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ARTICLE INFO ABSTRACT

Keywords: Emerging evidence indicates that apelin, an adipokine, plays a critical role in numerous biological functions and
Apelin ) may hold potential for therapeutic applications; however, its efficacy is constrained by rapid plasma degradation.
neurodegeneration Thus, the search for novel apelin analogues with reduced susceptibility to plasma degradation is ongoing. We
neuroinflammation

have previously shown novel modified apelin-13 analogues, providing exciting opportunities for potential
therapeutic development against Alzheimer’s disease. In this study we explored novel insights into the neuro-
protective effects of stable fatty acid modified (Lys8GluPAL) apelin-13-amide and amidated apelin-13 amide in
mitigating cellular damage in SH-SY5Y neuroblastoma cells exposed to palmitic acid (PA) and
lipopolysaccharide-induced (LPS) stress. Both apelin-13 analogues were found to modulate ER stress response
and reduce oxidative stress by suppressing PA- and LPS-induced ROS production (36 % and 42 % reductions in
GSH/GSG (p < 0.005). The peptides attenuated apoptosis by reducing caspase 3/7 activity and restoring bcl2
expression (p < 0.05) in cells treated with PA and LPS. They also downregulated pro-apoptotic genes, protected
neurites from stress-induced damage, and promoted neurite outgrowth. The observed protective effects could be
due to activation of the AMPK pathway, a critical regulator of cellular energy homeostasis and survival. These
findings provide insight into novel, enzymatically stable apelin-13 analogues and highlight their potential to be
developed as therapeutic agents against neuroinflammation and neurodegenerative disease, including Alz-
heimer’s disease.

Alzheimer’s disease

Especially, the Long chain saturated fatty acids (LCSFA) are implicated
with central obesity, insulin receptor resistance and development of
systemic and neuronal inflammation (Sergi and Williams, 2020). LCSFA
induced lipotoxicity, plays a prominent role in multiple abnormalities

1. Background

Neurodegenerative conditions like Alzheimer’s disease (AD) are
associated with neuroinflammation, synaptotoxicity, changes in den-

dritic spines shape and progressive neuronal death, leading to cognitive
impairment (Tzioras et al., 2023). Globally, 50 million people suffers
from AD, and with increased prevalence of AD with age, it is predicted to
reach 152 million by 2050 (Hou et al., 2019; Guerchet et al., 2020)
which will have a great socioeconomic and healthcare burden (Wong,
2020). There is lack of understanding regarding AD pathophysiology,
but growing evidence suggests a central role of neuro-inflammation
(Heneka et al., 2015; Leng and Edison, 2021). Interestingly, neuro-
inflammation is also linked to metabolic syndromes such as obesity
and diabetes (O’Brien et al., 2017; van Dyken and Lacoste, 2018).

including development of oxidative stress and microglial activation,
leading to neuro-inflammation and impaired protein clearance in AD
(Vesga-Jiménez et al., 2022; Cleland and Bruce, 2024). Lipopolysac-
charides (LPS), an endotoxin, can exacerbate pro-inflammatory path-
ways, amplify neuro-inflammatory response and promote apoptosis
(Mohammad and Thiemermann, 2021). Currently available pharmaco-
logical intervention for AD primarily focuses on symptom alleviation
and have no positive curative effects on either halting or slowing the
progression of AD. There remains an urgent need for predictive thera-
peutic interventions capable of minimising the pathophysiological
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impact of AD. However, before such interventions can be applied clin-
ically, in vitro studies are essential to validate their efficacy and safety.
These studies are crucial in developing strategies that could effectively
target inflammation and neurodegeneration-driven cellular loss,
potentially slowing or halting AD progression.

Apelin is a circulating adipokine, produced and secreted by white
adipose tissue (WAT) (Boucher et al., 2005). APLN gene, located on
chromosome 11 (11q12) (O’Dowd et al., 1993) produces preproapelin, a
77-amino-acid precursor, which is subsequently cleaved into several
bioactive smaller peptides, including apelin-12, —13, —16, —17, —19
and 36 (Kawamata et al., 2001). Apelin receptor, also called APJ re-
ceptor, (of which Apelin is a cognate ligand), belongs to family of G-
protein-coupled receptors (GPCRs) and is ubiquitously expressed in
various tissues (Castan-Laurell et al., 2011). APJ/Apelin signalling has
been identified to play central role in metabolic signalling including
cardiovascular regulation and glucose homeostasis (Wysocka et al.,
2018; Hu et al., 2021; Li et al., 2022). Recent studies have indicated
apelin’s role in cell proliferation in neuroblastoma cell lines (Jiang et al.,
2018; Chen et al., 2020) and reduction in neuro-inflammation by
affecting leukocyte recruitment by modulating cell adhesion molecules
(Park et al., 2024).

Native apelin peptides have a short half-life (O'Harte et al., 2017)
making it unsuitable for pharmacological use. We have previously
shown that structural modification of native Apelin-13 at N- and C ter-
minals could prolong clearance and improve bioactivity (Parthsarathy
et al., 2018; O’Harte et al., 2018). Various studies have utilised both
Palmitic acid (a LCSFA) and LPS for induction of inflammation as they
are potent in upregulating pro-inflammatory cytokines, ROS (Reactive
oxygen species) generation, and ultimately cell suicide in microglial
(Zhao et al., 2019a; Zhang et al., 2018; Lu et al., 2021; Chmielarz et al.,
2023), neurons (Zhao et al., 2019b; Sergi et al., 2020; Zhang et al.,
2021a) and microglial-neuronal co-culture (Beaulieu et al., 2021) and
various other tissues (Yamada et al., 2006; Alnahdi et al., 2019). In this
study we have evaluated the effects of stable apelin 13-amide and
(Lys8GIuPAL) apelin-13-amide in mitigating PA and LPS induced cell
growth arrest, cell death, cell survival and cellular health.

2. Materials and methods
2.1. Peptides

All apelin analogous used in the study were purchased from Syn-
peptide®; with a certification of >95 % purity. Structural identity and
purity of peptides were confirmed in house as described in an earlier
study (Parthsarathy and Holscher, 2013). To confer resistance against
cleavage by angiotensin converting enzyme 2 (ACE2), native peptides
were modified by amidation of the C-terminus and/or addition of a
gamma-glutamyl spacer with palmitate adjunct (GIuPAL) to the side
chain Lys® which promotes plasma protein binding and reduces renal
clearance (Parthsarathy and Holscher, 2013; Parthsarathy et al., 2016).
Similar substitutions were used previously in our work with other small
peptides and been tested previously for stability and potency.

2.2. Cell culture and differentiation

Human neuroblastoma cells line (SH-SY5Y) was obtained from
University of Aston, UK and stored in liquid nitrogen. Upon thawing,
cells were cultivated as monolayers in Dulbecco’s Modified Eagle Me-
dium/Nutrient Mixture F-12 supplemented with 1r-glutamine, heat
inactivated FBS (10 % v/v), antibiotics penicillin (100 U/ml) and
streptomycin (0.1 mg/ml) (Gibco, Strathclyde, UK). Cells were incu-
bated in humidified environment of 95 % air/5 % CO2 at 37 °C. The
culture medium was renewed every 3 days and sub-cultured or seeded at
90 % confluency or when required, differentiated with 10 mM Retinoic
acid for 3 days in dark at 37 °C as described previously (Karacaoglu,
2021).
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2.3. Cell viability and toxicity assessments

Cell viability was evaluated using the CyQUANT ™ MTT Cell
Viability Assay Kit (Thermofisher, UK) and CellTiter-Glo® Luminescent
Cell Viability assay kit (Promega, UK). Assays were conducted following
manufacturer’s protocols. Briefly, 96 well plate (MTT assay- clear,
Luminescent assay-opaque) were seeded with SH-SY5Y cells at a density
of 1 x 10* cells/well, incubated for 24 h and then treated. Labelling
reagents were added and incubated for set period. For MTT, reaction
was stopped by adding DMSO, and absorbance measured at 570 nm..
Lactate dehydrogenase (LDH), a marker for cell toxicity was analysed
using CyQUANT™ LDH Cytotoxicity Assay Kit (Thermofisher Scientific,
UK) following manufacturer’s protocol. Briefly, 1 x 10* cells/well were
seeded into 96-well plates. Following treatments, 50 ml of cell culture
supernatant was incubated with reagent substrate, reaction stopped, and
absorbance measured at 450 nm. For AMPK inhibition, SH-SY5Y cells
were pretreated with 5 pM Compound C (6-[4-(2-Piperidin-1-ylethoxy)
phenyl]-3-pyridin-4-ylpyrazolo [1,5-alpyrimidine) a cell-permeable
AMPK inhibitor, for 30 min before treatments with peptides for 6 h.
Cell viability (CellTiter-Glo® Luminescent Cell Viability assay kit) and
toxicity (CytoTox 96® Non-Radioactive Cytotoxicity assay kit) was used
as per vendor’s instructions.

2.4. Neurite outgrowth assay

SHSY-5Y cells were seeded at density of 1 x 10°/well in 24-well plate
and differentiated with Retinoic acid (10 uM). Following 3 days of in-
cubation at 37 °C cells were treated with peptides for 24 h and fixed with
freshly prepared paraformaldehyde. Following washing steps with PBS
(Phosphate buffered saline), fixed cells were stained with Coomassie
brilliant blue and imaged at 20 x magnification. Neurite growth (vertical
axis) was quantified as the percentage of cells bearing axodendritic
processes longer than two times cell diameters in length. The double the
body of cell neurite outgrowths were counted and analysed by Image J
(NIH).

2.5. Reactive oxygen species measurement (ROS), GSH/GSSG
(Glutathione/Glutathione disulfide) and Caspase assays

Levels of ROS production in treated cells were analysed with ROS-
Glo™ H:0:2 Assay kit (Promega, UK), Total and oxidized glutathione was
measured with GSH/GSSG-Glo™ Assay (Promega, UK) and Caspase-3
and caspase-7 activities in adherent cells were measured with Cas-
pase-Glo® 3/7 assay (Promega, UK) as per manufacturer’s protocol.

2.6. Mitochondrial membrane potential (A¥Yr,) measurement

Mitochondrial membrane potential was measured by JC-1 dye
(Thermofisher, UK). Briefly, 5 x 10* cells/well were seeded on Poly-D
lysin coated coverslips and incubated. Following treatments, cells
were washed and incubated with JC-1 dye for 30 min and then fixed (4
% paraformaldehyde), washed, mounted with fluoroshield and images
captured using Olympus XI83 Inverted fluorescence microscope at 20x
magnification for green (monomers) (excitation 470 nm, emission 525
nm) and red (aggregates) (excitation 560 nm, emission 595 nm) fluo-
rescence and images analysed using Image J (NIH).

2.7. Western blot

Standardised procedures were followed for western blot analysis.
Cells (2 x 10° cells/well) were grown, and following serum starvation,
treated with stressors, with or without apelin analogues. Cells were lysed
in ice-cold RIPA (Radioimmunoprecipitation assay) buffer and BCA
(Bicinchoninic acid assay) was used to assess protein concentration.
Proteins were separated on polyacrylamide gels and transferred to PVDA
membrane, followed by blocking and subsequent incubation with
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primary antibodies Bax (89477), bcl2 (51071) and GAPDH (5174S)
(dilutions were 1:1000 for 89,477; 1:1000 for 51,071; and 1:3000 for
51748, Cell Signalling, UK). All the primary antibodies were raised in
mouse except for GAPDH which was raised in rabbit. Following wash
steps, blots were incubated with HRP-linked secondary antibodies
against corresponding species (1:1000, Cell signalling, UK). Upon
exposer with BCL, band intensity was quantified using LI-COR software.
GAPDH served as loading control and utilised to normalise the relative
peak intensity of the markers.

2.8. Statistical analysis

The statistical package PRISM (v.10.0, GraphPad Software Inc., San
Diego, CA, USA) was used to analyze the data. One-way ANOVA fol-
lowed by Tukey’s post-hoc test was used to compare the difference be-
tween groups. All data were presented as mean + SEM for given
numbers of replications (n) as indicated in individual figs. P value of
<0.05 was considered statistically significant.

3. Results

3.1. Apelin-13 analogues restore palmitic acid and lipopolysaccharide
-induced cell toxicity and cell growth arrests

We evaluated the efficacy of stable apelin analogues in protecting the
human neuroblastoma cells in-vitro from the acute and chronic stress and
inflammation caused by Palmitic acid (PA) and lipopolysaccharides
(LPS). PA, a saturated fatty acid is a lipotoxic agent and LPS is inducer of
neuroinflammation. SH-SY5Y cells were treated with apelin-13 amide or
(Lys8GIuPAL) apelin-13 amide, with or without the presence of the
stressors PA (0.6 and 1.0 mM) and LPS (30 and 50 pg). A one-way
ANOVA with post hoc analysis further revealed a decline in metaboli-
cally active, viable cells in a dose and time dependent manner in both PA
(Fig. 1A-C, 0.6 mM- 22-32 % reduction in metabolic active cells; p <
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0.01-p < 0.0001; 1.0 mM-30-34 % reduction; p < 0.01-p < 0.0001;
Fg 126 = 2.049-3.693; R? = 0.3483-0.987) and LPS treatments (Fig. 1D-
F, 30 pg- 28-31 % reduction, p < 0.01-p < 0.001; 50 pg- 40-57 %
reduction; <0.0001; Fgize = 0.6862-2.939; R? = 0.4346-0.68)
compared to control conditions. On the contrary, cellular release of LDH
gradually increased in the supernatants of cells treated with PA (Fig. 2A-
C, 0.6 mM-4- 31 % p < 0.0001; and 1.0 mM-17-35 %, p < 0.001-p <
0.0001; Fg 129 = 0.897-2764; R? = 0.5073-0.5984) and LPS (Fig. 2D-E,
30 pg-19-44 % p < 0.001-p < 0.0001; and 50 pg —20-51 %, p < 0.001-p
< 0.0001; Fg 126 = 1.54-4.074; R? = 0.3851-0.5295).

Importantly, co-treatment with Apelin-13 analogues counteracts the
reduction in cell viability of SH-SY5Y microcultures caused by PA
(Fig. 1A; 0.6 mM- 21 %, p < 0.0001; Fig. 1B-C, 1.0 mM- 11-23 %, p <
0.05-p < 0.0001) and LPS (Fig. 1D-E, 30 pg - 13-33 %, p < 0.01-p <
0.001; Fig. 1 E-F, 50 pg - 11-36 %, p < 0.05-p < 0.0001). Similarly,
Apelin-13 co-treatment normalises abnormal LDH activity in both PA
(Fig. 2A-C, 0.6 mM- 4-17 %, p < 0.05; Fig. 2A-C, 1.0 mM- 6-26 %, p <
0.05-p < 0.0001) and LPS (Fig. 2D-E, 30 pg-19-29 %, p < 0.001-p <
0.0001; Fig. 2D-E, 50 pg - 10-23 %, p < 0.05-p < 0.0001).

To confirm the aforementioned results, we evaluated cell viability via
ATP synthesis. Significant cell growth arrests and suppression of ATP
production was observed in SH-SY5Y cells treated with PA (Fig. 3A, 0.6
mM-28 % reduction, p < 0.01; and 1.0 mM-38 %, p < 0.0001; Fg 15 =
0.5306; RZ= 0.8983) or LPS (Fig. 3B, 30 pg-30 %, p < 0.0001; 50 pg 43
%, p < 0.0001; Fg 15 = 0.8139; R? = 0.9484). Interestingly, Apelin-13
amide induces an increase in metabolically active cells when stressed
with higher concentration of PA (Fig. 3A, 26 % increase, p < 0.01) and
with both concentration of LPS (Fig. 3B, 21-32 % increase, p < 0.001-p
< 0.0001), while (Lys8GIuPAL) apelin-13-amide was less potent with
increase only observed in higher concentration of both stressors
(Fig. 3A-B, 26-36 % increase, p < 0.01).
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Fig. 1. Apelin-13 analogues restore impaired cell viability upon persistent PA and LPS stress. Following 24 h cell adherence and 8 h serum starvation, cells
were exposed to PA (0.6 and 1.0 mM) or LPS (30, 50 ug) in the presence or absence of peptides apelin-13 amide and (Lys8GluPAL) apelin-13-amide for (A, D) 2 h, (B,
E) 4 h, (C, F) 24 h and assayed for reduction of MTT by mitochondrial dehydrogenase and presented as percentage of control. Values represents mean + SEM from

three independent experiments. Data was analysed by one-way ANOVA, where *p < 0.05, **p < 0.01, ***p < 0.001, and

**p < 0.0001.
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Fig. 2. Apelin-13 analogues restore abnormal cytotoxicity upon persistent PA and LPS stress. Following 24 h cell adherence and 8 h serum starvation, cells
were exposed to PA or LPS in the presence or absence of peptides apelin-13 amide and (Lys8GIuPAL) apelin-13-amide for (A, D) 2 h, (B, E) 4 h, (C, F) 24 h and assayed
for Lactate dehydrogenase release presented as percentage of control. Values represents mean + SEM from three independent experiments. Data was analysed by one-

way ANOVA, where *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
3.2. Protective effects of apelin is mediated by AMPK

To determine the involvement of AMPK in apelin’s role in promoting
survival and death in SH-SY5Y cells, we pre-treated the cells with spe-
cific inhibitor of AMPK, Compound C. The results showed that Com-
pound C blocked the protective effects of apelin in cell viability assay
(Fig. 3C) and cell toxicity assay (Fig. 3D).

3.3. Apelin-13 analogues improve cellular health, inhibits ROS production
and reduces apoptosis induced by stressors

To assess the role of apelin-13 in improving cellular health, a ratio of
reduced GSH to oxidized GSH (GSSG) was measured. Reduced levels of
GSH/GSSG ratio, suggesting reduction in antioxidant homeostasis are
seen in pathological conditions, like neurodegeneration. Both Apelin-13
amide and (Lys8GIuPAL) apelin-13-amide increased the GSH/GSSH
ratio (Fig. 4A-B, 34-36 % increase, p < 0.01) compared to untreated
controls. Significant reduction in GSH/GSSG ratio induced with PA
(Fig. 4A, 36 % reduction, p < 0.01; F5 15 = 0.3558; R%=0.9307) and LPS
(Fig. 4B, 42 %, p < 0.001; F5 12 = 0.7668; R? = 0.8516) was reversed by
apelin-13 analogues (Fig. 4A, 31-37 % increase, p < 0.05-p < 0.01;
Fig. 4B, 43-56 % increase, p < 0.05-p < 0.01). Both Apelin-13 amide
and (Lys8GIuPAL) apelin-13-amide had potent effect in reducing LPS
induced production of reactive oxygen species {(such as hydroperoxide,
superoxide, hydroxy radical and singlet oxygen) and oxygen free radi-
cals)}, markers for oxidative stress, in SH-SY5Y cells (Fig. 4D, 30 pg- 28-
37 % reduction, p < 0.001; Fg 13 = 0.657; R? = 0.914) but failed to have
a positive response against lipotoxic stress (Fig. 4C; Fg 15 = 0.3289; RZ=
0.638). Interestingly, both analogues showed protective effect against
cell apoptosis, evaluated by caspase-3/7 activity, on its own (Fig. 4E-H,
23-30 % reduction, p < 0.05-p < 0.01), against lipotoxic (Fig. E-F,
36-95 % reduction, p < 0.0001; Fs;o 0.6077-1.006; R?
0.9351-0.9993) and inflammatory (Fig. G-H, 17-60 % reduction, p <
0.0001; Fs5 12 = 0.3253-1.303; R? = 0.7673-0.9915) stress.

3.4. Apelin-13 analogues restore mitochondrial membrane potential in
SH-SY5Y cells

Mitochondrial depolarization and loss of membrane potential (AWy,)
is often associated with apoptosis (Ly et al., 2003). To evaluate the effect
of our peptides, immunostaining of cells with J aggregate forming
cationic dye (JC-1) was utilised. At low potential the dye presents as
green (monomeric) and at higher potential, as red (aggregates) fluo-
rescence. A decrease in red/green intensity ratio indicates mitochondrial
depolarization. Increased mitochondrial membrane potential was
observed when treated with Apelin-13 amide (Fig. 5C-D, 1.83 fold in-
crease, p < 0.01) but not with (Lys8GIuPAL) apelin-13-amide. Inter-
estingly, only Apelin-13 amide reversed the detrimental effect of
lipotoxic (Fig. 5C, 2.3 fold increase, p < 0.01; Fs 26 = 1.422; R% =
0.8049) and inflammatory (Fig. 5D, 6 fold increase, p < 0.05; Fg 3¢
1.350; R? = 0.7988) stress exposure on membrane potential, with
(Lys8GIuPAL) apelin-13-amide only effective against LPS (Fig. 5D, 4.8
fold increase, p < 0.05) stress.

3.5. Apelin-13 modulates expression of key apoptotic proteins

Both PA and LPS induced a significant increase in BAX expression
(Fig. 6A, C, 20 %, 35 % respectively, p < 0.01; F5 12 = 0.3775; R? =
0.7052) but not of bcl2 (Fig. 6B, D, 12-10 % decline, p > 0.05; Fs5 12 =
1.581; R% = 0.6613). Apelin-13 amide and (Lys8GIuPAL) apelin-13-
amide, mitigated the increase in BAX in both PA exposed cells
(Fig. 6A, 17 % and 16 % reduction respectively, p < 0.05) and LPS
exposed cells (Fig. 6C, 20 % and 35 % reduction respectively, p < 0.01;
F512 = 0.3378; R? = 0.8167). Only (Lys8GIuPAL) apelin-13 amide was
effective in restoring reduction in bcl2 expression in PA (Fig. 6B, 80 %, p
< 0.01) and LPS (Fig. 6D, 26 %, p < 0.05; F5 12 = 0.6888; R? =0.7848)
treated cells, however, apelin-13-amide was effective only against LPS
(Fig. 6B, 27 %, p < 0.01). Increase in the ratio of BAX/bcl2 confirmed
pro-apoptotic properties of both PA (Fig. 6E, 32 % increase, p > 0.05;
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Fig. 3. Apelin-13 analogues reversed cell growth arrests and suppression of ATP production upon persistent PA and LPS stress. Cells were exposed for 6 h to
PA (A) or LPS (B) in the presence or absence of apelin-13 amide and (Lys8GIuPAL) apelin-13-amide. For AMPK pathway involvement, cells were pre-treated with 5
pM Compound C and then treated with peptides in the presence or absence of LPS (C—D). Cell viability, measured by ATP production was assessed using CellTiter-
Glo® viability assay kit and presented either as percentage of control (A-B) or relative Luminescent units (C). CellTox™ Green cytotoxicity assay were used to
measure the toxicity and presented as relative fluorescent units (D). Cell Values represents mean + SEM from three independent experiments. Data was analysed by

one-way ANOVA, where *p < 0.05, **p < 0.01, ***p < 0.001and *

Fs512 = 0.4247; R? = 0.7333) and LPS (Fig. 6F, 51 % increase, p < 0.01;
F5,12 = 0.4496; R? = 0.8691), both our peptides promoted cell survival
by mitigating apoptosis in cells treated with lipotoxic (Fig. 6E, 33-52 %
reduction, p < 0.05-p < 0.01) and inflammatory agents (Fig. 6F, 48-55
% reduction, p < 0.01-p < 0.001).

3.6. Apelin-13 analogues counteract reduction in neurite growth caused
by PA and LPS

We investigated the effect of our peptides on neurite outgrowth in
SH-SY5Y cells. Cells bearing axodendritic process longer than two times
cell diameter in length were quantified using Image J software. Signif-
icant reduction in neurite growth was observed in cells treated with PA
(Fig. 7 A, 1.9 fold reduction, p < 0.001; F5 178 = 4.481; R?=0.3184) and
LPS (Fig. 7B, 1.85 fold reduction, p < 0.001; Fg 9o = 1.578; R?=0.7491)
both of which were counteracted with the treatment of Apelin-13 amide
(Fig. 7A-B, PA-1.7 fold, LPS-1.8fold increase, p < 0.0001 and p < 0.05
respectively) and (Lys8GluPAL) apelin-13-amide (Fig. 7A-B, PA-1.4 fold
increase, LPS-1.5fold-1.9 fold increase, p < 0.05-p < 0.0001).

4. Discussion

This study has investigated the effects of stable apelin 13 -amide and
(Lys8GIuPAL) apelin-13-amide in mitigating PA and LPS induced cell
growth arrest, cell death, cell survival via rejuvenating cellular activity.
Inflammation induced neuronal injury, as discussed in the introduction,

*p < 0.0001.

is a significant contributor to the pathogenesis of multiple neurode-
generative disorders, including AD (Zhang et al., 2023; Adamu et al.,
2024). In addition to the pathological hallmarks of amyloid- § (A p) and
tau, brains of AD are marked by microglia-mediated inflammation,
metabolic dysregulation, including glucose-hypometabolism, mito-
chondrial dysfunction, lipid imbalances and oxidative stress (Leng and
Edison, 2021; Misrani et al., 2021; Jurcau et al., 2022; Zhou et al.,
2023). Chronic inflammation in the brain is largely driven by persistent
activation of microglia cells. Reactive microglial cells release pro-
inflammatory cytokines, initiating a cascade, exacerbating protein
misfolding and neuronal death. Additionally, increased oxidative stress
disrupts mitochondrial activity, escalating neuronal dysfunction and
apoptosis (Norat et al., 2020). LCSFA is an effective inducer of ROS in
various tissues, including cardiomyocytes (Joseph et al., 2016), hepa-
tocytes (Yu et al., 2021), adipocytes (Shin, 2022), pancreatic p cells
(Sato et al., 2014) and neuronal cells (Urso and Zhou, 2022). Herein, we
demonstrate PA affect cell viability in SH-SY5Y cell as shown previously
by others in various in-vitro cell lines (Hsiao et al., 2014; Gonzalez-
Giraldo et al., 2018). LPS, part of gram negative bacteria’s outer mem-
brane, activates Toll-like receptor (TLR) 4 (Michot et al., 2023), which
then recruits downstream adaptors, like TIR-domain-containing
adaptor-inducing interferon- p (TRIF), TRF-related adaptor molecule
(TRAM), and myeloid differentiation primary response protein 88
(My88) (Fitzgerald et al., 2003; Ruckdeschel et al., 2004), all are
essential in activating transcription factors related to induction of pro-
inflammatory genes (Ruckdeschel et al., 2004; Zughaier et al., 2005).
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Fig. 4. Apelin-13 analogues scavenge ROS production and reduces cell apoptosis in PA and LPS induced stress. SH-SY5Y cells treated with PA and LPS in the
presence or absence of apelin-13 amide and (Lys8GIuPAL) apelin-13-amide. ROS production was assessed by measuring (A-B) total and oxidized glutathione (GSH/
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Moreover, in-vitro and in-vivo models utilizing LPS-induced neuro-
inflammation has been shown to promote A deposition (Sheng et al.,
2003) and presynaptic disruption (Sheppard et al., 2019). We addi-
tionally show that treatment with PA and LPS triggers dose and time
dependent reduction in cell viability, reduced mitochondrial membrane
potential, leading to ROS generation, increased expression of pro-
apoptotic genes and release of lactate dehydrogenase, a marker of cell
death.

Hence, restoring mitochondrial membrane potential, alleviating

endoplasmic and oxidative stress, and reversing pro-apoptotic gene ex-
pressions may reduce neuroinflammation, protect cells from apoptosis
and can provide therapeutic benefits for neurodegenerative disorders
(Nakka et al., 2016; Liu et al., 2024). A previous study conducted by our
group has shown that structural modification of native apelin-13
improved its stability and bioactivity (O'Harte et al., 2017; O’Harte
etal., 2018). We have also extensively studied the benefits of these novel
compounds in both in-vitro and in-vivo models of typel and type 2 dia-
betes (O’Harte et al., 2017; O’Harte et al., 2018; O’Harte et al., 2020).
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Additionally, apelin analogues have been previously shown to
improve cell survival in various in-vitro and in-vivo studies including
oxygen glucose deprivation cell models (Zhang et al., 2021a; Kaminska
et al., 2024). Apelin analogues have prevented aberrant apoptosis of
skeletal muscles cells, hippocampal neurons and SH-SY5Y neuroblas-
toma cells exposed to excitotoxic abuse, neurotoxins, hypoxia (Jiang
et al., 2018; Chen et al., 2020; O’Donnell et al., 2007; Wu et al., 2018;
Dong et al., 2020; Saral et al., 2021). The present study indicates acute
and chronic exposure to palmitate induces ROS-dependent lipotoxicity,
which are in agreement to previously conducted studies reporting
detrimental effects of PA on viability of cells (Thombare et al., 2017). In
this study, we have consistently reported that stable and novel apelin-
13-amide and (Lys8GIuPAL) apelin-13 amide showed restorative/pre-
ventive effect against PA and LPS induced cellular dysfunction and
promotes cell proliferation in dose and time dependent manner.

Our data also consistently show that both PA and LPS results in
elevated ROS generation, along with diminished GSH/GSSG activity and
a loss of mitochondrial membrane potential. Our study corroborates
previous findings showing PA and LPS can directly enhance ROS gen-
eration, decreases neuronal concentration of mitochondrial fusion pro-
tein, mitofusin 2 (MFN2), leading to Mitochondrial-ER stress (Alnahdi
et al., 2019; Schneeberger et al., 2013; Xu et al., 2015; Yi et al., 2016;
Zhang et al., 2021b; Sanchez-Alegria and Arias, 2023). Interaction with
mitochondrial carrier proteins by PA and LPS could lead in reduction of
mitochondrial membrane potential, leading to opening of permeability
transition pore (PTP), resulting in inner mitochondrial membrane per-
meabilization (IMM), which releases mitochondrial DNA (mtDNA) in
the cytoplasm and exposes cardiolipin to outer membrane of mito-
chondria, thus activating NLRP3 (nucleotide-binding domain, leucine-
rich-containing family, pyrin domain-containing-3) inflammasome and
secretion of cytokines IL-1f and IL-18 (Gonzalez-Giraldo et al., 2018; Yu
and Lee, 2016; Esteves et al., 2023; Han et al., 2023). As predicted,
apelin analogues were able to restrain PA and LPS induced mitochon-
drial dysfunction by regulating mitochondrial membrane potential.

For cells to resist oxidative damage, physiological antioxidants like
GSH play an important role. GSH is a vital scavenger of ROS, converting
to GSSG to neutralize ROS, thus GSH/GSSG ratio is commonly used to
assess levels of oxidative stress (Zitka et al., 2012). Cellular antioxidant
deficiencies, justified by decrease in reduced-to-oxidized GSH (GSH/
GSSG) ratio, could arise from impaired production or increased utili-
zation as seen in the presence of stressors like PA and LPS (Kurutas,
2016). Strikingly, we found that apelin had a potent antioxidant effect,
significantly restoring GSH/GSSG ratio and leading to notable reduction
in ROS levels, highlighting its promising role in mitigating cellular
oxidative stress.

Both PA and LPS increased the expression of anti-apoptotic gene, Bcl-
2 and reduced the pro-apoptotic Bcl-2 associated X protein (Bax)
expression, both involved in regulation of apoptosis, belonging to B-cell
lymphoma (Bcl-2) family. We also observed increased concentration of
caspase 3/7, proteases which are critical in apoptotic cascades in SH-
SYS5Y cells. However, treatment with stable apelin significantly attenu-
ated Bcl-2, cleaved caspase 3/7 and increased Bax expression, suggest-
ing apelin’s positive role in alleviating PA and LPS induced neuronal
apoptosis by regulating Bax, Bcl-2 and caspase. We have shown both PA
and LPS impaired neurite extension, most likely by induction of oxida-
tive stress and disruption of cytoskeletal dynamics (Jo et al., 2021).
Interestingly, apelin analogues were able to prevent and stimulate
neurite length in differentiated SH-SY5Y cells. Promotion of synaptic
and neurite outgrowth will maintain cell volume, improve memory and
learning in AD patients (Udomruk et al., 2020). However, studies con-
ducted by Boato and colleague (Boato et al., 2011) showed Interleukin-1
beta (IL-1p), with potent pro-inflammatory characteristic, increased
neurite growth in cortical slices. It would be interesting to look at the
synergistic action of apelin with IL-1p.

Likewise, AMPK pathway is indicated to play an essential role in cell
survival and apoptosis and is a key signalling molecule in antioxidant
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properties (Han et al., 2016). PA and LPS induced production of
oxidative stress have shown to impair phosphorylation of Akt and
activation of AMPK, both reduce cell survival and increase apoptosis by
supressing mTORC1 (mammalian target of rapamycin complex 1) ac-
tivity (Lee et al., 2014; Calvo-Ochoa et al., 2017). Our data suggests that
blocking of AMPK by pharmacological inhibitor Compound C, attenu-
ated the protective actions of our peptide, suggesting an important role
of AMPK in apelin-mediated protection against oxidative stress induced
cells death. Apelin modulates activation of AMPK which reduces ER
stress-mediated oxidative stress and neuroinflammation (Xu et al.,
2019). In presence of apelin, AMPK, has shown to increase and reduce
the concentrations of NLRP3 (NOD-like receptor protein 3) and TXNIP
(Thioredoxin-interacting protein), thus relieving ROS and inflammation
induced nerve injury in subarachnoid haemorrhage (Xu et al., 2019).
Previous studies have shown that apelin influence PI3K/Akt (Phos-
phoinositide 3-kinases/Protein kinase B) and MAPK/ERK (mitogen-
activated protein kinase/extracellular signal-regulated kinases) path-
ways, responsible for cell survival and growth (Chen et al., 2020).
Stimulation of PI3K/Akt leads to mTORCI activation, a key regulator for
cell growth and protein synthesis (Ramasubbu and Devi, 2023), while
activation of ERK has shown to promote neurite growth, resulting in
long term potentiation and memory (Jo et al., 2021).

Our findings suggests the dose- and time dependent reduction in cell
viability, driven by loss of mitochondrial membrane potential, ROS
generation, upregulation of pro-apoptotic genes and caspase activity,
indicating increase cell death. Concurrent treatment with our stable
apelin analogues effectively counteracts these deleterious effects in SH-
SY5Y cells. Our peptide not only protected neurites against stress but
also stimulated neurite outgrowth. These finding underscore therapeutic
potential of our novel, stable apelin analogues in mitigating inflamma-
tion induced cellular damage and promoting survival, making it a
promising candidate for further research in finding potential therapeutic
agent against AD.
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