Taylor & Francis

Taylor & Francis Group

SAR and QSAR in Environmental Research

Predictive Modeling of Peroxisome Proliferator-activated Receptor Gamma

(PPARYy) IC50 Inhibition by Emerging Pollutants Using Light Gradient Boosting

Machine
Submission ID | 247179946
Article Type | Original Article
Kevwords Modelling, LightGBM, Inhibition, Machine Learni
y ng, PPARYy, Organic pollutants
Adeboye Awomuti, Zhenyang Yu, Odunayo Bles
Authors | sing Adesina, Oluwarotimi Williams Samuel, AN
NE MUMBI, Dagiang Yin

For any queries please contact:

gsar-peerreview@journals.tandf.co.uk

Note for Reviewers:

To submit your review please visit https://mc.manuscriptcentral.com/sqer

For Peer Review Only - Non-Anonymous PDF

Cover Page



03N AW N~

Predictive Modelling of Peroxisome Proliferator-activated Receptor Gamma (PPARYy) IC50
Inhibition by Emerging Pollutants Using Light Gradient Boosting Machine

A. Awomuti #b¢*, Z. Yu b O. Adesina *¢, O. W. Samuel 9¢, A. Mumbi £¢ D. Yin »P

a. State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze
River Water Environment, Ministry of Education, College of Environmental Science and
Engineering, Tongji University, Shanghai 200092, PR China

b. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China

c. UNEP-Tongji Institute of Environment for Sustainable Development, College of Environmental
Science and Engineering, Tongji University, Shanghai, China

d. School of Computing and Data Science Research Centre, University of Derby, Derby, DE22
3AW, United Kingdom

e. Faculty of Data Science and Information Technology, INTI International University, Nilai, 71800,
Malaysia

f. Department of Engineering, Harper Adams University, Edgmond, United Kingdom, TF10 8NB

g. Harper Adams Business School, Harper Adams University, Newport TF10 8NB, Shropshire, UK

Corresponding Author: Awomuti Adeboye *
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

E-mail: adeboye@tongji.edu.cn; boyesky@yahoo.com

Page 9 of 1185



03N AW N~

Predictive Modelling of Peroxisome Proliferator-activated Receptor Gamma (PPARYy) IC50

Inhibition by Emerging Pollutants Using Light Gradient Boosting Machine

Abstract

Peroxisome proliferator-activated receptor gamma (PPARY), a critical nuclear receptor, plays a pivotal role
in regulating metabolic and inflammatory processes. However, various environmental contaminants can
disrupt PPARY function, leading to adverse health effects. This study introduces a novel approach to predict
the inhibitory activity (IC50 values) of 140 chemical compounds across 13 categories, including pesticides,
organochlorines, dioxins, detergents, flame retardants, and preservatives, on PPARy. The predictive model,
based on the light-gradient boosting machine (LightGBM) algorithm, was trained on a dataset of 1804
molecules and demonstrated modest performance, with R2 scores of 0.82 and 0.59, Mean Absolute Error
(MAE) of 0.38 and 0.58, and Root Mean Square Error (RMSE) of 0.54 and 0.76 for the training and test
sets, respectively. This study provides novel insights into the interactions between emerging contaminants
and PPARy, highlighting the potential hazards and risks these chemicals may pose to public health and the
environment. The ability to predict PPARYy inhibition by these hazardous contaminants demonstrates the

value of this approach in guiding enhanced environmental toxicology research and risk assessment.

Keywords: Modelling; LightGBM; Inhibition; Machine Learning; PPARY; Organic pollutants.
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1. Introduction

Nuclear receptors play pivotal roles in regulating various critical biological processes [1].
Among the nuclear receptors, peroxisome proliferator-activated receptor gamma (PPARY), as a
transcription factor, regulates the metabolic balance, adipogenesis, lipid metabolism, inflammation,
and cell differentiation [2,3]. Notably, nuclear receptors have essential functions in both disease
development (e.g., obesity, diabetes and cancer) and also its treatment [4-7]. Endogenous (e.g.,
fatty acids) can bind to PPARYy and activate subsequent transcription and downstream processes [8-
11]. Exogenous medicine (e.g., pioglitazone and rosiglitazone) agonize PPARYy and effectively treat
metabolic diseases including type II diabetes by improving insulin sensitivity [12,13].

Unfortunately, nuclear receptors (e.g., PPARY) also function as the targets of environmental
pollutants to provoke health hazards. For example, bisphenol A and phthalates, possess PPARy
antagonistic activities, and their binding with the receptors can inhibit their transcription to disturb
metabolic control and disease development [14-16]. Perfluoroalkyl substances (PFAS), one
persistent toxic substance (PTS), are among the most widespread pollutants that have harmful
effects on human health in relation to PPAR [17,18]. Novel industrial and household chemicals
continue to emerge without sufficient toxicological scrutiny [19,20]. However, their effects on
PPAR have not yet been systematically explored. Therefore, it is urgent to predict the effects of
emerging pollutants on PPAR to facilitate earlier and faster screening and risk assessment [21].

Computational methods and large databases enable exploring molecular interactions at scales
beyond laboratory studies [22,23]. Machine learning (ML) leverages bioactivity data on proteins
to uncover patterns and develop predictive quantitative structure - activity relationship (QSAR)
models [24-27]. Its efficiency speed up both toxicological and drug discoveries research to

overcome the drawbacks of being slow and costly in traditional drug discovery [28-30]. Therefore,
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the combination of computational techniques with molecular responses will efficiently predict the
potentials of environmental pollutants to interact with targets like PPARy [31-34].

Computational approaches, such as quantitative structure-activity relationship (QSAR)
modelling, have been employed to explore the interactions between environmental chemicals and
the PPARY receptor[35]. Previous QSAR studies have investigated the ability of various classes of
compounds, including pesticides [36], pharmaceuticals [28], and industrial chemicals [37], to bind
to and modulate the activity of PPARy. These studies have demonstrated the utility of
computational tools in predicting PPARy ligand binding and identifying potential agonists or
antagonists[38]. However, the development of robust and generalized QSAR models capable of
accurately predicting PPARy inhibition across a diverse set of emerging environmental pollutants
remains an important research gap.

Among various computation methods, Light Gradient Boosting Machine (LightGBM)
algorithm showed significant advantages[39]. LightGBM excels in processing large datasets
efficiently, maintaining fast computational speeds and low memory usage, making it ideal for
toxicity and drug discovery where rapid screening of thousands of molecules is required [40]. Its
scalability and flexibility enable it to adapt to various chemical data and modelling scenarios [41].
Successfully used in bioinformatics and cheminformatics, LightGBM is trusted and credible for
managing complex biological data, further justifying its selection for predicting median inhibition
concentration (IC50) values in diverse chemical environments [42,43].

The present study established a LightGBM model with 1804, and achieved High R? scores,
low MSE values, and competitive performance on other machine Learning evaluation metrics. The
modelling process also demonstrated the importance of hyperparameter tuning in achieving
optimal model performance. To further validate the robustness and predictive capabilities of our

LightGBM model, our study extended the predictive model to encompass 140 chemical compounds
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across 13 distinct categories, including 19 pesticides, 19 organochlorine compounds, 15 common
detergents and surfactants, 13 Preservatives, 10 Sweeteners and 10 dyes (Table 1 near here).

The model demonstrated comparable performance, predicting IC50 values that provided
valuable insights into the potential interactions between these chemicals and PPARy. In addition,
the model provides novel insights into a range of other categories, including pigments, PFAS, PCBs,
solvents, plastics, plasticizers, and more. Our study demonstrated the reliability and flexibility of
our predictive LightGBM modelling method across a diverse range of chemical structures.

2. Materials and Methods
2.1. Dataset Extraction and Preprocessing

The present investigation leverages a comprehensive dataset capturing bioactivity
measurements, comprising a substantial collection of experimental data points [44] using the
Python RDKit library (version 2021.09.5) [45-49]. PPARy ligands were selected based on their
inhibition concentration (IC50) values, reported in uM units, resulting in a dataset of 1804
molecules Table S1 (supplementary material)[50] the initial dataset comprised 1887 molecules
with reported PPARYy activity. After removing 83 molecules with missing data, the final dataset
used for this study included 1804 unique PPARy-active compounds. This preprocessing step
ensured that the dataset was complete and suitable for the subsequent modelling and analysis tasks.
IC50 values represent the concentration of ligand required to inhibit 50% of a target's activity, and

are inversely related to binding affinity [51].

The dataset covers a wide range of chemical classes, including thiazolidinediones, oxazolidinones,
and other heterocyclic scaffolds, ensuring a comprehensive representation of structural diversity.

Additionally, the compounds exhibit a broad distribution of physicochemical properties, such as
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molecular weight, LogP, hydrogen bond donors/acceptors, which is crucial for developing a robust

and generalizable predictive model.

The PPARY activity data is represented by a variety of standard value types, providing a
comprehensive assessment of the compounds' binding affinities. This diversity in both structural

and activity data enables the model to capture the complex relationships between molecular

features and PPARY binding, enhancing its applicability to a wide range of drug discovery scenarios.

2.2. Descriptor Calculation and Fingerprint Generation

Molecular descriptors capturing drug-likeness were calculated using RDKit54 [52]. This
included Lipinski descriptors, such as molecular weight (MW), calculated octanol-water partition
coefficient (cLogP), number of hydrogen bond donors/acceptors, and number of rotatable bonds
[53,54]. These descriptors provide essential information regarding the physicochemical properties
of molecules [55,56]. Table S2 (supplementary material)

IC50 values in pM units extracted from the ChEMBL database, representing ligand
concentrations required for 50% inhibition [57]. To facilitate comparison across compounds with
diverse potencies on a logarithmic scale, IC50 values were transformed into pIC50 values using
the negative decimal logarithm log;(IC50)as is commonly done in cheminformatics studies [58].
This logarithmic transformation standardizes potency measurements, making it simpler to compare
the efficacy of different compounds. Lower pIC50 values indicate greater potency for easier
modelling and evaluation versus direct concentration measurements.

The Predictive Activity of Drugs by Machine Learning (PADel) tool was used to encode each
molecule as an 881-dimensional PubChem fingerprints, capturing structural information [59]. We
utilized the PaDEL PubChem fingerprints due to their specific advantages in capturing molecular

features relevant to biological activity. PaDEL PubChem fingerprints provide an extensive
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representation of molecular structures, incorporating a wide array of substructure information that
enhances predictive modelling [42]. Compared to other fingerprint types, such as CDK, Extended,
Estate, MACCS, and Klekota-Roth, PaDEL PubChem fingerprints offer a balanced trade-off
between descriptor richness and computational efficiency, making them particularly suitable for
large datasets
2.3. Dataset Splitting and Model Training

The calculated PADel PubChem molecular fingerprints were saved as a separate dataset,
which was used to train and evaluate the regression model for PPARy ligand prediction with IC50
values [60,61] Table S3 (supplementary material). The dataset was randomly split into 80% for
training (1443 molecules) and 20% for external testing (361 molecules) to evaluate the
generalizability [62,63]. Normalization and handling of multicollinearity were automatically
performed during the training process to ensure the model's robustness and accuracy [64,65].
2.4. Algorithm Evaluation and Selection

PyCaret (version 2.3) was used to conduct a comparative analysis with several other machine
learning models, including Random Forest (RF), Gradient Boosting Regressor (GBR), Extreme
Gradient Boosting (XGBoost), and others. Table 2 presents the performance metrics of 19 different
algorithms, showcasing key indicators such as MAE, MSE, RMSE, and R?[66,67]. LightGBM
achieved an MAE of 0.5823 and an R? of 0.5999, positioning it among the top performers. In
comparison, Random Forest yielded an MAE of 0.6136 and R? of 0.5637, while XGBoost delivered
an MAE of 0.6402 and R? 0of 0.5205. Notably, both LightGBM and RF exhibited lower MAE values,
indicating superior predictive accuracy over other algorithms, such as Gradient Boosting and
Bayesian Ridge, which had higher MAEs of 0.6847 and 0.7009, respectively. (Table 2 near here)

Additionally, the computational efficiency of LightGBM is highlighted by its relatively low

training time of 0.598 seconds, compared to Random Forest's 2.3213 seconds, making it a more
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suitable option for scenarios requiring rapid model training. This efficiency, coupled with
competitive accuracy, underscores LightGBM's strengths in the context of PPARYy inhibition
prediction[68-72]. PyCaret employs sensible defaults that are commonly accepted in the
community for each algorithm, allowing for efficient hyperparameter tuning. During the model
training process, PyCaret systematically evaluates a range of hyperparameters for each algorithm,
optimizing their performance based on cross-validation metrics. The best hyperparameter values
identified through this process are automatically logged, ensuring robust model selection. This
approach not only streamlines the modelling workflow but also enhances the reliability of the
results obtained.

We employed a robust 10-fold cross-validation approach to evaluate our predictive model's
performance. This method is effective in assessing model generalizability while minimizing
overfitting risks. The dataset was randomly divided into 10 equal-sized subsets, ensuring that each
fold represented the overall dataset with a mixture of different chemical classes. Nine folds were
combined to form the training set, while the remaining fold served as the testing set. This process
was repeated until each fold had been used once as a testing set, yielding 10 performance estimates.

For each iteration, we calculated key performance metrics, including R2, MAE, MSE, and RMSE,

which were averaged across all folds to provide a comprehensive assessment of model performance.

2.5. Training and Performance Evaluation of Light Gradient Boosting Machine (LightGBM)
Model

The LightGBM model with 100 estimators and a learning-rate of 0.1 was selected based on
cross-validation performance and tuning plots [73,74]. The model was trained on the PADel
PubChem fingerprints and evaluated on external test data using the previously mentioned metrics
[75]. The performance of the evaluated algorithms was assessed, and the LightGBM algorithm

emerged as the best performing model. Various evaluation metrics were used to assess the model's
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performance[76-78]. The LightGBM model achieved R? scores of 0.82 for the training set and 0.59
for the testing set, indicating a modest fit for the data. Additionally, the model exhibited low MSE
values of 0.29 and 0.58 on the training and testing sets, respectively, indicating accurate
predictions[79,80]. The MAE scores were 0.38 and 0.58 for training and testing, respectively,
further highlighting the precision of the model. The RMSE values for training and testing were
0.54 and 0.76, respectively, indicating a slight average deviation of the predictions from the actual
values. The RMSLE scores of 0.07 for training and 0.10 for testing demonstrate the model's ability
to accurately capture logarithmic errors. Furthermore, the MAPE scores of 0.06 for training and
0.09 for testing reflected the model's low average percentage error in prediction. These results show
the capability of the LightGBM model in accurately predicting PPARg ligand activity based on
IC50 values.

It also demonstrated the effectiveness of the LightGBM model in predicting PPARy ligand
activity based on IC50 values, as indicated by the R? score and low values for MSE, MAE, RMSE,
RMSLE, and MAPE metrics. All model building and analyses were conducted in Python 3.9 using
the mentioned libraries and their specified versions to ensure reproducibility[76,81,82].

3. Model establishment
3.1. Model evaluation metrics

LightGBM model’s performance was evaluated using various metrics for predicting PPAR
ligand activity and IC50 values. The model showed promising results in multiple metrics,
suggesting its potential as a reliable predictor of PPAR modulation[83].

MAE was used to assess prediction errors, representing the average absolute difference
between predicted and actual values[60,84,85]. The LightGBM model displayed accurate
predictions on both the training and testing datasets, with an MAE of 0.38 and 0.58, respectively

(Table 3)[60,62,84]. The LightGBM model demonstrated a low MSE of 0.29 for the training dataset,
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indicating accurate predictions. The testing dataset also showed a competitive MSE of 0.58,
validating the model’s ability to predict PPAR ligand activity accurately.

Moreover, the Root Mean Squared Error (RMSE), a measure of the square root of the average
squared differences between the predicted and actual values, was computed[86]. The LightGBM
model had an RMSE of 0.54 on the training data, indicating the average error in predicted PPAR
ligand activity. The model also had an RMSE of 0.76 on the testing data (Table 1), showing good
generalization and reliable predictions[87,88]. The R? score measures the strength of the linear
relationship between the independent and dependent variables, considering the proportion of
variance explained by the model[89,90]. The LightGBM model achieved an impressive R? score
of 0.82 on the training dataset, indicating that it can explain approximately 82% of the variance in
PPAR ligand activity. Additionally, the model displayed a modest R? score of 0.59 on the testing
dataset (Table 1), indicating a modest generalization to unseen data[91].

RMSLE accounts for logarithmic differences between predicted and actual values. Light GBM
model’s predictions aligned well with actual values with a training RMSLE of 0.07 and testing
RMSLE of 0.10 (Table 1). The Mean Absolute Percentage Error (MAPE) metric, which measures
percentage difference between predicted and actual values, was also calculated[92,93]. The
LightGBM model demonstrated a low MAPE of 0.06 on the training dataset and 0.09 on the testing
dataset (Table 3), suggesting that the model’s predictions were relatively accurate compared to the
actual values[94].

The LightGBM model showed Impressive performance in predicting PPAR ligand activity,
with competitive results in various evaluation metrics, including R%, MSE, MAE, RMSE, RMSLE,
and MAPE. (Table 3 near here)

3.2. Improved optimal hyperparameter tuning for robust predictive modelling
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The validation curve plot revealed valuable insights into the impact of the "max_depth"
hyperparameter on model performance (Figure 1). The curve exhibited an initial increase in the R?
score as the "max_depth" increased, indicating an improved performance.

Based on the validation curve, the optimal "max depth" value was determined to be
approximately 6.5, where the model achieved the highest R? score for the validation set. This value
balances the complexity and generalization, ensuring that the model captures the relevant patterns
without overfitting. (Figure I near here)

The validation curve plot also demonstrates a systematic approach to model hyperparameter
tuning. This enhanced the reliability and generalizability of the predictive model. This highlights
the importance of systematically evaluating the hyperparameter values to achieve the best
performance and mitigate issues such as underfitting or overfitting, while fine-tuning the
"max_depth" hyperparameter and optimizing the model's performance by leveraging the validation

curve analysis.

3.3. Molecular descriptors relationships and feature selection

The heatmap illustrates the pairwise correlations among the variables in the dataset. MW has
a moderately strong positive correlation with LogP and NumRings, suggesting that larger
molecules tend to have higher LogP values and more rings (Figure 2). LogP also exhibits a
moderate positive correlation with NumRings. Additionally, NumHDonors has weak positive
correlations with MW and NumRings, while NumHAcceptors has weak negative correlations with
LogP and strong positive correlations with MolSurfaceArea. (Figure 2 near here)

MolSurfaceArea has a weak positive correlation with NumHDonors and NumHAcceptors.
This suggests that molecules with larger surface areas tend to contain more hydrogen donors and

acceptors. pIC50 had a weak positive correlation with MW and LogP, indicating that larger
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molecules and those with higher partition coefficients may have higher pIC50 values. The
correlation heatmap provides insights into the relationships between the variables in the dataset,
thus providing a better understanding of how they are interrelated.

Feature importance analysis was performed to identify the most influential variables in
predicting PPARy inhibition. The SHAP (SHapley Additive exPlanations) values and permutation
importance, which allowed us to quantify the contribution of each feature to the model's predictions
were examined. The findings indicated that certain molecular characteristics, such as molecular
weight, logP, and specific functional groups, significantly influenced inhibition activity.
Discovering the impact of these features aided our understanding of the underlying mechanisms
driving PPARYy inhibition, which could further facilitate research into targeted drug design and
optimization. This information is crucial for both researchers and practitioners aiming to develop
effective PPARY inhibitors.

3.4. PPAR ligand characteristics through molecular descriptors correlation

The scatterplot (Figure 3) shows the relationship between the experimental (actual values) and
predicted IC50 values (predicted values), enabling a comprehensive assessment of the accuracy of
the predictive models. The graph demonstrates the correspondence between experimental and
predicted values, and the regression line indicates the accuracy of the prediction. Variations from
the line suggest potential inconsistencies or shortcomings in the predictive model. (Figure 3 near
here)

The scatterplot provides several insights into predictive accuracy. A tight clustering of data
points around the regression line suggests a high degree of agreement and reliability, indicating
that the predictive model effectively captured the underlying relationships and displayed robust
performance. Conversely, deviations from the regression line suggest potential systematic errors or

limitations in the prediction models.
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The regression line's slope and intercept offer insights into t he model's bias and precision. A
slope close to 1 indicates a strong linear relationship, suggesting a reliable and unbiased predictive
model. The scatterplot analysis and regression line reveal the pIC50 values' predictive accuracy.
4. Model application
4.1. Toxicological implications of studied compound exposure and comparative analysis of IC50
values and environmental detection

The toxicological implications of chemical exposure on PPARYy receptors are significant.
Particularly, PFAS, pesticides and detergents display a wide range of effects on PPARy [95]. The
LightGBM model has been validated against known toxic compounds, confirming its accuracy in
predicting PPARY interaction. Notably, the model offers insights into the interaction potential of
chemicals where empirical reports are not yet available, demonstrating its predictive power.

The IC50 values generated by the model are aligned with the detection levels of chemicals in
environmental and biological samples. This is crucial for evaluating the actual risks associated with
these chemicals. For example, Pesticides and Organochlorine Compounds often persist in soil and
water, and their modeled IC50 values of 5.349 and 5.228, respectively, indicate a potential for
PPARY interaction that could be linked to observed health effects in populations exposed to these
compounds.

It is important to note that the recorded IC50 values for these compounds in the PubChem
database are 5.472 and 5.204, respectively. Similarly, the IC50 values obtained from the LightGBM
model for Dioxins and Furans align closely with those from the study, indicating that the model
accurately reflects the inhibitory potential of these toxicants. For Flame Retardants and
Preservatives, there is a notable correlation between the modeled IC50 values and published reports
linking these chemicals to PPAR-mediated diseases. This correlation underscores the validity of

the model in identifying potential health risks.
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4.2 Broader Environmental and Health Risk Discussion

The model's extensive coverage of various chemical ¢ lasses, including Solvents, Plastics and
Polymers, and Plasticizers, enables a comprehensive risk assessment. The IC50 values for
Polychlorinated Biphenyls (PCBs) and other contaminants underscore their potential for PPARy
interaction and the consequent biological implications. By comparing these values, for instance,
the average IC50 value for pesticides in a report is -1.905 [96]while the present study's predicted
value is 5.349, similarly, the average IC50 values for preservatives in another research is -1.767
while the average IC50 value for preservatives in our study is 5.473. This study provides a nuanced
understanding of the potential health risks associated with chronic exposure to these compounds.

The predictive model serves as an indispensable resource for enhancing our comprehension
of PPARY interactions across an array of chemical substances, thereby facilitating proactive risk
assessment and the prioritization of compounds for additional toxicological scrutiny. The
incorporation of a diverse range of chemicals in this study underscores the model's resilience and
lays the groundwork for future research aimed at averting and mitigating chemical-induced

diseases.

4.3 Enhanced Predictive Performance

The application of the LightGBM model in predicting IC50 values of 140 chemical
compounds across 13 distinct categories (Table 1) was a critical test of the model's capability and
generalizability. The list of tested 140 chemicals, smiles, structure, predicted IC50 and their
calculated PADel-PubChem molecular fingerprints are presented in Table S4 and S5
(supplementary material) This was a significant step beyond the original model training, which

was conducted using a dataset of 1,804 molecules. The performance of the model was assessed
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using similar evaluation metrics adopted in the training phase: R Square (R?), Mean Absolute Error
(MAE), and Root Mean Square Error (RMSE).

The performance of the model on these new validation datasets was strikingly comparable to
that of the training and test sets used to develop the model. The R? values indicates that the model
could explain a substantial proportion of the variability in response data. Similarly, the MAE and
RMSE values remained low, suggesting that the model predictions were close to the actual
observations. Specifically, for pesticides, sweeteners, and preservatives, the model achieved an R?
score above (.81, demonstrating a strong correlation between the predicted and observed IC50
values. The MAE and RMSE were less than 0.40 and 0.56, respectively, indicating low prediction
errors.

These results reinforce the robustness and reliability of our model in predicting PPARYy ligand
activity based on IC50 values across different classes of chemicals. Furthermore, this underlines
its potential as a versatile tool in environmental toxicology and pharmacology.

By accurately predicting the inhibitory effects of these chemicals on PPARy, the LightGBM
model can guide further laboratory investigations, help prioritize chemicals for regulatory scrutiny,
and expedite the understanding of the potential toxicological implications of these chemicals.

4.4 Distribution of thirteen categories of Persistent Environmental Toxic Substances (PETS)
Predicted 1C50 Values

The distribution of predicted IC50 values for 13 chemical groups is illustrated in (Figure 4).
The x-axis shows the predicted IC50 value, and the y-axis shows the frequency of that value, the
values represent the potency of a chemical. The distribution of predicted IC50 values for the 13
chemical categories varies significantly. For instance, some categories, such as pesticides and
organochlorine compounds, have a relatively high median value, suggesting that they are less likely

to cause adverse effects. On the other hand, other categories, such as dioxins and furans, and flame
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retardants, have a relatively low median predicted IC50 value, indicating a higher likelihood of
causing adverse effects. (Figure 4 near here)

This variety in predicted IC50 values implies that some chemicals within a category may be

more potent and, thus, more likely to cause adverse effects than others. Identifying individual
chemical potency is crucial when assessing their potential risks. The distribution of predicted IC50
values for the 13 chemical categories is a useful tool for understanding their potential hazards. By
identifying the chemical category with the most potent and least potent chemicals and those with
the widest and narrowest ranges of predicted IC50 values, it becomes possible to prioritize further
examination for those posing significant risks.
The most potent chemical category is dioxins and furans, with a median predicted IC50 value of
4.5. The least potent chemical category is plastics and polymers, with a median predicted IC50
value of 6.3. The chemical category with the widest distribution of predicted IC50 values is
preservatives, with a range of 4.4 to 6.8. The chemical category with the narrowest distribution of
predicted IC50 values is plasticizers, with a range of 5.2 to 6.2.

Chemicals in categories with low median predicted IC50 values are more likely to cause
adverse effects. Chemicals in categories with a wide range of predicted IC50 values may have
varying potencies, with some being more likely to cause adverse effects than others. This
distribution can help identify chemicals that are likely to cause adverse effects and prioritize them
for further testing.

4.5 Exploring Variable Outliers and Complex Relationships

The pair plot in (Figure 5) displays the predicted IC50 values for different chemical categories:
pesticides, organochlorine compounds, dioxins and furans, detergents and surfactants, and flame
retardants. The results show that there are no outliers in the data and all of the data points are within

the range of 4.5 to 6.0. However, some patterns are observed in the data. The predicted IC50 values
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for pesticides tend to be higher than the predicted IC50 values for the other chemical categories.
The predicted IC50 values for detergents and surfactants tend to be lower than the predicted IC50
values for the other chemical categories. (Figure 5 near here)

The findings from the pair plots suggest that the potential risks posed by these chemicals may
vary depending on the chemical category. Pesticides may pose a greater risk than the other chemical
categories, while detergents and surfactants may pose a lower risk than other chemicals in this
subset. The findings from the pair plots are consistent with the results of previous studies.

For example, a study by the Research Institute of Subtropical Forestry, Chinese Academy of
Forestry, Fuyang, China found that pesticides have a very high potential risk for human health[97].

The graph presented in (Figure 6) illustrates a pair plot of the projected IC50 values for a
different set of chemicals with close correlations, including preservatives, pigments and dyes,
PFAS, polychlorinated biphenyls (PCBs), and sweeteners. The diagonal components of the graph
display histograms for each measurement, while the off-diagonal sections display scatterplots for
each pair of measurements. (Figure 6 near here)

The histogram shows that the measurements are all normally distributed, except for the PCB-
PIC50 measurement, which exhibits a slight deviation to the left. The scatterplots reveal that certain
correlations exist between the measurements. For instance, the PRV-PIC50 measurement
demonstrates a positive correlation with the Sweetners-PIC50 measurement, while the P&D-PIC50
measurement shows a negative correlation with both the PCB-PIC50 and PFAS-PIC50
measurements.

The pairplot shows that the five PIC50 measurements are all fairly normally distributed and
that there are considerable correlations between them.

4.6 Analysis of Predicted IC50 Values of Thirteen Persistent Environmental Toxic Substances

(PETS) by Category
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The distribution of predicted IC50 values across various chemical categories is shown in
(Figure 7). The boxplot depicts the median, 25th and 75th percentiles, and the whiskers extend to
the most extreme values. The categories with the highest predicted IC50 values are plasticizers and
P&P-PIC50, while the categories with the lowest predicted IC50 values are sweeteners and FR-
PICS50. (Figure 7 near here)

This distribution exhibits statistically significant differences (Kruskal-Wallis test, p < 0.05).
Further analysis using a post-hoc Dunn's test with a Bonferroni correction for multiple comparisons
reveals that the following categories display significantly different predicted IC50 values:
Plasticizers vs. Sweeteners (p < 0.05), Plasticizers vs. FR-PIC50 (p < 0.05), P&P-PIC50 vs.
Sweeteners (p < 0.05), and P&P-PIC50 vs. FR-PIC50 (p < 0.05).

These findings indicate that the chemical category of a compound is a significant predictor of
its predicted IC50 value. This information could be valuable in the development of new drugs and
chemicals, as it could help identify compounds more likely to be active against a specific target
e.g . The results of this analysis suggest that the LightGBM model developed in this study can
predict IC50 values for different categories of PETS with reasonable accuracy. These models can
be employed to prioritize chemicals for further testing and to assess the potential risks associated
with these chemicals.

I need you to provide a direct manuscript input for the Limitations and Future Research section
(Section 5: Limitations and Future Research 5.1 Limitations 5.2 Future Research Direction)

5. Limitations and Future Research

5.1 Limitations

While the Light Gradient Boosting Machine (LightGBM) model developed in this study shows
promise in predicting PPARY inhibition activity based on IC50 values, certain limitations must be
acknowledged. First, the R? value of 0.59 for the test set indicates modest predictive performance

and highlights the need for improvements that might have valuable contributions to the field. This
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discrepancy between the training set (R? = 0.82) and the test set suggests that the model may benefit

from additional measures to address overfitting and improve its robustness.

Second, the dataset used in this study, though diverse, may still be limited in terms of size and
representation. The test set contains structurally diverse compounds, and the inherent complexity
of these molecules likely contributed to the variability in prediction accuracy. Furthermore, the
dataset's relatively small size, particularly for the test set, may have constrained the model's ability

to fully capture the intricate relationships between molecular features and inhibition activity.

Lastly, while the PADel-PubChem molecular fingerprints used in this study provide important
information, the reliance on a single type of fingerprint representation may have limited the model's
ability to fully account for the diverse physicochemical and structural properties of the chemical
compounds. Exploring additional descriptor sets or hybrid approaches could enhance the model’s

overall predictive performance.

5.2 Future Research Direction
To address the limitations outlined above and further enhance the predictive capabilities of the

model, future research could focus on several key areas:

1. Dataset Expansion and Diversity: Increasing the size and diversity of the dataset will be
a priority to improve the model's generalizability. Incorporating additional chemical classes
and expanding the dataset with experimentally validated IC50 values will help capture a
wider range of structural and physicochemical properties, leading to better predictions.

2. Advanced Modeling Techniques: Future studies will explore ensemble modelling
approaches, such as stacking or blending multiple algorithms, to leverage the strengths of
different machine learning models. Additionally, the integration of deep learning
architectures may help capture more complex relationships within the data.

3. Feature Engineering and Descriptor Optimization: To improve predictive performance,
future research will evaluate alternative molecular descriptor sets, such as 3D structural
descriptors or hybrid representations combining fingerprints with physicochemical
properties. Feature selection techniques will also be employed to identify the most relevant

features for predicting PPARY inhibition activity.
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4. Incorporating Domain Knowledge: Incorporating domain-specific knowledge, such as
docking simulations or experimental binding affinities, may provide additional insights into
the interactions between PPARY and chemical compounds. This integration could improve

the interpretability and accuracy of the predictions.
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6. Conclusion

The study employs advanced computational methods and molecular investigations to unravel
the complexities of PPARY inhibitory activity. The Light Gradient Boosting Machine (LightGBM)
algorithm excels in predicting PPARYy ligand activity based on IC50 values, as evidenced by high
R2 scores, low Mean Squared Error (MSE), and strong performance in other metrics. Validation
curve analysis and scatterplot analysis confirm the model's accuracy and reliability. The correlation
heatmap reveals the relationships between molecular characteristics and their influence on ligand
activity and inhibitory mechanisms. By combining computational expertise with ecological
awareness, the study offers potential breakthroughs in drug discovery and toxicology for targeted
treatments of metabolic disorders and inflammation. The findings provide a solid foundation for
future research, deepening our understanding of molecular interactions, predictive modelling, and

the practical implications of PPARy modulation.
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Figure Captions

Figure 1. Model validation curve plot demonstrating Optimal Hyperparameter Tuning for Robust
Predictive Modelling

Figure 2. The Descriptor Correlation heatmap reveals the interactions between various chemical
descriptors

Figure 3. Model correlation plot, shows a well-fitted Algorithm
Figure 4. Distribution of Predicted IC50 Values Amongst the 13 Chemicals

Figure 5. Predicted IC50 Value Pairplot Variable Exploration for chemical categories: pesticides,
organochlorine compounds, dioxins and furans, detergents and surfactants, and flame retardants..
PST= pesticides, OCC= organochlorine compounds, D&F= dioxins and furans, D&S= detergents
and surfactants, and FR= flame retardants

Figure 6. Predicted IC50 Value Pairplot Variable Exploration for chemical categories: preservatives,
pigments and dyes, per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs),
and sweeteners. PRV= preservatives, P&D= pigments and dyes

Figure 7. Boxplot Analysis of Predicted IC50 Values by Chemical Category: pesticides,
organochlorine compounds, dioxins and furans, detergents and surfactants, and flame retardants.
PST= pesticides, OCC= organochlorine compounds, D&F= dioxins and furans
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Table 1. Summary of the 13 chemical categories and the number of compounds included in the
study. These categories encompass a wide range of environmental contaminants, including
pesticides, organochlorines, dioxins, flame retardants, and others, tested for their potential to

inhibit PPARy
Chemical Category Sample
Pesticides 19
Organochlorine Compounds 19
Dioxins and Furans 17
Detergents and Surfactants 15
Flame Retardants 14
Preservatives 13
Sweeteners 10
Pigments and Dyes 10
PFAS 9
Polychlorinated Biphenyls (PBCs) 8
Solvents 3
Plastics and Polymers 2

Plasticizers
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Table 2. Model Algorithm Comparison Analysis

Acronym Model MAE MSE RMSE R2 RMSLE MAPE (TsTec)
Light Gradient

lightgbm  Boosting 0.5823 0.5782 0.7616 0.5999 0.1102 0.0950 0.598
Machine

rf Random Forest ¢136 06914 08292 05637  0.1121 00989  2.3213
Regressor
Gradient

gbr Boosting 0.6847 07591  0.8674  0.524 0.1182 01107  1.148
Regressor
Extreme

xgboost  Gradient 0.6402  0.756 0.8676  0.5205  0.117 0.1024 34
Boosting

br Bayesian Ridge ~ 0.7009  0.7986  0.8897  0.4974  0.1219  0.1136  0.816

knn K Neighbors 0.6953  0.8368 09109  0.472 01236  0.1127  0.3947
Regressor

: Ridge

ridge . 07306  0.8848 09381  0.4399  0.13 0.1191 03673
Regression

omp Orthogonal = 2414 08926 09406 04392  0.1297  0.1203  0.4693
Matching Pursuit

huber Huber Regressor  0.734 0.9216 0.9569 0.4146 0.1336 0.12 0.7807

et Fxtes Trees 0.6765 09238 0959 04141  0.1295  0.1081  2.842
Regressor

ada AdaBoost 08179 09661 09796  0.3922  0.1343  0.1335  0.7067
Regressor

dt Degision Treg 0.6963  0.9898  0.9925  0.371 0.134 0.111 0.518
Regressor

en Elastic Net 1.0394 15575 12443 0.0272  0.17 0.1704  0.5067

lasso Lasso Regression 1.0617 1.6252 1.2712 -0.0154  0.1735 0.174 0.328
Lasso Least

llar Angle 1.0617  1.6252 12712 -0.0154 0.1735  0.174 0.5267
Regression

dummy E“mmy 10617  1.6252 12712 -0.0154 0.1735  0.174  0.5013
egressor
Passive

par Aggressive 1.0268 17591 13136  -0.1196 0.1842  0.1649  0.3627
Regressor

Ir Linear 1018 652 9337 3419 1035 1492 4.5613
Regression

lar pcast Angle 5.227 1.374 9.573 7295 14.07 9.528 0.5753
Regression
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Table 3. Performance metrics for the LightGBM model, detailing training and testing scores.
Metrics include R?, MSE, MAE, RMSE, RMSLE, and MAPE, which collectively demonstrate the
model's robustness and accuracy in predicting IC50 values for PPARy inhibition

Metric Training Score Testing Score
R? 0.82 0.60
MSE 0.29 0.58
MAE 0.38 0.58
RMSE 0.54 0.76
RMSLE 0.07 0.11
MAPE 0.06 0.09
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