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ABSTRACT
Motorists often have to choose routes helping them to realise faster journey times.
Route choices between an origin and a destination might involve direct main roads,
shorter routes through narrow side streets, or longer but (potentially) faster journeys
using motorways or ring-roads. In the absence of effective traffic control measures,
an approximate equilibrium travel time may result between the routes available,
which is generally expected to be far from optimal. In this paper we investigate
discrete and continuous optimisation and equilibrium-type problems, for a simplified
traffic assignment problem on a simple network with parallel links and fixed demand.
We explore the interplay between solutions of certain optimisation and equilibrium
problems which can be solved by dynamic programming. The results are supported
by numerical simulations, in which the price of anarchy is calculated to highlight
the demand levels where there is a change in road choice and usage.

KEYWORDS
Traffic assignment problem; equilibrium state; discrete dynamic programming;
multi-objective optimisation.

1. Introduction

Whenever journey time is the main criterion for choosing their route, drivers tend
to act selfishly while trying to minimise their own journey times. As a consequence,
route switching by the travellers to the perceived fastest route, will ensue a steady state
where all (used) routes have an approximately equal travel time. The resultant total
travel time at this equilibrium is generally greater than the optimum one, achieved in
the presence of a perfect traffic control system. Such models may lead to the decidedly
counter-intuitive result that additions to road capacity may result in increased, rather
than the expected slower journey times.

The classical Traffic Assignment Problem (TAP) was first formulated by Dafermos
and Sparrow [1]. Since then, numerous mathematical programs have been designed for
solving variations of the fixed demand problem. In the book of Patriksson [2] and in
the references therein, various minimisation problems with separable goal function and
simple constraints for the TAP problem have been treated, including the particular
case of networks involving parallel routes between an origin and a destination.
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In [3, Section 7.3] we have investigated a TAP model with fixed demand and parallel
links, using route travel times inspired from Youn et al. [4]. For this model we have first
formulated a discrete optimisation problem with separable objective function, and a
discrete equilibrium problem under the assumption that all routes are being used and
individual travel costs are all equal, represented via a system of equations. Alternative
formulations and solution methodologies based on dynamic programming, tabu search
heuristics and numerical techniques were further investigated in [5].

This paper explores the interplay between the above mentioned optimisation and
equilibrium problems. Section 2 presents some cost functions for TAP models, discrete
optimisation and equilibrium problems, and a dynamic programming approach used
to solve the discrete optimisation problem. In Section 3 we formulate some continu-
ous counterparts of the discrete optimisation and equilibrium problems, highlighting
the links between these two types of problems. Specifically, we first show that the
solution of the continuous optimisation problem corresponds to the solution of an
equilibrium-type problem (Theorem 3.1). Then we demonstrate that the solution of
the continuous equilibrium problem is in fact the solution of an abstract optimisation
problem with separable variables, whose travel cost functions match the pattern of
the original optimisation problem (Theorem 3.2). We also formulate an optimisation
counterpart for the discrete equilibrium problem, which can be solved by dynamic
programming. In Section 4 we compare the solutions of the above mentioned problems
through numerical simulations, with a focus on the price of anarchy.

2. Preliminaries

2.1. General cost of ”origin - destination” traffic flow

Car travel time is dependent on the number of cars accessing a route, as well as speed
limit, length and capacity of the road. If there are m ≥ 2 routes between the origin
and destination points, the travel time ti for a car accessing route i (i = 1, . . . ,m) is
a monotonic increasing polynomial function of the traffic flow xi ∈ N = {0, 1, 2, . . . },
as measured in ”units of vehicles” per ”unit of time” accessing route i, namely:

ti = fi(xi) = ai + bi

(
xi
ci

)pi
, where pi ≥ 1, ai ≥ 0 and bi, ci > 0, (1)

as in Youn et al. [4], also called the BPR Formula (Bureau of Public Roads) [6].
Note that as xi →∞ one has fi(xi)→∞. Also, if xi = 0 then fi(xi) = ai, while for

xi = ci we have fi(xi) = ai + bi. The term xi/ci is the (traffic) flow to road capacity
ratio, and traffic flows may often be well above the road design capacity (x� c).

Denoting the cost of transporting xi vehicles along route i (i = 1, . . . ,m) by

gi(xi) = xifi(xi), (2)

the total travel time for n vehicles distributed on m routes is given by formula:

T (x) =

m∑
i=1

gi(xi) =

m∑
i=1

xifi(xi), (3)

where x = (x1, . . . , xm) ∈ Nm and x1 + · · ·+ xm = n.
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The consideration of various road types having different associated travel times is
well justified by the real world. For example, travellers to a city centre may have to
choose between main highway to city centre (high capacity, direct and popular), side
routes (also called rat runs, which offer short distance but are easily congested), or
ring-roads and motorways (often faster, but longer and indirect).

The travel time functions given in (1) for these routes are shown in Table 1, where
the parameters ai, bi and pi considered in [5], match the classical BPR Formula [6].
The movement of xi cars along route i costs gi(xi) = xifi(xi), i = 1, 2, 3, and the total
travel time for moving n = x1 +x2 +x3 cars along these routes is given by the formula
T (x) = g1(x1) + g2(x2) + g3(x3), as seen in (3).

Road Parameters and Road Travel Time per Vehicle

Road No. ai bi ci pi fi(xi) = ai + bi

(
xi

ci

)pi
1 1.85 0.2775 4000 2 f1(x1) = 1.85 + 0.2775

(
x1

4000

)2
2 1.5 0.225 1500 3 f2(x2) = 1.5 + 0.225

(
x2

1500

)3
3 2.15 0.3225 1000 5 f3(x3) = 2.15 + 0.3225

(
x3

1000

)5
Table 1. Travel cost functions fi(xi) for a model involving 3 roads.

For instance, for n = 10000 and x = (x1, x2, x3) = (6804, 2179, 1017), the total
travelling cost is T (x) = 25365.2607, which will be shown to be optimal in Section 4.

2.2. Optimality vs. Equilibrium

In this paper two main types of traffic management approaches are considered.
First, one may try to find the number of cars to be directed along each route, in

order to minimize travel time. The following discrete optimisation problem is obtained:
Minimise T (x1, . . . , xm)

subject to
x1 + · · ·+ xm = n
x1, . . . , xm ∈ N.

(4)

Second, admitting that all drivers are allowed to seek to minimise their own indi-
vidual travel times, an equilibrium would develop where all travel times are equal and
the steady state traffic flow along each route could be obtained as a solution of the
following system of equations: f1(x1) = . . . = fm(xm)

x1 + · · ·+ xm = n
x1, . . . , xm ∈ N.

(5)

As this system may be inconsistent, we consider the mean and normalised standard
deviation of the individual travel times vector (f1(x1), . . . , fm(xm)), defined by

µ(x) =
1

m

m∑
i=1

fi(xi) and σ(x) =

√√√√ 1

m− 1

m∑
i=1

∣∣fi(xi)− µ(x)
∣∣2.
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An alternative to the discrete equilibrium system (5) is the optimisation problem:
Minimise σ(x1, . . . , xm)

subject to
x1 + · · ·+ xm = n
x1, . . . , xm ∈ N.

(6)

If the equilibrium system (5) is consistent, then its solutions are optimal solutions of
problem (6). Conversely, if x0 = (x01, . . . , x

0
m) is an optimal solution of (6), then x0 is

a solution of (5) if and only if σ(x0) = 0.
A measure of the difference between optimal and equilibrium solutions is the price

of anarchy introduced by Koutsoupias and Papadimitriou [7], defined by:

PA =
Total cost at equilibrium

Total cost at optimum
. (7)

If PA � 1, time travel savings can be gained through effective traffic management.

2.3. Methodology

Methods for solving the discrete optimisation and equilibrium problems (4) and (6),
and some of their continuous counterparts by exhaustive search, tabu search, dynamic
programming, and steepest descent, were given in [3, Section 7.3] and [5]. For n vehicles
and m routes, the complexity of exhaustive search was O(nm−1).

Since the optimisation problem (4) has a finite feasible set and a cost function with
separable variables, it can be solved by Bellman’s algorithm [8].

As explained in detail in [3, Section 7.3], one must define recursively the functions
G1, . . . , Gm : [0, n] ∩ N→ R for all c ∈ [0, n] ∩ N by Bellman’s functional equations:{

G1(c) = g1(c);

Gk(c) = mins∈[0,c]∩N [gk(s) +Gk−1(c− s)] , k = 2, 3, . . . ,m.
(8)

The optimal value of problem (4) is given by the explicit formula minT (x) = Gm(n),
where x = (x1, . . . , xm) ∈ Nm and x1 + · · ·+ xm = n.

An optimal solution x0 = (x01, . . . , x
0
m) of (4) is obtained by going backwards.

Let c := n and choose x0m ∈ argmin
s∈[0,c]∩N

[gm(s) +Gm−1(c− s)] ,

Let c := n− x0m and choose x0m−1 ∈ argmin
s∈[0,c]∩N

[gm−1(s) +Gm−2(c− s)] ,

· · ·
Let c := n− x0m − . . .− x03 and choose x02 ∈ argmin

s∈[0,c]∩N
[g2(s) +G1(c− s)] ,

Let x01 := n− x0m − . . .− x03 − x02.

In Section 4 we use this method to solve the discrete optimisation problem (4), and
a counterpart of the equilibrium system (5), formulated as a discrete optimisation
problem, whose objective function has separable variables.
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3. On the interplay between Optimisation and Equilibrium problems

Here we consider some continuous counterparts of the optimisation and equilibrium
problems (4) and (5). We show that the solution of the optimisation problem is the
solution of an equilibrium problem, while the continuous equilibrium problem can be
interpreted as the solution of a certain optimisation problem, related to (4).

3.1. Continuous counterparts of the optimisation problem (4)

We consider the following relaxation of the optimisation problem (4)
Minimise T (x1, . . . , xm)

subject to
x1 + · · ·+ xm = n
x1, . . . , xm ≥ 0,

(9)

and its counterpart 
Minimise T (x1, . . . , xm)

subject to
x1 + · · ·+ xm = n
x1, . . . , xm > 0.

(10)

Denoting the feasible domain of problem (9) by

S =
{
x = (x1, . . . , xm) ∈ Rm+ : x1 + · · ·+ xm = n

}
, (11)

it is easily seen that the feasible domain of problem (4) is S ∩ Nm. Moreover, the
feasible domain of problem (10) is the relative interior of S, denoted by riS, as usual
in Convex Analysis [9]. Taking into account that S ∩ Nm ⊆ S = cl(riS) and T is
continuous, we infer that the optimal values of problems (4), (9) and (10) satisfy

min
x∈S∩Nm

T (x) ≥ min
x∈S

T (x) = inf
x∈riS

T (x).

Notice that problems (4) and (9) always have optimal solutions, while problem (10)
possesses minimizing sequences, but not necessarily minimal solutions.

Theorem 3.1. The optimisation problem (10) is equivalent to the following
equilibrium-type system  g′1(x1) = . . . = g′m(xm)

x1 + · · ·+ xm = n
x1, . . . , xm > 0.

(12)

Proof. Consider a point x0 = (x01, . . . , x
0
m) ∈ intRm+ .

Assume that x0 is an optimal solution of problem (10). Let us attach to (10) the
Lagrangian function L : (intRm+ )× R→ R defined by

L(x, λ) = T (x) + λH(x), (13)
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with the objective function T (x) given by (3), and the constraint function

H(x) := x1 + · · ·+ xm − n, (14)

for all x = (x1, . . . , xm) ∈ intRm+ . By the necessary optimality condition, there exists
λ0 ∈ R such that (x0, λ0) is a stationary point of L, that is{

∂L
∂xi

(x0, λ0) = g′i(x
0
i ) + λ0 = 0, i = 1, . . . ,m

∂L
∂λ (x0, λ0) = H(x0) = x01 + · · ·+ x0m − n = 0.

(15)

In particular, this shows that x0 is a solution of the system (12).
Conversely, assuming that x0 is a solution of (12), the number below is well-defined

λ0 := −g′1(x01) = · · · = −g′m(x0m).

Let L0 : intRm+ → R be defined for all x ∈ intRm+ by

L0(x) = L(x, λ0).

By means of (1) and (2), we deduce that

d2L0(x
0)(h) =

m∑
i=1

m∑
j=1

∂2L0

∂hi∂hj
(x0)hihj =

m∑
i=1

g′′i (x0i )h
2
i =

m∑
i=1

bi(1 + pi)pi
cpii

xpi−1i h2i > 0,

for all h = (h1, . . . , hm) ∈ Rm \ {0m} such that dH(h) = h1 + · · ·+ hm = 0. Hence, by
the sufficient optimality condition, x0 is an optimal solution of (10).

Comparing (12) to (5), it is natural to consider the equilibrium-type system g′1(x1) = . . . = g′m(xm)
x1 + · · ·+ xm = n
x1, . . . , xm ∈ N.

(16)

For any x = (x1, . . . , xm) ∈ Nm such that x1 + · · ·+xm = n we consider the mean and
normalised standard deviation of the vector (g′1(x1), . . . , g

′
m(xm)), defined by

µ(x) =
1

m

m∑
i=1

g′i(xi) and σ(x) =

√√√√ 1

m− 1

m∑
i=1

∣∣g′i(xi)− µ(x)
∣∣2.

As an alternative to the equilibrium system (16) we may consider the following
optimisation problem, which always has a solution (having finite state space):

Minimise σ(x1, . . . , xm)

subject to
x1 + · · ·+ xm = n
x1, . . . , xm ∈ N.

(17)

This problem can be solved using a heuristic algorithm or numerically, as in [3].
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3.2. Continuous counterparts of the equilibrium system (5)

As mentioned in Section 2.2, the equilibrium system (5) does not have integer solutions
in general. Also, in contrast to (4), the optimisation problem (6) cannot be solved by
Bellman’s algorithm, because its objective function σ does not have separable variables.
Therefore, one may consider the relaxed version of (5) over positive reals: f1(x1) = . . . = fm(xm)

x1 + · · ·+ xm = n
x1, . . . , xm > 0.

(18)

Remark 1. The system (18) can be rewritten in a manner similar to (12). Indeed,
denoting the antiderivatives of f1, . . . , fm, by g̃1, . . . , g̃m, we have

g̃i(xi) =

∫ xi

0
fi(t) dt = aixi +

bi
(pi + 1)cpii

xpi+1
i , xi > 0, i = 1, . . . ,m, (19)

and therefore the system (18) is equivalent to: g̃′1(x1) = . . . = g̃′m(xm)
x1 + · · ·+ xm = n
x1, . . . , xm > 0.

(20)

This allows us to formulate the main result of our paper.

Theorem 3.2. The equilibrium-type system (18) is equivalent to the constrained op-
timisation problem 

Minimise T̃ (x1, . . . , xm)

subject to
x1 + · · ·+ xm = n
x1, . . . , xm > 0,

(21)

whose objective function T̃ : intRm+ → R is defined for all x = (x1, . . . , xm) by

T̃ (x) =

m∑
i=1

g̃i(xi). (22)

Proof. Consider a point x0 = (x01, . . . , x
0
m) ∈ intRm+ .

Assume that x0 is an optimal solution of (21). Let L̃ : (intRm+ ) × R → R be the
Lagrangian function associated to the constrained optimisation problem (21), i.e.,

L̃(x, λ) = T̃ (x) + λH(x), (23)

with H given by (14). By the necessary optimality condition, there is λ0 ∈ R such
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that (x0, λ0) is a stationary point of L̃, that is
∂L̃
∂xi

(x0, λ0) = g̃ ′i(x
0) + λ0 = fi(x

0) + λ0 = 0, i = 1, . . . ,m

∂L̃
∂λ (x0, λ0) = H(x0) = x01 + · · ·+ x0m − n = 0.

(24)

This shows in particular that x0 is a solution of the system (20), hence of (18) by
Remark 1.

Conversely, assume that x0 is a solution of the equilibrium-type system (18). In
view of Remark 1, the number below is well-defined:

λ0 := −g̃ ′1(x01) = · · · = −g̃ ′m(x0m).

Let L̃0 : intRm+ → R be defined for all x ∈ intRm+ by

L̃0(x) = L̃(x, λ0).

Recalling (19), we deduce that

d2L̃0(x
0)(h) =

m∑
i=1

m∑
j=1

∂2L̃0

∂hi∂hj
(x0)hihj =

m∑
i=1

g̃ ′′i (x
0
i )h

2
i =

m∑
i=1

bipi
cpii

xpi−1i h2i > 0,

for all h = (h1, . . . , hm) ∈ Rm \ {0m} such that dH(h) = h1 + · · ·+ hm = 0. Hence, by
the sufficient optimality condition, x0 is an optimal solution of problem (21).

Consequently, a point x0 = (x01, . . . , x
0
m) ∈ intRm+ satisfies the equilibrium-type

system (18) if and only if it is an optimal solution of problem (21).

An interesting question arises. Could our new optimisation problem (21) be seen
as the minimisation of the total travelling time of some traffic problem? Surprisingly,
due to the structure of the cost functions f1, . . . , fm given in (1), we can define new

polynomial functions f̃1, . . . , f̃m (fitting the model proposed by Youn et al. [4]) by

f̃i(xi) = ai +
bi

pi + 1

(
xi
ci

)pi
, (25)

such that the antiderivatives g̃1, . . . , g̃m of f1, . . . , fm given by (19) satisfy

g̃i(xi) = xif̃i(xi). (26)

Hence, our optimisation problem (21) represents a continuous counterpart (over posi-
tive reals) of an alternative discrete optimisation problem associated to problem (4):

Minimise T̃ (x1, . . . , xm)

subject to
x1 + · · ·+ xm = n
x1, . . . , xm ∈ N.

(27)

Similarly to the original optimisation problem (4), problem (27) can also be solved
exactly and efficiently by Bellman’s algorithm, as shown in the following section.
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4. Numerical examples and simulations

In this section we illustrate the interplay between optimisation and equilibrium prob-
lems for models involving three and ten links, respectively. In order to compare our
results with previous numerical experiments (involving tabu search and interior-point
methods), we are using the parameter values considered in [5]. The simulations and
diagrams presented in this section have been produced in Matlab R©.

Before showing our numerical experiments, recall that the equilibrium system (18)
always has a solution if the demand is greater than a certain value.

Proposition 4.1. Indeed, according to [5, Thm 2.1], if fi : [0,∞)→ R, i = 1, . . . ,m
are strictly increasing and unbounded continuous functions, then the system (18) has
a solution if and only if the demand denoted by D = x1 + · · ·+ xm satisfies

D =

m∑
i=1

xi >

m∑
i=1

f−1i (M0) = D∗, (28)

where M0 = max1≤i≤m{fi(0)}. For the functions fi(x) defined by (1), we have

D∗ =

m∑
i=1

ci

(
M0 − ai

bi

) 1

pi

. (29)

4.1. A model with three links

Here we investigate solutions of discrete optimisation and equilibrium problems for a
model with three links (i.e., m = 3). Discrete solutions obtained by dynamic program-
ming are validated against those obtained by exhaustive search.

We use travel time functions (1) for the 3 road example given in Table 1. In this case,
moving x1 cars along route 1 costs g1(x1) = x1f1(x1). Similarly, g2(x2) = x2f2(x2)
and g3(x3) = x3f3(x3). Therefore, the total travel time of n = x1 + x2 + x3 cars along
these routes is T (x) = g1(x1) + g2(x2) + g3(x3), according to (3).

In Table 2 we compare exact solutions obtained for the optimisation problems (4)
and (6) (which represents a counterpart of the equilibrium system (5)), obtained by
brute force. The solution which minimises the total travel cost of for n = 10000 vehicles
is xopt = (6804, 2179, 1017), while the variance of individual travel times is minimal
for xequ = (6427, 2520, 1053). Surprisingly, xopt also exhibits a small variance, while
the individual travel costs only differ by about 1%.

Problem (4) Problem (6)

Road xi
xi

ci

(
xi

ci

)pi
f(xi) xi

xi

ci

(
xi

ci

)pi
f(xi)

1 6804 1.70 2.89 2.6529 6427 1.61 2.58 2.5664
2 2179 1.45 3.07 2.1897 2520 1.68 4.74 2.5669
3 1017 1.02 1.09 2.5009 1053 1.05 1.29 2.5675

σ2(x) 0.055 3.09 · 10−7

µ(x) 2.447 2.5669
T (x) 25365.26 25666.39

Table 2. Exact solutions for the optimisation and equilibrium problems (4) and (6) for a demand n = 10000.
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In Table 3 we present solutions for the optimisation problems (4) and (27) (the
latter representing a counterpart of the equilibrium system (5)) obtained by dynamic
programming. Notice that the traffic levels (x1, x2, x3) match almost perfectly.

Problem (4) Problem (27)

Road xi
xi

ci

(
xi

ci

)pi
f(xi) xi

xi

ci

(
xi

ci

)pi
f(xi)

1 6804 1.70 2.89 2.6529 6428 1.61 2.58 2.5666
2 2179 1.45 3.07 2.1897 2520 1.68 4.74 2.5669
3 1017 1.02 1.09 2.5009 1052 1.05 1.29 2.5655

σ2(x) 0.055 5.04 · 10−7

µ(x) 2.447 2.5663
T (x) 25365.26 25665.74

Table 3. Dynamic Programming solutions of the optimisation problems (4) and (27) for a demand n = 10000.

In Figure 1 we plot solutions of the optimisation problems (4) and (6), obtained
by Tabu Search for demands between 1000 and 50000 given in [5]. Notice that the
solutions are very similar. Initially, vehicles prefer link 2, while as demand increases,
link 1 starts to attract more traffic. For high demand, road loading (as a percentage
of total traffic) is determined by a combination of its capacity ci and power pi.

(a) Demand vs % Vehicles on Road (b) Price of Anarchy

(c) Demand vs % Vehicles on Road (d) Price of Anarchy

Figure 1. Results for an example with 3 roads (diagrams from [5]).
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For low demand, some links may be empty. As the demand increases, new roads are
used, which reflects in spikes of the price of anarchy. The two spikes in Figure 1 (b)
correspond to the introduction of new roads, as shown by Figure 1 (a). Also, while the
total costs between optimal and equilibrium solutions in Figure 1 (c) are similar, the
mean cost of a road (per vehicle) may differ significantly (see Figure 1 (d)).

By Proposition 4.1, the solution of the continuous equilibrium problem (18) exists
whenever the demand is above a certain value D∗. In our example, by (29) we have
M0 = max{f1(0), f2(0), f3(0)} = 2.15 and D∗ = 6295.33. Hence, the problem (18) has
a solution if and only if x1 + x2 + x3 > D∗, and the solution satisfies

x1 > f−11 (2.15) = 4000

√
2.15− 1.85

0.2775
= 4159.002;

x2 > f−12 (2.15) = 1500
3

√
2.15− 1.5

0.225
= 2136.329.

4.2. A model with ten links

Here we analyze an extended model with 10 roads (i.e., m = 10). The model has the
parameter values given in Table 4 and was investigated in [5], where integer and real
solutions of the problems described in Sections 2 and 3 have been presented in detail.
Here we compare the solutions of the optimisation problems (4) and (27).

Road Parameters and Road Travel Time per Vehicle

Road No. ai bi =
0.15ai

ci pi fi(xi) = ai + bi

(
xi

ci

)pi
1 1.2 0.18 2000 5 f1(x1) = 1.2 + 0.18

(
x1

2000

)5
2 1.3 0.195 1500 5 f2(x2) = 1.3 + 0.195

(
x2

1500

)5
3 0.8 0.12 3500 4 f3(x3) = 0.8 + 0.12

(
x3

3500

)4
4 0.9 0.135 4000 4 f4(x4) = 0.9 + 0.135

(
x4

4000

)4
5 1.4 0.21 2000 6 f5(x5) = 1.4 + 0.21

(
x5

2000

)6
6 1 0.15 3000 6 f6(x6) = 1 + 0.15

(
x6

3000

)6
7 1.1 0.165 1000 8 f7(x7) = 1.1 + 0.165

(
x7

1000

)8
8 1.2 0.18 2000 8 f8(x8) = 1.2 + 0.18

(
x8

2000

)8
9 1.3 0.195 1500 8 f9(x9) = 1.3 + 0.195

(
x9

1500

)8
10 1.3 0.195 1000 8 f10(x10) = 1.3 + 0.195

(
x10

1000

)8
Table 4. Travel cost functions fi(xi) for a model involving 10 roads.

Solutions of the discrete optimisation problems (4) and (27) (counterpart of the
equilibrium problem (5)), for n = 30000 vehicles are shown in Table 5. For i = 1, . . . , 10
we show road loading xi, normalized demand by road capacity xi

ci
, normalized demand

to the corresponding power (xi/ci)
pi and individual travel cost f(xi).

The solutions of the two problems produce very similar results in terms of total
travel time. As expected, the solution of (4) produces a lower figure than that of (27),
but the difference of just about 0.68%. Also, the variance of the individual travel costs
fi(xi), i = 1, . . . , 10 is less than 10−6 for the solution of (27). This is not surprising,
as (27) was the counterpart of the equilibrium problem (18). However, the solution of
problem (4) also produces small values for the variance of fi(xi), i = 1, . . . , 10.
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Problem (4) Problem (27)

Road xi
xi

ci

(
xi

ci

)pi
f(xi) xi

xi

ci

(
xi

ci

)pi
f(xi)

1 2704 1.35 4.52 2.013 2623 1.31 3.88 1.899
2 1988 1.33 4.09 2.097 1877 1.25 3.07 1.899
3 6029 1.72 8.80 1.857 6088 1.74 9.15 1.899
4 6658 1.66 7.68 1.936 6596 1.65 7.39 1.899
5 2426 1.21 3.19 2.069 2310 1.16 2.37 1.899
6 3902 1.30 4.84 1.726 4043 1.35 5.99 1.899
7 1163 1.16 3.35 1.652 1218 1.22 4.84 1.899
8 2296 1.15 3.02 1.743 2369 1.18 3.88 1.899
9 1700 1.13 2.72 1.831 1726 1.15 3.07 1.899
10 1134 1.13 2.73 1.833 1150 1.15 3.06 1.899

σ2(x) 0.023 6.52 · 10−7

µ(x) 1.876 1.899
T (x) 56567.59 56950.76

Table 5. Dynamic Programming solutions of the optimisation problems (4) and (27) for a demand n = 30000.

Other properties of the solution of (4) can be read from Table 5. The low power and
high capacity routes take most traffic (i = 3, 4) and have the highest loading factor
xi

ci
∼ 1.6. Links 1 and 8 have same ai, bi and ci values, but different pi. The ratio xi

ci
is higher on road 1 (lower pi value), thus the system can afford to overload this road;
roads 9 and 10 have same ai, bi and pi, but different capacity ci. Here, the ratio x9/x10
match the capacity ratio c9/c10, but the equal pi values lead to equal loading factors.

By Proposition 4.1, the solution of the continuous equilibrium problem (18) exists
whenever the demand is above the critical value given by D∗ =

∑10
i=1 f

−1
i (M0), where

M0 = maxi{fi(0)} = f5(0) = 1.4. It follows that (18) has a solution if and only if
x1 + · · ·+ x10 > D∗ ∼ 23074, while the solution satisfies

xi > f−1i (1.4) = ci

√
1.4− ai
bi

, i = 1, . . . , 10, i 6= 5.

In Figure 2 we show some results concerning the continuous equilibrium problem.

(a) Equilibrium solution (b) Link number vs Critical demand

Figure 2. Critical demand values and equilibrium solution for 10 roads.
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(a) Small demand (b) Large demand

Figure 3. Optimal solution: Link Number vs % Vehicles on Road.

The solution of the continuous equilibrium problem (18) for the critical demand D∗

is depicted in Figure 2 (a). Since n = 30000 > D∗, it was expected that the solution
of problem (4) would involve traffic on all roads. Problem (18) can also be used to
examine the demand levels required for involving traffic flows along new roads in the
optimal solution. The ordered vector

0.8=f3(0)<f4(0)<f6(0)<f7(0)<f1(0)=f8(0)<f2(0)=f9(0)=f10(0)<f5(0)=1.4,

generates the ordered set I = [3, 4, 6, 7, 1, 8, 2, 9, 10, 5]. For each j = 1, . . . , 10 we can
define an equilibrium problem of type (18), involving the first j elements in set I, which
has a solution, once the demand exceeds a critical value Dj . The results obtained for
this model are illustrated in Figure 2 (b). At small demand only link 3 is used, while
beyond D = 3344, link 4 starts to take traffic. Once the demand exceeds the critical
value D∗ = 23074, all links will have some vehicles on them.

The optimal assignment of vehicles along individual roads is depicted in Figure 3.
For small demand, vehicles are assigned to few roads, as seen in Figure 3 (a). For
n = 1000 all cars choose link 3, while at n = 3000 about 25% of cars move along link
4. As the demand increases, other links are becoming cost-effective progressively (e.g.,
link 6 for n = 6000 and links 1, 7 and 8 for n = 10000). For larger demand, most roads
are loaded, as in Figure 3 (b). For n = 15000 only link 5 is not yet occupied, while
for n ≥ 20000 all roads have traffic. However, with increasing demand, the vehicle
density seems to stabilize towards an equilibrium state, which depends on the model
parameters. In this model, the peaks are at links 3 (20%), 4 (23%) and 6 (12.5%).

In Figure 4 we compare the solution of problem (4) obtained by means of dynamic
programming, against the solution of problem (6) (equilibrium counterpart) obtained
in [5] by a Tabu Search heuristic. Figure 4 (a) shows the percentage of cars (of the
total demand) allocated to each road (xi/n). Once a road starts to be used, the traffic
increases to a certain peak, until another road becomes more time efficient. The price
of anarchy displayed in Figure 4 (b) shows vertical lines at the moment when a new
road is used in the equilibrium solution. The results match well with those depicted in
Figure 4 (a), the vertical lines corresponding to the position of the peaks. The noise
within the graphs is related to the use of the heuristic method in [5].
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(a) Demand vs % Vehicles on Road (b) Price of Anarchy

Figure 4. Results for an example with 10 roads [5].

5. Conclusions and further work

In this paper we have considered a simplified traffic model, in which a source and a
destination are connected via a number of parallel links, while various discrete and
continuous optimisation and equilibrium problems have been formulated. The close
interplay between discrete versions of the optimisation and equilibrium problems was
explored theoretically, and illustrated by two models with 3 and 10 roads respectively,
where solutions were given by means of dynamic programming.

In the future, comparisons with other TAP models [2, Chapter 3] could be con-
sidered, such as Traffic Paradoxes, whereby implementation of control structures on
a network can result in an improvement to the network flow. For example, the well
known Braess Paradox [10] is a phenomenon that can result in better overall travel
time from the shutting down of roads (removal of network links).

Another interesting research direction for solving the problem (9) effectively, would
be to develop a Lagrangian duality approach, which also employs the separability
property of the convex objective function T (a finite sum of convex functions on Rm+ ).

Multi-criteria optimisation could also be used as an alternative methodology (see,
e.g., [11], [12], [13], [14], and the references therein). Indeed, problem (4) may be
seen as a particular linear scalarisation (with equal weights) of the multi-objective
optimisation problem 

Minimise (g1(x1), . . . , gm(xm))

subject to
x1 + · · ·+ xm = n
x1, . . . , xm ∈ N.

(30)

Then every optimal solution x0 = (x01, . . . , x
0
m) of problem (4) is a Pareto-optimal

(efficient) solution of the multi-objective optimisation problem (30), which means that
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for any feasible point x = (x1, . . . , xm) ∈ Nm with x1 + · · ·+ xm = n, we have
g1(x1) ≤ g1(x01)
...
gm(xm) ≤ gm(x0m)

=⇒


g1(x1) = g1(x

0
1)

...
gm(xm) = gm(x0m).

Similarly, the optimisation (equilibrium counterpart) problem (6) can be seen as a
particular (`2-type) nonlinear scalarization of the multi-objective optimisation problem

Minimise (e1(x1), . . . , em(xm))

subject to
x1 + · · ·+ xm = n
x1, . . . , xm ∈ N,

(31)

where the scalar functions e1, . . . , em are defined by

ei(xi) = |fi(xi)− µ(x1, . . . , xm)|.

This means that every optimal solution of (6) can be found among the Pareto-optimal
solutions of the multi-objective optimisation problem (31).

Realistic complex network geometries may also be considered, where the source and
the destination are connected by multiple routes which share certain road segments,
or scenarios involving multiple sources and sinks (i.e., Sioux Falls model [15]).
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