeguarding the privacy of the user
when processed. The outcome emphasises the importance of exploring factors and attributes
associated with safety-critical data by the user and the dataset to dynamically find the optimal

balance for the data utility and privacy trade-off.
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Chapter 1
Introduction

Personal safety has become important with consistent cases of assault and the disappearance
of individuals being reported. Some of these cases occur on lonely roads, quiet environments,
and areas with low lighting, while others occur in moving vehicles (Lewis 2016; Qureshi
2015; “AsiaOne” 2017; BBC News 2012; McSorley 2018; Utehs 2018; BBC News 2018;
Longnecker 2019). The circumstances leading to these assaults typically involve the vehicle
starting from a stationary position or maintaining a consistent movement pattern, which
then transitions into a random movement pattern during the assault. The assailant during
the assault attempts to flee his current location diverting attention away from the immediate
surroundings to a remote location. In trying to change location, they frequently adopt a
random movement pattern characterised by sudden changes in speed, acceleration, and
direction. This endangers all road users and can lead to safety situations unavoidable for
other road users. The safety of victims in such situations can be preserved by immediate
implementation of rapid response measures that mitigate the impact of the attack on the
victim and prevent subsequent damage to the road infrastructure and the users, as evidenced
in various instances (McSorley 2018; Utehs 2018; BBC News 2018; Longnecker 2019).
Personal safety solutions function is a critical application that leverages the deployment
of an Internet module and various other components to empower road users with the ability
to communicate with third parties and local authorities during emergencies. Thus, facilitating
the dissemination of information with accurate emergency reports and alerting authorities
necessary to provide immediate assistance to victims (Rohilla, Deshwal, and Balasubra-
manian 2019). There is infrastructure that is instrumental in the acquisition and exchange
of essential information related to transportation, such as location-based data and services,
traffic-related information and accident-related data. These communication channels provide
information on users’ places of interest, road behaviour, movement patterns, and the shortest

travel routes to ultimately improve the overall road experience for users (Yang and Hua 2019;
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Lin 2017). The information derived from these communication channels is used to make
informed decisions about traffic conditions and to prevent traffic injuries, which according
to the World Health Organisation (WHO), are the eighth leading cause of death in all age
groups and the main cause of death in children and young adults aged 5 to 29 years (W.H.O
2018). This information is applicable in safety and non-safety related functions, including
vehicle safety, automated toll payment, traffic management, enhanced navigation, and other

location-based services (Feng et al. 2015).

Location-Based Services (LBS) represent a significant component that facilitates the
acquisition and exchange of information such as traffic updates, weather forecasts, and
recommendations for nearby shops or restaurants among network components. Location
information by LBS contains more than coordinates or point of interests information, they
also include data such as user’s identity, spatial information, and temporal information. These
services play an essential role in traffic management and Intelligent Transport Systems (ITS)
(Sun and Kim 2021). The information used by LBS encompasses sensitive data related
to Personally Identifiable Information (PII), traffic updates in real time, personal interests,
shopping preferences, tourist routes, and recommendations for nearby Points of Interest (POI)
intended to enhance the daily lives of individuals. This information contains inferable details
that shed light on user lifestyle patterns, religious affiliations, and health conditions, making
it susceptible to attacks from adversaries. Information leakage or disclosure represents
a common risk associated with the exchange of data between nodes and LBS servers,
potentially allowing attackers to intercept information transmitted within LBS and gain
access to sensitive network data. This risk, among others, underscores the importance of
safeguarding transmitted information within the system while preserving user privacy (Chan
and Lars 2003; Kolvoord, Keranen, and Rittenhouse 2017; Gupta and Sutar 2014).

The protection of sensitive information within LBS is imperative and must be maintained
consistently. Location privacy is a subcategory of data privacy, which revolves around an
individual’s expectation of moving through public spaces without their location information
being systematically recorded. Key privacy concerns is preventing unauthorised disclosure,
leakage, or exposure of an individual’s past or present location and personal information.
The rapid evolution of information technology and the constant growth in the volume of
information incorporated into daily life require frequent adjustments in privacy expectations
(Liu et al. 2018). The deployment of privacy techniques is vital to safeguarding user identity
information, driving routes, and/or location data of users within the network by validating the
legitimacy of each user’s identity. Common attacks targeting location information include
information forgery, information manipulation and alteration, replay attacks, message delay,

and privacy breaches (Ferrag et al. 2018). The information acquired by LBS is vast and



subject to constant changes over time, exhibiting variable levels of importance and sensitivity,
often linked to highly temporally correlated coordinates. These characteristics require
ongoing preservation of privacy, with the application of varying degrees of protection to
strike a balance between data security and utility (Liu et al. 2018; Ying, Makrakis, and
Mouftah 2013; Julien et al. 2007; Buttyan et al. 2009; Li et al. 2019).

When an individual’s safety is compromised, the level of safeguarding assigned to the
information must be adjusted downward to enhance the information utility and facilitate
the dispatch of rapid responses. Determining the appropriate level of protection during an
event requires evaluating location data to determine the level of sensitivity that is necessary
to trade off data utility and information security. This evaluation involves assessing the
risks associated with the information and anticipating the challenges that may arise when
attempting to enhance the utility of the information. For this evaluation, a robust risk
management approach is employed, taking into account the dynamic characteristics and
enhancements of the components in personal safety applications (Houmer and Hasnaoui
2020; Bayad, Rziza, and Oumsis 2016; Ren, Du, and Zhu 2011).

The primary challenge in determining the balance between data privacy and utility
trade-off lies in selecting the appropriate equilibrium that maximises data utility without
compromising information security and vice versa. LBS-collected information is dynamic
and highly sensitive, necessitating the implementation of privacy mechanisms to prevent data
disclosure or leakage.

Different traffic situations necessitate varying approaches to data utility in ensuring
personal safety. In normal traffic conditions, where road users maintain stable speeds,
predictable behavior, and safe following distances, the likelihood of accidents is significantly
reduced. These conditions promote a safer driving environment by allowing adequate reaction
time for braking, lane changes, and intersection navigation. However, in collision-prone
traffic scenarios, which is characterised by sudden stops, rapid deceleration, and erratic
lane changes and this escalates the risk to personal safety due to the unpredictability of
road user behavior. These abrupt movements reduce reaction time, increase the likelihood
of accidents, and present challenges in modeling real-world traffic behaviors (Tayal and
Triphathi 2012; Fiore et al. 2007). Simulators are widely used to study traffic patterns
and predict risk factors, yet they struggle to capture the full complexity of dynamic road
conditions, aggressive driving behaviors, and congestion-induced hazards (Hérri et al. 2006;
Fiore et al. 2007; Kaisser, Gransart, and Berbineau 2012; Lim et al. 2017). The reliance on
real-time location data for safety systems raises concerns regarding the trade-off balance
between data utility and privacy. Striking a balance between leveraging location data for

public safety and preserving individual privacy remains a significant challenge. Adaptive
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privacy-preserving mechanisms, such as anonymization techniques and Differential Privacy,
are essential to ensure that personal data are protected while still maintaining data utility
(Wu et al. 2018; Madi and Al-Qamzi 2013; Boucetta, Guichi, and Johanydk 2021; Tayal and
Triphathi 2012; Fiore et al. 2007).

The role of personal safety applications is to ensure that the safety of road users is
maintained by providing components and features that improve road safety (Mohamed,
Ahmed, and Sadek 2021). These applications rely on safety-critical information to reliably
assess road conditions, allowing road users to make informed decisions about the necessary
precautions for their safety. This application encompasses components such as collision
detection and avoidance systems, as well as navigation and traffic awareness aids that

contribute to a safe travel experience.

1.1 Motivation

The rapid development of connected devices has created a growing need for more robust
personal safety measures and applications. Personal safety solutions aim to enhance user
protection by offering an additional layer of information that helps minimize potential hazards.
For these applications to be truly effective, the information they provide must remain reliable
and accurate. The safety capabilities of personal safety applications can be significantly
enhanced by incorporating a privacy-preserving mechanism that evaluates context-specific
attributes (such as user conditions and situational variables). This mechanism determines
the most appropriate level of privacy for each scenario, to dynamically set the optimal
balance between data utility and privacy. Because different users and circumstances call for
different privacy requirements, using an unsuitable privacy level can expose data to leaks and
compromise personal safety. In contrast, the application of excessive privacy measures can

reduce the overall usefulness of the information provided.

Personal safety applications commonly handle sensitive, safety-critical information that
must be protected once the individual is no longer in immediate danger. When an individual’s
safety is at risk, rapid response is crucial to minimize the impact of any hazard and restore
secure conditions (Yang and Hua 2019; Lin 2017). During periods when the person’s well-
being is secured, data privacy takes precedes and sacrificed over utility. Conversely, in
emergencies where safety is compromised, privacy protection may be temporarily relaxed
to enhance data utility and expedite assistance. Even under these conditions, it remains
essential to preserve the confidentiality of critical user data, ensuring that privacy is not

unduly compromised.
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When an individual faces hazard during road travel, they often adopt manoeuvrers to avoid
the incident that changes immediately changes the dynamics of their travel and jeopardise the
safety of other road user. Such as turning into oncoming traffic which changes the structured
safe travel constraints of oncoming users and disrupting their movement mechanics such
as velocity, and stopping distance (Tayal and Triphathi 2012; Song et al. 2017; Tian et al.
2019; Xin et al. 2018). This chaotic traffic condition endangers road users and this situation
requires favouring data utility over privacy to process data for assisting users ensure safe
conditions are restored (Navidi, Camp, and Bauer 2004; Akhtar, Ergen, and Ozkasap 2014).
The decrease and increase in privacy level alter the utility of the data captured by the system,
thereby necessitating careful consideration of the impact that altering the privacy level would

have on the information critical to the safety of the user.

Changes in environmental conditions influence the likelihood of a road incident and
as the likelihood of incident occurring changes, the trade-off balance between data utility
and privacy changes. This trade-off can be dynamically balanced by assessing the incident
likelihood and depending on the safety condition inferred from the data, the trade-off balance
shifts to prioritise either utility over privacy or privacy over utility without significantly

compromising of both features.

1.2 Problem Definition

Personal safety solutions are designed to protect individuals from accidents, facilitate im-
mediate assistance during emergencies, and improve overall road safety. These tools handle
sensitive and time-critical data, such as a user’s location and identity, making robust privacy-
preserving mechanisms essential. Research in this field continues to expand, focusing on
real-time monitoring of vehicles, traffic conditions, road hazards, and user status to provide
timely support when unexpected situations arise. Given the sensitive nature of these data,

safeguarding user information is crucial for maintaining both security and peace of mind.

These solutions enable individuals to request assistance and maintain safe road conditions
while in motion. It is crucial that every component of these systems is secured to maintain user
safety whenever the emergency response functionality is active. Given that such solutions rely
on sensitive, real-time information, implementing a robust privacy-preserving mechanism
is vital for safeguarding user data and while maintaining overall system efficiency during
emergencies (Gharaibeh et al. 2017; Li et al. 2020).
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Figure 1.2.1: Emergency System Operational Scenario in Personal Safety Solution Concept

Various personal safety solutions have been proposed to support individuals during
emergencies. Many of these tools can track and monitor a user’s location, alert and contact
third parties about an incident, capture image or video evidence, offer self-defense features
such as tasers, and emit loud alarms. While such features are effective for users in stationary
settings, those who are on the move require additional capabilities to account for their mobility
situations. Efficient data processing within personal safety solutions can greatly enhance
functionality by providing real-time insights into user context and attributes. However, to
fully leverage these benefits, it is crucial to strike the right trade-off balance between data
utility and user privacy. Robust data protection measures such as Differential Privacy can
help ensure sensitive information remains secure, while maintaining sufficient data utility for
rapid response teams to deliver timely assistance.

The preservation of privacy in these solutions and dynamically balancing the utility and
privacy level trade-off based on data requirement are the main focus of this research, driving
the need for innovative privacy-preserving mechanisms to protect sensitive location and
trajectory data. This thesis adopts the operational model of the Raspberry Pi-based personal
safety solution proposed by Sogi et al. (2018), illustrated in Figure 1.2.1, to address situations
in which an individual experiences distress while on the move. In this model, the user relies
on an interconnected emergency system: activation occurs when a wearable device’s panic
button is pressed, triggering a signal to a GPS-enabled mobile phone. The phone tracks
and records the user’s movements, sending continuous alerts, updates, and notifications

to designated contacts and emergency responders. These real-time location and trajectory
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updates enable third parties to identify the user’s path, positioning themselves in an optimal

location to provide assistance if a rapid response is needed.

During safety-critical situations such as collisions, there is high demand for data utility
while that changes when safe condition resumes. Balancing data utility and user privacy trade-
off is crucial for an effective emergency response system during incidents to dynamically shift
in the direction needed for the scenario. High risk situations requires low privacy but high
utility information while during low risk events, the requirements changes to high privacy
and low utility. While high data utility about user location and movement can significantly
improve rapid intervention, handling this information responsibly is paramount. Privacy
preservation in these solutions has been neglected to maximize data utility, The preservation
of privacy in these solutions has been quite non-existent due to the prioritisation of data

utility, which enables rapid emergency intervention to restore safe conditions for road users.

The RBDPM presented in this thesis addresses the identified gap by integrating privacy
preservation into the operational framework of solution. This integration ensures that user
information is protected without significantly degrading data utility, thus enabling prompt
and effective interventions. Moreover, the privacy preservation mechanism is dynamically
adjusted to prioritize user safety, balancing data utility and privacy in accordance with the

prevailing safety conditions.

1.3 Aim and Objectives

The aim of this thesis is to design and develop a novel Risk-Based Differential Privacy Model
that dynamically balances the trade-off between preserving the privacy of location/trajectory
data and maintaining the utility based on safety-critical information within the data. This
model is intended to strike an optimal balance between data utility and user privacy trade-
off by assessing distinct attributes within location/trajectory data. The assessments would
determine the precise degree of noise required to dynamically meet the changing privacy
needs of users and ensure their safety in diverse, safety-critical scenarios.

The aim is achieved by meeting the following objectives:

* Objective 1: Conduct a critical review of state-of-the-art personal safety solutions
and privacy preservation methodologies for trajectory data, evaluating their strengths,
limitations, and relevance to safeguarding sensitive location information in emergency

response contexts.
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* Objective 2: Implement a validation methodology through the location prediction
mechanism, such as Linear Regression, to validate the performance of the novel privacy

preservation framework proposed for trajectory data in personal safety applications.

* Objective 3: Design and develop a novel Risk-Based Differential Privacy Model that
evaluates distinct attributes within trajectory data to produce a transformed dataset that
can achieve an optimal balance between data utility and privacy trade-off for different

risk levels and safety-critical scenarios during processing.

* Objective 4: Conduct a comprehensive experimental validation of the proposed Risk-
Based Differential Privacy Model for trajectory data, processing the data using the
implemented prediction model to demonstrate how assessing distinct data attributes

influences the data privacy and utility trade-off hypothesis.

1.4 Contributions

The novel contributions of this thesis are as follows:

* An innovative Risk-Based Differential Privacy Model for trajectory data perturbation.
This model prioritises safety-critical information to provide privacy preservation in

safeguarding personal information in location datasets.

* A privacy preservation concept that can dynamically tune data privacy based on hazard
thresholds to fine-tune trajectory data output. This adaptive solution that enhances

operational efficiency and addresses privacy needs in unpredictable situations.

* A dynamic framework designed to balance the trade-off between data utility and
privacy during processing, ensuring that sensitive information is protected without
compromising utility. This approach is experimentally validated using Linear Regres-
sion predictive model, which evaluates framework effectiveness by measuring the

ability to maintain data utility while applying privacy-preserving techniques.

These contributions advance the field of privacy preservation in personal safety applica-
tions by offering refined methods for managing the trade-off between privacy and data utility.
Through the development and validation of the proposed Risk-Based Differential Privacy
Model, this work lays a strong foundation for accurate, privacy-focused decision-making
in both normal and high-risk traffic conditions, setting the stage for further research and

innovation in this domain.
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1.5 Thesis Outline

The structure of the remainder of this thesis is as follows:

Chapter 2 explores background information regarding the components that are involved
in the Risk-Based Differential Privacy Model. The chapter evaluates location-based services,
location prediction schemes for proof-of-concept validation, and the Differential Privacy
mechanism. These components are crucial in creating an effective and secure privacy-
preserving scheme.

Chapter 3 offers a comprehensive overview of current state-of-the-art personal safety
applications. This chapter explores these applications, privacy preservation mechanisms, and
the challenges facing these safety applications.

Chapter 4 explores the efficiency of the prediction models used for the validation of
RBDPM on trajectory data. This chapter shows the implementation of the prediction model
and the performance evaluation.

Chapter 5 delves into the novel concepts of the Risk-Based Differential Privacy Model.
This chapter discusses the conceptual foundation of the model, the roles and interplay of the
various modules, and their collective contribution to the model’s architecture.

Chapter 6 details the proof-of-concept validation for the novel Risk-Based Differential
Privacy Model. The chapter evaluates the performance of the noise-injected private data set
during processing and the impact of assessing distinct attributes within the data to determine
the data utility and privacy trade-off balance. This contributes to the dynamic balancing of
data utility and privacy trade-off of trajectory data to meet the changing privacy requirements
of scenarios and users.

Chapter 7 provides an overview of the research, examining the limitations of the research
and future research directions for the research. It emphasises the promise of the model in

augmenting the efficiency of safety and privacy measures in both VANET and trajectory data.






Chapter 2

Background on Risk-Based Differential
Privacy Model

This chapter provides the essential background for understanding the development of the Risk-
Based Differential Privacy Model (RBDPM). Central to the development of the RBDPM
are Location-Based Tracking Services (LBS), which generate trajectory data critical for
applications such as traffic management and emergency response. Location prediction
schemes serves as the data processing framework for the validation of the model. Differential
Privacy as the privacy preservation mechanism that protects data sensitivity. The evaluation
metrics criteria for assessing the data utility and privacy trade-off balance during processing.
The sections in this chapter provide the essential background for the components that make

up the RBDPM and how it meets the privacy demands of safety-critical scenarios.

2.1 Location-Based Tracking Service (LBS)

The LBS plays a crucial role in the acquisition and processing of location data, using
technologies such as GPS, wireless communication, and cloud computing. This service
medium collects data about a user in a coordinated and systematic manner in exchange for
personalised semantic information related to the current geographical position of the user
(Das and Sadhukhan 2014; Shin et al. 2012). The response is personalised and provides
versatile value added services ranging from navigation assistance services, intelligent tour
guides, and Pol closest to the current geographical location of the user (Das and Sadhukhan
2014; Shin et al. 2012). LBS harnesses the operating capabilities of the Internet service,
mobile service and GPS services of the requesting device to acquire data and exchange these

data for better personalised road experiences such as places of interest, local amenities, and
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traffic situations (Khan et al. 2015; Aasha, Monica, and Brumancia 2015; Kolvoord, Keranen,
and Rittenhouse 2017; Lai et al. 2013).

The information transmitted by this service is sensitive and contains personal details
attributed to the user. Information is not protected against leakage and attacks, making it
vulnerable to threats. The utility of the information transmitted by the service is crucial and
safeguarding the sensitivity of transmitted information within the service is imperative. This
thesis works on balancing the data utility and privacy trade-off that can optimise the data
utility and privacy of transmitted data within LBS.

The components that ensure the efficient operation of LBS within VANET are categorised
into technological and data components. The technological components manage the repre-
sentation and quality of the information acquired within the network. The main technologies
used by LBS are as follows:

Position technology: This is responsible for the acquisition of data and the accuracy of
the acquired location information sent in the query (Pontikakos et al. 2006; Khan et al. 2015).

Application technology: This is responsible for presenting the response data received
from the server that serves as a response to the user request query (Das and Sadhukhan 2014;
Gupta and Sutar 2014).

Data components handle information transmission between nodes within the network and
manage the type of information the nodes access and present. The central data components
operating within VANET are:

Geographic Data: These data manage geographic information, such as road structure
and infrastructure of the geographical location, and the possible Pol within the vicinity of the
location requested by the device (Das and Sadhukhan 2014).

Communication Data: This data component manages the information exchange between
the LBS control centre and the requesting device. They are essential in maintaining high-

quality communication and service for nodes within the network (Gupta and Sutar 2014).

2.2 Location Prediction Schemes

A comprehensive understanding of location prediction methodologies is fundamental for
the experimental validation of the novel RBDPM in this thesis. The focus of this section
is to analyse the implementation of location prediction models on location data. The pro-
posed model will leverage location data collected through LBS during mobility tracking,
to anticipate the user’s location in real time. The evaluation of this model will be based on

simulations, and the findings will be examined in detail.
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The landscape of location prediction has seen a variety of methodologies aiming to
achieve high accuracy. These range from traditional statistical methods to more advanced
machine learning and deep learning models. Most of these studies have used historical
location data and mobility patterns for predictions. Others have incorporated auxiliary
factors, such as travel time and meteorological conditions. The location prediction literature
classifies predictions into two categories: long-term and short-term predictions. Long-term
predictions aim to anticipate the location of a vehicle over an extended period, such as
hours or days, with the precision of this prediction classification being less critical. While
short-term predictions aim to determine the vehicle’s location within a few seconds, the
accuracy of the predictions in this classification type is crucial, as they are required to provide

a highly accurate forecast.

2.2.1 ARIMA Prediction Model

Time series analysis leverages historical data to forecast future events, particularly in systems
exhibiting trends and seasonality. The AutoRegressive Integrated Moving Average (ARIMA)
model combines three components to identify, estimate, and suggest the most suitable
ARIMA notation for the data (Kumar and Anand 2014; Chen, Yuan, and Shu 2008; Islam
and Raza 2020; Alofe et al. 2019; Ye, Szeto, and Wong 2012):

* Auto-Regressive (AR): Uses past values to predict future observations.
* Integrated (I): Applies differencing to achieve stationarity.

* Moving Average (MA): Models forecast errors as a linear combination of past error

terms.

The implementation of the ARIMA model for the prediction for location data has been
deployed to forecast traffic flow (Lin 2016; Kumar and Vanajakshi 2015; Ghosh, Basu, and
O’Mahony 2005; Williams and Hoel 2003; Dhingra, Mujumdar, and Gajjar 1993), traffic
volume (Tong and Xue 2008; Ding et al. 2011; Wang et al. 2017), traffic speed (Song et al.
2019), and traffic road congestion (Alghamdi et al. 2019).

An ARIMA model is denoted as ARIMA(p,d,q) (Kumar and Anand 2014; Chen, Yuan,
and Shu 2008; Islam and Raza 2020; Alzyout and Alsmirat 2020; Lai and Dzombak 2020),
where:

» p: Number of lag observations in the AR component.

* d: Degree of differencing in the I component required for stationarity.
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* g: Order of the MA component.

The general form of the ARIMA model (Agrawal and Adhikari 2013; Liu et al. 2016;
Yuanhui et al. 2022) is expressed in Equation 2.2.1:

)4 q
Yy=a+) BYitea+ ) oa;, 2.2.1)
i=1 j=1

where « is a constant, f8; and ¢@; are the coefficients for the AR and MA terms respectively,

and & is the error term.

Model Implementation Steps

The essential steps in implementing an ARIMA model (Panneerselvam, Liu, and Antonopou-
los 2018; Ariyo, Adewumi, and Ayo 2014; Liu et al. 2016; Mohamed 2020)are:

1. Data Exploration and Preparation: Plot the time series and perform statistical tests
(e.g., the Augmented Dickey-Fuller test) to assess stationarity. Apply transformations
or differencing to achieve stationarity.

2. Model Identification: Use autocorrelation (ACF) and partial autocorrelation (PACF)

plots to determine suitable values for p and g.

3. Model Fitting: Estimate parameters using methods such as maximum likelihood

estimation.
4. Model Diagnostics: Evaluate residuals for randomness, stationarity, and normality.

5. Forecasting and Evaluation: Generate forecasts using the fitted model. Evaluate
performance using metrics such as Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE).

6. Model Selection: Compare models using information criteria like the Akaike Informa-
tion Criterion (AIC) and Bayesian Information Criterion (BIC):

AIC(p) = nln(c? /n) +2p, (2.2.2)
BIC(p) = nln(c2/n) + pln(n), (2.2.3)

where 7 is the number of observations and 67 is the error variance.
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The model performance is validated by determining the model’s accuracy and identify
any potential overfitting through comparing the predicted values to the actual values (Alzyout
and Alsmirat 2020; Ingdal, Johnsen, and Harrington 2019; Thiruchelvam et al. 2021). .
A modified version, such as Seasonal ARIMA (SARIMA), extends the ARIMA model to
capture periodic effects and has been effectively applied in domains like traffic forecasting in

vehicular networks (Alzyout and Alsmirat 2020; Lippi, Bertini, and Frasconi 2013).

2.2.2 Regression Tree Ensemble

A Regression Tree Ensemble combines multiple decision trees to predict a continuous target
variable. Each tree is trained on different subsets of the data and features, and the final
prediction is typically obtained by averaging the outputs of all trees. This ensemble approach
reduces variance and overfitting, often leading to improved accuracy compared to a single
decision tree.The suggestion that regression models perform admirably compared to neural
networks by Wang et al. (2019) and the implementation of the regression model to predict
location has prompted the use of a regression tree ensemble on the data set to evaluate
performance and possibly provide improved accuracy relative to the ARIMA model (Goli,
Far, and Fapojuwo 2018; Zhao et al. 2020b).

Lu et al. (2012) used a regression ensemble learning model to predict the next place of
the Nokia Mobile Data Challenge 2012 spatial-temporal location information dataset. The
prediction models employed during the challenge used spatial-temporal information within
the data to make predictions (Etter, Kafsi, and Kazemi 2012; Wang and Prabhala 2012; Gao,
Tang, and Liu 2012; Lu et al. 2012). Two common ensemble techniques are:

* Bagging (Bootstrap Aggregating): The model combines Bootstrapping and Aggrega-
tion into one model which works on improving unstable estimation or classification
schemes. Builds multiple trees on bootstrapped (randomly sampled with replacement)
subsets of the training data. The predictions are averaged to reduce variance and
improve stability. Bagging is a variance and Mean Squared Error (MSE) reduction
technique that is effective in improving the predictive performance of regression or
classification trees (Zhao et al. 2020b; MathWorks n.d.[a]; Anagnostopoulos et al.
2009).

* Boosting: Trains trees sequentially, where each subsequent tree focuses on correcting
the errors of the previous one. This method reduces bias by giving more weight to
misclassified observations (Zhao et al. 2020b; MathWorks n.d.[a]; Anagnostopoulos
et al. 2009)..
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Choosing between the two depends on the specific problem and the trade-off between

computational cost and model performance (MathWorks n.d.[b]; Zhao et al. 2020b).

Ensemble Regression Tree Model Implementation

The implementation process involves the following key steps:

1. Data Preparation: This involves cleaning, transforming, and normalizing the data.
2. Feature Selection: Identify the most relevant features affecting the target variable.

3. Base Model Training: Train individual decision tree models on different subsets of
the data.

4. Ensemble Construction: Combine the base models using either bagging or boosting

techniques.

5. Hyperparameter Tuning: Optimize model parameters using techniques such as grid

search or random search.
6. Model Evaluation: Validate performance through cross-validation or hold-out testing.

7. Model Deployment: Deploy the best-performing model for predictions on new data.

2.2.3 Linear Regression

Linear Regression is a widely used statistical method for modeling the relationship between
a dependent variable and one or more independent variables using a linear equation. The
model is typically trained via Ordinary Least Squares (OLS), which minimizes the sum of
squared errors (Maulud and Abdulazeez 2020; Khuri 2009). The basic form is represented in
equation (2.2.1) below:

y=PBo+BiX+e¢, (2.2.1)

where:y is the dependent variable, X is the independent variable, By and f3; are the intercept
and slope, and € is the error term.

In applications such as privacy-preserving location prediction, Linear Regression is
favored due to the computational efficiency, ease of interpretation, and compatibility with
Differential Privacy. Differential Privacy mechanisms inject noise into the data to obscure
individual information while retaining overall data trends. Other reasons aside from the fact
that Linear Regression models are faster to train and perform predictions faster, unlike the

ARIMA and Regression Tree Ensemble models, which are computationally intensive for
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large datasets, include the accurate estimation provided by the Linear Regression model
when the independent and dependent variables within the dataset are linear. The model is

capable of incorporating the operation of a privacy preservation mechanism with minimal
impact on the performance of the model.

Linear Regression Prediction Model Implementation

The Linear Regression process uses suitable packages and libraries such as the sci-kit library
in the Python programming language to perform the operation.

Figure 2.2.1 illustrates the overall Linear Regression prediction scheme and the essential
implementation steps are discussed below:.

Prediction Model Training

Independent
Variable

Prediction

Model Model
Fitting

Predicted
Values

Eratmln? Prediction
atase! Dependent Model
Variable

E ion Metrics
Values

Actual Values P;!rfolrmance
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Figure 2.2.1: Linear Regression Location Prediction Scheme Operation

1. Data Acquisition and Preparation: Splitting the dataset into training and test sets
and perform necessary cleaning and normalization.

2. Model Fitting: Separate the data into independent and dependent variables. Fit the
Linear Regression model using tools such as Python’s scikit-learn library.
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3. Prediction and Evaluation: Generate predictions on the test dataset. Evaluate per-
formance using metrics such as Mean Absolute Error (MAE), Mean Squared Error
(MSE), and Root Mean Squared Error (RMSE).

4. Privacy Integration: Implement Differential Privacy by adding controlled noise to

the data, ensuring individual privacy with minimal impact on model accuracy.

2.3 Differential Privacy

Differential privacy (DP), first introduced by Dwork (2008), provides a mathematical frame-
work for protecting individual privacy in statistical datasets. The primary goal is to ensure
that the output of any data analysis does not reveal sensitive information about any single
individual, regardless of an adversary’s background knowledge or computational resources.
This is achieved by incorporating carefully calibrated random noise into query results, where
the level of noise is controlled by a non-negative privacy parameter €. A higher privacy
parameter € means more noise and thus greater privacy, at the expense of data utility (Alda
and Rubinstein 2017; Sarwate and Chaudhuri 2013).

Formally, DP shown in equation (2.3.1) guarantees that for any two datasets D and D,
differing by a single record, and for any set of possible outputs S, a randomized function K
satisfies

PrlK(D;) € S] <exp(€) x Pr[K(D) € §]. (2.3.1)

A central concept in this framework is the sensitivity of a function Af, which quantifies
the maximum change in f’s output when one record in the dataset is altered. Sensitivity is

defined as
Af — max LFOD = FOD]

2.3.2
Dy,Dy HDI —DZH ( )

DP has been applied for protecting trajectory data and location-based services, where
traditional methods often aggregate or cloak data, complicating trajectory analysis. For
instance, Chen et al. (2012) proposed releasing large amounts of sequential data using a
hybrid granular prefix tree (SeqPT) with Laplace noise to obscure node counts, though this
approach struggled with computational complexity in high-dimensional spatio-temporal
datasets. Improvements were later introduced by Al-Hussaeni et al. (2018), who proposed
the SafePath algorithm—a noisy prefix tree model that reduced empty node generation but
required higher privacy budgets for complex datasets. Similarly, Zhao, Dong, and Pi (2019)
proposed an SR-tree structure in the Cons-SRT algorithm to mitigate non-location sensitive

information attacks, though query efficiency was affected by the increased tree complexity.
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In practice, the implementation of DP typically relies on one of several noise-addition
mechanisms. The Laplace mechanism is the most widely used (Gursoy et al. 2018; Hua,
Gao, and Zhong 2015; Galdames, Gutierrez-Soto, and Curiel 2019; Jang et al. 2012).; it adds
Laplace-distributed noise to numerical query outputs according to equation (2.3.3)

F(x) = f(x)+Lap (%) , (2.3.3)

where s represents the sensitivity of the function f and Lap(s/€) denotes a random draw
from the Laplace distribution centered at zero with scale s/€. This mechanism is favored for
the simplicity and the ability to minimize mean-squared error for identity queries (Holohan
et al. 2020; Koufogiannis, Han, and Pappas 2015).

Alternatively, the Gaussian mechanism introduces independent Gaussian noise with
variance calibrated based on the function’s sensitivity and the privacy parameters, thereby

ensuring approximate differential privacy. It is characterized in equation (2.3.4) by the

o > \/2log(1.25/5) 22/ (2.3.4)

e Y

condition

where A, f is the L, sensitivity and § is an additional parameter that quantifies the probability
of the privacy guarantee being slightly exceeded.

For non-numeric outputs or when a broader range of utility functions is required, the
Exponential mechanism is employed. This mechanism selects outputs by sampling from a
probability distribution with input x defined by a utility function v and sensitivity Av. The
probability of choosing an output o is given in equation (2.3.5) by

Prlo] = o <%XUO))

o ev(x0)) "
Zo’eXP< 2A0 >

(2.3.5)

In summary, DP offers a robust and quantifiable approach to preserving individual privacy
by ensuring that the outcome of any data analysis is minimally affected by the presence or
absence of any single record. By introducing noise through mechanisms such as the Laplace,
Gaussian, or Exponential methods, DP enables the secure analysis of sensitive datasets across

diverse applications in statistical analysis, machine learning, and data mining.

2.3.1 Differential Privacy and Risk Relationship

Dandekar, Basu, and Bressan (2021) explored the relationship between risk and privacy

with a primary focus on the Laplace noise mechanism. This thesis focuses on the analytical
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relationship that links the privacy level € and risk Y for the Laplace mechanism, which is
calibrated by the sensitivity Ay and the privacy level & as specified in Eqn (2.3.1). The use
of the formula makes the correlation between privacy level € and risk Y possible to achieve
the goals of the Laplace mechanism. This equation demonstrates the risk Y that is bounded
between 0 and 1 for the Laplace mechanism of Lap(?) for a numerical query denoted by
f : D — R* and satisfies the condition where the privacy level € is greater than 0 (Dandekar,
Basu, and Bressan 2021)

P(T <e¢)

Y ==
T P(T < &)

(2.3.1)

Here T is a random variable that follows a distribution with a density function that can
be mathematically expressed as a certain equation.

The analytical formula to represent risk Y is subjective and Eqn (2.3.2) demonstrates
the methodology used to calculate the level of privacy g based on the associated privacy at
risk Y (Dandekar, Basu, and Bressan 2021).

1
ezm(l—Y](l—eSO)) (2.3.2)

The relationship between the risk of impact and the amount of privacy noise added to

the data is inverse. As the risk of impact increases, the amount of privacy noise that must
be added to the data decreases. This inverse relationship is a result of the privacy goals
specified for the data and the measures put in place to achieve them. To maintain a high level
of privacy, a larger amount of noise must be added to the data when the risk of impact is low.
However, if the risk of impact is high, the amount of noise that must be added to the data can
be reduced. In this way, privacy noise acts as a protective mechanism for the data and the
privacy goals, with a specific value depending on the perceived risk of impact.

2.3.2 Evaluation Criteria

Evaluation criteria are vital tools for assessing the performance and effectiveness of prediction
models, particularly in terms of predictive capacity, generalisability, and overall operational
quality. In the context of DP, these criteria help determine how well a model preserves
data utility while protecting sensitive information. The concept of utility loss quantifies the
amount of data that must be altered or removed to maintain an acceptable trade-off between
utility and privacy in DP-based regression models (Eom, Lee, and Leung 2018).

Saleem et al. (2021) and Yang et al. (2018) has used these metrics to privacy preservation

in their work to understand the relationship between data privacy, utility, and accuracy that
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impacts the data utility-privacy trade-off balance. Saleem et al. (2021) work shows that
data utility is impacted by the introduction of noise as the values of the privacy parameter €
increase. The comparison of the performance of the DP model to a non-private one assists in
the assessment of the trade-off between privacy and utility. A small difference between the
metrics of both models indicates that utility is provided while privacy is guaranteed (Zhao
et al. 2020a).

In regression analysis, the accuracy of predictions is often evaluated by measuring the
residual spread, which is the difference between the actual and predicted values using metrics
such as the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE). A model whose MAE, MSE, and RMSE values are closer to zero
indicates that the predictions are closely aligned with actual outcomes, even in the presence
of noise introduced by DP (Fan et al. 2020; Saleem et al. 2021).

The Mean Absolute Error (MAE) is defined in equation (2.3.1) as

1 Ngamples —1
MAE(y,§) = Y il 2.3.1)
Nsamples ;=)

where ngamples 18 the number of data points, y; is the actual value, and ; is the predicted
value. Since MAE focuses on absolute differences, it is robust to outliers and remains
unaffected by the direction of errors. In a DP framework, MAE quantifies how injected noise
affects prediction accuracy and shows the efficiency of the model in balancing the utility and
privacy trade-off; a low MAE suggests that the Regression-Based Differential Privacy Model
(RBDPM) retains high utility despite privacy constraints (Gupta et al. 2021; Yan et al. 2023;
Hao, Wu, and Wan 2023; Jiang et al. 2021Db).

The Mean Squared Error (MSE) is given in equation (2.3.1) by

n
MSE = % Zi<yi — )%, (2.3.2)

i—
where n representing the total number of data points and y; the actual value of the i-th data
point. The ¥ is the predicted value of the i-th data point and )}, is the summation symbol
that indicates that we are summing the squared differences for all data points from i =1 to
i =n. % is the average of the squared differences by dividing the sum by the total number of
data points. It penalises larger errors due to the squaring operation. In a DP setting, a small
MSE indicates that, despite the noise, the model effectively captures the underlying data
patterns and maintains an acceptable level of accuracy (Hao, Wu, and Wan 2023; Chicco,

Warrens, and Jurman 2021; Hodson, Over, and Foks 2021).
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The Root Mean Squared Error (RMSE) is the square root of the MSE and shown in
equation (2.3.3):
n
RMSE = % zi(yi — )2 (2.3.3)
i=
where RMSE represents the Root Mean Squared Error, and 7 is the total number of data
points. The y; is the actual value of the i-th data point and ¥; is the predicted value of the i-th
data point. )7, represents the sum of the squared differences for all data points from i = 1
to i = n. rll represents the average of the squared differences by dividing the sum by the total
number of data points.

The Root Mean Squared Error (RMSE) is measured in the same units as the target variable,
providing an interpretable metric that allows the assessment of the model’s predictive accuracy
in a meaningful and intuitive manner. A lower RMSE reflects closer agreement between
predicted and true values, implying that noise perturbation has only a limited adverse effect
on data utility (Zhang et al. 2022; Yan et al. 2023; Neera et al. 2021; Jiang et al. 2021b).

In summary, these evaluation metrics play a pivotal role in model selection and tuning by
providing quantitative insights into the trade-off between privacy and prediction performance.
By comparing DP-enabled models against non-private baselines, model configurations that

deliver an optimal balance between data utility and privacy protection can be identified.



Chapter 3

State-of-the-Art Personal Safety Solution

Personal safety solutions aim to enhance the security of individuals, particularly road users, by
minimizing accident risks, promoting safe behavior, and enabling rapid emergency responses.
These systems leverage technologies such as microcontrollers, smartphones, and wearables
to monitor user conditions, track locations, and alert third parties during distress. However,
the collection and transmission of sensitive data for example, location traces, vital signs,
and event footage introduce significant privacy risks, often overlooked in existing designs.
Differential privacy (DP) offers a mathematically grounded framework to protect individual
data while preserving utility, yet the standard form applies uniform privacy guarantees, which
may not suit the variable risk profiles in personal safety contexts. This systematic review
assesses current personal safety solutions, identifies shortcomings, and explores the potential
of risk-based DP to address these gaps, laying the groundwork for a novel model.

This systematic review adopts a narrative synthesis with a systematic search approach, a
hybrid methodology that combines a structured, reproducible search strategy with a qualita-
tive synthesis of findings to explore the structured approach to identify and analyze relevant
studies, aligning with guidelines from the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) framework adapted for a qualitative focus (Helbach et al.
2023; Parums 2021).

Literature was sourced from academic databases including IEEE Xplore, ACM Digital
Library, and ResearchGate. Search terms included combinations and variations of “Personal
safety device”, ‘“Personal emergency alert system”, “Location-based safety application”,
“IoT personal safety”, “Women safety application”, “Location Privacy”, “Location track-
ing safety apps”. Studies published between 2010 and 2022 were prioritised, although
earlier foundational works were included if they were frequently cited or demonstrated
clear relevance. Inclusion criteria encompassed Peer-reviewed journal articles, conference

proceedings, and high-quality technical reports that focused on women’s safety, personal
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safety, and emergency alert systems that covers variety of user groups as shown in Table
3.1.1. Solutions that include location tracking, alert mechanisms, or preventive measures
that presented evidence, performance evaluations, technical operations, or distress detection
for solution were reviewed. Exclusion criteria filtered out studies that are non-technological
interventions, news articles, literature that does not present results or peer-reviewed, and
when full text is not available or is of insufficient quality.

The analysis categorised solutions by evaluating their functionality, mobility, and data

protection measures. These categories are discussed below

3.1 Personal Safety Solutions Applications

Personal safety applications that rely on location or trajectory data are designed to provide
rapid emergency response by tracking users and alerting third parties when distress is detected.
However, while many solutions offer effective tracking and alerting mechanisms, yet many
current solutions transmit sensitive data without robust safeguards, thereby compromising
user privacy.

Sharma et al. (2017) presented an Advanced Reduced Instruction Set Computer Machine
7 (ARM?7) processor-based safety device that monitors real-time location and issues loud
alerts when activated. Although the device can notify nearby individuals and transmit
the current location to third parties, it suffers from several drawbacks. The bulky design
prevents continuous tracking, and the lack of privacy-preserving mechanisms means that the
transmitted location trail is exposed. Similarly, Bhavale et al. (2016) proposed a portable
safety device integrated with a bus tracking system. While this solution can capture and
transmit both location information and images, it requires pre-installation on vehicles, which
limits portability, and does not implement any robust safeguards to protect the sensitive data
it collects.

In response to the mobility limitations of microcontroller-based systems, Pawar et al.
(2018) proposed a wearable safety device that incorporates sensors to monitor vital signs,
track movement, and capture images connected to a micro-controller. Despite the advanced
features, the device faces challenges related to computational overhead and rapid battery
drain, which limit the continuous operation. it does not incorporate any dynamic privacy-
preserving measures to protect the sensitive location data it processes. Monisha et al. (2016)
developed another solution using an ARM controller with GSM, GPS, Bluetooth, and RF
modules that communicates with an Android application. Although it reliably sends SOS
messages with location data even under low connectivity, the approach suffers from mobility

challenges and a lack of data protection measures.
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Choudhary et al. (2017) presented an automated safety device that combines multiple
sensing units—heartbeat and temperature sensors along with a panic button—connected to
an ATmega8L microcontroller and interfaced with GPS and GSM modules. The system
continuously monitors physiological parameters and, upon detecting deviations from set
thresholds, activates an alert by sending the user’s location to a third party. While this
approach enhances responsiveness through sensor fusion, it is prone to false positives due
to normal variations in sensor readings, leading to unnecessary activations and resource
wastage. Additionally, the absence of privacy-preserving techniques means that sensitive

location data is directly transmitted, raising significant privacy concerns.

The category evaluated above has highlighted limited mobility issues, prompting the
exploration of smartphone-based personal safety solutions that leverage the inherent mobility
and connectivity of modern smartphones to track users’ location, send alerts to third parties,
and notify nearby individuals during emergencies. These solutions offer enhanced scalability
and real-time data utility; however, they often fall short in preserving the privacy of sensitive

location and trajectory data—a gap that poses significant risks in personal safety applications.

Shinde et al. (2012) presented an Android-based personal safety solution that alerts
third parties when danger is detected. Upon activation, the system acquires the user’s
current location and sends it via SMS or email. While effective for immediate alerting, the
solution does not monitor the user’s subsequent movement, making it unsuitable for dynamic
scenarios. Moreover, the use of HTTP/SOAP protocols for data transmission provides

inadequate safeguards, exposing the location data to potential interception.

Vithu is another smartphone-based application that initiates the cycle of operation with
a double-press activation, subsequently capturing and transmitting the user’s location at
two-minute intervals until the operation is terminated. Although Vithu monitors the trajectory
of the user’s path, there are significant concerns regarding the safeguarding of the transmitted
information; without robust privacy measures, sensitive data may be vulnerable to unautho-
rized access or leakage (Harikiran, Menasinkai, and Shirol 2016; Thavil, Durdhawale, and
Elake 2017).

BSafe is designed to continuously track the user’s location and send alerts to third
parties with a single tap, while triggering an alarm to notify nearby individuals. However,
the constant transmission of location updates increases the risk of data disclosure, as the
system lacks the necessary safeguarding measures to protect sensitive information, thereby
compromising user privacy (Azman et al. 2018).

Smartphone-based personal safety solutions have increasingly leveraged the mobility and
connectivity of modern devices to provide scalable functionality through continuous tracking

of location or trajectory data. During events, access to devices may be deterred, and contact
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of the third party may be hampered, thereby leading to the preventive safety solutions. These
systems are designed not only to alert third parties during emergencies but also enable users

to make informed decisions about their routes and the areas they visit.

Safetipin is a smartphone application that aims to empower users by providing real-time
safety assessments. The app monitors the user’s location and computes a safety score for an
area based on user-reported disturbances and risk factors. Additionally, it displays alternate
routes to the destination and allows users to invite a third party to track their movements.
Although these features enhance situational awareness, the underlying methodology for
calculating safety scores has been shown to be vulnerable. Reports indicate that the score
can be manipulated, where unsafe areas might be assigned artificially high safety ratings, and
thereby potentially misdirecting users into hazardous zones (Viswanath and Basu 2015; Kar-
tik, Jose, and MK 2017; Manazir, Govind, and Rubina 2019). This vulnerability highlights a
significant gap in the integration of robust privacy-preserving and data integrity mechanisms

within the system.

Similarly, Street Smart proposed by Chaudhari et al. (2018) offers users detailed contex-
tual information about locations through articles, reviews, and safety-level recommendations,
enhanced by augmented reality (AR) and sentiment analysis. While this approach provides
a comprehensive overview to aid in decision-making, it is accompanied by a lack of infor-
mation security measures. The absence of proper safeguards means that sensitive location
data and user interactions are at risk of exposure, thereby undermining the privacy of the

individuals relying on the app.

Furthermore, to the preventive solutions, there is a category of alarm-based systems that
serve to alert nearby individuals and third parties when a distress event occurs. These devices
typically function by emitting a loud ringing sound and transmitting the user’s approximate
location. While the immediate notification function is crucial for rapid response, these
systems often lack continuous tracking capability and employ simplistic data transmission

methods.

StreetSafe, as proposed by Yarrabothu and Thota (2015), is a smartphone-based safety
application that integrates multiple distress response features such as activating an alarm,
sharing a user’s location on social media, sending an SMS to preselected contacts, and placing
a call to a third party. Although this multifaceted approach aims to maximize data utility
by disseminating location information for rapid emergency response, a critical concern lies
in the method of broadcasting sensitive location data into the public domain. This practice
exposes users to significant privacy risks, as the publicly accessible location data can be

intercepted or misused by malicious actors. Consequently, while StreetSafe achieves high
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immediate accessibility, it fails to adequately safeguard the trajectory data that is integral to

personal safety applications, thus presenting a substantial privacy-utility trade-off.

In a related approach, Srikrishna and Veena (2017) proposed a mechanism that leverages
network provider information to improve emergency communication. Upon activation, the
system retrieves the user’s network provider and clusters nearby users within the same
provider, then broadcasts the location information of the user in distress to this confined
group. Although this proximity-based clustering is an innovative attempt to limit the exposure
of sensitive data, it still involves the transmission of location information without robust
safeguards. The risk of privacy breaches remains high if the data is intercepted within the
network cluster. Moreover, the mechanism does not incorporate continuous tracking of
location changes, which diminishes the efficacy in dynamic emergency scenarios where

real-time trajectory data is crucial.

Consequently, they are susceptible to information leakage, as the sensitive location
data is not protected by encryption or other privacy-preserving techniques. This led to
wearable personal safety solutions category reviewed below that is designed to complement
smartphone-based systems by providing additional, immediate layers of protection through
integrated sensors and communication modules. These devices capture and transmit location
or trajectory data during distress events, yet significant gaps remain regarding the preservation
of sensitive data and the balance between data utility and privacy.

Patel and Hasan (2018) designed a smart bracelet equipped with various sensors to detect
assaults and analyze sensor data using machine learning on an Arduino controller. The
bracelet communicates with a smartphone app via Bluetooth, transmitting the user’s location
to a third party when distress is detected. Although this approach enables rapid alerts, the
reliance on sensor readings can result in false positives—normal safe postures might be
misinterpreted as threats—leading to unnecessary activations. Moreover, the system does not
support continuous location tracking during transit, thereby limiting the usefulness of the
trajectory data for ongoing situational awareness. Critically, no privacy-preserving measures

are implemented, leaving the sensitive location data vulnerable during transmission.

A similar challenge is observed in the smart shoe approach proposed by Viswanath,
Pakyala, and Muneeswari (2016). This system uses sensors connected to a microcontroller,
which communicates with the user’s smartphone via Bluetooth. Activation is achieved by a
specific foot tap gesture, and the system then sends an SMS with the user’s location. While
this method offers an intuitive trigger based on user movement, the operation is contingent
upon the user being in motion; when the user is stationary, even during distress, the system
may fail to trigger. Additionally, the approach does not incorporate robust privacy safeguards,

thereby exposing sensitive location data to potential interception.
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The concept of electronic jackets, as proposed by Gadhave et al. (2017), Shaikh and PB
(2008), Priya et al. (2021), and Bhadula, Benjamin, and Kakkar (2021), further extends the
wearable safety paradigm by integrating GSM, GPS, microcontrollers, cameras, and buzzers
into a garment. These jackets can emit loud alerts, deliver electric shocks in self-defense,
and continuously transmit the wearer’s location to a designated contact. However, the
bulky design and limited adaptability to varying climates impede user mobility and comfort.
More importantly, continuous transmission of location and trajectory data without proper
encryption or adaptive privacy controls raises substantial privacy concerns.

Additional smartphone-based solutions, such as FightBack (Miriyala et al. 2016; Yarrabothu
and Thota 2015), Vanitha Alert (Hariharan et al. 2021; Walkunde, Shinde, and Pandhare
2022), Raksha-Women Safety Alert (Saranya et al. 2021; Prashanth, Patel, and Bharathi
2017), and Glympse (Reddy et al. 2021; Aminuddin et al. 2019), offer similar functionalities
by sending SMS alerts with location data. While these applications improve scalability
and the immediacy of emergency response, they also share the common shortcoming of
transmitting sensitive data without adequate protection, thereby risking unauthorized tracking
or data breaches.

Personal safety solutions that leverage location and trajectory data incorporate a diverse
array of features designed to rapidly alert third parties and provide immediate assistance
during emergencies. These solutions, spanning both smartphone-based and wearable devices,
offer significant improvements in mobility and scalability by harnessing real-time location
tracking. They enable users to communicate distress through multiple channels such as
SMS, email, social media, or direct phone calls thus enhancing the likelihood of prompt
intervention.

Despite these advances, a critical gap emerges in the safeguarding of sensitive location
information. Many current systems prioritize high data utility and accurate, continuous track-
ing to ensure timely emergency response. However, they often do so at the expense of robust
privacy protection. Sensitive data is frequently transmitted without adequate encryption or
privacy-preserving measures, thereby exposing users to risks such as unauthorized tracking,

data breaches, and potential misuse of personal information.

In conclusion, while personal safety solutions based on location and trajectory data
have substantially improved emergency response capabilities, they remain vulnerable due to
insufficient privacy safeguards. This research is focusing on introducing privacy preservation
to safeguard data transmitted by these solutions. Furthermore, the research will be extended
to dynamically balance data privacy levels while preserving data utility, based on the user’s
safety conditions.



3.1 Personal Safety Solutions Applications

Table 3.1.1: Systematic Review Study Criteria and Key Features

Reference Detect Alert Third Par- Location Physical Privacy Type Included

Distress ties Updates Defense Protec-

tion

Sharma et al. (2017) X X Microcontroller Yes
Bhavale et al. (2016) X X Microcontroller Yes
Pawar et al. (2018) X Microcontroller Yes
Monisha et al. (2016) X X Microcontroller Yes
Choudhary et al. (2017) X Microcontroller Yes
Shinde et al. (2012) X X Smartphone Yes
Harikiran, Menasinkai, and X X Smartphone Yes
Shirol (2016)
Thavil, Durdhawale, and X X Smartphone Yes
Elake (2017)
Azman et al. (2018) X X Smartphone Yes
Yarrabothu and Thota (2015) X X Smartphone Yes
Walkunde, Shinde, and Pand- X X Smartphone Yes
hare (2022)
Muralidhar and Bharathi X X Smartphone Yes
(n.d.)
Chand et al. (2015) X X Smartphone Yes
Kanagaraj,  Arjun,  and X X Smartphone Yes
Shahina (2013)
Rengaraj and Bijlani (2016) X X Smartphone Yes
Viswanath and Basu (2015) X X X X Preventive Yes
Kartik, Jose, and MK (2017) X X X X Preventive Yes
Manazir, Govind, and Rubina X X X X Preventive Yes
(2019)
Chaudhari et al. (2018) X X X X Preventive Yes
Srikrishna and Veena (2017) X X Preventive Yes
Patel and Hasan (2018) X X ‘Wearable Yes
Viswanath, Pakyala, and X X Wearable Yes
Muneeswari (2016)
Gadhave et al. (2017) X ‘Wearable Yes
Shaikh and PB (2008) X ‘Wearable Yes
Priya et al. (2021) X ‘Wearable Yes
Bhadula, Benjamin, and X Wearable Yes
Kakkar (2021)
Miriyala et al. (2016) X X Smartphone Yes
Hariharan et al. (2021) X X Smartphone Yes
Saranya et al. (2021) X X Smartphone Yes
Prashanth, Patel, and Bharathi X X Smartphone Yes
(2017)
Reddy et al. (2021) X X Location Sharing Yes
Aminuddin et al. (2019) X X Location Sharing Yes
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3.2 Privacy Preserving Mechanism

Location-based services involve transmitting sensitive personal and location information,
which may be exploited to deduce an individual’s identity or behavior (Kalaiarasy, Sreenath,
and Amuthan 2019). The protection of user privacy have led to the proposal of several

mechanisms. The most notable ones include:

Pseudonyms : Pseudonyms replace true identities with temporary identifiers to obscure
a user’s identity. Approaches include: Synchronous pseudonym changes that randomly
exchange pseudonyms and vehicle status information (Liao and Li 2009). Cooperative
pseudonym-changing processes based on the number of neighboring vehicles (Pan and Li
2013). Despite their effectiveness, message content may still leak identifying information
(Khacheba et al. 2017).

K-Anonymity : K-anonymity ensures that a user’s location is indistinguishable from
at least kK — 1 other users, thus limiting the success probability of linking attacks below %
(Kido, Yanagisawa, and Satoh 2005; Masoumzadeh and Joshi 2011). Enhanced methods
use cloaking strategies: Data-dependent cloaking creates anonymity regions based on the
spatial distribution of users. Space-dependent cloaking forms regions covering the entire
anonymizer area (Gedik and Liu 2007; Kang and Meng 2012; Shokri et al. 2010; Zuberi,
Lall, and Ahmad 2012; Bettini, Mascetti, and Wang 2008). A key challenge is balancing
privacy with service quality trade-off.

Group Signatures : Group signatures allow any member of a group to sign messages
on behalf of the group without revealing individual identities (Chaum and Van Heyst 1991;
Yue et al. 2019). Hybrid approaches offer conditional anonymity (Rajput et al. 2017), though
they often incur significant computational overhead.

Mix-Zones: Mix-zones are defined spatial regions where users change their pseudonyms,
making it hard for adversaries to link old and new identities (Beresford and Stajano 2004).
For a mix-zone to be effective, it should: Ensure a minimum (k) number of participants.

Have randomized entry and exit points and impose unpredictable dwell times.

Obfuscation : Obfuscation techniques reduce the precision of location data by adding
intentional errors (perturbation) or by generalizing the data (Tyagi and Sreenath 2015;
Mabharaj and Hosein 2016). While effective in masking exact locations, they may also
diminish the quality of LBS.

Silent Period A silent period temporarily halts the transmission of location information,
thereby breaking the link between old and new pseudonyms (Kasori and Sato 2015). Although

this improves privacy, it can reduce service quality if timely location data are required.
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Dummy Node The dummy node approach transmits both the true and one or more
dummy locations during communication with LBS (Kasori and Sato 2015). This masks the
actual location but may result in service degradation if too many dummy nodes are used.

Cloaking Region Cloaking regions blur the exact location by mixing a user’s position
with those of k — 1 other users, effectively creating an anonymity region (Kasori and Sato
2015). While this increases anonymity, it typically comes with higher computational overhead
and reduced accuracy.

Table 3.2.1 summarizes the key features of these privacy techniques, where "X" indicates

the presence of a feature and "-" the absence.
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Having reviewed these techniques, the next section will focus on location privacy preser-
vation mechanisms used to establish privacy by implementing various strategies. These
mechanisms aim to protect users’ sensitive location data from different attacks while main-

taining the functionality and usability of location-based services.

3.3 Location Privacy Preservation Mechanism

The study by Zhong et al. (2022) introduced a sensitivity-based pseudonym change mecha-
nism that leverages the regularity of a vehicle’s movement patterns to provide personalized
location privacy. This approach tailors privacy measures to individual preferences, potentially
increasing user trust. However, it relies heavily on frequent visits to the same locations, and
frequent pseudonym changes could interrupt service continuity, compromising safety-critical
applications like real-time traffic updates.

Hou et al. (2021) developed two neural network-based vehicle tracking methods to assess
the effectiveness of the Mix-Zone scheme in preventing vehicle tracking. These methods
quantify the protection level achieved but face challenges due to the complexity of the neural
network models. Specifically, the inclusion of numerous repetitive parameters can degrade
the training process, while the fully connected Backpropagation Neural Network (BPNN)
risks converging to a local optimum, reducing the reliability.

Nisha, Natgunanathan, and Xiang (2022) proposed a dummy location scattering scheme
to safeguard user location privacy. This method generates dummy locations to obscure real
position data from untrusted entities, supplemented by pseudonym-based mechanisms and
time-delay techniques to enhance privacy further. However, introducing dummy locations
may compromise data utility, illustrating a persistent challenge in privacy-preserving schemes:
achieving an optimal balance between privacy and practical usability.

Hayat et al. (2023) designed a location privacy preservation strategy tailored to sparse
traffic areas to counter colluding attacks. In dense areas, pseudonym changes occur within
mix-context zones, whereas in sparse areas, the scheme shifts to differential privacy, adding
noise to raw beacon message attributes via Local Differential Privacy to produce multiple
perturbed messages. This confuses adversaries but focuses solely on collusion attacks,
neglecting safety-critical scenarios such as collision avoidance for road users.

Ren et al. (2023) introduced a privacy protection model for Location-Based Services
(LBSs) that allows the LBS server to access valid location distributions while ensuring
robust user location privacy. The model generates perturbed locations meeting strict privacy
criteria and includes a retrieval radius determination method to balance query accuracy with

privacy. A key limitation is that preserving distribution without adequately addressing the
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utility-privacy trade-off can diminish the data utility of LBS outputs, potentially affecting

safety-critical applications.

Hara et al. (2016) proposed a dummy-based user anonymization scheme suitable for real-
world settings. This method anonymizes user locations by generating dummy positions and
addresses traceability issues, noting that the relative positioning of users and dummies could
enable Location Service Providers (LSPs) to identify real users. The scheme’s effectiveness
hinges on careful dummy placement, but this may still expose users if not dynamically

adjusted.

Zhang et al. (2018) developed a privacy-enhancing substructure for LBSs using a uniform
grid framework, integrating order-preserving encryption and k-anonymity techniques. A
semi-trusted third-party anonymizer handles caching and encrypted coordinate matching.
While well-suited for continuous queries, the consistent use of a single encryption key and
the need for users to share location-related data with others to form cloaking regions weaken

the privacy assurances.

Zhang et al. (2020) presented a trajectory privacy-preserving mechanism for continuous
LBSs based on a dual-K approach. Multiple anonymizers sit between the user and the LSP,
distributing K query locations to achieve k-anonymity. Dynamic pseudonyms and location
selection mechanisms further bolster trajectory privacy. However, the accuracy of predicted
locations inversely affects privacy: selecting more predicted values reduces data utility,

undermining service quality.

The common shortcomings exhibited by the reviewed privacy preservation mechanisms
from the literatures shows that schemes such as Nisha, Natgunanathan, and Xiang (2022), Ren
et al. (2023), and Zhang et al. (2020) struggle to balance privacy with data utility. Techniques
like dummy locations, perturbations, or noise addition often degrade the quality of location-
based services, impacting real-time or safety-critical applications. While some Zhong et al.
(2022) and Hayat et al. (2023) rely on specific conditions such as frequent location visits or
sparse traffic, limiting generalizability across diverse environments. Dummy-based (Hara
et al. 2016) and pseudonym-based (Zhang et al. 2018) methods risk exposure if adversaries
exploit patterns such as relative positions or static keys, undermining privacy. Several studies
such as Hayat et al. (2023) and Ren et al. (2023) prioritize privacy over safety-critical use
cases, such as collision avoidance or emergency response, which are vital in emergency

situations.
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3.4 Challenges Facing Existing Frameworks

Despite the advancements in effectiveness and user acceptance of personal safety solutions,
there are several challenges identified. Moreover, usability and operational constraints pose
significant challenge. Microcontroller-based solutions suffer from limited mobility, bulky
hardware designs, and issues related to battery drain. Wearable solutions, such as smart
bracelets and smart shoes offers portability, yet it relies on sensor data that can generate false
positives. These false activations not only waste emergency resources but risk desensitising
users and responders to genuine threats. Furthermore, systems that depend on specific
activation gestures or require continuous movement to trigger alerts may fail in scenarios
where the user is stationary or unable to perform the required actions.

In addition, the integration and scalability of these systems remain a concern. Many
smartphone-based solutions rely on legacy communication protocols like HTTP/SOAP or
SMS for data transmission, which are not inherently secure. Some applications attempt to
enhance functionality through features such as augmented reality, social media integration,
or contextual safety scoring, these enhancements often come with increased computational
overhead and do not adequately address the critical need for secure data handling.

A primary challenge is the lack of robust privacy-preserving mechanisms. Many frame-
works prioritise the rapid transmission of accurate location data to ensure timely emergency
response. However, this comes at the expense of data protection, as sensitive information is
transmitted using unsecured protocols or made publicly accessible.

Another challenge is the trade-off between data utility and privacy preservation. High
data utility demands continuous, accurate tracking of a user’s location or trajectory, yet
frequent data collection, increases the risk of compromising user privacy. Many of the
reviewed solutions do not offer dynamic privacy adaptation; they fail to modulate the level
of data protection in real time based on contextual needs. Consequently, this gap makes it

difficult to strike a balance between ensuring data utility and safeguarding sensitive user data.

3.5 Conclusion

The review of existing personal safety solutions reveals that despite significant progress in
developing systems capable of using location and trajectory data to offer rapid emergency
response, substantial challenges persist. The primary issues include the insufficient safe-
guarding of sensitive location information, the delicate balance between achieving high data
utility and ensuring robust privacy preservation, and practical concerns related to device

mobility, false positives, and system scalability.
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The state of personal safety applications requires future research focus on integrating
adaptive, privacy-preserving frameworks directly into these systems. Such integration would
help maintain the data utility necessary for timely interventions while ensuring that sensitive
user information remains protected. Addressing these challenges is crucial for developing
next-generation personal safety solutions that can offer both high data utility and strong

privacy guarantees, ultimately enhancing user trust and overall system effectiveness.



Chapter 4

Trajectory Data Prediction Validation
Methodologies

4.1 Introduction

The analysis of existing approaches in the previous chapter has shown the challenges of
personal safety solutions. The privacy preservation model proposed by this research to tackle
one of the challenges is validated using prediction model for data processing. This is an es-
sential step to establish the experimental performance for the methodological implementation.
This chapter centers on the validation framework of the RBDPM, focusing on the application
of three prediction models (ARIMA, Regression Tree Ensemble, and Linear Regression)
to assess the model’s effectiveness in achieving privacy preservation for personal safety
solutions while maintaining data utility. These models, identified in Section 2 shows ability
to handle trajectory data processing. This chapter examines the model’s ability to effectively

process trajectory data, offering preliminary insights into its strengths and limitations

4.2 ARIMA Model Performance Evaluation

The data exploration phase of the ARIMA prediction model is where stationarity test is
performed to determine if the data are stationary. This is a common practise in time series
analysis to explore the dataset, obtaining the mean, standard deviation, minimum, and
maximum value of observations (Panneerselvam, Liu, and Antonopoulos 2018; Ariyo,
Adewumi, and Ayo 2014) and the mean procedure test used to perform this operation. The
outcome of this test for the dataset is shown in Table 4.2.1 with the standard deviation

identified as the crucial factor in determining the stationarity of the dataset. The standard
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deviation value for this dataset is less than 0.05 for both latitude and longitude and is
insignificantly close to zero, which shows that the mean of the time series is constant and is
interpreted as the dataset being stationary. The result of the test means that differencing (d)
is not required for the dataset, as the dataset shows stationarity.

Table 4.2.1: The MEANS Procedure

Variable | Label N Mean Std Dev Minimum | Maximum
lat lat 120 | 52.9252574 | 0.0043273 | 52.9196800 | 52.9295710
lon lon 120 | -1.4913512 | 0.0077818 | -1.4990940 | -1.4816560
elevation | elevation | 70 | 109.2222736 | 15.4281721 | 43.2273404 | 131.0873011
accuracy | accuracy | 120 | 19.8872000 | 3.6176629 | 6.0000000 | 32.7580000
bearing | bearing 8 181.629754 | 73.5573774 | 72.7008400 | 301.7622000

The model identification phase of the ARIMA prediction model involves the evaluation
of the autocorrelation (ACF) and partial autocorrelation (PACF) plots of the transformed
time series to determine the number of AutoRegressive (p) and Moving Average (q) terms
required by the dataset. ACF and PACF graphs are common tools used in ARIMA modelling
to evaluate the dataset and identify the model best suited to implement on the dataset (Ariyo,
Adewumi, and Ayo 2014; Panneerselvam, Liu, and Antonopoulos 2018; Liu et al. 2016).
The ACF plot is used to visualise the correlation between time series and lagged versions of
the dataset and Fig. 4.2.1 shows the ACF for the dataset where a gradual decrease in the lag
indicates that the correlation between time series and lagged versions of itself is statistically
significant. This means that AR should be included for the dataset when identifying the
model to apply to the dataset. The Partial Autocorrelation Function is a statistical tool used
to measure the correlation between a time series and a lagged version while controlling for
the correlation of all lower-order lags and visualising the partial autocorrelation between the
time series and lagged versions. The PACF of this dataset shown in Figure 4.2.1 shows a
sharp drop after a few lags and a gradual increase across the lag that indicates a statistically
significant correlation, which implies the need for the MA model to be included in the model.

The model selection phase that involves selecting the best set of parameters for an ARIMA
model is performed using information metric criteria such as AIC and BIC to evaluate the
relative quality of different ARIMA models. The best model to use for prediction is the
model with the lowest value of AIC and BIC and this approach aims to select the model with
the lowest AIC or BIC value. The AIC metric tends to favour models with more parameters,
while the BIC metric tends to favour models with fewer parameters (Ingdal, Johnsen, and
Harrington 2019; Thiruchelvam et al. 2021). Table 4.2.2 shows the AIC and BIC criteria
metrics values for different models tried on the dataset, and the metrics as seen in the table

are negative and show that they are all suitable for the research. The best model to use for
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prediction is the model with the lowest value of AIC and BIC, which according to the table
is ARIMA (2,0,1) where 2 represents the number of lags, 0 is the degree of differencing
and 1 is the order of moving average. ARIMA (2,0,1) provided the lowest AIC and BIC
values, which are 1735.68 and 1721.74 for latitude and 1478.09 and 1464.15 for longitude,
respectively.
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Figure 4.2.1: Correlation Analysis of training data

Table 4.2.2: AIC and SBC Result of ARIMA Model

ARIMA Model Latitude Longitude
AIC (-) SBC (-) AIC (-) SBC (-)

ARIMA(1,0,0) | 1627.95 1622.38 1419.60 1414.02

ARIMA(0,0,1) | 1122.44 1116.87 981.49 975.92

ARIMA(1,0,1) | 1696.50 1688.14 1445.14 1436.78
ARIMA(1,1,0) | 1627.06 1621.49 1417.11 1411.53
ARIMA(0,1,1) | 1122.44 1116.87 981.49 975.92

ARIMA(,1,1) | 1696.50 1688.14 1445.14 1436.78
ARIMA(1,1,3) | 1712.58 1698.65 1455.00 1441.07
ARIMA(2,0,0) | 1724.07 1715.70 1454.37 1446.01
ARIMA(2,1,3) | 1459.45 1442.72 1459.45 1442.72
ARIMA(2,0,1) | 1735.68 1721.74 1478.09 1464.15
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The final step is the model validation process, which aims to assess the model’s perfor-
mance on unseen data. This is a critical step, as it determines whether the model generalises
well to new data and how accurately it compares predicted values to actual values. Figures
4.2.2 and 4.2.4 illustrate the trends of the latitude and longitude training data, respectively,
which are used to train the ARIMA model and identify patterns in the location data. Figures
4.2.3 and 4.2.5 show the difference between the test data and the predicted data for the
latitude and longitude data, respectively. They show statistically insignificant differences in a
single direction, suggesting that the ARIMA model is able to identify a pattern in the training
data. The results of the predictions are relatively consistent in a single direction that does not

reflect the capacity for use for a high-speed moving object.

52.935
2293

52.925

Latitude

22.92

52.915
1122334455667 7889100111

Trend

Figure 4.2.2: Latitude Training Data

4.3 Ensemble Regression Tree Model Performance Evalua-
tion

The second model implemented is the Ensemble Regression Tree model which uses a
weighted combination of multiple regression trees to construct a linear combination of
models that enhances the predictive performance of the ensemble model. The bagged tree
ensemble method involves training multiple decision tree models on different subsets of data
and then combining the predictions of these models to make a final prediction (MathWorks

n.d.[b]). Theoretically, this ensemble model should improve prediction accuracy compared
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Figure 4.2.3: Trend Difference for Latitude Test Data and Predicted Data

-1.47
-1.475
-1.48
-1.485
-1.49
-1.495
-1.5
-1.505

Longitude

1122334455667 78 89 100111
Trend

Figure 4.2.4: Longitude Training Data

to using a single decision tree model due to the reduction of overfitting and an increase
in generalisation. The results of the model would depend on the quality and size of the
training data, and the specific implementation of the ensemble method such as the number
of trees used, the method for selecting subsets of the data. Based on privacy and prediction

requirements needed for emergency response in personal safety solutions, a high level of
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Figure 4.2.5: Trend Difference for Longitude Test Data and Predicted Data

accuracy is critical for a rapid and accurate identification of intercept points for the rapid
response team to intervene and offer assistance to the distressed individual.

The trend of the training data shown in Figures 4.2.2 and 4.2.4 is compared with the
predictions in Figures 4.3.1 and 4.3.2 for latitude and longitude, respectively. While the
trends of the predicted values tend to follow a trend similar to the training data, there are
noticeable differences in the trend from the test data. This suggests that, while the model
may be efficient in capturing the general trend of the training data, it may have limitations
in accurately predicting values for vehicle in motion. The trend exhibited by the predicted
values for the latitude data has an upward trend similar to that for the test data with slight
inconsistencies in the slope. However, the longitude data show a greater disparity with the
test data and an upward slope that is different from the test data’s consistent downward slope.
These observations suggest that despite the bagged tree ensemble model that captures some
of the underlying patterns in the data, it may not accurately predict the location of the event.

The boosted tree model uses a sequential weight adjustment process and is based on the
fitting of the successive algorithm to the previous one. Sequential fitting can be observed in the
consistent intervals shown in Figures 4.3.3 and 4.3.4, and provides a graphical representation
of the latitude and longitude values for the predicted value and the test data. The figures infer
that the boosted tree ensemble model is capable of capturing the general trend of the training
data, and the predicted values follow a pattern similar to the actual test data. Despite the

general alignment of the trends, there are still significant differences between the test data
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and the predicted data. These are particularly noticeable in the longitude values, and, moving
along the trend, the trend of the predicted data deviates from the trend of the test data.

This analysis suggests that the boosted tree ensemble model can capture some of the
underlying patterns in the data, but it fails to accurately predict location data. This indicates
a limitation in the predictive accuracy of the model for the purpose of processing data for
personal safety solutions. These limitations could be due to various factors, such as the
complexity of the data, the choice of hyperparameters, or the inherent limitations of the
boosting algorithm. Despite the promise of the model’s ability to identify general trends,
extensive tuning and testing would be required to improve the predictive accuracy for specific
values.
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4.4 Linear Regression Prediction Model Performance Eval-

uation

During the training phase of the Linear Regression prediction model, once the model is
fitted, the subsequent step involves using the independent variables to predict the dependent
variable. In this phase, the model generates predicted outputs that are directly compared with
the actual observed values to assess the performance. The evaluation process is critical as it
provides insights into how well the model captures the underlying relationship in the data

and indicates whether adjustments or refinements are necessary.
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The discrepancies between the predicted and actual values are quantified using several
evaluation metrics, as discussed in Section 2.3.2, include the Root Mean Squared Error
(RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE). These metrics are
fundamental in assessing the quality of the predictions, each providing a different perspective
on the error characteristics:

The table below presents the computed values for these metrics during the training

process, along with the recorded training time:

Table 4.4.1: Evaluation Metrics for the Model Training Process

Metric Value

MAE 3.887 x10~14
MSE 1.193 x10=%6
RMSE 1.092 x10~13
Training time 0.596 seconds

The values shown in Table 4.4.1 are close to zero, indicating that the model’s predictions
are closely identical to the actual observations. Such minimal error values suggest that the
linear regression model has effectively captured the relationship between the independent
and dependent variables, yielding a high degree of accuracy.

In addition to assessing the numerical error values, the evaluation process helps in
identifying potential issues such as overfitting or underfitting. When error metrics are near
zero on the training data, it is a good indicator that the model has learned the underlying
patterns. However, it is essential to validate the model on unseen data to ensure that this
performance is maintained outside the training set. The consistency of these metrics across
different datasets would further strengthen the confidence in the model’s generalizability.

Moreover, the inclusion of the training time metric serves as an indicator of the computa-
tional efficiency of the model. A training time of 0.596 seconds demonstrates that the model
not only performs accurately but also does so in a computationally efficient manner, which is
particularly important for real-time applications or scenarios where the model needs frequent
updating.

In summary, the evaluation phase confirms that the linear regression model exhibits
excellent performance based on the minimal discrepancies between predicted and actual
values. The comprehensive analysis using RMSE, MSE, and MAE, coupled with a fast
training time, validates that the model meets the thesis performance expectations. This
robust performance is critical for applications such as trajectory prediction, where even minor

inaccuracies can lead to significant deviations in practical scenarios during processing.



46 Trajectory Data Prediction Validation Methodologies

4.5 Discussion

The application of this concept to a personal safety solution using the capabilities of the exist-
ing framework (Sogi et al. 2018) that tracks the movement of people and collects trajectory
data to improve the system by predicting possible intersection points to provide assistance to
distressed individuals in transit. This should amplify the efficiency of the emergency system,
facilitating a rapid response without exhausting resources or compromising the safety of

others.

This study provides a insightful exploration of the implementation of the prediction
model and potential utility in the emergency response system of personal safety solutions in a
VANET. This chapter evaluates the implementation of the ARIMA, ensemble regression tree
and Linear Regression prediction model on a real-world trajectory as a commendable step
towards understanding time-series prediction models and efficiency in obtaining accurate

predictions.

In our exploration of predictive models, one of the predictive models reviewed for
implementation is the ARIMA model. This model is simple to use, has light computational
costs, and can capture seasonal trends, but falls short when it comes to non-linear patterns and
non-aggregated data (Petropoulos et al. 2022). This model uses the ARIMA(p,d,q) notation
to indicate the best-suited model for prediction based on the degrees of autoregressive,
differencing, and moving average. The dataset of this study required the model with the
ARIMA(2,0,1) notation that indicates the need for two degrees of lag (AR), no differencing
(I), and a forecast error lag of one degree (MA). The prediction outcome based on this
notation shows constant gaps between each forecast value, and the trend followed by the
predicted values is similar to the trend observed by the model from the training data. This
indicates the dependence of this algorithm on trend and pattern observation from the training
data.

The implementation of the ARIMA model on the trajectory dataset began with a sta-
tionarity test using the mean procedure test to verify the stationarity state of the data and
whether differencing would be required when implementing the model on the dataset. The
outcome of this test showed an insignificant standard deviation value that is less than 0.05,
which means that no differencing (d) was required for this dataset. The evaluation of the
Autocorrelation (ACF) and Partial Autocorrelation (PACF) plots in the model identification
phase proved valuable for determining the appropriate number of AutoRegressive (p) and
Moving Average (q) terms; it shows that AR and MA are required by the dataset. The model
selection phase, which is guided primarily by the AIC and BIC values, revealed that the
ARIMA (2,0,1) model provided the lowest AIC and BIC values. The model validation phase
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illustrates the model’s performance on unseen data which shows a satisfactory performance

of the model on unseen trajectory data.

Another predictive model that was implemented is the Regression Tree ensemble model,
which uses a weighted combination of multiple regression trees. This model has shown
proficiency in trajectory data prediction and uses BAGGing and Boosting methods to decrease
the variance of the model prediction, leading to more accurate results. The Bagged Tree
approach employs the most efficient predictor of the aggregated decision for prediction,
echoing the pattern observed with the ARIMA model. The outcome of this approach follows
the trend of the training model as observed in the ARIMA model that differs from the test
data. The boosted tree technique, on the other hand, uses a sequential process of weight
adjustment and is built on the fitting of the successive algorithm to the previous algorithm.
This approach produced an outcome pattern that differed from the other two models, with
significant deviation from the test data, and the trend differs from that of the training data.
This deviation was caused by the dependence of the approach on the outcome of the previous

algorithm during the decision-making process.

The implementation of the Ensemble Regression Tree model aims to improve predictive
performance through a weighted combination of multiple regression trees, making it a good
model to predict trajectory data. The bagging technique employed trains several decision
tree models on varied data subsets, subsequently aggregating these models’ predictions to
produce a final one. The bagged tree method demonstrates the model’s capability to capture
inherent data patterns, with predicted values largely conforming to the training data trend.
Notable discrepancies with the test data indicate potential limitations in predicting specific
values accurately. The boosted tree technique, which iteratively adjusts the weights and
builds on the fitting of successive algorithms, does not seem to address these shortcomings.
Although the model seems to capture the general trend of the training data and the predicted
values align to some extent with the actual test data, significant disparities persist, especially

in the longitude values.

Using ensemble learning models, such as the regression tree ensemble, can lead to
enhanced accuracy in location prediction tasks compared to conventional models such as
ARIMA. Ensemble models amalgamate multiple predictor models to surpass the performance
of individual models. The ensemble learning model is adept at managing intricate and non-
linear relationships in data, where even neural networks, despite their strength, might falter
(Wang et al. 2019). Ensemble models are more interpretable than neural networks since
each individual model’s decision-making process can be comprehended and scrutinised.
They consist of several models, thereby reducing the risk of overfitting. This leverages the

strengths of various models while counteracting the weaknesses of others. This attribute
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makes ensemble models especially beneficial for datasets with a limited and specific sample
size.

Both ARIMA and Regression Tree ensemble models display potential. Each model boasts
certain benefits: ARIMA excels in discerning data patterns and trends, while Regression
Tree ensemble models offer superior accuracy in location prediction tasks, effectively handle
complex and non-linear data relationships, and deliver easily interpreted results. Despite their
strengths, both models exhibit limitations and differ in test data performance, underscoring
the intricacy of location prediction tasks and the imperative of judicious model selection and
fine-tuning.

Although ARIMA and Regression Tree Ensemble models showed promising capabilities
for emergency response location prediction, they come with constraints. Proper interpretation
of results and potential adjustments based on the nature of the data are essential. The
ARIMA model, reliant on recent past data, has limited efficacy for longer-term forecasts, and
susceptibility to noise might distort the model’s parameters. Implementing the Regression
Tree Ensemble models can be intricate, necessitating meticulous tuning of parameters
like tree count, tree depth; furthermore, overfitting becomes problematic without optimal
parameter configuration. These drawbacks led to the choice of the Linear Regression model

for validating the privacy model.

4.6 Conclusion

This chapter has provided analysis of different prediction models that are used for processing
trajectory data, assessing the conceptual viability in efficiently processing trajectory data.
Three distinct prediction models: ARIMA, Regression Tree Ensemble, and Linear Regression
were explored and applied to real-world trajectory data.

While ARIMA and Regression Tree Ensemble highlighted challenges such as overfitting
to temporal patterns or computational complexity, Linear Regression emerged as a suitable
model for trajectory data offering a robust foundation for integrating risk-driven differential
privacy without the overfitting or complexity burdens of ARIMA and Regression Tree
Ensemble.



Chapter 5

Risk-Based Differential Privacy Model
Concept

5.1 Introduction

The validation of the predictive models in Chapter 4 has established a foundation for eval-
uating the performance of the RBDPM with Linear Regression emerging as a the most
suited for processing trajectory data. this chapter shifts focus to the conceptualization and
implementation of the RBDPM, a framework proposed in this thesis to enhance privacy
preservation in personal safety solutions.

This chapter presents a detailed exploration of the RBDPM, elaborating on the design and
the modular structure that supports the implementation. It introduces three integral modules
(Hazard Assessment Module, Privacy Preservation Module, and Noise Application Module).
Together, these modules analyze distinct data characteristics, provide contextual insights into

risk and privacy needs, and culminate in the RBDPM’s operational framework.

5.2 Privacy Preservation in Personal Safety Solution

The RBDPM proposed in this thesis categorizes location data records by their risk levels,
enabling tailored noise injection to preserve privacy while maintaining data utility of location
data. The location data used by this model would be collected during the collection phase
from travelling vehicles. The initial phase evaluates the relative velocity and distance between
adjacent vehicles to determine the time to collision, which is a critical indicator of immediate
risk of collision. The time-to-collision is used for the classification of risk on a scale from
1 lowest to 3 highest levels. The lower the TTC value, the higher the risk of collision and
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vice versa. The privacy mechanism uses these risk score to adaptively compute a privacy
parameter. This parameter is derived using the Differential Privacy and risk relationship
equation by Dandekar, Basu, and Bressan (2021) that shape how privacy levels respond
to risk. Having established the privacy parameter, the model proceeds to inject Laplace
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Time-to-Collision

Risk Classification

Hazard Assessment Privacy Preservation

Trajectory
Dataset
Privacy

Parameter

Laplace Noise . .
Privacy Mechanism ‘ p Noise Application

Application ‘ ‘

Noise Injected
Dataset

Figure 5.2.1: Design Concept for Risk-Based Differential Privacy Model

noise into the location dataset in preparation for processing. This ensures that the published
data does not reveal exact user trajectories. The scale of the noise depends on the privacy
parameter € with large privacy parameter receiving milder noise to ensure good data utility.
Unlike low privacy parameter during incident times that receives higher noise injection

reflecting the user’s reduced need for precise collision warnings in these situations.
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5.3 Risk-Based Differential Privacy Model Concept Design

The RBDPM consists of three core modules: Hazard Assessment, Privacy Preservation and
Noise Application Module. This model is based on extending privacy preservation into
the functionality of personal safety solution such as the solution proposed by Sogi et al.
(2018) discussed in section 1.2. The data collection phase provides the trajectory location

information of a moving vehicle, and this serves as the input data for the model.

Hazard Assessment Module

The Hazard Assessment module illustrated in Algorithm 1 processes the dataset to obtain
kinematic features such as coordinate, velocity, distance and nearby vehicle information. The
input dataset consists of location data points, each identified by an id, timestamp, latitude,
and longitude. The dataset is sorted chronologically to feed the CalculateDistance function
to determine the distance travelled between consecutive timestamps. This distance is divided
by the time taken to travel the distance between the coordinates (output of the TimeDifference

function) to derive the velocity.

The next step is to identify the nearby vehicles for a given vehicle at a specific timestamp
by checking for vehicles location at the specific timestamp. The distance between the current
vehicle and each nearby vehicle, as well as their relative velocity is calculated using the
ComputeRelativeVelocity function. If the relative velocity is not zero, the time to collision is
computed as the distance divided by the relative velocity (Yan et al. 2010). The TTC value
for each vehicle at each timestamp is determined, indicating the shortest time to potential
collision with another vehicle. This process allows for dynamic risk assessment based on

real-time movement data.

Privacy Preservation Module

Building on the output from the Hazard Assessment module, the privacy preservation mod-
ule as shown in Algorithm 2 applies a risk-based assessment to the data. Specifically, it
calculates Time-to-Collision (TTC) values with the ComputeTTC function and converts
these continuous metrics into categorical risk labels (e.g., Low, Medium, or High) using the

CategorizeRiskScore function to assign a risk score based on TTC thresholds.
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Algorithm 1 Hazard Assessment Module

Require: A dataset X, where each entry contains:

id, timestamp, latitude, longitude,

1: X < Sort(X, by = [id, timestamp]|)

2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24

N e A A

for i < 1tolen(X) do
if X;['id'] = X;['id'] then
d < CalculateDistance(X;['lat'], X;['lon'], X[ lat"], X ;['lon'])
At < TimeDifference(X;['timestamp'], X ;[ timestamp))
if Az # 0 then
vd/At
else
v+ 0.0
end if
end if
end for
min_ttc +— oo
nearby_vehicles < Filter(X, by = [id, timestamp))
for each vehicle v in nearby_vehicles do
d < CalculateDistance(vy, ;)
v_rel <— ComputeRelativeVelocity (v ['velocity’], v, [ velocity’])
if v_rel # O then
ttc < d/v_rel
if ttc < min_ttc then
min_ttc < ttc
end if
end if
end for

25: X['TTC’] <— min_ttc if min_ttc # o else NULL

26:

return X
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Algorithm 2 Privacy Preservation Module
1: function PRIVACYPARAMETER(T'TC)

2: df['Risk_Score’] «— d f[’ttc’]|.apply(categorize_risk_score)

3: d f['Privacy’] <— d f['Risk_Score_Category’].apply(calculate_privacy(X))
4: if tzc_value < 7 then

5: risk_score < 3

6: else if 4 <ttc_value <7 then

7: risk_score < 2

8: else

9: risk_score < 1
10: end if
I privacy_value < 1—risk_score_categoiyx(l—3 o€ Jacior)
12: return privacy_value

13: end function

Close interaction with short TTC usually under 4 seconds is deemed high risk situations
and the risk score set to 3 (high risk). While those with larger separation receive lower scores,
if TTC value falls between 4 and 7 seconds (inclusive), the category is set to 2 (moderate
risk), and if it is greater than 7 seconds, the category is 1 (low risk). Once the risk score has
been computed, the next step is the computation of the privacy parameter level using the
ComputePrivacy function. This function uses the Differential Privacy and risk relationship
equation by Dandekar, Basu, and Bressan (2021) that relates risk and privacy to compute the
privacy value from the risk score.

Noise Application Module

The privacy parameter € value determine previously would be used by this Noise Application
module to dictates the amount of noise to be injected into dataset. This module shown in
Algorithm 3 uses sensitivity parameter, which determines the maximum impact a single data
point can have on the dataset. Using the Laplace noise mechanism, along with the sensitivity
and privacy level, noise is added to the dataset. This mechanism perturbs each location
coordinate by adding noise sampled from a Laplace distribution with scale (&, sensitivity),
where € (epsilon) is a privacy parameter controlling the level of noise applied. After applying
the noise, a modified dataset is returned as the output that would be used for data processing.
This process ensures that location data remains differentially private by adding controlled
randomness, preventing adversaries from accurately pinpointing individual locations while

still preserving statistical properties useful for analysis.
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Algorithm 3 Noisy Application Module
1: function NOISYDATASET(X)

2: Set sensitivity

3: X _noisy[X] < AddLaplaceNoise(X, €, sensitivity)
4: return X_noisy

5: end function

5.4 Risk-Based Differential Privacy Model Implementation

The initial trajectory dataset acquired from the data collection phase is replaced with a
generalized and randomized noise-injected trajectory dataset that is larger and exhibits
a decrease in linearity while maintaining sufficient data utility to enable high-accuracy
predictions. The purpose of the noise-injected trajectory dataset is to limit the amount of
information that an attacker can obtain by intercepting the information transmitted by the

user in motion.

The concept of dynamically balancing the data utility and privacy trade-off is to preserve
the accuracy of the processed information while ensuring data sensitivity protection. This
dynamism is achieved by identifying the mobility pattern through the mobility classification
module, determining the € level via the respective modules, and adjusting the noise level
applied to the trajectory dataset to balance the trade-off between data utility and privacy,
regardless of the user’s mobility pattern. The full execution flow of RBDPM is shown in

Algorithm 4 encompassing the various modules.

The data processing methodology adopted for the experimental validation of the model is
based on a predictive modeling approach. The prediction model, as described in Section 2.2.3,
is pre-trained using the training sub-dataset of the Beijing taxi dataset, and the performance
is validated on a new, unseen dataset using the test sub-dataset.

The noise-injected dataset is utilized for prediction using the resultant prediction model.
The model’s performance is evaluated by measuring the error/difference between the pre-
dicted values and the actual values of the input data. The errors are assessed using the
evaluation metrics: Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and
Mean Absolute Error (MAE).

The evaluation criteria indicate the effectiveness of the model in capturing the underlying
data patterns and the generalization capability. When the evaluation metric values approach
zero, it suggests that the model performs well, as the predicted values closely align with

the actual values in the i’ term. Conversely, the farther the value is from zero, the higher
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the ineffectiveness of the model for the intended purpose. In such cases, the model requires

improvements, such as parameter hyper-tuning and retraining with optimized parameters.

Algorithm 4 Main Execution Pipeline for Generating a Noisy Dataset
1: function MAINEXECUTION(dataset)

2: df < dataset

3 df < CALCULATEVELOCITY (df)

4 df (TTC) <— COMPUTETTC(df)

5 df (RiskScore) +— CATEGORIZERISKSCORE(”ttc”)
6: df (Privacy) <~ COMPUTEPRIVACY (”RiskScore”)
7

8

9

noisyDF <— NOISYDATASET(d f)
return noisyDF

- end function

Dataset Description

The Beijing T-Drive dataset is a dataset encompassing information useful for spatio-temporal
analysis and urban mobility. This Microsoft Research Asia dataset captures extensive GPS
trajectories from taxi fleets operating in Beijing and has been widely adopted by researchers
for studying traffic patterns, routing algorithms, and map-matching techniques, among other
applications.

The dataset includes the trajectories of approximately 10,357 taxis over a one-week
period (February 2-8, 2008). This version consists of millions of GPS points detailing the
paths taken by taxis across Beijing’s road network, thereby providing granular location data
that reflects real-world traffic dynamics.

This dataset as shown in Table 5.4.1 contains Taxi ID (anonymized), Timestamp, Lat-
itude, and Longitude, which allows for comprehensive analysis of urban traffic flow and
driver behavior, identifying patterns and decision-making strategies. Although taxi IDs are
anonymized, the fine-grained nature of the data requires careful handling to preserve privacy
while enabling detailed analysis. The dataset offers spatial coverage reflecting real-world
traffic dynamics such as the complexities of urban mobility, driver behavior, and actual travel
time that is suitable for training a predictive model for the validation of the trade-off balance
hypothesis for data utility and privacy in this thesis.

The dataset does not entail features related to dangerous activities such as accidents or
near-miss incidents to inform the investigations of this research. This absence of safety

critical data means that the dataset alone cannot support analyses aimed at collision-related
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Table 5.4.1: Dataset sample with timestamp, latitude, longitude, and ID.

timestamp lat lon id
2008-02-02 13:38:03 39.9071 116.415 | 10
2008-02-02 13:38:09 39.907 116.49 | 366

2008-02-02 13:38:13 | 39.907097 | 116.416431 | 10
2008-02-02 13:38:13 39.907 | 116.488845 | 366
2008-02-02 13:38:23 | 39.907093 | 116.41782 | 10
2008-02-02 13:38:23 39.907 | 116.48769 | 366
2008-02-02 13:38:29 39.907 | 116.419293 | 10
2008-02-02 13:38:29 | 39.907086 | 116.482534 | 366
2008-02-02 13:38:43 39.907 116.4757 | 10

occurrences. For modelling and investigation of high-risk scenarios, it is essential to generate
synthetic data that mimics near-miss and accident events. Such generated data can capture the
dynamic and unpredictable nature of dangerous driving situations while preventing danger to
user safety. These simulated scenarios serve as a critical supplement to the existing T-Drive
dataset by providing the hazardous event information necessary for the analysis of dangerous
events.

The SimPy simulation environment offers a comprehensive set of tools for creating
event-driven realistic simulations, especially for these dangerous event situations. The
versatility and robustness of SimPy make it a valuable tool for simulating mobility models and
validating analytical results in various applications. Driver behavior, stopping distance, speed,
acceleration, deceleration patterns, and vehicle dynamics all contribute toward modelling
dangerous events. In this thesis, the simulation will track features like time-to-collision,

thereby enabling the generation of near-miss and accident events.

The generated collision dataset is focused on two users on a two-lane road with both
vehicles traveling at moderate speeds and maintaining a safe distance from other vehicles.
User A and User B are approaching from opposite directions. User B sees the vehicle ahead
brake suddenly and makes a rapid decision to swerve away from their lane to avoid a potential
rear-end collision. However, this evasive maneuver puts User B directly in the path of User
A at a distance greater than the stopping distance of both vehicles when braking. This leads
to a head-on collision between the two users that jeopardizes their safety, thereby calling for
a drop in privacy level for assistance to be rendered with high data utility. Similarly to the
T-Drive dataset, the generated dataset contains ID, Timestamp, Latitude, and Longitude and
the features embodied in the dataset include time-to-collision (TTC) and stopping distance

for analyzing the situation.
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5.5 Conclusion

This chapter outlines the core modules essential to the operational efficacy of the RBDPM: the
Hazard Assessment Module, Privacy Preservation Module, and Noise Application Module.
These modules integrate distinct functionalities to produce a noisy dataset for processing.
The Hazard Assessment Module analyses trajectory data attributes, such as TTC, to iden-
tify and categorize risk levels relevant to personal safety scenarios. The Privacy Preservation
Module then determines the privacy parameter, €, based on the assessed risk. Next, the Noise
Application Module applies the DP mechanism, injecting Laplace noise calibrated to the
specified € value, yielding a privacy-protected trajectory dataset tailored to the risk profile.
This chapter details the cohesive integration of these modules, establishing the RBDPM’s
operational framework. This foundation sets the stage for Chapter 6, which evaluates the

dataset’s performance through experimental validation.






Chapter 6

Risk-Based Differential Privacy Model
Proof-of-Concept Validation

Chapter 5 detailed the design and implementation of RBDPM through the Hazard Assessment,
Privacy Preservation, and Noise Application Modules. This chapter shifts focus to the
empirical evaluation of the RBDPM, presenting the results of the experimental validation
providing comprehensive analysis of the RBDPM’s effectiveness in preserving privacy for
personal safety solutions while maintaining the data utility essential for operational success.
The model’s performance is assessed using a normal traffic and collision traffic trajectory
dataset to leverage Linear Regression for data processing. The evaluation results explore
key metrics to quantify how RBDPM modules perform. The findings was discussed and
compared with other research showing the strength and weaknesses.

6.1 Privacy Parameter Determination

The hazard assessment evaluates the safety-critical information within the location dataset
using relative velocity, stopping/braking distance and distance between vehicles to estimate
the TTC between the two users.

The calculation of TTC provides significant insights into the safety dynamics of vehicle
interactions. The TTC between nearby vehicles is calculated to determine the closeness
between these vehicles and the potential for collision. The minimum TTC value, which
indicates the closest point to a potential collision within the dataset is used to determine the
general measure of safety across the dataset. The underlying concept is that a shorter TTC
indicates a higher risk of collision. This value helps in understanding the immediate safety

landscape of vehicle interactions, which is crucial for hazard assessment where lower TTC
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values signal higher-risk scenario (Wandtner et al. 2018; Hosseini et al. 2016). TTC could
not be calculated using the normal traffic dataset as the vehicles maintain safe distances
as illustrated in Figure 6.1.2. However, in the collision dataset, TTC values of 3.415243,
2.276829, and 1.138415 were observed as illustrated in Figure 6.1.1 with TTC values printed
at key points and 1.138415 the minimum TTC before collision. The figure shows the decrease
in TTC until collision with the value changing from 3.415243 to 2.276829 to 1.138415 till

the collision occurs.
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Figure 6.1.1: Map showing vehicle paths and TTC values for the collision dataset

Based on the computed TTC, a risk score is assigned according to predefined thresholds.
A TTC of less than 4 seconds indicates an instance of high risk, and is assigned a risk score
of 3; an instance of medium risk, with a risk score of 2, is assigned for TTC between 4 and 7
seconds; while low risk, with an assigned risk score of 1, applies if TTC exceeds 7 seconds.
This categorisation directly impacts the level of privacy protection needed, with higher-risk
scenarios requiring more noise to safeguard sensitive data, thus influencing how privacy and
data utility are balanced within the system.

Higher risk calls for stronger privacy protection. Therefore, if the risk score is high,
indicating a greater chance of collision and a more sensitive situation, the privacy parameter
mandates a low degree of noise to preserve data utility. Conversely, if the risk score is low,
more noise is needed, thus preserving data privacy. The privacy parameter, €, is derived from
the risk score using the Differential Privacy and Risk Relationship function by Dandekar,
Basu, and Bressan (2021) described in Section 2. This value directly modulates the level

of Laplace noise added to the trajectory data, ensuring that data with higher collision risk
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Figure 6.1.2: Map showing vehicle paths for normal traffic

receive a noise level that adequately protects sensitive location information and is tailored to
the risk profile of the data. The privacy parameter levels, as shown in Table 6.1.1, equate to

0.5 for a risk score of 3, 0.6 for a risk score of 2, and 0.7 for a risk score of 1.

Table 6.1.1: Risk and € Level Based on Time-to-Collision (TTC)

TTC Risk Level | € Level
TTC < 4 secs High (3) 0.5
4 <TTC <7 | Medium (2) 0.6
TTC>17 Low (1) 0.7

This process ensures that the level of privacy protection is dynamically tailored to the
risk associated with the data. By linking TTC and risk score to the privacy parameter, the
framework effectively balances the trade-off between maintaining data utility and ensuring
robust privacy protection in critical scenarios. This approach allows the system to adapt to
varying safety-critical situations, ensuring that sensitive information is protected without

unduly compromising the utility of the data used for processing.

6.2 Differential Privacy Preservation Performance Evalua-
tion

The initial implementation of the prediction model focused on integrating a DP scheme

to safeguard data while maintaining predictive accuracy. A pre-trained Linear Regression
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model as discussed in Section 2.2.3 was adopted, and the performance on new data was
evaluated using various levels of Laplace noise, controlled by the privacy parameter €. The
performance was assessed using MSE, MAE, and RMSE metrics explained in Section 2.3.2.

For the baseline dataset, the test sub-dataset produced MAE, MSE, and RMSE values of
3.89x 1071, 1.10x 10713, and 1.20 x 1026 respectively. This outcome shows values close
to zero for all evaluation metrics and represents an efficient prediction model that works well
with a new unseen dataset.

Table 6.2.1: Privacy Preservation Prediction Scheme Performance

Epsilon | Mean Absolute | Root ~ Mean | Mean Squared | Time taken
Level Error Squared Error | Error (seconds)
0 3.89 x 10~ 14 1.10x 1073 [1.20x107% [0.59

0.1 2.69x 10713 487x 1078 [237x10°%2 [ 1.43

0.2 3.12x 1071 541x10°83 [293x10°2 |[1.42

0.3 3.29%x 1071 5.64x 10713 [3.18x10°% |0.96

0.4 3.38x 1013 576 x 10715 [332x107% | 0.94

0.5 3.43x 1071 584x 1075 [341x107% | 1.10

0.6 347 x 1071 580x 10758 [347x1072 [1.29

0.7 3.50x 10~ 13 593x 10718 [3.52x107% | 1.02

0.8 3.52x 1071 596x 1075 [355x 107 ]0.92

0.9 3.54%x 1071 599x 10713 [3.58x10°%2 [0.92

1.0 3.55x 10713 6.00x 1071 [3.61x10°2 |0.92

Subsequently, Laplace noise was systematically injected into the dataset using € values
ranging from 0.1 to 1.0. Table 6.2 presents the performance metrics across these privacy
levels. The outcome indicated that as the value of € increased, a minor yet consistent rise in
the error metrics was observed. This trend suggests that while the introduction of noise to
enhance privacy slightly reduces data utility, the model performance remains robust. The
slight increments in MAE, MSE, and RMSE demonstrate that the model’s predictions remain

very close to the true values even when privacy-preserving noise is applied.

Table 6.2.2 shows the differences between the evaluation metrics of the noise-injected
dataset and the baseline dataset. The baseline dataset produced a MAE of 3.89 x 1014,
which confirms that, the absolute difference between the predicted and actual values is nearly
zero. Similarly, the MSE value of 1.10 x 10~!3 indicates that large prediction errors are
extremely rare due to the squaring of errors, resulting in a minimal overall error. Finally, the
RMSE of 1.20 x 1072% shows that when the error measure is converted back to the original

data units, it remains negligible.
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Table 6.2.2: Differential Privacy-Applied Prediction vs Baseline Prediction Comparative

Evaluation

Epsilon | AMean Abso-| A Root Mean | A Mean | A Time taken
Level lute Error Squared Error | Squared Error | (seconds)
0.1 230x 10713 [3.77x10713 [225%x107% [0.84

0.2 273x 10718 [432x10°8 [281x10°2 [0.83

0.3 290x 10713 [454x10°3 [3.06x1072 [0.37

0.4 299x 1071 [4.67x10°2 [320x10°2 [0.35

0.5 3.04x 1075 [474x 1078 [329%x10°%2 [0.51

0.6 3.08x 10713 [479x 1073 [335x1072 [0.70

0.7 3.01x 1075 [483%x10°P [340x10°2 | 043

0.8 3.13x 10718 [486x 10718 [343x10°2 [0.33

0.9 3.15x 10713 [4.89%x10° 2 [346x10°2 ]0.33

1.0 3.17x 1075 [491x10°P [349%x10°2 |0.33

The best-performing models are dependent on the lowest values of the evaluation metrics.
Based on the MAE metric obtained for these data, the baseline dataset shows the best
performance with a low MAE value. This is expected as the baseline dataset maintains
high data utility without any added noise to the dataset (Dwork and Roth 2014). The same
observation can be made of other evaluation metrics such as MSE and RMSE. Evaluation
metrics assessment for the models shows that the increase in Laplace noise level introduced
into the dataset leads to a slight decrease in data utility, and the noise-injected dataset
processing is capable of providing an accurate result similar to the result from processing the
initial trajectory dataset.

The differences in MAE, MSE, and RMSE remained close to zero, which implies that the
DP mechanism introduces minimal degradation in data utility. Figure 6.2.1 further illustrates
the relationship between the privacy parameter € and the evaluation metrics, highlighting
that data utility gradually decreases as privacy protection is strengthened. This confirms the
critical role of the privacy parameter in trade-off balancing of data utility and privacy, as the

error increases slightly when more noise is added (Harder, Bauer, and Park 2020).

Data Ultility vs Data Privacy Trade-off

The assessment of the privacy guarantee required to balance the trade-off between data utility
and privacy is depicted in Fig. 6.2.1. The graphs plot the levels of privacy parameters against
the values for both the data utility and the privacy utility evaluation metric. This indicates
the degree of data utility and privacy required by each privacy parameter to offer a balanced

data utility-privacy trade-off (Harder, Bauer, and Park 2020). The graphs suggest similar
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trends for the utility and privacy features of the data as the level of € increases, with slight
incremental differences between these values and the values of €. This trend indicates that
the utility of data decreases as privacy preservation increases, highlighting the significant role
of properly adjusting the value of the privacy parameter in moderating the trade-off between

the utility of data and privacy to meet the privacy requirements of the dataset.
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Figure 6.2.1: Data Utility vs Privacy Utility Analysis

The irregular differences exhibited by the data utility and privacy utility output during
the analysis show that there is no linear relationship between the degradation of the data
utility and the increased preservation of privacy. The graph shows that there may be certain
levels of privacy where the loss in data utility is close to zero, and other levels show a small
increase in privacy results with a significant drop in data utility. The challenge in this involves
identifying an optimal value of € that provides an acceptable level of privacy protection while
minimising loss in data utility. This optimal value could vary depending on the context, the
type of data involved and the sensitivity of the information. Thus, balancing the trade-off
between data utility and privacy is crucial, and this can be based on various factors in the
dataset, such as data type and information sensitivity. The evaluation of factors within the
dataset considers attributes and additional information associated with the dataset that would

assist the determination of the trade-off point between the utility of the data and privacy.



6.3 Prediction Performance Evaluation of Risk Assessment-Driven Privacy-Preservation
Scheme Noise-Injected Data 65

6.3 Prediction Performance Evaluation of Risk Assessment-

Driven Privacy-Preservation Scheme Noise-Injected
Data

The degree to which the trade-off between data utility and privacy must be offset under vary-
ing privacy requirements can be estimated by assessing intrinsic dataset factors. Determining
the hazard level with TTC, which informs the situational risk provide the degree of offset
needed by the data to balance the trade-off balance between data utility and privacy. Evaluat-
ing the performance of the noise-injected dataset from the Privacy Preservation Module with
the evaluation criteria metrics using the Linear Regression prediction model will provide
insight into the impact of balancing the data utility and privacy trade-off and the degree of
offset that is needed to balance the trade-off for the dataset.

Performance evaluation would assess data utility and privacy for different datasets that
meet the requirements of normal and hazard scenarios after the dataset has passed through the
three modules. In the second module, the risk score was used to define the privacy parameter,
and the designed Laplace noise distribution driven DP mechanism is applied to the datasets
individually to obtain the noise-injected dataset that was evaluated by applying the prediction
model to the dataset. The outcome of the performance evaluation criteria contributes to
understanding the impact of the risk-based privacy preservation concept on balancing the
trade-off between data utility and privacy.

6.3.1 Data Utility Performance Evaluation

The performance evaluation outcome of applying the Linear Regression model on the normal
traffic and collision dataset without noise injection into the dataset serves as the baseline
output for the analysis. The baseline evaluation metrics, where no noise is added to the
dataset, show the data utility provided by the dataset for processing. The metric values for
both datasets are shown in Table 6.3.1 and Table 6.3.2 , with values close to zero, indicating
a model that performs well on the dataset. The low error values of 3.89 x 10~% for MAE,
1.10 x 10713 for RMSE, and 1.20 x 1026 for MSE after processing the normal traffic dataset
indicate the high data utility in providing accurate predictions with minimal deviation from
actual values. When more noise is added, the errors gradually rise, yet the degradation in
performance remains relatively small. The increase in noise levels for MSE, RMSE, and
MAE leads to a slight increase in errors and suggests that the model retains substantial
processing utility, making it suitable for dynamically balancing the data utility and privacy
trade-off.
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Privacy Parameter

Metric Baseline 0.5 0.6 0.7
Mean Absolute Error | 3.89 x 10714 | 3.43x 10713 | 3.47x 10713 | 3.50x 10~ 13
Root Mean Squared Error | 1.10 x 10713 | 5.84x 10713 | 5.89 x 10713 | 5.93 x 10~13
Mean Squared Error 1.20x 10726 | 3.41 x 1072 | 3.47x 1072 | 3.52x 1072

Table 6.3.1: Evaluation Metrics For Normal Traffic Dataset

The Collision Dataset exhibits significantly higher sensitivity to noise addition, leading to
a more pronounced decline in predictive accuracy. The baseline result has higher errors, with
an MAE value of 2.17 x 10713, RMSE of 1.85 x 10~!2, and MSE of 2.58 x 1072°. When
noise is introduced at level 0.5, MAE increases sharply to 1.31 x 10~!'!. This trend continues
at noise levels 0.6 and 0.7, where MAE further rises to 1.46 x 10~ and 1.52 x 1011, along
with a similar increase in RMSE and MSE. This suggests that the size of the errors made
during processing increases because the model is unable to extract significant insight from
the data.

Privacy Parameter
Metric Baseline 0.5 0.6 0.7
Mean Absolute Error | 2.17 x 10713 | 1.31 x 10711 | 1.46 x 10~ | 1.52x 10711
Root Mean Squared Error | 1.85x 10712 | 2.15x 10712 | 2.24 x 1071% | 2.37 x 10712
Mean Squared Error | 2.58 x 1072 | 1.61 x 1072* | 1.81 x 1072* | 1.90 x 10~%*

Table 6.3.2: Evaluation Metrics For Collision Dataset

The Collision Dataset is far more affected by noise than the Normal Traffic Dataset,
which suggests that the collision events already have high variability, and adding noise
further distorts the dataset, leading to a drop in data utility. This results in the model showing
high efficiency during processing for the normal traffic dataset in comparison to the collision
dataset, which contains more imbalance due to the accident event.

6.3.2 Data Privacy Performance Evaluation

The introduction of noise into the dataset is expected to impact the data utility during
processing. This thesis focuses on the dynamic balancing of data utility and the privacy
trade-off to meet the privacy requirements of various scenarios. Data privacy is determined
by calculating the loss of utility, measured as the increase in error from the baseline (with

no noise) to the error at a given noise level. Table 6.3.2, which presents the privacy level
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based on the loss of utility, shows that the increases in MAE, RMSE, and MSE remain small
as noise levels increase. This suggests that the dataset retains high data utility despite the

addition of privacy-preserving noise.

Noise Level A MAE A RMSE A MSE
0.5 3.04x 10718 [ 4741073 [ 329%x 1072
0.6 3.08x 1073 [479x 108 [335x 1075
0.7 3.11x 10718 [ 4.83x 10713 [ 340%x 1072

Table 6.3.1: Privacy Evaluation for the Normal Traffic Dataset

Given the minimal impact on error metrics, the normal traffic dataset can accommodate
privacy-preserving noise without significant loss of utility. Processing of this dataset has
shown that noise-adding, privacy-preserving mechanisms may lead to slight inaccuracies after
data processing; however, these inaccuracies do not significantly impact overall analyses.

The privacy evaluation of the collision dataset is presented in Table 6.3.2. As with the data
utility evaluation, the MAE for the collision dataset is much larger than that for the normal
traffic dataset. This is also true for MSE and RMSE. This shows that the dataset is highly
sensitive to noise, with each increase in privacy protection leading to a severe degradation in
data utility. Collision events are less frequent and are influenced by factors such as weather
conditions, road anomalies, and driver behavior, making them highly sensitive to disruptions.
The addition of an inappropriate level of noise can obscure and derail critical details required
during processing.

Noise Level A MAE A RMSE A MSE
0.5 1.29x 10711 [ 3.00x 1073 [ 1.35x 1072
0.6 1.44x 1071 [ 390x 107 | 1.55x 10724
0.7 1.50x 1071 [ 520x 10713 | 1.64 x 1072*

Table 6.3.2: Privacy Evaluation for the Collision Dataset

The MAE increase for the collision dataset is nearly two orders of magnitude larger than
that for the normal traffic dataset across all noise levels. This suggests that collision-related
predictions are much more sensitive to the introduction of noise, implying a significant loss
of data utility when privacy measures are applied. In contrast, the normal traffic dataset
maintains a steady structure despite the noise.

The findings, as seen in Figure 6.3.1, have shown the need for dynamic, privacy-
preserving methods to balance the trade-off between data utility and privacy during processing.
The high sensitivity of collision data requires delicate noise introduction to maintain data

utility while preserving privacy. Given the differences in dataset behavior, a one-size-fits-all
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Figure 6.3.1: Placeholder for privacy evaluation visualization.

approach to privacy preservation is insufficient. A dynamic trade-off balancing approach that
adapts the privacy level based on requirements and data characteristics is crucial in this case.
In situations where data is less critical, such as low-safety-critical scenarios, a higher level
of privacy can be applied; however, when situations become safety-critical, the approach
is reversed, and data utility becomes paramount while still maintaining data privacy. This
dynamic approach ensures that data utility is preserved where it matters most while still
providing adequate privacy protection.

The metric values of the collision dataset have shown the importance of carefully control-
ling the privacy level to avoid significant utility degradation. During safety-critical situations,
precise location data is essential for planning targeted interventions, as errors in location
coordinates can misplace a collision incident, leading to incorrect assessments of high-risk
zones and delaying emergency responses.

6.4 Discussion

The experimental validation outcome for the proof-of-concept design has demonstrated the
feasibility of assessing the risk associated with the intrinsic factors within the trajectory
dataset to specify the level of privacy parameter €. The € level defines the degree of the
Laplace noise mechanism of DP to protect sensitive information while maintaining good
utility capabilities. The evaluation metrics, which are MAE, MSE, and RMSE, used to gauge

the model’s performance, exhibit admirable performance when applied to a new dataset
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despite the introduction of Laplace noise for privacy. However, the increasing level of noise
applied to the dataset results in noticeable error values for these metrics. This indicates
that increasing privacy levels dampen data utility, and the privacy-preservation prediction
model in this thesis has been shown to exhibit a high level of resilience, efficiently managing
the added complexity and providing commendable performance compared to actual values
(Dwork 2008).

A key observation was that as the level of privacy increased (through the amplification of
the amount of noise added to the data), there was a decline in model performance (through an
increase in the evaluation metric errors). The complexity of balancing the trade-off between
data utility and privacy is a challenge in the application of DP. The relationship between data
utility and privacy is not linear, necessitating adjustment of the privacy requirement according
to the level of privacy parameters (Abadi et al. 2016). This decrease in model performance
can be attributed to the reduction in the information available for use by the model due
to the introduction of noise by the data privacy preservation technique. This reduces the
ability of the model to explore the data and compromises prediction efficiency (Sarathy and
Muralidhar 2010). This highlights that the pursuit of high levels of privacy may require some
compromise in model performance and data utility. Other privacy-preserving schemes for
trajectory data, such as location generalisation and location perturbation, demonstrate similar
trends where an increase in privacy level leads to a decrease in model performance. This in
turn compromises data utility and impacts the accuracy of forecast outcomes (Shokri et al.
2011).

One of the most significant contributions of the framework is the successful integration
of the three modules when handling location trajectory data. This achievement carries a high
degree of complexity due to the unique nature of location data, which often exhibits temporal
correlations. The successful application of DP based on hazard assessment marks a critical
milestone in protecting privacy, demonstrating its ability to manage high-dimensional data
characterised by temporal correlations (Shokri et al. 2011; Dwork and Roth 2014). This
study builds on previous work such as (Zhang et al. 2022; Hao, Wu, and Wan 2023) that
applied differential privacy to location data in data publishing or data aggregation settings.
However, those works mostly protected user-level privacy, whereas this study needed to
enforce protection on the location information of a single user, considering the temporal
correlations between a user’s locations to enhance information credibility, improve the

security of sensitive information, and maintain accurate results during processing.

The evaluation criteria metric output for the collision dataset demonstrated commendable
performance. This indicates that the framework is robust and adaptable, effectively handling

collision trajectory data. The different evaluation metrics exhibited show that a one-size-
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fits-all approach to implementing privacy preservation mechanisms for different trajectory

situation is not optimal.

The validation of this thesis concept uses the baseline dataset that does not have any
level of noise introduced. The normal traffic dataset exhibited the lowest error values across
all evaluated metrics, while the collision dataset showed significantly higher errors. This
indicates that the model achieves greater data utility with the normal traffic data, whereas
collision-related predictions are less accurate. The baseline performance across these two
datasets demonstrates the model’s adaptability in handling diverse data types, which is crucial
in real-world scenarios where data can originate from varied sources with distinct properties.
However, the pronounced differences in accuracy underscore the need for tailored parameter
tuning and feature selection for each dataset to optimise model performance for specific

applications.

The baseline error metrics for the collision dataset are higher due to the infrequent nature
of collision events, and the values increase further when noise is injected into the dataset.
The error value increase is noticeable in MAE, MSE, and RMSE, and this demonstrates that
enhancing privacy compromises utility, making the trade-off between utility and privacy even
more pronounced. In collision events, minor noise-induced perturbations can obscure critical
details, such as location information essential for mapping accident hotspots and planning
timely interventions. This suggests that rare trajectory events increase the data’s sensitivity
to noise, thereby necessitating a careful balance between utility and privacy. The importance
of tuning the privacy parameters to optimally balance the trade-off between data utility and

privacy cannot be overstated.

The privacy-utility evaluation for the collision dataset underscores the critical need to
balance data privacy and utility when processing trajectory data. In the context of collision
events, which are inherently infrequent and complex, evaluating the risks associated with this
complexity is essential for determining the appropriate level of DP noise to inject into the
dataset. The introduction of noise based on the risk score for collision events demonstrates
that the framework can effectively adapt to various scenarios, dynamically balancing the data
utility and privacy trade-off. The high sensitivity of the collision dataset to noise injection
shows that a lack of careful calibration of the privacy parameter would lead to a significant
drop in data utility. When the privacy parameter is appropriately tuned, effective balancing

of data utility and privacy is achieved.

The privacy-utility evaluation shows the importance of balancing the data privacy-utility
trade-off when processing trajectory data. Evaluating and quantifying the risk associated
with collision events enables the specification of the optimal privacy parameter for DP noise

injection, thereby safeguarding sensitive information while maintaining data utility. The
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introduction of noise in the collision dataset, based on the risk score, demonstrates that the
framework can effectively adapt to scenarios where trajectory data is acquired, successfully
balancing the trade-off between data privacy and utility.

The findings of this study align with previous research that emphasises the importance of
a customised approach to the preservation of privacy in diverse data scenarios and support
the data utility and privacy trade-off hypothesis (Thakurta and Smith 2013). The adaptability
of the model, as demonstrated by the performance across different datasets, supports the
assertion of Johnson and Shmatikov (2013) that effective data models must be able to handle
diverse data sources. The observation that the introduction of noise to preserve privacy can
impact the outcome of data processing is consistent with the findings of Dwork et al. (2016),
who noted a trade-off between data privacy and utility in their seminal work on Differential
Privacy. The results of the privacy-utility evaluation show the importance of balancing the
data privacy-utility trade-off, a concept that has been extensively discussed in the literature
of Sweeney (2002) and Narayanan and Shmatikov (2019).

The ability of RBDPM to maintain this balance when noise is introduced at calculated
privacy levels suggests that it is effective in various data scenarios and aligns with the work
of Machanavajjhala et al. (2007). The performance of the model on different datasets and
privacy parameters demonstrates its robustness, adaptability, and sensitivity to privacy levels.
These findings contribute to the growing body of literature on privacy preservation in data
models and provide valuable insights for future research and application in this field.

6.5 Model Comparative Analysis

The investigation by Jiang et al. (2021b) into the data-driven framework focused on protecting
the location privacy of users by processing the trajectories of users that can be applied to
multiple types of destination prediction methods. The central idea of their framework is
the incorporation of a unique differential privacy design to construct a privacy-preservation,
data-driven model, which uses Multiple Linear Regression to formulate the relationship
between the injected noise and privacy preservation. They focused on providing an optimised
quantifiable framework that combines a Recurrent Neural Network and Multi-hill Climbing
for adding fine-grained noise to obtain the trade-off between privacy preservation and the
utility of the predicted results.

The first sample had noise added to various degrees in the trajectory data to generate
multiple samples from the trajectory dataset. Then, the raw and noisy samples were fed into
the prediction model as input to obtain the multigroup prediction results used to construct

a data-driven model. Thereafter, Multiple Linear Regression is used to fit the relationship
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between the noise scale and privacy protection. Assessing the utility of the predicted results,
they optimised the noise scales at each location along the sub-trajectories to obtain the
trade-off between privacy preservation and the utility of the predicted results. Then, Neural
Arithmetic Logic Units (NALUs) were used to formulate a neural network model and Multi-
hill Climbing was utilised to find a sub-optimal setting because of the huge overhead of
fine-density traversal. The performance of the model is validated on the T-Drive sample
dataset. The extensive results validate that their framework can be applied to different
prediction methods, provide quantifiable preservation of location privacy, and guarantee the

utility of the predicted results simultaneously.

This result proves that the framework performs similarly for both equally distributed
privacy requirements and randomly distributed privacy requirements. This is because the
effects of protecting privacy for each user are independent of each other, and different users
select different privacy requirements. Therefore, their privacy preservation frameworks can
provide effective quantitative protection (low MAE) and robust (low RMSE) performance to
satisfy users’ privacy requirements. Although they discovered that optimisation does harm
the performance of privacy preservation, the optimised framework greatly retains the utility

of the predicted results.

The contribution of their work includes providing proven guarantees for both the users’
location privacy and the utility of the predicted results, and it can be applied to several
destination prediction methods. Constructing an optimisation framework by employing
NALUSs and Multi-hill Climbing to obtain the trade-off between privacy preservation and the
utility of the predicted results. This framework considers the trade-off for sub-trajectories
rather than the full trajectory dataset. However, this does not consider the intrinsic factors of
the trajectories or sub-trajectories to obtain the optimal trade-off between privacy preservation
and processing results utility. The usage of Multiple Linear Regression for the determination
of the trade-off was not described as a means to efficiently balance the trade-off, and
the results for equally distributed privacy requirements and randomly distributed privacy

requirements appear to be similar.

The work of Jiang et al. (2021b) uses similar privacy preservation and linear regression
components as in this thesis to achieve their purpose of quantifiable privacy preservation
for destination prediction in LBS. This is comparable to the approach taken in this thesis.
Their result shows that the effects of privacy preservation for each user are independent of
each other, and the low MAE and RMSE values obtained during the evaluation show that
the privacy preservation framework provides effective and robust quantitative protection
that satisfies users’ privacy requirements despite optimisation reducing utility. However, the

framework still provides a comparable privacy preservation effect compared to the general
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framework. They did not consider the reduction of the utility of the predicted results. The
thesis obtains low MAE and RMSE values that indicate that exploring the attributes within
the dataset and using them to specify the noise level to inject into the data will provide an
effective and robust privacy protection system for processing information.

The use of optimisation of the noise scales at each location along the sub-trajectories to
obtain the trade-off between privacy preservation and the utility of the predicted results using
NALUs and Multi-hill Climbing to find a sub-optimal setting produces a huge overhead of
fine-density traversal, unlike the use of a hazard assessment methodology in this thesis that
requires minimal human input or computational overhead to determine the trade-off between
privacy and the utility of the predicted results. The adoption of varying mobility patterns
by an individual in transit shows that privacy requirement would differ as different mobility
patterns are adopted, and using NALUs and Multi-hill Climbing to balance the trade-off
between privacy preservation and the utility of the predicted results would rack up huge
computational overhead, but the usage of context-based hazard assessment methodology
reduces computational overhead and is adaptable to quickly changing mobility patterns that
are interpreted to provide suitable quantified privacy levels that balance privacy and utility
trade-off for the model.

The work of Jiang et al. (2021b) focuses on destination prediction in LBSs rather than
trajectory prediction as seen in this thesis. The privacy requirements differ for each scenario
as the requirement for Jiang et al. (2021b) is based on predicting a final destination point and
ensuring the privacy budget € is close to the privacy requirement, unlike in this thesis which
requires the generation of multiple predictive location points that focus on highly accurate
results while preserving privacy. The paper uses the Beijing T-Drive dataset that is used in
this thesis. The low-evaluation-criterion metric outcome obtained shows good performance
for the framework and models. This indicates that the model is effective, generalised and

robust to provide accurate predictions while preserving privacy.

The use of Differential Privacy to preserve privacy for vehicular trajectories was shown
in the work of Arif et al. (2021). The sensitivity of information within the trajectory is a big
responsibility that can lead to identity theft, which can disrupt a person’s life when it is leaked.
Users want to avoid the relational connection between the information within their data and
do not want to worry about disclosing multiple locations. This led to the work by Arif et al.
(2021) that implemented different variants of differential privacy in four real-time datasets,
including the T-Drive sample dataset, with MAE being one of the six evaluation metrics used
to validate the efficiency of their proposed method. They found that the MAE values provided
for the different variants of Differential Privacy are low, with the highest MAE value being

0.12 over the period of their work. The introduction of an anonymisation mechanism on the
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trajectory data increases the accuracy and information accessibility during data publication.
Their proposed framework shows the lowest MAE value compared to the other models in the
paper and the framework. The proposed framework consumes the security spending plan
during development adjustments, and the number of advancement adjustments is not exactly
equivalent to the total number of queries. The complexity of the proposed technique for the

process requires long calculation periods, leading to computational overhead.

The paper by Arif et al. (2021) focuses on privacy preservation for the publication
of vehicular trajectory data with differential privacy using continuous static informational
datasets. This is different from this thesis, which focuses on maintaining data utility while
preserving data privacy. The thesis and the paper of Arif et al. (2021) aim to protect the
privacy of the data involved in the publication of vehicular trajectories. The main limitation
of the method of Arif et al. (2021) is the use of continuous static informational datasets, and
this technique may not be useful for dynamic datasets. The paper mentioned, in terms of
future work, the need to apply differential privacy on other moving objects to guarantee the
privacy of the moving objects. This thesis focuses on applying differential privacy to moving
objects. This thesis evaluates safety-critical situations such as collision events during transit
and uses that to determine the suitable privacy level to balance the trade-off between data
utility and privacy during processing.

The work of Cheng et al. (2022) focuses on establishing the probabilistic mobility model
of trajectories and clustering the locations to achieve semantic location matching between
different trajectories. Based on the semantic similarity, they identify the trajectory and
propose a privacy level allocation method based on stay points and frequent sub-trajectories.
Then, according to the location matching results, they automatically identify the privacy level
of all locations. Combined with the optimal location-differential privacy mechanism, they
perturb the location points on the user’s trajectory before publishing, where different location

privacy levels correspond to different privacy budgets.

The paper assessed the introduction of a personalised DP mechanism to balance privacy
protection and data utility in trajectory privacy protection. Personalised DP allows for the
adjustment of the privacy level of each record based on the privacy needs of the data/user.
The paper proposes an optimal personalised trajectory DP mechanism for trajectory data pub-
lication to avoid manual designation of privacy level by exploiting the relationship between
location features and privacy requirements. They proposed a location matching method based
on semantic similarity derived from a cluster of locations on different trajectories and built
a probabilistic mobility model of trajectories. This aims to identify the privacy level of a

location by automatically learning beyond the feature extraction step.
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The use of the GPS trajectory dataset from the T-Drive Data with AdvError and Qual-
ityLoss as their evaluation metrics shows that their model can improve the data utility of
published trajectory data compared to other algorithms. The degree of privacy protection
gradually decreases, which indicates that the degree of privacy protection for sensitive lo-
cations is higher than that for non-sensitive locations and concludes that their model can

achieve the balance between privacy protection and data utility.

This thesis focuses on combining privacy preservation mechanisms to apply privacy in
safety-critical situations through hazard assessment, risk quantification, and privacy parameter
determination that help to determine the trade-off balance for data privacy and utility. The
thesis has shown that the combination of these components enhances the preservation of
privacy while maintaining utility to produce accurate results during processing that are similar
or better than the outputs of existing state-of-the-art models. The capacity of the model
discussed in the thesis provides lower MAE and RMSE values than the values given by the
paper by Arif et al. (2021). Compared to Jiang et al. (2021b), the thesis model provides low
evaluation metric values and is capable of doing more than predicting a single destination
point by predicting multiple location points that can form a trajectory path or a moving
direction that helps with route planning, which is an extension of the future research work
stated by Arif et al. (2021). Similarly to the trajectory model concept used by Cheng et al.
(2022), this model focuses on the inherent information provided by the location dataset by
evaluating hazard to classify risk that is translated to a privacy parameter to balance the
trade-off between the utility of data and the preservation of privacy to be deployed during
processing. Semantic matching requires a higher computational overhead compared to the
use of a hazard assessment mechanism for risk quantification that is translated into the privacy

level.

The novelty of the thesis evolves around the combination of the Hazard Assessment,
Privacy Preservation, and Noise Application Modules, which is the first of its kind to provide
a personalised privacy parameter based on the safety-critical situation associated with a
user’s location information to balance the trade-off between data utility and privacy. Some
research in areas such as data publishing (Dwivedi 2017; Liu and Liu 2021) and parking
recommendation (Saleem et al. 2021) has combined some of the components such as DP
in this thesis to different capabilities with good results. The thesis has shown that the
combination of these components would provide noise-injected trajectory data that balance
data utility and privacy trade-offs for data processing. The use of a prediction model to
validate the concept shows that the modality proposed in this thesis for the injection of
noise into trajectory data provides a generalised, robust, and effective means of personalising

privacy preservation levels based on personnel or environmental requirements.
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6.6 Conclusion

The experimental validation for the RBDPM using the Linear Regression prediction model
was carried out to substantiate the robust performance of the model during the processing
of location data across diverse travel patterns. This framework consists of three integral
modules: the Hazard Assessment, Privacy Preservation, and Noise Application Modules,
which collectively operate to ensure that user privacy is preserved while maintaining data
utility. The framework processes trajectory data produced by the user and transforms it into a
Laplace noise-injected trajectory dataset, which is then processed with the prediction model
to validate the concept (Mohr, Zhang, and Schueller 2017; Schwarting, Alonso-Mora, and
Rus 2018; Siegel, Erb, and Sarma 2017).

The Hazard Assessment Module evaluates hazards associated with mobility patterns
by analysing the attributes of trajectory data such as stopping distance, relative distance,
and Time-To-Collision which inform the risk associated with the situation. The Privacy
Preservation Module focuses on the determination of the privacy parameter level from the
risk score and the privacy noise mechanism selection for the scheme. The Noise Application
module is where noise is added to the dataset to create a dataset that balances privacy concerns
with the need for data utility.

The process involves transforming user trajectory data into a noise-injected dataset, which
is then used for validation with the Linear Regression model. This validation demonstrates
the successful possibility of dynamically balancing the trade-off between data utility and
privacy preservation. It demonstrates that the assessment of trajectory dataset attributes
provides key factors that determine the optimal amount of noise required to balance the
trade-off between data utility and privacy. The assessment of risk and the application of noise,
guided by the specified privacy parameters, are crucial in evaluating the effectiveness of this
privacy-preserving approach (Mohr, Zhang, and Schueller 2017; Schwarting, Alonso-Mora,
and Rus 2018; Siegel, Erb, and Sarma 2017).

The Linear Regression prediction model was adopted to validate the concept, aiming
to overcome the limitations observed in earlier models like ARIMA and Regression Tree
Ensemble, which were discussed in Chapter 3. These earlier models, while effective at
predicting location coordinates from trajectory data, exhibited a critical flaw where their
predictions too closely mimicked the patterns seen in the training data. This resulted in
forecasts that were almost identical to those of the training set, indicating a potential risk in
terms of predictability and privacy (Petropoulos et al. 2022). In contrast, Linear Regression
introduces variability by deviating from these patterns, maintaining prediction accuracy and
showing enhanced performance (Petropoulos et al. 2022; Jiang et al. 2021a; Yuan et al.
2021).
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Differential Privacy is a privacy preservation technique that allows for the analysis of
datasets while safeguarding individual privacy. The necessity for robust privacy mechanisms
for location information is increasingly acknowledged, particularly when deploying predictive
models. DP enables a balance between data utility and privacy, ensuring that the outputs
vary sufficiently when a single data point changes, thus protecting individual data without
losing the overall informative value of the dataset. This chapter explores the potential of
integrating Differential Privacy as a privacy preservation strategy in the context of location
data processing (Dwork 2008; Dwork, Kohli, and Mulligan 2019).

The concept of optimal utility-privacy trade-off balance has become a topic for research
aimed at balancing the trade-off between dataset utility and privacy. This concept serves as a
privacy metric applicable to DP systems for assessing both utility and privacy. The privacy
metric can be influenced by inherent information within location data and the research is still
in infancy as shown by the work of Cheng et al. (2022). This thesis explores the impact of
these inherent features in determining the privacy parameter level necessary for balancing
the trade-off between privacy and utility, thereby protecting privacy during processing while

maintaining accurate results.

This thesis has examined the application of the Laplace Noise mechanism of DP to inject
noise into trajectory dataset to protect sensitive information while striving to achieve the
best possible results during dataset processing. The hazard assessment approach ensures that
the specified privacy parameter levels are tailored to the safety-critical information within
the data. The level of noise introduced is modulated by the privacy parameter €, and the
performance of the prediction model used for concept validation is evaluated based on the
evaluation metric criteria. This approach seeks to tailor privacy measures to the dynamic
nature of mobility data, providing insights into how privacy can be maintained without

significantly undermining the utility of the data during processing.

The hazard assessment concept that evaluates the risk associated with collision events
provides a means to assess the varying risk profiles that such events might possess to offer a
customised approach to privacy protection that helps overcome the struggle with the delicate
balance between maintaining data privacy and ensuring utility (Saleem et al. 2021; Rassouli
and Giindiiz 2019; Loukides and Shao 2008; Alvim et al. 2018; Erdogdu and Fawaz 2015).
The necessity for effective mechanisms to study collision data, which can offer insights
into road user behaviours and trajectories is emphasised by Ghaleb, Razzaque, and Isnin
(2013). Time-to-Collision (TTC) has been used as a metric for crash analysis for location-
based services (LBS) data (Barhoumi, Zaki, and Tahar 2024). The implementation of DP

brings forth considerable challenges in managing the trade-off between privacy and utility,
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prompting research into defining an optimal balance for this trade-off (Yao, Zhou, and Ma
2016; Kalantari, Sankar, and Sarwate 2018).

The integration of privacy preservation with hazard assessment represents an advancement
over current personal safety solutions (Sogi et al. 2018; Viswanath and Basu 2015; Kartik,
Jose, and MK 2017; Manazir, Govind, and Rubina 2019; Chaudhari et al. 2018; Srikrishna
and Veena 2017; Patel and Hasan 2018; Miriyala et al. 2016; Yarrabothu and Thota 2015;
Hariharan et al. 2021; Walkunde, Shinde, and Pandhare 2022; Saranya et al. 2021; Prashanth,
Patel, and Bharathi 2017; Reddy et al. 2021; Aminuddin et al. 2019; Gadhave et al. 2017;
Shaikh and PB 2008; Priya et al. 2021; Bhadula, Benjamin, and Kakkar 2021). These
systems typically activate emergency responses and track user movements but fail to consider
the privacy implications and potential risks associated with the data collected during the
assistance process. This thesis thus introduces a framework that enhances personal safety
by incorporating privacy preservation using inherent data information to manage utility and

privacy trade-off balance.



Chapter 7

Conclusion

7.1 Conclusion

This thesis is a significant contribution to the advancement of privacy preservation for location
data, striving to improve the safety, efficiency, and privacy of road users and location-based
services. The adoption of predictive model for the proof-of-concept validation experimenta-
tion follows research that used predictive model for the improvement of traffic management,
early hazard detection, and enhancement of personal safety applications (Yang and Hua
2019; Lin 2017). LBS generated data contains sensitive information that poses substantial
privacy risks if not adequately protected. Balancing the trade-off between preserving data
utility for operational effectiveness and ensuring robust privacy protection remains a central
challenge in this domain. This thesis addresses this challenge through the development
of the Risk-Based Differential Privacy Model (RBDPM), a novel framework designed to
dynamically tailor privacy preservation to the safety-critical contexts of location data, thereby
advancing the field of privacy protection and personal safety solutions. The feasibility of the
proposed model to enhance a range of applications, including emergency response, traffic
management, and location-based services has been demonstrated. This is a valuable addition
to the field of privacy preservation and safety applications.

Despite the limitations recognised in the current research, this thesis lays a robust
groundwork for future exploration within the field of privacy preservation of location data
and the dynamic balancing of data utility and privacy trade-off. The suggested directions
for further research will allow for expansion of the existing knowledge base, devising of
innovative solutions, and addressing of the multifaceted challenges associated with personal
safety, emergency response, and privacy protection in intelligent transportation systems. This
concluding chapter reflects on the contributions to privacy preservation in safety-critical

situations, acknowledges the study’s limitations and outlines future research directions.
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7.2 Contributions to the Field: Enhancing Personal Safety

and Privacy Preservation

This thesis focuses mainly on advancing privacy preservation for location data. This led to
the design and development of the RBDPM, a framework comprising three integral modules:
the Hazard Assessment Module, the Privacy Preservation Module, and the Noise Application
Module. These components combine to assess collision risks, quantify associated privacy
needs, and apply differential privacy mechanisms to trajectory data, ensuring a tailored
trade-off balance between data privacy and utility. The experimental validation, conducted
using a Linear Regression prediction model, substantiated the RBDPM’s robust performance
in processing location data across diverse collision scenarios, outperforming earlier models
like ARIMA and Regression Tree Ensemble, which struggled with overfitting to training
data patterns (Petropoulos et al. 2022).

Key contributions include:

* Integration of Component-Driven Hazard Assessment and Privacy Preservation:
This thesis uses TTC as a key hazard metric, calculated to determine the proximity of
potential vehicle collisions and reflects the typical safety margin across interactions.
These TTC values informed the assignment of risk scores and the risk categorisation
directly influenced the privacy parameter epsilon. This shows how features inherent to

data can be used to balance the trade-off between data utility and privacy.

* Dynamic Privacy-Utility Balance: The linking of risk scores to noise levels forms
the basis for the dynamic balance that protects sensitive trajectory data without un-
duly compromising the utility for applications like emergency response and traffic
management. This balance is evidenced by the tailored epsilon adjustments and their

measurable impact on prediction accuracy.

» Data Attribute Assessment on Privacy Preservation: The analysis of distinct data
attributes, such as TTC, stopping distance, and relative distance in this case shapes
privacy needs. This facilitates a personalised privacy-preservation strategy that aligns
with the specific requirements of the scenario, contributing to the development of more

effective privacy-preserving mechanisms.

These contributions position the RBDPM as a transformative tool for state-of-the-art
personal safety solutions that often neglect privacy implications (Sogi et al. 2018; Viswanath
and Basu 2015).
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7.3 Limitations

While the RBDPM represents a significant step forward, several limitations warrant consider-

ation, providing insights for refinement and future exploration:

* Implementation Complexity: The validation is based on a specific collision dataset,
which may not fully represent the complexity and scale of real-world VANETSs with
thousands of vehicles interacting simultaneously. The computational overhead of
calculating Time-to-Collision (TTC), assigning risk scores, and applying Laplace noise
for each vehicle could become prohibitive as the data size increases.

* Accuracy of TTC in Diverse Conditions: The TTC metric, central to the hazard
assessment, relies on accurate velocity and position data. In real-world scenarios,
factors such as sensor noise, signal interference (e.g., in tunnels or urban canyons),
or adverse weather conditions could degrade the precision of these inputs, leading to

unreliable TTC values and subsequent risk scores.

* DP Parameter Tuning: Fine-tuning epsilon dynamically and adaptively to capture
nuanced risk variations, rather than relying on static thresholds, is complex and requires
further exploration to avoid over- or under-protecting data.

* Real-Time Processing Constraints: The multi-step process of TTC calculation, risk
scoring, epsilon derivation, and noise application introduces latency that may not align
with the real-time requirements of personal safety applications, such as instantaneous
hazard warnings. The Linear Regression model’s validation, while effective, assumes

batch processing rather than streaming data, further complicating real-time deployment.

* Privacy Evaluation Metrics and Benchmarking: Evaluating the performance of
privacy-preserving mechanisms is inherently challenging due to the lack of stan-
dardised metrics for both privacy and utility. Establishing a comprehensive and fair
benchmarking framework to compare the proposed model with existing solutions
remains a challenge, potentially affecting the perceived effectiveness of the approach.

* Data Variability: The framework relies on trajectory data, which may vary signifi-
cantly in quality, density, and noise characteristics across different real-world scenarios.
This heterogeneity could impact the model’s performance and limit the generalisability

of the findings across different datasets and mobility patterns.
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7.4 Future Direction

These limitations highlight important areas for future research and refinement to ensure the
practical applicability and scalability of the proposed model in real-world scenarios. Future
research would explore:

* Expansion to Multiple Mobility Patterns: Expand the RBDPM to incorporate
a broader range of mobility patterns beyond collision-focused data, such as routine
traffic flows, pedestrian movements, or mixed vehicle types (e.g., cars, trucks, bicycles).
This could involve testing the model with diverse datasets, including traffic mobility
patterns, and behavioral patterns, to assess the adaptability and effectiveness across

varied scenarios.

* Dynamic Thresholds: Dynamic threshold mechanism for Time-to-Collision (TTC)
and risk scoring that adjusts in real-time based on contextual factors, such as road con-
ditions, traffic density, or weather. Machine learning techniques, such as reinforcement
learning, could be employed to refine thresholds and optimize epsilon derivation for

nuanced risk profiles.

* Integration of Additional Contextual Factors: Enhance the hazard assessment
process by incorporating supplementary contextual information (e.g., environmental
conditions, road infrastructure, weather data) to refine risk quantification and improve

the determination of optimal privacy levels.

The identified future directions would enhance RBDPM and empower the privacy preser-
vation model with the ability to safeguard trajectory datasets with multiple mobility patterns
and offer an enhanced dynamic system that balances data utility and privacy trade-off to meet

the privacy requirements of the user or scenario (Martinez et al. 2016).

7.5 Practical Implications: Applications of RBDPM

The existing effort to enhance data privacy associated with trajectory or location information
is expanding with this research offering a unique approach to balancing privacy and utility
trade-off while maintaining good data utility performance. This model addresses several
challenges associated with safety-critical data and usage in the preservation of privacy. The
following points highlight the relevance of the research findings. This section highlights how
this research can be applied in real-world contexts to enhance safety, efficiency, and privacy

of personal safety solutions and intelligent transport systems. These include:
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* Enhanced Emergency Response Systems: The RBDPM can be integrated into
Location-based emergency response systems to protect sensitive location data of
distressed users while enabling rapid and efficient deployment of assistance. By
applying tailored noise levels based on for example TTC-derived risk scores, the model
ensures that responders receive accurate routing information without compromising
individual privacy. This enhances the reliability of emergency services, reducing
response times and improving outcomes in critical situations like accidents, while
adhering to privacy regulations (Nekovee and Bogason 2007; Papadimitratos et al.
2008).

* Traffic Management: Traffic management authorities can deploy the model to
analyze collision-prone trajectory data, optimizing traffic flow and reducing congestion
while preserving driver privacy. The model’s ability to balance utility and privacy
allows for effective signal timing and route planning without exposing individual
movement patterns. This improves road safety and efficiency in urban environments,
supporting congestion mitigation efforts while addressing privacy concerns in large-
scale traffic monitoring (Wei et al. 2020; Naumov and Gross 2007).

* Privacy-Conscious Smart City Infrastructure: In smart city infrastructure, the
model can underpin intelligent transportation systems by providing privacy-protected
trajectory data for urban planning and public safety management. The risk-based noise
application ensures that sensitive collision data is safeguarded, while still supporting
data-driven decisions like infrastructure upgrades or emergency preparedness. This
facilitates secure, scalable urban development, enabling cities to leverage location data
for sustainability and safety initiatives without risking citizen privacy (Lecuyer et al.
2019).

* Improved Vehicle Safety Alerts: The model can enhance vehicle-to-vehicle (V2V)
communication systems by embedding privacy-preserving collision risk alerts. Using
TTC metrics, the model can trigger warnings for drivers in high-risk scenarios while
anonymizing shared location data, preventing potential collisions without exposing
precise vehicle positions. This strengthens real-time safety features in connected
vehicles, reducing accident rates and fostering trust in VANET technologies by ensuring

privacy compliance.

In general, research on RBDPM can significantly improve various aspects of emergency
response, traffic management, location-based services, and smart cities, including faster
response times, improved traffic flow, personalised services, data-driven decision-making,

and improved safety and security, while also protecting the privacy of individuals.
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7.6 Final Remarks

This thesis is a significant contribution to the advancement of privacy preservation for per-
sonal safety solutions, striving to improve the safety, efficiency, and privacy of transportation
networks and location-based services. The central accomplishment of this thesis is the
development of the RBDPM that focuses on addressing the complex challenge of balancing
data privacy and utility trade-offs, minimizing the impact of privacy preservation on the
utility of trajectory data during processing. The model’s successful development and vali-
dation, anchored by the integration of TTC-based hazard assessment, and tailored Laplace
noise application to demonstrate the feasibility and adaptability across diverse real-world

applications, including emergency response, traffic management, and smart city systems.

An integral part of this study lies in the departure from static, one-size-fits-all privacy
approaches. By leveraging TTC to quantify collision risks and assigning risk scores, the
RBDPM dynamically adjusts the privacy parameter epsilon to suit specific safety-critical
contexts. This adaptability, validated through Linear Regression with evaluation metrics,
underscores the model’s capacity to protect sensitive data while preserving data utility during

processing (Petropoulos et al. 2022).

The practical implications of the RBDPM are profound, promising significant enhance-
ments across multiple domains. In emergency response, it safeguards distressed users’ data
while optimizing rapid assistance deployment; in traffic management, it improves flow and
reduces congestion with privacy-conscious analytics; and in smart cities, it supports secure,
data-driven urban planning (Nekovee and Bogason 2007; Wei et al. 2020; Lecuyer et al.
2019). These applications not only validate the model’s utility, it also highlight the potential
to transform location operations by improving response times, traffic efficiency, personalized

services, and overall safety and security, all while upholding stringent privacy standards.

Despite the contributions, this research acknowledges limitations, such as implementation
complexity, epsilon calibration challenges, and a focus on limited data scenario, that temper
the immediate scalability and generalisability. The suggested directions for further research
will allow the scientific community to expand the existing knowledge base, integrate multi-
modal mobility patterns, optimize real-time processing, devise innovative solutions, and
address the multifaceted challenges associated with personal safety, emergency response,

and privacy protection in the realm of intelligent transportation systems.

The findings of this thesis provide a substantial contribution to the understanding and
evolution of privacy preservation solutions within VANET. They pave the way towards the
realisation of more efficient, secure, and privacy-conscious transportation networks and

location-based services.
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Finally, this thesis meets the objectives as outlined in Chapters 2 through 6, by delivering
a novel RBDPM that enhances personal safety solution privacy preservation by dynamically
balancing the data utility and privacy trade-off. The model lays emphasis on customizing data
parameters to dataset characteristics and risk profiles, reinforcing the model’s adaptability
and robustness. The findings pave the way for more efficient, secure, and privacy-conscious
transportation networks, contributing substantially to the understanding and evolution of
privacy preservation in personal safety solutions. This research not only advances theoretical
knowledge but also sets a scheme for practical, impactful innovations, placing the RBDPM

as a fundamental component for future explorations in privacy-aware intelligent systems.
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Abstract: The number of attacks on innocent victims in moving vehicles, and abduction of individuals in their vehicles has risen
alarmingly in the past few years. One common scenario evident from the modus operandi of this kind of attack is the random motion
of these vehicles, due to the driver’s unpredictable behaviours. To save the victims in such kinds of assault, it is essential to offer help
promptly. An effective strategy to save victims is to predict the future location of the vehicles so that the rescue mission can be
actioned at the earliest possibility. We have done a comprehensive survey of the state-of-the-art personal safety solutions and
location prediction technologies and proposes an Internet of Things (IoT) based personal safety model, encompassing a prediction
framework to anticipate the future vehicle locations by exploiting complex analytics of current and past data variables including the
speed, direction and geolocation of the vehicles. Experiments conducted based on real-world datasets demonstrate the feasibility of
our proposed framework in accurately predicting future vehicle locations. In this paper, we have a risk assessment of our safety

solution model based on the OCTAVE ALLEGRO model and the implementation of our prediction model.

Keywords: 10T, Mobile Application, Vehicle Location Identification, GPS, Location Prediction

1. INTRODUCTION

Assaulting females have been frequently witnessed in
the past few years around the world, with most of such
incidents causing serious consequences to the victims [1,
2, 3, 4]. In most incidents, abnormal behaviour of the
drivers is a commonly witnessed pattern such as diverted
routes than normal, and the vehicle has been on the move
while the assaults were taking place. For example, in
January 2018, an abducted student forcefully driven away
in her car from a car park in Atlanta, Georgia was able to
prevent a more sinister ending to her ordeal by sharing her
location with a third party and exchanged messages before
the attacker seized the phone [5]. Furthermore, a quick
response from a rescue team in San Jose, California
helped to reunite a 5-year-old, who was in her father’s
vehicle when snatched, with her family in October 2018
[6]. In December 2018, a victim managed to escape
assault in Berkshire, after she was forced into the boot of
her car [7]. In February 2019, a 12-year-old girl suffered
the same fate while waiting for her mother in the parking
lot of a mall in Indiana [8]. Despite saving the lives of
some of the victims, some had a more sinister ending, or
death on some occasions. One of the survivors was saved
because she was able to share her location with a third
party, but not before some level of damage was done. The

damage done to these victims would have been prevented
earlier if there were any means to track and predict the
location of the moving vehicle and inform the responder
immediately. These scenarios do not share identical
factors. In some cases, the speed, bearing, and location of
the vehicle change rapidly and continuously while some
changes were consistent. For either scenario, the delay in
administering help would be damaging. Therefore, the
solution should cater to the following requirements:

The helping device should be easily accessible when
the attack occurs instead of attempting to unlock her
phone, which might be taken away by the attacker.
Therefore, the solution should cater to the following
requirements.

e The device has to be lightweight for easy
mobility.

e The solution should provide a way to detect and
predict the location of the victim or the moving
vehicle.

e It needs to inform the third party to offer the
quickest help.

Fulfilling these requirements would ensure prompt
actions taken. The solution needs to provide an avenue to
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obtain location information from the user, predict location
from the obtained information, inform the third party with
the predicted location, and create an intersection path for
help to be offered by the third party. The contributions of
this paper are:

e Proposing an 10T based personal safety solution
model for ensuring prompt help for victims
attacked in moving vehicle

e Reviewing solutions available for location

tracking and personal safety

e Implementing the 1% and 2" version of our
location prediction model as a step towards the
implementation of the safety solution model.

o Risk assessment of the safety solution model
based on OCTAVE ALLEGRO.

The rest of the paper is organized as follows: Section 2
which is related works addresses the review of location
tracking and personal safety solution reveals the related
work and Section 3 explores the proposed personal safety
solution. Section 4 is the review of the location tracking
and prediction algorithm. Section 5 explores various risk
assessment approach. Section 6 provides discussion about
OCTAVE ALLEGRO risk assessment methodology
deployed. Section 7 presents the Implementation of the
location prediction model and Section 8 concludes with
the results and discussion.

2. RELATED WORK

In this section, we are reviewing solutions available
from the literature on providing help for victims attacked
in moving vehicles and personal safety solutions for
individuals. Shinde et al., [9] have presented an loT based
solution to notify some pre-saved numbers via text
message in case of an accident. Although the text message
provides the current location of the accident, it does not
detect the location of a moving vehicle. Sharma et al., in
[10] have presented an ARMY7 processor-based safety
device, which activates GPS location tracking and sends
text messages to the responder with a single button press.
Although it activates GPS tracking, it does not predict the
location of a victim in a moving vehicle and does not find
the nearest police station to take prompt action to save the
victim. Furthermore, the device is heavy to carry and may
not be suitable to carry all the time. The safety solution
presented by Bhavale et al., [11] alerts pre-registered
phones with the captured images. However, in a panicking
attack, the biggest concern would be to send alerts in the
quickest possible way. The bus- monitoring unit used will
need to be pre-installed in the bus to activate tracking
which may not be a practical expectation.

A wearable device was proposed by Pawar et al., [12]
consisting of a microcontroller, Raspberry pi, GPS and
Global System for Mobile communications (GSM)
module. Readings are continually taken from the sensors

and compared against assigned threshold values.
Computational overhead is excessively consumed with
continuous tracking and comparison of readings from
Sensors.

Monisha et al., [13] proposed an ARM controller
incorporated with GSM, GPS, Bluetooth, and RF detector
and powered by 12V for the controller. The device gets
activated by pressing the emergency button and sends out
messages containing location to a pre-set number. The
proposed method uses a hardware device that is too heavy
to carry by the individual; furthermore, access to the
device is required for activation, which is disastrous in
situations where the mobile is not accessible.

Choudhary et al., proposed a safety device [14] which
consists of a variety of sensing units such as heartbeat
sensor, temperature sensor, and a push button. It also uses
ATmega8L, GPS and GSM modules, flashlight, and a
taser. The device fetches heartbeat and temperature
reading and compares the readings against a set threshold.
If there is a variation, the device would be activated, and a
message containing the location would be sent to the
police alongside known personals with the help of the
GSM module. The proposed method may result in false
positives as the heartbeat and temperature readings may
spike due to other reasons, which are not detrimental to
the individual. A false message is sent to the police and
known personals to initiate emergency protocols, which
leads to the waste of resources.

In the bid to offer easily accessible and less
cumbersome personal safety solutions, smartphone
applications were developed that are capable of
harnessing the modules present in the smartphone to track
user’s location and send alerts to third party during
distress. Safetipin is a smartphone personal safety
application that helps users make informed decisions
about visiting an area and location tracking of the user.
The app operates by providing a safety score for the
intended area of visit based on disturbance and risk within
the area and alternate routes are displayed to the
destination. Tracking of the user can be done when the
user invites a third party to track their location. Street
smart is another smartphone personal safety application
that allows users to make informed decisions about an
area before visiting by providing articles and reviews
about the safety level of an area of interest by holding the
camera at the location. The safety level is determined
from posted reviews and articles as positive, negative or
neutral using sentimental analysis [15].

Life360 serves as a smartphone family locator
application and personal safety application. The
application is used for tracking the location of the user
and provide the location for wellbeing centres that could
be required during distress. The concern remains privacy
issues regarding the location information of the user [16].

Vithu is a smartphone personal safety application that
alerts selected third party when the user is in distress.
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When the cycle of operation is initiated by the double
press of the activation button, an SMS message with the
location information of the user is sent to the third party
every two minutes to track the trajectory of the user [17].

BSafe is a smartphone personal safety application that
alerts selected guardians to inform them that the user is in
distress. The alert contains location information of the
user at the point of distress and phone call is placed to one
of the selected guardians with tracking of the user
possible. Guard works similarly with placing calls with
the name of the user, present location and alert of help
required by the user to the third party. The requirement for
the use of the app is cumbersome and rigorous [18].

Streetsafe measures up as a smartphone personal
safety application that operates by sending alerts for users
in distress based on four features. These features are high
volume alarm is initiated, the current location is uploaded
to the user’s Facebook account, SMS sent to preferred
associates in the area and lastly call is placed to the user’s
chosen emergency number. Fightback is a smartphone
personal safety application that is similar to Streetsafe. It
allows user to send alerts for users in distress making use
of features such as e-mail, GPS, SMS and GSM and track
location of user on map [19].

The reviewed solutions show their ability to track the
present location of devices, send alert to third parties but
do not predict the future location. The proposed personal
safety solution model, presented in the following section,
is enriched with the capacity to predict location using
acquired location information.

3. PROPOSED FETY SOLU

(PERSATION)

This paper provides a possible solution for helping
victims in violent attacks in moving vehicles, where
prompt response is crucially needed for saving the victim.
In the implementation of the solution, as seen in Fig. 1,
the problem can be separated into two parts. The first part
of the solution involves finding a wearable that can work
as a panic button, when pressed it can communicate with
the gateway, which could be a GPS enabled mobile device
held by the victim that communicates through the internet
to a cloud-based application server to send help alert and
the location information to third party and nearest
responder. Once the button is activated, the second part of
the solution will be activated, which involves using a
suitable solution for tracking and predicting the location
of moving vehicles and informing the nearest first
responder. To accomplish tracking and prediction,
implementation of state-of-the-art location tracking and
prediction technologies is required and empowered with
geographical data delivery service to aid the identification
of the nearest police station. This way prompt action can
be taken and the victim might be saved timely. The
novelty of our proposed model lies in the usage of
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Figure 1. Personal safety solution scenario

Therefore, as a step towards the implementation of our
proposed model we have first reviewed location tracking
systems and location prediction algorithms in Section IV.
We then have implemented the 1st version of our location
prediction system by using a simple method for gathering
location data and using prediction algorithm for location
prediction.

4. REVIEW OF LOCATION TRACKING SERVICE AND
PREDICTION MODEL

A. Selecting Location Tracking Service

Location based tracking service (LBS) offers a
medium where data about a user can be collected in a
coordinated and systematic manner and provides the user
with the capability to find their bearing, and find other
locations using semantic information about the present
location and immediate environment. This service
combines mobile services, location awareness, internet
and GPS in the collection of a new layer of client’s data
and authentic data [20, 21, 22, 23, 24] Various
technologies are involved in the operation of LBS with
positioning technology, which handles the accurate
location of the user regarded as the most important. The
other technologies required by LBS are application
technology that consists of two elements and deals with
the presentation of information to the user. Geographic
data that renders structures such as road network and
manage data of the point of interest, and communication
data for the transmission of user’s location to the control
centre for the provision of necessary service [25].

The delivery service of LBS can be categorized
mainly as time- based delivery service, and distance-based
delivery service. Time-based delivery service updates
location information periodically to maintain high
location tracking accuracy while Distance-based delivery
service updates location information based on distance
[26].
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B. Review of Prediction Model

Time series analysis is a method used to gain insight
into time series data about statistical patterns in the data
and develop a suitable model for forecasting events. The
most widely wused linear time series models are
AutoRegressive (AR) and Moving Average (MA).
Autoregression is a model that relies on the dependent
relationship between past period values and some degree
of lagged observations to predict future values. Moving
Average uses dependency within the dataset to provide
output that depends linearly on the current and past values
of stochastic distribution.

1) AutoRegressive Integrated Moving Average (ARIMA)

Autoregressive Moving Average (ARMA), which is
suitable for univariate time series combines both AR and
MA. The forecasted value by the model is a linear
combination of past observations and random error with a
constant term. The model is suitable for stationary time
series data but comes short with data exhibiting non-
stationary trends and seasonal patterns. AutoRegressive
Integrated Moving Average (ARIMA) implements an
integrated model that uses differencing to account for the
establishment of stationarity. The suitability of the
ARIMA model for the dataset is based on the exploration
of trends and seasonality features in the dataset. ARIMA
uses the ARIMA(p,d,q) notation based on the three
models incorporated in the model (AR, integrated and
MA). the p stated in the notation represents the AR that
indicates the lag present in the stationarised series, the d
stands for the integrated model that indicates the
differencing required to attain stationarity and the q stands
for the MA that indicates the lagged forecast errors in the
series.

ARIMA time series model was introduced by Box and
Jenkins. The model uses sets of activities to identify,
estimate and diagnose the ARIMA algorithm suitable for
time series data. ARIMA model forecast time series data
by accounting for growth/decline pattern in the data with
the Auto-Regressive part, rate of change of
growth/decline with the Integrated part and the moving
average to account for the noise between consecutive
points in the data [27, 28]. Time series is the non-
deterministic model for sequential observation of data in
relation to a trend or seasonality. Time series applies a
model to historic facts from data and forecast futures
value of the series making use of movement along with
the data over a long period of time (Trend), fluctuations
available in the data over a particular period of time
(Seasonality) and autocorrelation to distinguish time
series operation from other types of statistical analysis.
Autocorrelation (ACF), partial autocorrelation (PACF),
inverse correlation and cross-correlation are used to
identify and specify the form of time series model [29, 30,
31].

The appropriate model for the series is identified by
initially determining the degree of differencing required to

remove gross features of seasonality and non-stationarity
of the series. After differencing, the next step involves
checking for autocorrelated errors using the ACF to
determine the order of AR required and the lagged error to
determine the order of MA. The ACF displays the
correlation between past values and helps in determining
the term to use for the time series. Positive autocorrelation
(PACF) at the first lag indicates that AR model can be
used and Moving Average (MA) model indicates the
random jumps for calculating error in subsequent periods
within the plot.

ARIMA (p, d, q) is the standard notation used to
indicate a specific model used by ARIMA where p is a
number of lagged observations to be taken in, d is the
degree of differencing and q is the size of the moving
average window [25, 26]. The ARIMA equation after
combining AR and MA becomes

Ye=a+ ByYes + BoYe2 + -t BpYep€i + #1€i1 + $1€s .t de€iq (1)

where it can be translated in words as: Predicted output Y
is the addition of the Constant o with Linear combination
Lags of input Y up to p (number of observations) lags and
Linear Combination of Lagged forecast errors up to g
(moving average) lags.

2) Regression Tree Ensemble

This is a predictive model composed of a weighted
combination of multiple regression trees. Ensemble
methods combine several base model decision trees
classifier to provide an optimal predictive model and
increase the accuracy of the model. The model aims at
constructing a linear combination of various models and
attempt using the combinations for the improvement of
the predictive performance of a model fitting technique.
There are two approaches for the model bagging or
bootstrap aggregating and boosting.

a) BAGGing, or Bootstrap AGGregating

The model combines Bootstrapping and Aggregation
into one model which works on improving unstable
estimation or classification schemes. Bagging is a
variance and Mean Squared Error (MSE) reduction
technique that is effective for the improvement of the
predictive performance of regression or classification
trees. Given a sample of data, multiple bootstrapped
subsamples are pulled. For each of the bootstrapped
subsamples, a decision tree is formed. After Decision
Trees have been formed for all the subsamples, an
algorithm is used for the aggregation of the decision trees
for the most efficient predictor.

b) Boosting

Boosting is a sequential process that adjusts the weight
of an observation based on the last classification. The first
algorithm is trained on the entire dataset and subsequent
algorithms are built by fitting the residual of the previous
algorithm. The principle of the model is to decrease bias
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error to build strong predictive models. The prediction
uses a weighted majority vote (classification) or a
weighted sum (regression) to produce the final prediction.

5. RISK ASSESSMENT APPROACH

The compounding of a framework, models and
methodologies knowledge for the assessment of security
and privacy for the Internet of things device is crucial in
integrating and examining the cyber risk standards and
governance to understand the risk faced by devices and
0T networks. The adaptation of traditional cybersecurity
standards indicates the need for the identification of
specific 10T cyber risk vectors and integrated into a
holistic cyber risk impact assessment model. To reduce
cyber risk in cloud technologies, proper design of cloud
architecture is maintained between the cloud services and
devices connected to it [32]. This scenario involves the
interaction between humans and technology in providing
real-time feedback that demands the security of data in
transit.

The majority of the established framework applies the
quantitative approach to measuring cyber risk. One widely
accepted framework is the Operationally Critical Threat,
Asset, and Vulnerability Evaluation (OCTAVE)
methodology. The goal of OCTAVE methodology is to
help organisations with operational and strategic mediums
to perform information security risk assessment.
OCTAVE works to connect organisation and their
operational point of view activities of information security
risk management. There are three publicly available
OCTAVE methodologies. The first methodology
introduced is the OCTAVE-consistent methodology that
is defined by the implementation guide and training.
Series of workshops facilitated by an interdisciplinary
analysis team from various units that are in the
organisation connect the organisation and the operational
point of view activities of information security risk
management [33]. The method is designed for large
organisations with multi layered hierarchy, independence
in performing vulnerability evaluation and interpret the
results when maintaining the organisation computing
infrastructure. The method can be used to tailor the
approach to suit the distinct environment they operate.
This method is performed in three phases, the first phase
is the identification of assets and protection strategies
presently been implemented, the second phase evaluates
the infrastructure to supplement the analysis performed in
the first phase. Risk mitigation plans for critical assets are
developed after performing risk identification activities. In
providingg OCTAVE methodologies for  small
organisations, Technology Insertion, Demonstration, and
Evaluation (TIDE) developed OCTAVE-S. The criteria
are similar to OCTAVE and operate in with the same
three phases except OCTAVE-S does not depend on
formal knowledge workshop to obtain information.
OCTAVE-S does not require extensive examination into
the organisation infrastructure and helps practitioner
address a wide range of risk which they have no

familiarity about them. The risk identification,
assessment, and mitigation processes are developed based
on the collaborative aspect from an interdisciplinary
perspective. With the collaboration strengthening the
quality of risk assessment and mitigation, there are
limitations in the interdisciplinary collaboration such as
varying levels of expertise in threat evaluation, disparity
in communication channels, practices, and intended
efforts [34].

With the landscape of the information security risk
changing coupled with the above limitations and the
change in the required capability to manage the risks, the
development of a new approach was inevitable to
accommodate these changes. OCTAVE ALLEGRO
adopts a different approach to organisation information
technology environment and information assets than the
other OCTAVE methodologies [35]. This method maps
information assets to all containers where they are stored,
transported or processed. Unlike the other two
methodologies, OCTAVE ALLEGRO streamlines and
optimizes the process of assessing the security risk of an
organization and eliminates the use of vulnerability tools
for threat identification by introducing the concept of an
information risk environment map. The map help user
defines all places information has been stored, transported
or processed. The map serves as baseline documentation
of the risk environment for the asset and helps establish
boundaries of the threat environment and scope of risk
assessment. The method uses a value known as relative
risk score derived from the evaluation of qualitative
description of risk probability combined with the
prioritization of the organizational impact of risk in terms
of the organization’s risk measurement criteria. Mitigation
guidelines, and specific strategies are considered for each
container where the asset resides [34].

The methodology has four distinct activity areas
carried out in various steps. The methodology establishes
quantitative measures that are used as criteria for the
evaluation of risk effect and serves as the foundation of
information risk assessment, identification of the location
of the asset and possible situations that threatens the asset,
identification of threats and risks that could impact the
asset, analysing the discovered risk and selecting the
mitigation approach. The methodology does not provide
details of methodology implementation and does not
adequately address the impact of risk on assets. The
methodology can serve as the starting point for risk
assessment [34].

Threat Assessment & Remediation Analysis (TARA)
is another system level quantitative methodology for the
identification, prioritization and response based on three
activities. Cyber Threat Susceptibility Analysis (CTSA) to
assess the susceptibility of the asset to threats, Cyber Risk
Remediation Analysis (CRRA) to determine best-suited
countermeasures, and data and tools development to
deliver recommendations for informed decisions. The
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methodology targets the most crucial risk and offers a
complementary form of protection [36].

Common Vulnerability Scoring System (CVSS) is a
combination of the qualitative and quantitative framework
for providing metric groups for assigning metric values to
vulnerabilities and allocating cyber risk into levels and
calculate an overall risk level. The methodology applies
numerical values ranging from 0 — 10 to indicate the
severity of vulnerability along with 3 color-coded levels
to differentiate among the actual system. During result
simplification, different vulnerabilities can produce the
same level and similar score values that can increase the
number of the colors in the color-code to enhance the
visibility of different score values. The worthiness of the
score can bhe faulted based on the basic mathematical
formalism [37].

The Capability Maturity Model Integrated (CMMI)
focus on the enterprise risk and development life cycle
risk by integrating five levels of the Capability Maturity
Model (CMM). The  methodology  identifies
vulnerabilities and does not indicate ways to address the
identified vulnerability [38].

The National Institute of Standard and Technology
(NIST) provides the combination of risk assessment and
risk management with a collection of standards and
guidelines when combined with automated tools, aims to
improve the security infrastructure [39].

The Factor Analysis of Information Risk Institute
(FAIR) approach is focused on impact assessment and
complementary with existing risk frameworks. The
methodology address weaknesses of ISO standardized
approach and creates a standardization reference for
compliance. The FAIR model enhanced the deployment
of RiskLens. This is a software-as-a-Service (SaaS)
platform for the management and quantification of cyber-
risks. The methodology is a quantitative model for
cybersecurity and technology risk with integrated
advanced quantitative risk analytics, best-practice risk
assessment and reporting workflows. Another quantitative
approach is the Cyber VaR (CyVaR), which shares
complexity similarity with RiskLens but allows for the
addition of a new type of risk [40, 41, 42].

6. RISK ASSESSMENT RESULT

This section aims to collect security threats discovered
from information security risk assessments with
OCTAVE Allegro methodology. OCTAVE ALLEGRO
focus on information asset in various contexts such as
how the assets were used; their exposure to threats,
vulnerability and disruptions; where they are stored,
transported and processed. The approach implores the
user to explicitly consider the implication of risk
consequence on security requirements and risk mitigation.
The requirement of the approach is to allow focus on
assets by ensuring they are selected through a systematic
and consistent review process. The approach streamlines

and improves threat identification and risk mitigation
process without extensive risk assessment knowledge
required. OCTAVE ALLEGRO development minimizes
certain features which contribute to the ease of use
requirement, minimal resource commitment and approach
usability through fewer and more focused activities
directed towards risk management. The adoption of
scenario questionnaires by the approach instead of threat
trees used by the earlier version of OCTAVE further help
user in the identification of threats associated with
information assets. OCTAVE ALLEGRO uses an
information asset risk worksheet to capture the relevant
information regarding specific risk for an information
asset. The  worksheet reduces documentation,
organization, and data manipulation required to perform
the risk assessment and help in producing a concise view
of risk. A simple quantitative analysis of risk introduces a
relative risk score that is computed on the worksheet using
threat and impact information associated with risks
captured. The introduced relative risk score is used to
compare the significance of individual risks and computed
from the combination of the risk probability qualitative
description and the prioritization of risk impact based on
the organization’s risk measurement criteria.

The worksheet is used to compute relative risk scores
for the assets are based on the component of the identified
assets. Primary usage of the worksheet includes the
identification of assets; determining the area of concerns
accompanying the identified assets; threats and risks
associated with the assets. From the relative risk score
shown in table 2, identity theft and privacy violation
possess higher risk to the framework as indicated by their
high score compared to the other risks. Based on the
relative high score of these two risks, security and privacy
of user’s information remains of utmost importance to
maintain efficiency of the framework. Privacy violation
could lead to tracking and monitoring of user activities
and lead to a replay of the user’s previous activities when
the user is in distress, the event can be masqueraded by
replaying user’s activities instead of alerts been sent to the
third party.

Based on the identified assets and area of concern
related to the assets, associated threats are identified.
Table 2 shows the threats associated with the assets and
area of concern. The threats associated with these assets
undermines the efficiency of the framework as user
impersonation could lead to prevention of mechanism
activation when the user is in need, device spoofing and
data spoofing could result in the system receiving fake
data or device information leading to waste of resources
and inability to provide help to victims. Location
information plays a crucial role in the framework forming
the basis required for the prediction. In providing help for
individuals in distress, accurate location information is
essential. Threats jeopardizing the precision of location
information reduces the chances of offering help that
ensures the health and safety of the user.
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TABLE I. INFORMATION ASSETS AND AREA OF CONCERN
Asset ID Asset Area of Concern
1 Personal User’s privacy
Information Personal Identifiable Information
Device configuration
2 Dewce_ Data stored on device
Information
Network Topology
User’s behavioural pattern
3 . Locatlo_n Avrea of interest of the user
information
User’s movement
4 Log Device operation
Information User and device activities
TABLE II. INFORMATION ASSETS AND SECURITY THREATS
Asset Asset Threats
1D
1 Personal Data disclosure
Information . .
User impersonation
) Device spoofing
2 Dewct? Device breach/Theft
Information
Data spoofing
Tracking of user
Location - - ) -
3 information Disruption of the user's activity
Monitoring of user
Log Clearing of attack traces
4 Information Map activities of service and application
in the device

From the identified assets, reviewed area of concern
and threats associated with the assets, risks are computed
for the scenario. The relative risk score computed from
OCTAVE ALLEGRO worksheet is based on the impact
of the risk on the reputation and customer confidence,
financial, productivity, safety and health, fines and legal
penalties, user-defined impact area. Risks related with
Asset ID 2 which includes data manipulation, data
leakage and service denial/starvation could lead to
disruption in delivering help during distress with
inaccurate data been sent or service denial to prevent
alerts been sent to the third party for help and poses a high
risk to the productivity of the framework and safety and
health of the user. Risks related to asset ID 1 and asset 1D
3 pose a high risk to the safety and health of the user
while risk related to asset ID 4 poses a high risk to
productivity. The relative risk score associated with risk
linked with asset ID 1 is based on their impact on the user.
The health and safety component has high-risk value
among the other components with financial and

productivity components exhibiting medium risk impact
on the asset.

TABLE Il1. RISKS AND COMPUTED RELATIVE RISK SCORES
Alslsjet Risks Score

1 Privacy violation 25
Identity Theft 32
Denial/Starvation of service 19

2 Data leakage 22
Data manipulation 12
Unauthorised app execution 19

3 Interruption of activity 21
Tracking of user 22

4 Exposure to extra service 13
Loss of information 14

Table 4 shows different mitigation for the threats
identified in table 2. For the framework, the major
mitigation approach is to ensures the health and safety of
the user. The mitigation approach stated in the table
ensure that the safety of the user is not jeopardized at any
time and especially when the user is in distress. The
mitigation techniques improve the efficiency of the
framework and provide adequate protection for users
calling out for help.

TABLE IV. POSSIBLE MITIGATION APPROACHES
Asset ID Mitigation Approach
1 Ensuring a good understanding of user privacy concerns
Encryption of data
Device hardening
2 Physical security of the device
Device firmware update
Monitoring device security permissions
3 Secured means of communication (VPN)
Permission restriction
4 Secured system configuration
Device hardening

7. IMPLEMENTATION OF ARIMA PREDICTION
MODEL

The tool that is used for the implementation of the first
model is SAS/ETS® and the data used was obtained using
the location-based tracking services of a mobile device in
a moving vehicle. From the review of section IV, the
essential variables latitude, longitude and time used for
the evaluated algorithm are collected by LBS. The
algorithm gets an error when there is a disparity in
subsequent time values or an empty value for any of the
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variables. For the evaluation, the data was divided into
two datasets. The first dataset which is made up of 88% of
the original data is the data used for training the model
and the second dataset is the test data.

Mean procedure test is the first test carried out. This
test result shows the mean, standard deviation, minimum
value and maximum value of the acquired data. The
relevance of the test is to determine whether differencing
is required based on the standard deviation result. If the
value for standard deviation is insignificant i.e STD <
0.05, then differencing of the data is not required but
when the value is significant, the Augmented Dickey-
Fuller (ADF) test is carried out. The ADF test is based on
the hypothesis that time-series data is non- stationary [27,
43] or has a significant standard deviation value.

Application of ARIMA procedure for the forecast of
the next values. As discussed in section IV., this test is to
determine the ARIMA (p,d,q) notation to be used for
forecasting. Positive autocorrelation (PACF) at the first
lag indicates that AR model can be used and Moving
Average (MA) model indicates the random jumps for
calculating error in subsequent periods within the plot. If
the AR model is required there is a negative
autocorrelation at Lag-1, a sharp drop in PACF after few
lags and a gradual increase in PACF [44]. Other factors
which help determine the most suitable model is the
relatively small value provided by (2) for Akaike
Information Criterion (AIC), (3) for Schwarz Bayesian
Information Criterion (SBC) and the standard error value
of regression (S.E. of regression)

AIC(p) = nIn(c?/n) + 2p (2)
BIC(p) = nIn(c’ ;) + p + pIn(n) 3)

The last test is to verify the efficiency of the result
produced by the ARIMA model. The test involves the
comparison of the acquired data from the model forecast
and the test data obtained through LBS.

8. IMPLEMENTATION OF ENSEMBLE REGRESSION
TREE MODEL

The tool used for the implementation of the second
implementation model is the regression learner app of
MATLAB 2019a. The app can be used to train regression
models for prediction of data, perform automated training
for determination of the best regression model type, select
features, specify validation schemes and assess results.
The model types are including linear regression models,
regression trees, Gaussian process regression models,
support vector machines, and ensembles of regression
trees.

After loading the dataset into the app, the validation
method is to be selected to examine the predictive
accuracy of the fitted models. Validation helps prevent
overfitting, estimate the performance of the model and
choose the best model.

The first type of validation is cross-validation, this
selects the number of divisions to partition the dataset. If k
division is selected, then the app:

e Partitions the data into k disjoint divisions

e For each fold, out-of-fold observation is used to
train the model and model performance is
assessed using in-fold data.

e Calculates the average test error over all
divisions.

The method makes efficient use of all data and
requires multiple fits which makes it suitable for small
datasets.

The second type of validation is the holdout
validation. For this validation type, a percentage of the
data is reserved and used as the validation set. This type
of validation is appropriate for large data sets as it
segregates the data efficiently based on percentage.

If no validation is selected, there is no protection
against overfitting. All the data are used for training and
computing the error rate on the same data. The lack of test
data makes the model performance for the estimation of
new inaccurate and unrealistic.

Without any test data or validation data, the model can
provide unrealistic estimates when used for new data.
With the dataset used for the implementation, the cross-
validation was selected as it suits the dataset.

9. RESULTS AND DISCUSSION

From the result of the means procedure test as shown
in Fig 2, the standard deviation for the latitude and
longitude is insignificant with a value less than 0.05. The
insignificant value of the standard deviation indicates that
differencing is not required for the data and the ADF test
would not be carried out.

The MEANS Procedure

Variable Label | N Mean  StdDev Minimum —Maximum

la lat 120 529252574 0.0043273 529198600 52.9295710
lon lon 120 14913512 0.0077818 14990940 14816560
levation elevation 70 109.2222736 15.4281721 432273404 1310873011
accuracy accuracy 120 19.8672000 36176629 6.0000000 32.7580000
bearing bearng & 181.6207544 T3S5T3T74 727008400 3017622000

Figure 2. Means procedure

The next test is to determine the specific ARIMA
model to be used. The major factors for determining the
most suitable model to used are the ACF, PACF graphs,
AIC and SBC values.
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As shown in Fig. 3, the ACF obtained shows a gradual
decrease across the lag which indicates that AR model can
be use and the PACF plot showing a sharp drop after a
few lags and gradual increase across the lag indicates the
MA model can be used. Based on these findings, various
models of ARIMA was implemented to determine the
AIC and SBC value and determine the best model for
forecasting.

The values of AIC and SBC of various models of
ARIMA are indicated in Table 5. The models explored
have low AIC and SBC which indicates that they are all
suitable for the research. The best model to use for
prediction is the model with the lowest value of AIC and
SBC. From Table 5, the lowest AIC and SBC value are
1735.68 and 1721.74 for latitude and 1478.09 and
1464.15 for longitude respectively, indicating the most
suitable model is ARIMA (2,0,1) where 2 represent the
number of lags, O is the degree of differencing, and 1 is
the order of moving average.

TABLE V. AIC AND SBC RESULT OF ARIMA MODEL
ARIMA Latitude Longitude
Model AIC SBC AIC SBC
ARIMA(1,00) | 1627.95 | 162238 | 1419.60 | 1414.02
ARIMA(00,1) | 112244 | 1116.87 981.49 975.92
ARIMA(1,0.1) | 169650 | 1688.14 | 144514 | 1436.78
ARIMA(L1,0) | 1627.06 | 1621.49 1417.11 | 141153
ARIMA(0,L1) | 1122.44 | 1116.87 981.49 975.92
ARIMA(L,1,1) | 169650 | 1688.14 144514 | 1436.78
ARIMA(L,1,3) | 171258 | 1698.65 1455.00 |  1441.07
ARIMA(2,0,0) | 172407 | 1715.70 145437 | 1446.01
ARIMA(2,1,3) | 1459.45 | 144272 1459.45 |  1442.72
ARIMA(2,0,1) | 1735.68 1721.74 1478.09 | 1464.15

For the last test, the predicted values from the model
are compared with the test data from the acquired data.
Fig 4 and Fig 6 shows the trend of the latitude training
data for latitude and longitude respectively while Fig 5
and Fig 7 shows the difference between the test data and
the predicted data. The pattern of the difference between
values of the predicted data seems to be constant and
swaying in a single direction, either increasing or
declining gradually unlike the test data, which decreases,
stagnates and increases over the trend. The model
determines a pattern from the training data and uses the
data to derive the predicted data.

Trend and Correlation Analysis for lat
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Figure 3. Correlation Analysis of training data
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Figure 4. Latitude training data
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Figure 5. The difference in latitude data
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Figure 7. The difference in longitude data

This second implementation model uses a weighted
combination of multiple regression trees to construct a
linear combination that improves the predictive
performance of the model.

The bagged tree ensemble aggregates the decision tree
for the most efficient predictor. The figure shows the
predicted values use trend which is similar to the trend of
the training data. The similarity in trend shows the
efficiency of the model. For the latitude in Fig 8, the trend
of the values between the verification data and predicted
values shows the same initial trend of an upward slope
with an inconsistent upward and downward slope along
with the trend. The longitude values show a great
disparity along with the trend as indicated in Fig 9. Unlike
the actual data that has a consistent downward slope, the
predicted data displayed a conspicuous upward slope
along with the trend.

Latitude
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52.935
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Figure 8. The difference in Bagged tree latitude data

Longitude

-1.28

1 3 5 7 S 11 13 15 17 19 21

-1.4
-1.42
-1.44
-1.46

-1.48

-1.5

-1.52

Bagged Tree Ensemble Actual Data

Figure 9. The difference in Bagged tree longitude data

The boosted tree uses a sequential process of weight
adjustment and built on the fitting of the successive
algorithm on the previous one. The sequential fitting can
be observed in the consistent intervals shown in the figure
as the predicted values seem constant across the trend. Fig
10 shows the latitude values for both the predicted value
and the test data shows similar movement along with the
trend but shows a significant difference between the test
data value and the predicted data values. Longitude values
show a significant difference in values between test data
and predicted data and the movement along the trend
shows significant difference along with the trend as
shown in Fig 11.
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10. CONCLUSION

The solution provided for our problem space is
believed to help the prevention of violent attacks in high-
speed vehicles and provides easily accessible devices to
aid the communication of the on the move violent attacks
to a third party and the nearest police station to save the
lives of victims. This paper takes into consideration the
prediction model for the second part of the proposed 10T
solution. The first algorithm applied in this paper offers a
consequential prediction based on the pattern of historical
data. The results from the first implementation are
predicted based on the pattern derived from the trend of
the training data, the trend displayed from the result
indicates the suitability of the model for forecasting slow
movement along a straight path rather than random
movement.

The result of the second implementation unlike the
first implementation does not follow the trend of the data
rather it manifested a curve based on the weighted
combination of multiple regression trees.

To maximize the efficiency of the framework and
prevent sabotage by insider or external vulnerabilities,
risk analysis of the framework was performed using
OCTAVE ALLEGRO for the identification of various
assets available in the scenario, area of concerns regarding
these assets, threats and mitigation approach deployable in

the framework. The risk assessment looks to prevent
undermining the performance of the framework.

As a next step of the research, we would look into
adopting deep learning algorithms that best suit the
purpose of forecasting the next location of a moving
vehicle with random motion.
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Appendix C

Risk Assessment Based
Privacy-Preserving Scheme Source Code

import pandas as pd

from geopy.distance import geodesic
from datetime import datetime
import math

import numpy as np

import time

import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error,

mean_squared_error , r2_score

def calculate_distance(latl, lonl, lat2, lon2):
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Risk Assessment Based Privacy-Preserving Scheme Source Code

def

def

def

return geodesic((latl,

lonl) ,

(lat2, lon2)) .meters

calculate_velocity(df):

df = df.sort_values(by=[’id’, ’timestamp’])
# Ensure timestamps are in datetime format
df [’timestamp’] = pd.to_datetime(df[’timestamp’]) .dt.

floor(’s?)

df [’distance’] =
df [’time_diff’] =
df [’velocity’] =

float(’nan’)
float(’nan’)
0.0

len (df)):
if df .iloc[i][’id’]

distance =

for i in range(1,
== df.iloc[i-1][’id’]:
calculate_distance(
df .iloc[i-1]1[’1lat’], df.iloc[i-1]1[’1lon’],
df .iloc[il][’lat’], df.iloc[i]l[’lon’])
df .at[i, ’distance’] = distance

# Convert timestamps explicitly

tl = pd.Timestamp(df.iloc[i][’timestamp ’])

t0 = pd.Timestamp(df.iloc[i-1][’timestamp’])

time_diff = (t1 - t0).total_seconds ()

df .at[i, ’time_diff’] = time_diff

df .at[i, ’velocity’] = distance / time_diff if
time_diff != 0 else 0.0

return df

calculate_relative_velocity(vell, vel2):
return (vell*xx2 + vel2*%x2) **x0.5

calculate_ttc(row, df):



129

latl, lonl, vell = row[’lat’], row[’lon’], rowl[’
velocity ’]
min_ttc = float(’inf’)

timestamp = row[’timestamp’]
nearby_vehicles = df [(df [’timestamp’] == timestamp) & (
df [?id’] != row[’id’])]

#print (f"Timestamp: {timestamp}, ID: {row[’id’]},
Velocity: {vell:.2f} m/s")
for _, other_row in nearby_vehicles.iterrows():
lat2, lon2, vel2 = other_row[’lat’], other_row[’lon

>], other_row([’velocity’]

distance = calculate_distance(latl, lonl, lat2,
lon?2)
relative_distance = ((vell + vel2)x 7)

#print (f"This is relative_distance {

relative_distance:.5f}")

if distance <= relative_distance: # Check if the
distance is within the car’s velocity value
#print (f"Nearby Vehicle ID: {other_row([’id’]},
Distance: {distance:.2f} meters, Other
Velocity: {vel2:.2f} m/s")

relative_velocity = calculate_relative_velocity
(vell, vel2)
if relative_velocity != O0:
ttc = distance / relative_velocity
if ttc < min_ttc:

min_ttc = ttc

# Debug
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#print (f"Relative Velocity: {
relative_velocity:.2f} m/s, TTC: {ttc:.2

f} seconds")
return min_ttc if min_ttc !'= float(’inf’) else None

#Privacy Presevation Module
#Probabilitic Quantification
def epsilon_derivation(Upsilon_1, epsilon_0):
return (1/(1 - Upsilon_1 * (1 - 3 * (math.exp(-
epsilon_0)))))

#Add Selected Laplace Noise Mechanism of Differential
Privacy
def add_laplace_noise(data, epsilon, sensitivity):
o
Add Laplace noise to the data
:param data: Data to be perturbed
:param epsilon: Privacy parameter
:param sensitivity: Sensitivity of the data
:return: Perturbed data
laplace_noise = np.random.laplace(loc=0, scale=
sensitivity/epsilon, size=data.shape)

return data + laplace_noise

def categorize_risk_score(ttc_value):

nnn

Categorizes risk score based on TTC (Time to Collision)

values.

Parameters:
ttc_value (float): The TTC value to be categorized.
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Returns:
int: The risk score category (1, 2, or 3)
RN
if ttc_value < 4:
return 3
elif 4 <= ttc_value <= 7:
return 2
else:

return 1

def calculate_privacy(risk_score_category, epsilon_factor
=0.8):
nnn
Calculates privacy value based on the risk score

category using epsilon_derivation.

Parameters:
risk_score_category (int): The categorized risk
score.
epsilon_factor (float): The epsilon factor for

privacy derivation. Default is 0.8.

Returns:
float: The calculated privacy value, rounded to one
decimal place.
nnn
return round(epsilon_derivation(risk_score_category,

epsilon_factor), 1)

def prepare_data(df):
Prepares the dataset by handling missing values,
creating duplicate columns,

and dropping unnecessary features.

non
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def

def

def

df ["Latitude"] = df["lat"]

df ["Longitude"] = df["lon"]

df .dropna(inplace=True)

features_to_drop = ["Latitude", "Longitude", "timestamp
"]

return df, features_to_drop

split_data(df, features_to_drop):

nnn

Splits the dataset into training and testing sets.

train_data = df.sample(frac=0.8, random_state=0)

test_data = df.drop(train_data.index)

X_train = train_data.drop(columns=features_to_drop)
y_train = train_data[["Latitude", "Longitude"]]
X_test = test_data.drop(columns=features_to_drop)

test_data[["Latitude", "Longitude"]]

return X_train, y_train, X_test, y_test

y_test

train_model (X_train, y_train):

nnn

Trains a linear regression model.
nnn
model = LinearRegression().fit(X_train, y_train)

return model

evaluate_model (model, X, y):

Evaluates the model using MAE, MSE, RMSE, and training
time.

nnn

start_time = time.time ()

y_pred = model.predict (X)

end_time = time.time ()

mae = mean_absolute_error(y, y_pred)

mse = mean_squared_error(y, y_pred)



133

rmse = np.sqrt(mse)

time_taken = end_time - start_time

print ("Baseline Metrics ( = 0):")

print ("Mean Absolute Error (Baseline):", mae)

print ("Mean Squared Error (Baseline):", mse)

print ("Root Mean Squared Error (Baseline):", rmse)

print ("Time taken for baseline process: %s seconds" % (
time.time() - start_time))

print

return mae, mse, rmse, time_taken

def test_privacy_preserved_data(model, X_test, y_test,
sensitivity, mae, mse, rmse, training_time):
nmnn
Tests the model on privacy-preserved data by adding
Laplace noise.

non

results = []

for epsilon in np.arange(0.1, 1.1, 0.1):

start_time = time.time ()

print ("Epsilon level is: ", epsilon)

noisy_X_test = X_test.copy()

noisy_X_test["lat"] = add_laplace_noise(
noisy_X_test["lat"], epsilon, sensitivity)

noisy_X_test["lon"] = add_laplace_noise(
noisy_X_test["lon"], epsilon, sensitivity)

new_predictions = model.predict(noisy_X_test)

new_mae = mean_absolute_error(y_test,
new_predictions)

new_mse = mean_squared_error (y_test,
new_predictions)

new_rmse = np.sqrt(new_mse)

new_accuracy = r2_score(y_test, new_predictions)
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results.append ({
"epsilon": epsilon,
"noisy_mae": new_mae,
"baseline_mae": mae,
"delta_mae": new_mae - mae,
"noisy_mse": new_mse,
"baseline_mse": mse,
"delta_mse": new_mse - mse,
"noisy_rmse": new_rmse,
"baseline_rmse": rmse,
"delta_rmse": new_rmse - rmse,
"r2_accuracy": new_accuracy,
"baseline_time": training_time,
"process_time": ((time.time() - start_time) -
training_time)
)
print ("Mean Absolute Error (Noisy Test Data):",
new_mae)
print ("Mean Squared Error (Noisy Test Data):",
new_mse)
print ("Root Mean Squared Error (Noisy Test Data):",
new_rmse)
print ("R~2 Accuracy (Noisy Test Data):",
new_accuracy)
print ("Time taken for process: %s seconds" % (time.
time () - start_time))
print ("\n")
results_df = pd.DataFrame(results)
print ("\nSummary of Outcomes and Delta Metrics:")
print (results_df)

return results_df

sensitivity = 0.1 # Sensitivity of the data
# Load the dataset

df = pd.read_excel(r’Dataset\output.xlsx’)
df _copy = df.copy()
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df = calculate_velocity (df)

df [’ttc’] = df.apply(lambda row: calculate_ttc(row, df),
axis=1)

print (df)

df [’Risk_Score_Category’] = df[’ttc’].apply(
categorize_risk_score)

df [’Privacy’] = df [’Risk_Score_Category’].apply(lambda x:

calculate_privacy(x))

df .to_excel (r’Dataset\privacy.xlsx’, index=False)

# df = load_your_dataframe_here ()
df2, features_to_drop = prepare_data(df_copy)
X_train, y_train, X_test, y_test = split_data(df2,

features_to_drop)

model = train_model (X_train, y_train)

mae_train, mse_train, rmse_train, training_time =
evaluate_model (model, X_train, y_train)

print ("Training MAE:", mae_train, "Training MSE:",
mse_train, "Training RMSE:", rmse_train, "Training Time
:", training_time)

results = test_privacy_preserved_data(model, X_test, y_test
, sensitivity, mae_train, mse_train, rmse_train,

training_time)

results_df = pd.DataFrame(results)

output_file = f"Dataset\Error Results.xlsx"

# Save DataFrame to Excel

results_df .to_excel (output_file, index=False)
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Collision Dataset Generation Source Code

import simpy
import numpy as np
import pandas as pd

from datetime import datetime, timedelta

# Collision point coordinates (the destination of each

vehicle)

116.45650
39.90700

collision_1lon

collision_1lat

# Vehicle starting points (given as [lat, Longitudel)
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vehiclel_start
id 10

vehicle2_start
id 366

[39.90710, 116.41500] # Will be assigned

[39.90700, 116.49000] # Will be assigned

# Simulation configuration:

n_steps = 30 # Total number of simulation
steps (rows)

interval_seconds = 10 # Each subsequent timestamp 1is

10 seconds apart

# Collision event time (the final timestamp in the
simulation)
collision_time = datetime (2008, 2, 2, 13, 42, 53)

# Calculate the total duration of the simulation.

total_duration = interval_seconds * (n_steps - 1)

# Determine the simulation start time so that the final
step occurs at collision_time.
start_time = collision_time - timedelta(seconds=

total_duration)

def vehicle_process(env, vehicle_id, start, collision_point
, results):

nnn

Simulate vehicle movement over time using SimPy.

Parameters:
env (simpy.Environment): The SimPy environment

handling simulation events.
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# I

env

vehicle_id (int): The unique identifier of the

vehicle.

start (list): The starting [latitude, longitude] of

the vehicle.

collision_point (tuple): The target (latitude,

longitude) where the vehicle is heading.

results (list): A shared list to store results (

timestamp, lat, lon, vehicle_id).

nnn

start_lat, start_lon = start

collision_lat, collision_lon = collision_point

# Generate linear interpolation points

interp_param = np.linspace(0, 1, n_steps)
lats = np.linspace(start_lat, collision_lat, len(
interp_param))
lons = np.linspace(start_lon, collision_lon, len(
interp_param))
for i in range(n_steps):
current_time = start_time + timedelta(seconds=i x*
interval_seconds)
results.append([vehicle_id , current_time, round(

lats[i]l, 6), round(lons[i], 6)])

yield env.timeout (interval_seconds) # Simulate

time passing

nitialize SimPy environment

= simpy.Environment ()

# List to store simulation results

simulation_results = []

# Start vehicle processes

env.process (vehicle_process(env, 10, vehiclel_start, (

collision_lat, collision_lon), simulation_results))
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env.process(vehicle_process (env, 366, vehicle2_start, (

collision_lat, collision_lon), simulation_results))

# Run the simulation

env.run ()

B oo e o e mmo o

# Creating DataFrame from Simulation Data

B C D D D ________

df _combined = pd.DataFrame(simulation_results, columns=["id
u, "timestamp", "1at", "lOIl"])

B m DD D D ________

# Saving Data to an Excel File (Single Sheet)

7

# Specify the file path where you want to save the Excel
file.

excel_file_path = r"Vehicle_paths_combined.xlsx"
# Save the combined DataFrame to one Excel sheet using
DataFrame.to_excel.

df _combined.to_excel(excel_file_path, index=False)

print ("The combined Excel file has been successfully saved

.Il)

# Collision Dataset on Map
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import numpy as np
import pandas as pd

import folium

# Load the simulation data from Excel file
excel_file_path = r"Vehicle_paths_combined.xlsx"

df _combined = pd.read_excel(excel_file_path)

# Extract unique vehicle IDs

vehicle_ids = df_combined ["id"].unique ()

# Define colors for each vehicle
vehicle_colors = {10: "blue", 366: "red"}

# Create a new Folium map
collision_lat, collision_lon = 39.90700, 116.45650
m = folium.Map(location=[collision_lat, collision_lon],

zoom_start=16)

# Plot vehicle paths
for vehicle_id in vehicle_ids:
vehicle_data = df_combined[df_combined["id"] ==
vehicle_id]
path = list(zip(vehicle_datal["lat"], vehicle_data["lon
"1))
folium.PolyLine (path, color=vehicle_colors.get(
vehicle_id, "gray"), weight=2.5, opacity=1).add_to(m
)

# Add markers for vehicle movements

for i, (lat, lon) in enumerate(path):
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folium.Marker (
location=[lat, lonl],
icon=folium.Icon(color=vehicle_colors.get(
vehicle_id, "gray"), icon="car", prefix="fa
I|),
tooltip=f"Vehicle {vehicle_id} - Step {i+1}"
) .add_to (m)

# Add the collision marker
folium.Marker (
location=[collision_lat, collision_lon],
icon=folium.Icon(color="black", icon="exclamation -
triangle", prefix="fa"),
tooltip="Collision Point"
) .add_to (m)

# Save map to an HTML file
map_output_path = "vehicle_simulation_map.html"

m.save (map_output_path)

print ("The map has been successfully saved as an HTML file

.Il)
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