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Abstract: This work is devoted to analyzing an impulsive control synthesis to maintain the self-
sustainability of Wolbachia among Aedes Aegypti mosquitoes. The present paper provides a frac-
tional order Wolbachia invasive model. Through fixed point theory, this work derives the existence
and uniqueness results for the proposed model. Also, we performed a global Mittag-Leffler stability
analysis via Linear Matrix Inequality theory and Lyapunov theory. As a result of this controller
synthesis, the sustainability of Wolbachia is preserved and non-Wolbachia mosquitoes are eradicated.
Finally, a numerical simulation is established for the published data to analyze the nature of the
proposed Wolbachia invasive model.

Keywords: sustainability; mosquito borne diseases; Aedes Aegypti; Wolbachia invasion; impulsive control

1. Introduction

In the 19th century, fractional calculus (FC) theory has been built by some famous
mathematicians like Grunwald, Letnikov, Riemann, Liouville, Euler and Caputo [1–3].
Fractional order derivatives are the generalization of integer order derivatives. FC is
unavoidable due to its extensive applications in the study of real-world problems. The
main advantage of FC is that it can provide a path to understand the description of memory
and inheritance of various processes [4,5]. The book [6] plays an important role in the
area of applied fractional calculus. In recent years, researchers in the field of physics,
chemistry, Neural Networks, economic and mathematical modeling, biological problems
and engineering have been very much attracted to fractional calculus [7], because FC
interprets the whole function geometrically and globalizes its entire function.

Mosquito-borne diseases are primarily spread by female mosquitoes while taking a
blood meal from living organisms such as humans, animals and birds. A parasite, virus,
or bacteria-infected female mosquito can transmit those foreign agents to humans [8].
For instance, the Dengue virus, Zika virus, Yellow fever virus and Chikungunya are
transmitted from infected human to uninfected human via primary vector Aedes Aegypti
mosquitoes. Currently, the secondary vector for the above-mentioned diseases is Aedes
Albopictus [9–11]. In recent years, the death rate due to mosquito-borne diseases has
increased dramatically [8]. Gubler et al. [12,13] and Ong et al. [14] explained that dengue
and dengue hemorrhagic fever are a more common issue for public health. According to
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the World Health Organization (WHO) [15], per annum, mosquito-borne diseases cause
more than 40,000 deaths and 96 million asymptomatic cases in 129 countries.

Currently, there are several methods to control Aedes Aegypti mosquitoes such as
insecticide spraying, sterile insect technique, incompatible insect technique, combined
sterile insect technique, and genetic modifications. In [16,17], the authors proposed that
the Sterile insect technique is likely to be used in mosquito-borne disease control. The
authors of [18], analyzed that the particular transgenic strain can simulate the female-
specific flightless phenotype to increase the sterilization in male mosquitoes. In [19,20], the
authors discussed that the safe and effective replacement of vector population by geneti-
cally modified mosquitoes will play a significant role in mosquito-borne disease control.
Furthermore, some other types of mosquito control strategies, such as making changes in
feeding behaviors, intervention strategies, using bed nets and mosquito repellents, are also
tested [21,22].

A novel Aedes Aegypti suppression technique using the life-shortening bacterium
Wolbachia plays an important role [23–25]. It is an endosymbiotic bacterium that is re-
ported in nearly 60 percent of insect species by Wolbach (1924) [26]. The World Mosquito
Program (WMP) [27] from Australia currently release Wolbachia infected mosquitoes over
10 countries, such as countries in Latin America, India, Sri Lanka, Vietnam, Indonesia
and cities in Oceania. In that research, they found that Wolbachia is a self-sustaining
bacterium and in the presence of Wolbachia infected mosquitoes there is zero possibility
of having Dengue. The Wolbachia releasing strategy is more powerful than that of the
above-mentioned control strategies in the sense that it is self-sustaining, affordable, only
needs a small amount of release, the area covered is larger than the released area, and
the most important thing is it is not harmful to human health. The authors of [28–31]
discussed that Wolbachia can restrict the virus particles of various diseases. We know that
the virus is transmitted from infected humans to uninfected humans via female mosquitoes.
Meanwhile, if a virus-infected mosquito carries Wolbachia strain, then the virus cannot
be transmitted to an uninfected human. Because this Wolbachia strain blocks the virus
particles inside the salivary gland of mosquitoes (Ref. Figure 1).

Figure 1. Mechanism of Wolbachia among mosquitoes and human.

The Wolbachia infection is introduced into wild mosquitoes population through two
major processes such as microinjection and Introgression [32].



Symmetry 2021, 13, 434 3 of 33

Micro injection: In this process, Wolbachia strains are microinjected into aquatic stages
such as eggs, larvae and pupae.
Introgression: In this process, the Wolbachia strains are carried out to next generation
through mating. If Wolbachia infected female mated with Wolbachia infected or
uninfected male, then the produced offsprings have the Wolbachia strain (Called CI
rescue). Suppose the Wolbachia uninfected female mated with a Wolbachia infected
male then there is no viable progeny. Finally, if a non-Wolbachia female mated with a
non-Wolbachia male then there is no Wolbachia infection in the offspring.

To understand the introgression process, one can refer to Figure 2.

Figure 2. Block diagram representing the mechanism of Wolbachia infection in mosquitoes.

Furthermore, some existing mathematical models consider Wolbachia as a control
agent for mosquito-borne diseases. In [33], the author proposed a deterministic model to
control mosquito-borne diseases up to 90% via Wolbachia spread, also the author consid-
ered both human and mosquito populations to create a mathematical model. In [30,34],
the authors proposed a mathematical model depicting the life stages of mosquitoes with
Wolbachia and proved that Wolbachia has an excellent quality to control dengue virus
spread. In [35], the authors analyzed the integer ordered mathematical model consisting of
only four stages (aquatic stage with and without Wolbachia and adult female mosquitoes
with and without Wolbachia), which considered the imperfect maternal transmission and
Wolbachia invasion. In [36], the two sex mathematical model is discussed to analyze the
persistence of Wolbachia. In [37], the age and bite structured mathematical model is pro-
posed and performed the mathematical analysis. In [38], the authors discussed the linear
feedback control strategy of a mathematical model containing only three stages such as
aquatic, female Wolbachia infected and uninfected mosquitoes. In this, the author analyzed
the Wolbachia infected mosquitoes release into the seasonal environment. In [39], the
authors presented a mathematical model to depict the mechanism of the virus inside both
humans and mosquitoes. In this work, the author utilized two various types of controls like
vaccination for humans and Wolbachia infected mosquitoes’ release for mosquitoes. The
pontriyagin maximum principle was utilized to analyze the optimal control of the proposed
mathematical model. In [40], the authors discussed the Wolbachia infection among Aedes
Aegypti mosquitoes via delay differential equations. In that work, the author proposed
the delay dependent stability criteria of the proposed model by utilizing the results from
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spectrum analysis. In [41], the authors proposed an age structured fractional order mathe-
matical model to control the Aedes Aegypti mosquitoes via Wolbachia bacterium using the
Linear Matrix Inequality (LMI) approach.

As per the practical results of [27], Wolbachia should be released into every stage
to get the optimal control in a short period. Also, by utilizing fractional calculus we can
get the memory property and inheritance of this process. In nature, Wolbachia infected
mosquitoes may lose the Wolbachia infection. Because of this, invasion in Wolbachia is
unavoidable. Motivation by the above discussions, our contributions are listed below:

• A novel mathematical model, which considers the total of ten stages in Aedes Aegypti
mosquitoes (combining both Wolbachia infected and Wolbachia uninfected) is pro-
posed and the possible optimal stages to release the Wolbachia are discussed, and the
most important concept of Wolbachia invasion and Wolbachia gain are adopted.

• The Wolbachia free equilibrium, Wolbachia present Equilibrium, Zero mosquitoes,
and both Wolbachia and Non-Wolbachia mosquitoes co-existence equilibrium are
derived. And utilizing fixed point theory results, the Existence and Uniqueness results
of the Wolbachia invasive model are proposed. To attain optimal control, we utilized
an impulsive control strategy.

• We perform global Mittag-Leffler stability analysis of the proposed model via Linear
Matrix Inequality (LMI) theory and Lyapunov theory.

• In the end, by utilizing the data from the published literature, we have presented the
numerical simulation of the proposed model using MATLAB software.

The rest of the paper is arranged as follows—in Section 2, we provide some basic
Definitions, Lemmas and Theorems. In Section 3, the fractional order complete mathe-
matical model describes the interaction between Wolbachia infected and Non-Wolbachia
mosquitoes is presented. In Section 4, the possible equilibrium points are presented. In
Section 5, the Wolbachia invasive and gain model with impulsive control is presented. In
Section 6, the existence and uniqueness results are analyzed and the global Mittag-Leffler
stability results are derived in Section 7. In Section 8, the numerical simulation results are
presented. In Section 9, the work is concluded.

Notations. N denotes the space of all natural numbers, R denotes the space of all
real numbers, C denotes the space of all complex numbers, Rn denotes the space of n-
dimensional Euclidean space, Z+ denotes the space of all positive integers. Moreover, Re(·)
denotes the real part of a complex number and [.] denotes the integer part of a number.
∗ denotes the corresponding symmetric terms in a symmetric matrix. Also, c

kDα
t (·) and

c
k Iα

t (·) denotes the derivative and anti derivative of order α with respect to t respectively,
c denotes that its in Caputo sense, k denotes the initial condition and Γ(·) denotes the
Gamma function.

2. Preliminaries

In this section, we provide some basic Definitions, Lemmas and Theorems, which are
used to attain our results.

Definition 1. Ref. [4] The most important basic function in fractional calculus is the gamma
function. It is defined as follows:

Γ(z) =
∫ ∞

0
e−ssz−1 d s,

with Re(z) > 0.

Definition 2. Ref. [1] The Caputo fractional derivative of a continuous function f (t) over [k, T]
of order α ∈ C (with Re(α) > 0, α /∈ N) is

c
kDα

t f (t) =
1

Γ(n− α)

[∫ t

k
(t− η)n−α−1 dn

dηn f (η)dη

]
, (1)
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where, n = [Re(α)] + 1.
If 0 < Re(α) < 1, then the expression (1), can be rewritten as

c
kDα

t f (t) =
1

Γ(1− α)

[∫ t

k

f
′
(η)dη

(t− η)α

]
. (2)

Since, n = 1 for all 0 < Re(α) < 1.

Definition 3. Ref. [42] The Caputo sense fractional integral of a continuous function f on
L1([0, T],R) over α ∈ (0, 1] with respect to t is defined as

c
0 Iα

t f (t) =
1

Γ(α)

∫ t

0
(t− η)α−1 f (η)dη. (3)

The two parameter Mittag-Leffler function is defined as follows:[4]

Ea,b(z) =
∞

∑
l=0

zl

Γ(al + b)
,

where, z ∈ C, a > 0, and b > 0. If b = 1 the Ea(z) = ∑∞
l=0

zl

Γ(al+1) . If both a = 1 and b = 1,
the E1,1(z) = ez.

Lemma 1 (Schur Complement [43]). Let us denote three n× n matrices as Ψ1, Ψ2, Ψ3, where

Ψ1 = Ψ>1 and Ψ2 = Ψ>2 > 0. Then Ψ1 + Ψ>3 Ψ−1
2 Ψ3 < 0 if and only if

[
Ψ1 Ψ>3
Ψ3 −Ψ2

]
< 0 (or)[

−Ψ2 Ψ3
Ψ>3 Ψ1

]
< 0.

Lemma 2. Ref. [44] For any scalar ε > 0, A, N ∈ Rn and matrix P1, then

A>P1N ≤ 1
2ε

A>P1P>1 A +
ε

2
N>N.

Let us consider the fractional order dynamical system with impulse of type,

c
kDα

t x(t) = −A1x(t) + A2 f (x(t)), t 6= tθ , θ = 1, 2, · · · , m,

∆x(tθ) = x(t+θ )− x(t−θ ) = δθ(x(tθ)), t = tθ , θ = 1, 2, · · · , m, (4)

with initial condition x(t0) = x0 ∈ Z+, where the n states is defined by
x(t) = [x1(t), x2(t), x3(t), · · · , xn(t)]> ∈ Rn and f (x(t)) = [ f (x1(t)), f (x2(t)), f (x3(t)), · · · ,
f (xn(t))]> be a function, A1 and A2 are constant coefficient matrices with the impulsive
operator δθ : Rn → Rn.

Definition 4. Ref. [44] The system (4), is said to be globally Mittag-Leffler stable at its equilibrium
points, if the following hold:

||x(t)− x∗|| ≤ [h(x0 − x∗)Eα(−κta)]b,

where x∗ is an equilibrium point, 0 < α < 1, κ ≥ 0 and a, b > 0. Moreover, h(0) = 0, h(x) ≥ 0
and h(x) is locally Lipschitz with Lipchitz constant h0.

Lemma 3. Ref. [45] Let us consider the fractional order system with impulsive control of type
(4). Suppose f (0) = 0, t > 0 and δθ(0) = 0, θ = 1, 2, 3, · · · , m. If there exists a positive definite
function V such that the following hold:
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(1) There exists positive constants α1 and α2

α1||x(t)|| ≤ V(t) ≤ α2||x(t)||, x(t) ∈ Rn.

(2) c
0Dα

t V(t) ≤ −ε1V(t), t 6= tθ , θ = 1, 2, 3, · · · , m for any scalar ε1.
(3) V(t+θ ) ≤ V(tθ), t = tθ , θ = 1, 2, 3, · · · , m.

then the equilibrium point of the system (4) is globally Mittag-Leffler stable.

Definition 5. Ref. [46] A map ν : H → H, H compact Banach space, is said to be a contraction
mapping if there exists h ∈ (0, 1) such that

||ν(m1)− ν(m2)|| ≤ h||m1 −m2||

for every m1, m2 ∈ H.

Theorem 1 (Contraction Mapping Theorem). Ref. [46] Suppose H is a complete metric space
and ν : H → H is a contraction mapping. Then, ν has a unique fixed point.

3. Model Formulation

In this section, a novel mathematical model is proposed to expose the transmission dy-
namics of the gram negative bacteria Wolbachia among Aedes Aegypti mosquitoes. While
constructing the model we have considered the total of 10 stages such as non-Wolbachia
eggs(We), non- Wolbachia larvae (Wl), non-Wolbachia pupae (Wp), non-Wolbachia adult
female (W f ), non- Wolbachia adult male (Wa), Wolbachia infected eggs (Ie), Wolbachia
infected larvae (Il), Wolbachia infected pupae (Ip), Wolbachia infected adult female
(I f ), Wolbachia infected adult male (Ia). The total population at time t is denoted as
T = We(t)+Wl(t)+Wp(t)+W f (t)+Wa(t)+ Ie(t)+ Il(t)+ Ip(t)+ I f (t)+ Ia(t). The eggs
with zero Wolbachia infection are produced at the rate Λwe by the mating process between
non-Wolbachia female (W f ) and non-Wolbachia male (Wa). There is no other possibili-
ties of having a non-Wolbachia eggs. Therefore, the reproduction rate of non-Wolbachia

mosquitoes can be calculated by the term
Λwe W f Wa

T . Along with this, the terms λwe (natural
mortality rate of non-Wolbachia eggs) and γwe (maturation rate of non-Wolbachia eggs) de-
notes the limitations in the growth of wild mosquito eggs. At the same time, after release of
Wolbachia infected mosquitoes (in both aquatic and ariel stage) in a common environment,
the production of Wolbachia infected mosquito eggs Ie(t), depends on mating between
Wolbachia infected female I f (t) and non-Wolbachia male Wa(t) and from mating between
Wolbachia infected female I f (t) and Wolbachia infected male Ia(t). Through this, the birth
rate of Wolbachia infected mosquito eggs population Ie(t) with the reproduction rate Λie is

Λie(I f Wa + I f Ia)

T
=

Λie I f (Wa + Ia)

T
.

Similarly, the increase in the growth of Wolbachia infected eggs is limited by the natural
mortality rate λie and the maturation rate γie (That is, the rate in which the corresponding
compartment moved into the next stage).

Furthermore, the quantity (1− α)γie Ie is added to the wild mosquito larvae popula-
tion. Because the term α and (1− α) denotes the probability of getting larvae with and
without Wolbachia respectively. Similarly, β and (1− β) denotes the probability of getting
pupae with and without Wolbachia respectively, ε and (1− ε) denotes the probability
rate of having Wolbachia infection in adult mosquitoes by introgression. That is, ε be
the probability of getting Wolbachia infected adults (with ρiw = probability of getting
male and (1− ρiw) = probability of getting female). Because of these reasons, the terms
(1− α)γie Ie, (1− β)γil Il , (1− ε)γip ρiw Ip and (1− ε)γip(1− ρiw)Ip are added to the corre-
sponding stages and similarly, the terms αγie Ie, βγil Il and εγip Iip are removed from the
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corresponding stages. The parameter description of the system of Equation (5) is presented
in Table 1.

Table 1. Description of parameters involved in system of Equation (5).

Parameter Description

Λwe , Λie Reproduction rate of non-Wolbachia mosquitoes
and Wolbachia infected mosquitoes respectively

λwe The natural death rate of eggs without Wolbachia infection

λwl The natural death of larvae without Wolbachia infection

λwp The natural death of pupae without Wolbachia infection

λw f The natural death of adult female mosquitoes without Wolbachia infection

λwa The natural death of adult male mosquitoes without Wolbachia infection

λie The natural death of eggs with Wolbachia infection

λil The natural death of larvae with Wolbachia infection

λip The natural death of pupae with Wolbachia infection

λi f The natural death of adult female mosquitoes with Wolbachia infection

λia The natural death of infected adult male mosquitoes with Wolbachia infection

γwe The rate at which the fraction of non-Wolbachia eggs matured into non-Wolbachia larvae

γwl The rate at which the fraction of non-Wolbachia larvae matured into non-Wolbachia pupae

γwp The rate at which the fraction of non-Wolbachia pupae matured into non-Wolbachia

immature female or male

γie The rate at which the fraction of the Wolbachia infected mosquito eggs

matured into Wolbachia infected or uninfected larvae

γil The rate at which the fraction of the Wolbachia infected mosquito larvae

matured into Wolbachia infected or uninfected pupae

γip The rate at which the fraction of the Wolbachia infected mosquito pupae

matured into Wolbachia infected or uninfected adults

ρ The probability of having male or female mosquitoes

From the above facts, the novel mathematical model that describes the transmission
dynamics of Wolbachia among Aedes Aegypti mosquitoes is proposed as follows:

c
0Dα

t We =
Λwe W f Wa

T
− λwe We − γweWe

c
0Dα

t Wl = γwe We − λwl Wl − γwl Wl + (1− α)γie Ie
c
0Dα

t Wp = γwl Wl − λwpWp − γwpWp + (1− β)γil Il
c
0Dα

t W f = ργwpWp − λw f W f + (1− ε)γip ρiw Ip

c
0Dα

t Wa = (1− ρ)γwpWp − λwaWa + (1− ε)γip(1− ρiw)Ip

c
0Dα

t Ie =
Λie I f (Wa + Ia)

T
− λie Ie − αγie Ie

c
0Dα

t Il = αγie Ie − λil Il − βγil Il
c
0Dα

t Ip = βγil Il − λip Ip − εγip Ip

c
0Dα

t I f = ρiεγip Ip − λi f I f

c
0Dα

t Ia = (1− ρi)εγip Ip − λia Ia.

(5)

The dynamics of the population can be easily understand by the schematic diagram
Figure 3 and the parameters are described in Table 1.
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Figure 3. Schematic representation Wolbachia spread dynamics among Aedes Aegypti mosquitoes.

4. Equilibrium Points

In this section, we can find the four cases of possible equilibrium points such as wild
mosquitoes only, Wolbachia mosquitoes only, co-existence of both population and zero
mosquitoes.
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4.1. Zero Mosquitoes

Suppose there is no mosquitoes, then the equilibrium point can be written as P1 =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0). This is trivial but does not exists in nature.

4.2. Wolbachia Infected Mosquitoes Free Equilibrium

Suppose, there is no Wolbachia infected mosquitoes population then the possible
equilibrium can be written as

P2 = (W∗e1
, W∗l1 , W∗p1

, W∗f1
, W∗a1

, 0, 0, 0, 0, 0),

where,

W∗e1
=

Tλw f λwa(λwe + γwe)(λwl + γwl )
2(λwp + γwp)

2

ρ(1− ρ)Λwe γ2
wp γ2

we γ2
wl

W∗l1 =
γwe

λwl + γwl

W∗e1

W∗p1
=

γwl γwe

(λwl + γwl )(λwp + γwp)
W∗e1

W∗f1
=

ργwp γwe γwl

λw f (λw f + γw f )(λwp + γwp)
W∗e1

W∗a1
=

(1− ρ)γwp γwe

λwe(λwl + γwl )(λwp + γwp)
W∗e1

4.3. Wild Mosquitoes Free Equilibrium

After the successful replacement of Wolbachia uninfected mosquitoes by Wolbachia
infected mosquitoes the equilibrium point can be represented by

P3 = (0, 0, 0, 0, 0, I∗e2
, I∗l2 , I∗p2

, I∗f2
, I∗a2

),

where,

I∗e2
=

(λil + βγil )(λip + εγip)

αβγie γil
I∗p2

I∗l2 =
(λip + εγip)

βγil
I∗p2

I∗p2
=

Tλi f λia(λie + αγie)(λil + βγil )(λip + εγip)

Λie αβρi(1− ρi)ε2γ2
ip

γie γil

I∗f2
=

ρiεγip

λi f

I∗p2

I∗a2
=

(1− ρi)εγip

λia

I∗p2
.

4.4. Both Wolbachia Infected Mosquitoes and Non-Wolbachia Mosquitoes Co-Existence
Equilibrium

If both Wolbachia infected and Wolbachia uninfected mosquitoes present in common
environment, then the equilibrium point is

Sn =
{

W∗en , W∗ln , W∗pn , W∗fn
, W∗an , I∗en , I∗ln , I∗pn , I∗fn

, I∗an

}
, n = 3, 4.



Symmetry 2021, 13, 434 10 of 33

W∗en =

(
λwl + γwl

γwe

)(
λwp + γwp

γwl

)( TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

)
−

I∗an

γwe[
B4(λwl + γwl )

(
λwp + γwp

γwl

)
+ (λwl + γwl )

(
(1− β)γil

γwl

)(
λia B1

βγil (1− ρi)

)
+

(1− α)γie λia B1B2

αγie(1− ρi)

]

W∗ln =

(
λwp + γwp

γwl

)[ TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

]
−
(
(1− β)γil

γwl

)[
λia B1

βγil (1− ρi)

]

W∗pn =

[
TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

]

W∗fn
=

ργwp

λw f

[
TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

]
+

(1− ε)ρiw λia

ελw f (1− ρi)
I∗an

W∗an =
TB1B2B3λi f

ρiΛie
− I∗an

I∗en =
B1B2λia I∗an

αγie(1− ρi)

I∗pn =
λia

(1− ρi)εγip

I∗an

I∗fn
=

ρiλia I∗an

(1− ρi)λi f

with I∗a3
> I∗a4

, both roots can be found from the quadratic equation

a1 I∗
2

a + a2 I∗a + a3 = 0,

where,

a1 =
Λwe ρB4γwp

Tλw f

;

a2 =

(
λwe + γwe

Tλw f

)(
λwe λi f ρB1B2B3

ρiΛie λw f

)(
λwa

(1− ρ)
+ B4γwp

)
(
(λwl + γwl )(λwp + γwp)B4

γwl

+
(λwl + γwl )(1− β)λia B1

γwl β(1− ρi)
+

(1− α)λia B1B2

α(1− ρi)

)
;

a3 =
Λwe ρTB2

1B2
2B2

3λwa

Λ2
ie(1− ρ)ρ2

i λw f

.
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Here,

B1 = 1 +
λip

εγip

;

B2 = 1 +
λil

βγil
;

B3 = 1 +
λie

αγie
;

B4 = 1 +
(1− ε)(1− ρiw)λia

(1− ρ)(1− ρi)εγwp

.

For more details about the calculations of Section 4, kindly refer the Appendix A section.

5. Wolbachia Invasion Model

We considered the possibility of Wolbachia loss in adult mosquitoes and possibility of
Wolbachia gain in aquatic stage mosquitoes. Then Equation (5), can be rewritten as

c
0Dα

t We(t) =
Λwe W f Wa

T
− λwe We − γwe We − η1 Ie

c
0Dα

t Wl(t) = γwe We − λwl Wl − γwl Wl + (1− α)γie Ie − η2 Il
c
0Dα

t Wp(t) = γwl Wl − λwpWp − γwpWp + (1− β)γil Il − η3 Ip
c
0Dα

t W f (t) = ργwpWp − λw f W f + (1− ε)γip ρiw Ip + η4W f
c
0Dα

t Wa(t) = (1− ρ)γwpWp − λwaWa + (1− ε)γip(1− ρiw)Ip + η5Wa

c
0Dα

t Ie(t) =
Λie I f (Wa + Ia)

T
− λie Ie − αγie Ie + η1 Ie

c
0Dα

t Il(t) = αγie Ie − λil Il − βγil Il + η2 Il
c
0Dα

t Ip(t) = βγil Il − λip Ip − εγip Ip + η3 Ip

c
0Dα

t I f (t) = ρiεγip Ip − λi f I f − η4W f

c
0Dα

t Ia(t) = (1− ρi)εγip Ip − λia Ia − η5Wa,

(6)

where η1, η2 and η3 all are the rates at which the non-Wolbachia aquatic population gain
Wolbachia infected mosquitoes infection and η4 & η5 are the rates at which the Wolbachia
infected mosquitoes losses their Wolbachia infection.

Impulsive control plays an predominant role in dynamical systems such as Neural
Networks [47,48], non–linear delay dynamic systems [49–51] and so forth. To optimize
the Wolbachia release, we can release the Wolbachia infected eggs, larvae and pupae
in the form of ’Zancu kit’ and Wolbachia infected adult female and male mosquitoes
(introgression) impulsively. The situation should be monitored weekly once by Biogents
trap (BG trap or BG sentinel trap). While monitoring, if there is less number of Wolbachia
infected mosquitoes then in that situation we should release Wolbachia infected mosquitoes
impulsively.

The mathematical model which describes the transmission dynamics of Wolbachia
among Aedes Aegypti mosquitoes along with Wolbachia invasion and impulsive control is
defined as follows:
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When t 6= tθ for θ = 1, 2, ...m,

c
0Dα

t We(t) =
Λwe W f Wa

T
− λwe We − γwe We − η1 Ie

c
0Dα

t Wl(t) = γwe We − λwl Wl − γwl Wl + (1− α)γie Ie − η2 Il
c
0Dα

t Wp(t) = γwl Wl − λwpWp − γwpWp + (1− β)γil Il − η3 Ip
c
0Dα

t W f (t) = ργwpWp − λw f W f + (1− ε)γip ρiw Ip + η4W f
c
0Dα

t Wa(t) = (1− ρ)γwpWp − λwaWa + (1− ε)γip(1− ρiw)Ip + η5Wa

c
0Dα

t Ie(t) =
Λie I f (Wa + Ia)

T
− λie Ie − αγie Ie + η1 Ie

c
0Dα

t Il(t) = αγie Ie − λil Il − βγil Il + η2 Il
c
0Dα

t Ip(t) = βγil Il − λip Ip − εγip Ip + η3 Ip

c
0Dα

t I f (t) = ρiεγip Ip − λi f I f − η4W f

c
0Dα

t Ia(t) = (1− ρi)εγip Ip − λia Ia − η5Wa

(7)

When t = tθ for θ = 1, 2, ...m, 

∆We(t) = 0

∆Wl(t) = 0

∆Wp(t) = 0

∆W f (t) = 0

∆Wa(t) = 0

∆Ie(t) = δ1 Ie(tθ)

∆Il(t) = δ2 Il(tθ)

∆Ip(t) = δ3 Ip(tθ)

∆I f (t) = δ4 I f (tθ)

∆Ia(t) = δ5 Ia(tθ),

with initial conditions,

We(t0) = We0 ; Wl(t0) = Wl0 ; Wt0(0) = Wp0 ; Wt0(0) = W f0 ; Wt0(0) = Wa0 ;

Ie(t0) = Ie0 ; Il(t0) = Il0 ; Ip(t0) = Ip0 ; I f (t0) = I f0 ; Ia(t0) = Ia0 ;

where We0 , Wl0 , Wp0 , W f0 , Wa0 , Ie0 , Il0 , Ip0 , I f0 and Ia0 all are positive integers. Moreover,

∆We(tθ) = We(t+θ )−We(t−θ )

∆Wl(tθ) = Wl(t+θ )−Wl(t−θ )

∆Wp(tθ) = Wp(t+θ )−Wp(t−θ )

∆W f (tθ) = W f (t+θ )−W f (t−θ )

∆Wa(tθ) = Wa(t+θ )−Wa(t−θ )

∆Ie(tθ) = Ie(t+θ )− Ie(t−θ )

∆Il(tθ) = Il(t+θ )− Il(t−θ )

∆Ip(tθ) = Ip(t+θ )− Ip(t−θ )

∆I f (tθ) = I f (t+θ )− I f (t−θ )

∆Ia(tθ) = Ia(t+θ )− Ia(t−θ ),
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with t1 < t2 < t3 · · · < tm. Let us assume that,

M(t) =
[
We(t) Wl(t) Wp(t) W f (t) Wa(t) Ie(t) Il(t) Ip(t) I f (t) Ia(t)

]>;

M∗ =
[
W∗e W∗l W∗p W∗f W∗a I∗e I∗l I∗p I∗f I∗a

]>
;

∆M(tθ) =
[
∆We(t) ∆Wl(tθ) ∆Wp(tθ) ∆W f (tθ) ∆Wa(tθ)

∆Ie(tθ) ∆Il(tθ) ∆Ip(tθ) ∆I f (tθ) ∆Ia(tθ)
]>;

Therefore, (7) can be rewritten as,
c
0Dα

t M(t) = −W1M(t) + g(M(t)), t 6= tθ , θ = 1, 2, 3, · · · , m

∆M(tθ) = M(t+θ )−M(t−θ ) = δθ M(tθ), t = tθ , θ = 1, 2, 3, · · · , m

M(t0) = M0 ∈ Z+,

(8)

where,

W1 = −



λwe + γwe 0 0 0 0 η1 0
−γwe λwl + γwl 0 0 0 −(1− α)γie η2

0 −γwl λwp + γwp 0 0 0 −(1− β)γil
0 0 −ργwp λw f − η4 0 0 0
0 0 −(1− ρ)γwp 0 λwa − η5 0 0
0 0 0 0 0 λie + αγie − η1 0
0 0 0 0 0 −αγie λil + βγil − η2
0 0 0 0 0 0 −βγil
0 0 0 η4 0 0 0
0 0 0 0 η5 0 0

0 0 0
0 0 0
η3 0 0− (1− ε)γip ρiw 0 0

−(1− ε)γip(1− ρiw) 0 0
0 0 0
0 0 0

λip + εγip − η3 0 0
−ρiεγip λi f 0

−(1− ρiεγip) 0 λia


;

g(M(t)) =



Λwe m4m5
T
0
0
0
0

Λie m9(m5+m10)
T
0
0
0
0


; δθ =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 δ1 0 0 0 0
0 0 0 0 0 0 δ2 0 0 0
0 0 0 0 0 0 0 δ3 0 0
0 0 0 0 0 0 0 0 δ4 0
0 0 0 0 0 0 0 0 0 δ5


;
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6. Existence and Uniqueness of Solution

By utilizing the results from fixed point theory, the existence and uniqueness results
for the system of Equation (7) were derived in this section.

Let Cn,m = H be the Banach space of all bounded continuous function defined on
[n, m] ∈ R.

For the sake of simplicity, let

c
0Dα

t We(t) = K1(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Wl(t) = K2(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Wp(t) = K3(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t W f (t) = K4(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Wa(t) = K5(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Ie(t) = K6(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Il(t) = K7(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Ip(t) = K8(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t I f (t) = K9(t, m1(t), m2(t), · · · , m10(t)))
c
0Dα

t Ia(t) = K10(t, m1(t), m2(t), · · · , m10(t)).

(9)

where, m1(t) = We(t), m2(t) = Wl(t), m3(t) = Wp(t), m4(t) = W f (t), m5(t) = Wa(t),
m6(t) = Ie(t), m7(t) = Il(t), m8(t) = Ip(t), m9(t) = I f (t) and m10(t) = Ia(t). Moreover,
let us assume that,

K1(t, m1(t), m2(t), · · · , m10(t)) =
ΛweW f Wa

T
− λweWe − γweWe − η1 Ie

K2(t, m1(t), m2(t), · · · , m10(t)) = γweWe − λwl Wl − γwl Wl + (1− α)γie Ie − η2 Il

K3(t, m1(t), m2(t), · · · , m10(t)) = γwl Wl − λwpWp − γwpWp + (1− β)γil Il − η3 Ip

K4(t, m1(t), m2(t), · · · , m10(t)) = ργwpWp − λw f W f + (1− ε)γip ρiw Ip + η4W f

K5(t, m1(t), m2(t), · · · , m10(t)) = (1− ρ)γwpWp − λwaWa + (1− ε)γip(1− ρiw)Ip + η5Wa

K6(t, m1(t), m2(t), · · · , m10(t)) =
Λie I f (Wa + Ia)

T
− λie Ie − αγie Ie + η1 Ie

K7(t, m1(t), m2(t), · · · , m10(t)) = αγie Ie − λil Il − βγil Il + η2 Il

K8(t, m1(t), m2(t), · · · , m10(t)) = βγil Il − λip Ip − εγip Ip + η3 Ip

K9(t, m1(t), m2(t), · · · , m10(t)) = ρiεγip Ip − λi f I f − η4W f

K10(t, m1(t), m2(t), · · · , m10(t)) = (1− ρi)εγip Ip − λia Ia − η5Wa.

(10)

By the Definition 3 of, fractional order anti derivative in Caputo sense, we have

We(t)−We(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K1(η, m1(η), m2(η), · · · , m10(η))dη

Wl(t)−Wl(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K2(η, m1(η), m2(η), · · · , m10(η))dη

Wp(t)−Wp(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K3(η, m1(η), m2(η), · · · , m10(η))dη

W f (t)−W f (0) =
1

Γ(α)

∫ t

0
(t− η)α−1K4(η, m1(η), m2(η), · · · , m10(η))dη

Wa(t)−Wa(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K5(η, m1(η), m2(η), · · · , m10(η))dη
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Ie(t)− Ie(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K6(η, m1(η), m2(η), · · · , m10(η))dη

Il(t)− Il(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K7(η, m1(η), m2(η), · · · , m10(η))dη

Ip(t)− Ip(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K8(η, m1(η), m2(η), · · · , m10(η))dη

I f (t)− I f (0) =
1

Γ(α)

∫ t

0
(t− η)α−1K9(η, m1(η), m2(η), · · · , m10(η))dη

Ia(t)− Ia(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K10(η, m1(η), m2(η), · · · , m10(η))dη.

This implies that,

We(t) = We(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K1(η, m1(η), m2(η), · · · , m10(η))dη

Wl(t) = Wl(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K2(η, m1(η), m2(η), · · · , m10(η))dη

Wp(t) = Wp(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K3(η, m1(η), m2(η), · · · , m10(η))dη

W f (t) = W f (0) +
1

Γ(α)

∫ t

0
(t− η)α−1K4(η, m1(η), m2(η), · · · , m10(η))dη

Wa(t) = Wa(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K5(η, m1(η), m2(η), · · · , m10(η))dη

Ie(t) = Ie(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K6(η, m1(η), m2(η), · · · , m10(η))dη

Il(t) = Il(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K7(η, m1(η), m2(η), · · · , m10(η))dη

Ip(t) = Ip(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K8(η, m1(η), m2(η), · · · , m10(η))dη

I f (t) = I f (0) +
1

Γ(α)

∫ t

0
(t− η)α−1K9(η, m1(η), m2(η), · · · , m10(η))dη

Ia(t) = Ia(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K10(η, m1(η), m2(η), · · · , m10(η))dη.

(11)

Now, we define Equation (11) as

M(t) = M(0) +
1

Γ(α)

t∫
0

(t− η)α−1K(η, m1(η), m2(η), · · · , m10(η))dη,

where

M(t) =



We(t)
Wl(t)
Wp(t)
W f (t)
Wa(t)
Ie(t)
Il(t)
Ip(t)
I f (t)
Ia(t)


and K(η, m1(η), m2(η), · · · , m10(η)) =



K1(η, m1(η), m2(η), · · · , m10(η))
K2(η, m1(η), m2(η), · · · , m10(η))
K3(η, m1(η), m2(η), · · · , m10(η))
K4(η, m1(η), m2(η), · · · , m10(η))
K5(η, m1(η), m2(η), · · · , m10(η))
K6(η, m1(η), m2(η), · · · , m10(η))
K7(η, m1(η), m2(η), · · · , m10(η))
K8(η, m1(η), m2(η), · · · , m10(η))
K9(η, m1(η), m2(η), · · · , m10(η))
K10(η, m1(η), m2(η), · · · , m10(η))


.
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Let us define Cn,m as Cn,m = Fn(t0)× Hm(s) where,

s = min{We0 , Wl0 , Wp0 , W f0 , Wa0 , Ie0 , Il0 , Ip0 , I f0 , Ia0}

and

Fn(t0) = [t0 − n, t0 + n]

Hm(s) = [s−m, s + m].

Along with this, we assumed that

R = max
Cn,m
{sup

Cn,m

||F1||, sup
Cn,m

||F2||, sup
Cn,m

||F3||, sup
Cn,m

||F4||, sup
Cn,m

||F5||, sup
Cn,m

||F6||, sup
Cn,m

||F7||,

sup
Cn,m

||F8||, sup
Cn,m

||F9||, sup
Cn,m

||F10||}.

Let us define the norm at infinity as follows:

||Ψ||∞ = sup
t∈Fn

|Ψ(t)|.

Here, the operator ν: Cn,m → Cn,m is defined by

ν(M(t)) = M(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K(η, m1(η), m2(η), · · · , m10(η))dη. (12)

To prove ν is well defined operator, we should prove that

||νM(t)−M(0)||∞ <



m
m
m
m
m
m
m
m
m
m


Now, let

||ν1We(t)−We(t)||∞ = || 1
Γ(α)

t∫
0

(t− η)α−1K1(η, y1(η), y2(η), · · · , y10(η))dη||∞

≤ 1
Γ(α)

t∫
0

(t− η)α−1||K1(η, y1(η), y2(η), · · · , y10(η))||∞dη

≤ R
Γ(α)

t∫
0

(t− η)α−1dη

≤ Rnα

Γ(α + 1)
,

where,

n <

(
mΓ(α + 1)

R

)1/n
.

As well as, we can prove that the other equations of (6) can satisfies this inequality.
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That is, the operator ν is well-defined if

n <

(
mΓ(α + 1)

R

)1/n
.

Now, we should prove that the operator ν satisfies the Lipschitz condition. That is,

||νM1 − νM2 ||∞ < h||M1 −M2||∞

To prove this, let

||ν1We1 − ν1We2 || = || 1
Γ(α)

t∫
0

(t− η)α−1K1(We1 , m2(η), · · · , m10(η)η)dη

− 1
Γ(α)

t∫
0

(t− η)α−1K1(We2 , m2(η), · · · , m10(η), η)dη||∞

=
1

Γ(α)
||

t∫
0

K1(η, We1 , m2(η), · · · , m10(η))

−K1(η, We2 , m2(η), · · · , m10(η))(t− η)α−1dη||

≤ 1
Γ(α)

t∫
0

||K1(η, We1 , m2(η), · · · , m10(η))

−K1(η, We2 , y2, · · · , y10)||(t− η)α−1dη

≤ 1
Γ(α)

t∫
0

||ω
N
(F(t)(We1 −We2))||(t− η)α−1dη

≤ nα|ω|||F(t)||∞
NΓ(α + 1)

||We1 −We2 ||∞

≤ h1||We1 −We2 ||∞,

with h1 = nα |ω|||F(t)||∞
NΓ(α+1) .

Similarly, we can prove that

||νWl1 − νWl2 || ≤ h2||Wl1 −Wl2 ||
||νWp1 − νWp2 || ≤ h3||Wp1 −Wp2 ||
||νW f1 − νW f2 || ≤ h4||W f1 −W f2 ||
||νWa1 − νWa2 || ≤ h5||Wa1 −Wa2 ||
||νIe1 − νIe2 || ≤ h6||Ie1 − Ie2 ||
||νIl1 − νIl2 || ≤ h7||Il1 − Il2 ||
||νIp1 − νIp2 || ≤ h8||Ip1 − Ip2 ||
||νI f1 − νI f2 || ≤ h9||I f1 − I f2 ||
||νIa1 − νIa2 || ≤ h10||Ia1 − Ia2 ||.

By the definition of Contraction mapping Definition 5, the map ν is a contraction
map if 0 < hi < 1 for all i = 1, 2, 3, · · · , 10. Therefore, ν is a contraction mapping on a
compact Banach space H. Then by Contraction mapping Theorem 1, ν has a solution and it
is unique.

This implies that, the system of Equation (7) has a solution and its unique.
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7. Stability Analysis

In the present section, the global Mittag-Leffler stability results were derived via LMI
(Linear Matrix Inequality) approach and Lyapunov method.

Assumption (A1): Assume that the function g(M(t)) satisfies the following:
For any e1, e2 ∈ Rn there exists S1 ∈ Rn×n, such that ||g(e1)− g(e2)|| ≤ ||S1(e1 − e2)||.

Theorem 2. Assume that the system (8) satisfies the assumption (A1) and the impulsive operator
satisfies that

δθ(M(tθ)) = −δ̄(M(tθ)−M∗), θ = 1, 2, · · · , m,

where M∗ is an equilibrium point of system (8).
The system (8) is said to be globally Mittag-Leffler stable if there exists a positive definite matrix Q
and positive scalars ξ and γ1 such that the following inequalities hold:

Q
−1
2 [γ1 + δ̄]>Q[γ1 + δ̄]Q

−1
2 ≤ γ1 (13)

and

Ω̃ =

−2QW1 Q ξS1
∗ −ξ 0
∗ ∗ −ξ.

 < 0. (14)

Proof. Let us consider the system (8) with the initial condition M(t0) = M0 ∈ Z+ and
an equilibrium point M∗. By using the transformation, N (t) = M(t) − M∗, then the
system (8) is transformed into

C
0 Dα

tN (t) = −W1N (t) + ḡ(N (t)), t 6= tθ , θ = 1, 2, 3, ...m (15)

∆N (tθ) = N (t+θ )−N (t−θ ) = −δ̄N (tθ), t = tθ , θ = 1, 2, 3, ...m

N (t0) = N0 ∈ Z+.

where, N (t) = (N1,N2,N3, ...,N10)
> and ḡ(N (t)) = (ḡ(N1), ḡ(N2), .., ḡ(N10))

> and
N0 = M0 −M∗. Let us consider a Lyapunov function as:

V(t) = N>(t)QN (t), (16)

where Q is a positive definite matrix. Now, the time derivative of V(t) along with the
trajectories of the system (16) is

C
0 Dα

t V(t) ≤ 2N>(t)QC
0 Dα

tN (t)

= N>(t)2Q[−W1N (t) + ḡ(N (t))]

= N>(t)(−2QW1)N (t) +N>(t)(2Q)ḡ(N (t)) (17)

By Lemma 2,

N>(t)(2Q)ḡ(N (t)) ≤ 1
ξ
N>(t)(QQ>)N (t) + ξ ḡ>(N (t))ḡ(N (t)). (18)

By assumption (A1),

ḡ>(N (t))ḡ(N (t)) = 〈ḡ(M(t))− ḡ(M∗), ḡ(M(t))− ḡ(M∗)〉
= 〈(ḡ(N (t) + M∗))− ḡ(M∗), ḡ(N (t) + M∗)− ḡ(M∗)〉
≤ N>(t)S>1 S1N (t). (19)

Combine (18) and (19) and substitute in (17) we have,
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C
0 Dα

t V(t) ≤ N>(t)(−2QW1)N (t) +N>(t)(ξ−1QQ>)N (t) +N>(t)(ξS>1 S1)N (t)

= N>(t)[−2QW1 + ξ−1QQ> + ξS>1 S1]N (t). (20)

Let, Ω = −2QW1 + ξ−1QQ> + ξS>1 S1 and Ω can be rewritten as

Ω =

−2QW1 Q S1
∗ −ξ 0
∗ ∗ −ξ−1

.

Now, pre and post multiply Ω by diag{I, I, ξ}, we get

Ω̃ =

−2QW1 Q ξS1
∗ −ξ 0
∗ ∗ −ξ

. (21)

By Schur compliment Lemma 1, Ω̃ < 0.
Furthermore, the Equation (20), can be modified as

C
0 Dα

t V(t) ≤ N>(t)Ω̃N (t)

= −N>(t)Q
1
2 [−Q−

1
2 Ω̃Q−

1
2 ]Q

1
2N (t))

let, ε1 = λmin(−Q
−1
2 Ω̃Q

−1
2 ) and we know that V(t) = N>(t)QN (t). This implies that,

C
0 Dα

t V(t) ≤ −ε1V(t). (22)

For, tθ = t, θ = 1, 2, 3, · · ·m

V(t+θ ) = N>(t+θ )QN (t+θ )

= [N (t−θ ) + δ̄N (t−θ )]
>Q[N (t−θ ) + δ̄N (t−θ )]

= N>(t−θ )[γ1 + δ̄]>Q[γ1 + δ̄]N (t−θ )

= N>(t−θ )Q
1
2 [Q

−1
2 γ1 + δ̄]>Q[γ1 + δ̄Q

−1
2 ]Q

1
2N (t−θ )

≤ N>(t−θ )QN (t−θ ) = V(N (t−θ ))

V(t+θ ) ≤ V(t−θ ) (23)

Therefore, we can easily prove that,

λmin(Q)||M(t)||2 ≤ V(t) ≤ λmax(Q)||M(t)||2. (24)

Conditions (22)–(24) satisfies the conditions of Lemma 3. Therefore by Lemma 3, our
system (8) is globally Mittag-Leffler stable at its equilibrium point.

8. Numerical Simulation

In this section, we provide an example to show the benefits of the proposed models (5)–(7).
In this, we have analyzed three cases by published data mentioned in Table 2.
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Table 2. Data from published literature.

Parameters Description Data

Λwe Reproduction rate of Wolbachia uninfected mosquitoes 1.25/day [52]
λwe , λwl , λwp The death rate of aquatic Wolbachia uninfected mosquitoes 1

7.78 /day [53]
γwe , γwl , γwp The Maturation rate of Wolbachia uninfected mosquitoes 1

6.67 /day [54]
λw f , λwa The death rate of adult Wolbachia uninfected mosquitoes 1

14 /day [53]
λie , λil , λip The death rate of aquatic Wolbachia infected mosquitoes 1

7.78 /day [53]
λi f , λia The death rate of adult Wolbachia infected mosquitoes 1

7 /day [24]
Λie Reproduction rate of Wolbachia infected mosquitoes 0.95 ∗Λwe /day [52]
γie , γil , γip The maturation rate of Wolbachia infected mosquitoes 1

6.67 /day [24]

Case 1. In this case, we have analyzed the transmission dynamics of Wolbachia among Aedes
Aegypti mosquitoes via substituting the values mentioned in Table 2.
For this consider the system (5), with initial conditions We0 = 0.9, Wl0 = 0.9, Wp0 =
0.9, W f0 = 0.3, Wa0 = 0.3, Ie0 = 0.9, Il0 = 0.9, Ip0 = 0.9, I f0 = 0.3, Ia0 = 0.3, total
population T = 3000, and the positive scalar used in Theorem 2 as ξ = 0.8513
The Figures 4–7 are depicts the dynamics of Equation (5) along with the parameters
in Table 2 at various orders of α such as α = 0.28, 0.68, 0.98 and 1. We can observe by
simulation results that, there is a notable decrease in non-Wolbachia mosquitoes and
increase in Wolbachia infected mosquitoes.
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Figure 4. Population dynamics of both WU and WI mosquitoes at α = 0.28.
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Figure 5. Population dynamics of both WU and WI mosquitoes at α = 0.68.
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Figure 6. Population dynamics of both WU and WI mosquitoes at α = 0.98.
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Figure 7. Population dynamics of both WU and WI mosquitoes at α = 1.

Case 2. In this case, we have analyzed the merits and demerits of considering the Wolbachia
invasion. For this consider the system of Equation (6) with parameters mentioned in
Table 2. We have plotted (6) with initial conditions and total population as considered
in Case 1. Along with this, the other parameters η1 = 0.03, η2 = 0.03, η3 = 0.03,
η4 = 0.5 and η1 = 0.5 are fitted.
Figures 8–11 are analyzed the dynamics of the system of Equation (6), with Wolbachia
invasion and natural Wolbachia gain at various orders α = 0.28, 0.68, 0.98 and 1. From
this we can observe that , Wolbachia infected mosquitoes tends to annihilation before
the eradication of non-Wolbachia mosquitoes. It will lead to the decay in natural CI
rescue.
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Figure 8. Population dynamics of Wolbachia invasive model at α = 0.28.
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Figure 9. Population dynamics of Wolbachia invasive model at α = 0.68.

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time t (Days)

W
o
lb

a
c
h
ia

 i
n
v
a
s
s
iv

e
 m

o
d
e
l

 

 

We

Wl

Wp

Wf

Wa

Ia

Il

Ip

If

Ia

Figure 10. Population dynamics of Wolbachia invasive model at α = 0.98.
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Figure 11. Population dynamics of Wolbachia invasive model at α = 0.28.

Case 3. In this case, the decay due to the natural Wolbachia invasion is managed by releasing
Wolbachia infected mosquitoes impulsively. For this case, along with the parameters
mentioned in Table 2, we have fitted the values of impulsive control as δ1 = 0.4,
δ2 = 0.4, δ3 = 0.3, δ4 = 0.5 and δ5 = 0.5, invasion rates are η1 = 0.03, η2 = 0.03,
η3 = 0.03, and gain rates are η4 = 0.5 and η1 = 0.5.
Figures 12–15 explicitly shows the dynamics of the systems of Equation (7) with
impulsive control at orders α = 0.28, 0.68, 0.98 and 1. From this we get that, at order
α = 0.28 the system leads to instability, when α = 0.68 the system started to posses
stable state and at α = 1 the both population are annihilated at initial stage compared
with Figures 7 and 11.
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Figure 12. Population dynamics of Wolbachia invasive model after impulsive control at α = 0.28.
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Figure 13. Population dynamics of Wolbachia invasive model after impulsive control at α = 0.68.
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Figure 14. Population dynamics of Wolbachia invasive model after impulsive control at α = 0.98.

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time t (Days)

W
o
lb

a
c
h
ia

 i
n
v
a
s
s
iv

e
 m

o
d
e
l

 

 

We

Wl

Wp

Wf

Wa

Ia

Il

Ip

If

Ia

Figure 15. Population dynamics of Wolbachia invasive model after impulsive control at α = 1.
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By observing all the three cases, we can conclude that an impulsive control is an
effective control strategy at Wolbachia invasion environment.

9. Conclusions

The effect of Wolbachia invasion and gain in vector population can lead to non-
negligible in disease prevalence. Our impulsive control strategy shows that it is possible
to control the transmission and invasion dynamics of Wolbachia bacterium. Our results
shows that this method will increase the self-sustainability of Wolbachia bacterium among
Aedes Aegypti mosquitoes. Another key result of the proposed fractional order model is,
both mosquitoes population tends to annihilation after an impulsive controller synthesis.
Further works on this model such as linearization, Lyapunov construction depicts that the
created mathematical model is global Mittag-Leffler stable. In simulation performed here,
depicts the effectiveness of the proposed model. In thus, we incorporated the real-world
data from existing literature to compare the dynamical simulation of the 3 cases of model
such as in the absence of Wolbachia invasion, the presence of Wolbachia invasion and the
presence of Wolbachia invasion along with the impulsive control.

Author Contributions: Conceptualization, J.D. and R.R.; methodology, J.D. and R.R.; software, J.D.
and R.R.; validation, J.D., R.R., J.A., M.N. and O.B.; formal analysis, J.D. and R.R.; investigation, J.D.
and R.R.; resources, J.D. and R.R.; data curation, J.D. and R.R.; writing—original draft preparation,
J.D. and R.R.; writing—review and editing, J.D. and R.R.; visualization, J.D., R.R., J.A., M.N. and O.B.;
supervision, R.R., J.A., M.N. and O.B.; project administration, J.D. and R.R.; funding acquisition, J.A.
All authors have read and agreed to the published version of the manuscript.

Funding: J. Alzabut would like to thank Prince Sultan University for supporting and funding this
work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM)
group number RG-DES-2017-01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This article has been written with the joint partial financial support of SERB-
EEQ/2019/000365, the National Science Centre in Poland Grant DEC-2017/25/ B/ST7/02888, RUSA
Phase 2.0 Grant No. F 24–51/2014-U, Policy (TN Multi-Gen), Dept.of Edn. Govt. of India, UGC-SAP
(DRS-I) Grant No. F.510/8/DRS-I/ 2016(SAP-I), DST-PURSE 2nd Phase programme vide letter No.
SR/ PURSE Phase 2/38 (G), DST (FIST - level I) 657876570 Grant No.SR/FIST/MS-I/ 2018/17.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Wolbachia Infected Mosquitoes Free Equilibrium

Suppose, there is no Wolbachia infected mosquitoes population then the possible
equilibrium can be written as

P2 = (W∗e1
, W∗l1 , W∗p1

, W∗f1
, W∗a1

, 0, 0, 0, 0, 0)
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where,

W∗e1
=

Tλw f λwa(λwe + γwe)(λwl + γwl )
2(λwp + γwp)

2

ρ(1− ρ)Λwe γ2
wp γ2

we γ2
wl

W∗l1 =
γwe

λwl + γwl

W∗e1

W∗p1
=

γwl γwe

(λwl + γwl )(λwp + γwp)
W∗e1

W∗f1
=

ργwp γwe γwl

λw f (λw f + γw f )(λwp + γwp)
W∗e1

W∗a1
=

(1− ρ)γwp γwe

λwe(λwl + γwl )(λwp + γwp)
W∗e1

These equilibrium points were derived by the following system of equations by putting
I∗e1

= 0, I∗l1 = 0, I∗p1
= 0, I∗f1

= 0, I∗a1
= 0.

That is, 

Λwe W
∗
f1

W∗a1

T
− λwe W

∗
e1
− γwe W

∗
e1

= 0

γweW
∗
e1
− λwl W

∗
l1 − γwl W

∗
l1 + (1− α)γie I∗e1

= 0

γwl W
∗
l1 − λwpW∗p1

− γwpW∗p1
+ (1− β)γil I∗l1 = 0

ργwpW∗p1
− λw f W

∗
f1
+ (1− ε)γip ρiw I∗p1

= 0

(1− ρ)γwpW∗p1
− λwaW∗a1

+ (1− ε)γip(1− ρiw)I∗p1
= 0

That is,

(i). By solving,

γweW
∗
e1
− λwl W

∗
l1 − γwl W

∗
l1 + (1− α)γie I∗e1

= 0

We get the value of W∗l as,

W∗l =
γwe

(λwl + γwl )
W∗e

(ii). By solving

γwl W
∗
l1 − λwpW∗p1

− γwpW∗p1
+ (1− β)γil I∗l1 = 0

We get the value of W∗p as,

W∗p =
γwl

λwp + γwp

W∗l

Substitute the value of W∗l from (i),

W∗p =
γwl γwe

(λwp + γwp)(λwl + γwl )
W∗e

(iii). By solving

ργwpW∗p1
− λw f W

∗
f1
+ (1− ε)γip ρiw I∗p1

= 0
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We get the value of W∗f as,

W∗f =
ργwp

λw f

W∗p

Substitute the value of W∗p from (ii),

W∗f =
ργwp γwe γwl

λw f (λwp + γwp)(λwl + γwl )
W∗e

(iv). By solving

(1− ρ)γwpW∗p1
− λwaW∗a1

+ (1− ε)γip(1− ρiw)I∗p1
= 0

We get the value of W∗a as,

W∗a =
(1− ρ)γwp

λwa

W∗p

Substitute the value of W∗p from (ii),

W∗a =
(1− ρ)γwp γwl γwe

λwa(λwl + γwl )(λwp + γwp)
W∗e

(v). By solving

ΛweW
∗
f1

W∗a1

T
− λweW

∗
e1
− γweW

∗
e1

= 0

We get the value of W∗e as,

W∗e =
Λwe

T(λwe + γwe)
W∗f W∗a

Substitute the value of W∗f and W∗a from (iii) and (iv),

W∗e =
Tλw f λwa(λwe + γwe)(λwl + γwl )

2(λwp + γwp)
2

ρ(1− ρ)Λwe γ2
wp γ2

we γ2
wl

Appendix A.2. Wild Mosquitoes Free Equilibrium

Suppose a successful release of Wolbachia infected mosquitoes replaces the wild
mosquitoes by Wolbachia infected mosquitoes. Then the possible equilibrium points can
be found by substituting W∗e2

= 0, W∗l2 = 0, W∗p2
= 0, W∗f2

= 0 and W∗a2
= 0 in the following

system of equations

0 =
Λie I∗f2

(W∗a2
+ I∗a2

)

T
− λie I∗e2

− αγie I∗e2

0 = αγie I∗e2
− λil I∗l2 − βγil I∗l2

0 = βγil I∗l2 − λip I∗p2
− εγip I∗p2

0 = ρiεγip I∗p2
− λi f I∗f2

0 = (1− ρi)εγip I∗p2
− λia I∗a2

.

(i) By solving

0 = (1− ρi)εγip I∗p2
− λia I∗a2
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We get,

I∗a2
=

(1− ρi)εγip

λia

I∗p2

(ii) By solving

0 = ρiεγip I∗p2
− λi f I∗f2

We get,

I∗f2
=

ρiεγip

λi f

I∗p2

(iii) By solving

βγil I∗l2 − λip I∗p2
− εγip I∗p2

We get,

I∗l2 =
(λip + εγip)

βγil
I∗p2

(iv) By solving

0 = αγie I∗e2
− λil I∗l2 − βγil I∗l2

We get,

I∗e2
=

(λil + βγil )

αγie
I∗l2

Substitute the value of I∗l2 from (iii),

I∗e2
=

(λil + βγil )(λip + εγip)

αβγie γil
I∗p2

(v) By solving,

0 =
Λie I∗f2

(W∗a2
+ I∗a2

)

T
− λie I∗e2

− αγie I∗e2

Put W∗a2
= 0,

Λie I∗f2
I∗a2

T
− λie I∗e2

− αγie I∗e2
= 0(

Λie
T

)(
ρiεγip

λi f

I∗p2

)(
(1− ρi)εγip

λia

I∗p2

)
= (λie + αγie)I∗e2

I∗p2
=

Tλi f λia(λie + αγie)(λil + βγil )(λip + εγip)

Λie αβρi(1− ρi)ε2γ2
ip

γie γil

From (i)–(v) we have the following equilibrium point,

P3 = (0, 0, 0, 0, 0, I∗e2
, I∗l2 , I∗p2

, I∗f2
, I∗a2

)
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where,

I∗e2
=

(λil + βγil )(λip + εγip)

αβγie γil
I∗p2

I∗l2 =
(λip + εγip)

βγil
I∗p2

I∗p2
=

Tλi f λia(λie + αγie)(λil + βγil )(λip + εγip)

Λie αβρi(1− ρi)ε2γ2
ip

γie γil

I∗f2
=

ρiεγip

λi f

I∗p2

I∗a2
=

(1− ρi)εγip

λia

I∗p2

Appendix A.3. Both Wolbachia and Non-Wolbachia Mosquitoes Co-Existence Equilibrium

The equilibrium point for the co-existence state can be found by solving the following
systems of equations

Λwen W∗fn
W∗an

T
− λwe W

∗
en − γwe W

∗
en = 0

γweW
∗
en − λwl W

∗
ln − γwl W

∗
ln + (1− α)γie I∗en = 0

γwl W
∗
ln − λwpW∗pn − γwpW∗pn + (1− β)γil I∗ln = 0

ργwpW∗pn − λw f W
∗
fn
+ (1− ε)γip ρiw I∗pn = 0

(1− ρ)γwpW∗pn − λwaW∗an + (1− ε)γip(1− ρiw)I∗pn = 0

Λie I∗fn
(W∗an + I∗an)

T
− λie I∗en − αγie I∗en = 0

αγie I∗en − λil I∗ln − βγil I∗ln = 0

βγil I∗ln − λip I∗pn − εγip I∗pn = 0

ρiεγip I∗pn − λi f I∗fn
= 0

(1− ρi)εγip I∗pn − λia I∗an = 0.

(i)

(1− ρi)εγip I∗pn − λia I∗an = 0

I∗pn =
λia

(1− ρi)εγip

I∗an

(ii)

ρiεγip I∗pn − λi f I∗fn
= 0

I∗fn
=

ρiεγip

λi f

I∗pn

I∗fn
=

ρiλia

(1− ρi)λi f

I∗an
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(iii)

βγil I∗ln − λip I∗pn − εγip I∗pn = 0

I∗ln =
λia

βγil (1− ρi)

[
1 +

λip

εγip

]
I∗an

Let B1 = 1 +
λip
εγip

I∗ln =
λia B1

βγil (1− ρi)
I∗an

(iv)

αγie I∗en − λil I∗ln − βγil I∗ln = 0

I∗en =
(λil + βγil )

αγie
I∗ln

I∗en =
B1B2λia

αγie(1− ρi)
I∗an

Where, B1 =

[
1 +

λip
εγip

]
; B2 =

[
1 +

λil
βγil

]
(v)

ΛIen
I∗fn

W∗an + ΛIen
I∗fn

I∗an

T
− λie I∗en − αγie I∗en = 0

W∗an =
T(λie + αγie)

Λie I∗fn

I∗en − I∗an

W∗an =
TB1B2λi f (λie + αγie)

αΛie ρiγie
− I∗an

W∗an =
TB1B2B3λi f

ρiΛie
− I∗an

Where, B3 = 1 + λie
αγie

(vi)

(1− ρ)γwpW∗pn − λwaW∗an + (1− ε)γip(1− ρiw)I∗pn = 0

W∗pn =
λwa

(1− ρ)γwp

W∗an −
(1− ε)γip(1− ρiw)

(1− ρ)γwp

I∗pn

W∗pn =
TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

where, B4 = 1 + (1−ε)(1−ρiw )λia
(1−ρ)(1−ρi)εγwp

(vii)

ργwpW∗pn − λw f W
∗
fn
+ (1− ε)γip ρiw I∗pn = 0

W∗f =
ργwp

λw f

[
TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

]
+

(1− ε)ρiw λia

ελw f (1− ρi)
I∗an
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(viii)

γwl W
∗
ln − λwpW∗pn − γwpW∗pn + (1− β)γil I∗ln = 0

W∗ln =

[
λwp + γwp

γwl

]
W∗pn −

[
(1− β)γil

γwl

]
I∗ln

W∗ln =
λwp + γwp

γwl

[
TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

]

−
(1− β)γil

γwl

[
λia B1

βγil (1− ρi)
I∗an

]
(ix)

γweW
∗
en − λwl W

∗
ln − γwl W

∗
ln + (1− α)γie I∗en = 0

W∗en =

[
λwl + γwl

γwe

]
W∗ln −

[
(1− α)γie

γwe

]
I∗en

W∗en =

(
λwl + γwl

γwe

)(
λwp + γwp

γwl

)[ TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

]

−
I∗an

γwe

[
B4(λwl + γwl )

(
λwp + γwp

γwl

)

+
(
λwl + γwl

)( (1− β)γil
γwl

)(
λia B1

βγil (1− ρi)

)

+
(1− α)γie λia B1B2

αγie(1− ρi)

]
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(x)

Λwe

W∗f W∗a
T

− λweW
∗
e − γwe W

∗
e = 0

W∗f W∗a Λwe

T
=

(
Λwe ρB4γwp

Tλw f

)
(I∗a )

2 −
(

Λwe ρB1B2B3λi f

ρiΛIe λw f

)

×
(

λwa

(1− ρ)
+ B4γwp

)
I∗a +

Λwe ρB2
1B2

2B2
3λ2

i f
λwe

Λ2
Ie
(1− ρ)ρ2

i λw f


(λwe + γwe)W

∗
e =

(λwe + γwe)
(

λwp + γwp

)(
λwl + γwl

)
γwe γwl

− (λwe + γwe)

γwe

×
[(

λwp + γwp

)(
λwl + γwl

)
B4

γwl

+

(
λwl + γwl

)
(1− β)λia B1

γwl β(1− ρi)

+
(1− α)λia B1B2

α(1− ρi)

]
I∗a

Λwe

W∗f W∗a
T

− λweW
∗
e − γwe W

∗
e = 0(

Λwe ρB4γwp

Tλw f

)
(I∗a )

2 −
(
(λwe + γwe)

γwe

)(Λwe ρB1B2B3λ∗f
ρiΛIe λw f

)(
λwa

(1− ρ)
+ B4γwp

)

×
[(

λwp + γwp

)(
λwl + γwl

)
B4

γwl

+

(
λwl + γwl

)
(1− β)λia B1

γwl β(1− ρi)

+
(1− α)λia B1B2

α(1− ρi)

]
I∗a +

Λwe ρB2
1B2

2B2
3λ2

i f
λwe

Λ2
Ie
(1− ρ)ρ2

i λw f

 = 0

The above equation is a quadratic equation on I∗an . That is,

a1 I∗
2

an + a2 I∗an + a3 = 0,

where,

a1 =
Λwe ρB4γwp

Tλw f

;

a2 =

(
λwe + γwe

Tλw f

)(
λwe λi f ρB1B2B3

ρiΛie λw f

)(
λwa

(1− ρ)
+ B4γwp

)
(
(λwl + γwl )(λwp + γwp)B4

γwl

+
(λwl + γwl )(1− β)λia B1

γwl β(1− ρi)
+

(1− α)λia B1B2

α(1− ρi)

)
;

a3 =
Λwe ρTB2

1B2
2B2

3λwa

Λ2
ie(1− ρ)ρ2

i λw f

.

These are the equilibrium points presented in Section 4.4.
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