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Abstract: Amputations are a prominent affliction that occur worldwide, with causes ranging from congenital, 

disease-based, or external reasons such as trauma. Prosthesis provides the closest alternative functional replace-

ment to the loss of a limb. Before any form of rehabilitation support can be offered to amputee patients, an as-

sessment of their degree and level of mobility first needs to be evaluated using the K-level grading system. The 

typical means towards the assigning of a K-level grading is through qualitative methods, which have been criti-

cized for being subjective and, at times, imprecise. As a means towards remedying this shortcoming, we investi-

gated the prospect of utilizing data from wearable sensors for analyzing the stride pattern and cadence of various 

subjects towards the quantitative inference of a K-level. This was accomplished using data from accelerometers, 

alongside advanced signal processing and machine learning models, towards the quantitative identification and 

differentiation of the various K-levels of amputees of varied levels of mobility. The experimental results showed 

that this aim could be accomplished under the circumstance investigated and the models applied as part of this 

research. Additional analysis was also done on the use of data from accelerometers towards the differentiation 

between amputated and non-amputated subjects, which showed that the cohorts could be classified and differen-

tiated using purely accelerometer data and the accompanying postprocessing methods. 

Keywords: Lower limb; Signal processing; Machine learning; Artificial intelligence; LSDL; Prosthesis; Wearable 

sensors; Amputations; Biomechanics; Orthopedics 

1. Introduction 

Amputations are a global phenomenon that can occur due to a host of reasons which can be pri-

marily summarized into three categories: traumas, diseases and multifarious reasons [1–5]. Traumatic 

amputations could occur due to accidents, burns or sports, for example. Diseases leading to amputa-

tions include diabetes, cancers, frostbite, blood infections and osteomyelitis [1–5]. Other reasons 

which could lead to amputations can include congenital manifestations and clinical negligence [1–5]. 

A structured visualization of various common causes of amputations can be seen in Figure 1. 

 



 

 

 

Figure 1. Various common causes of amputations [1]. 

A global amputation root cause analysis study, conducted on around 30,000 patients in various 

regions around the world, has helped showcase the leading causes of amputations within each region 

[6]. It can be inferred that the causes of amputations in certain regions can be linked to the characteris-

tics of the region, i.e., poor socioeconomic status, wars and conflict, among others. A summary snap-

shot showing the results of the survey conducted over 15 years in many countries worldwide can be 

seen in Figure 2 [1,7–11]. 

 

Figure 2. Results of a 15-year survey of lower limb amputation in various countries. The source table can be 

found in Asif et al. [1]. 

An annotated image of a skeletal view of the lower limbs can be seen in Figure 3, where it can be 

noted that each degree of limb loss has an associated technical terminology used to describe the con-

dition. 

 



 

 

 

Figure 3. Skeletal view of the lower limbs with various levels of amputation [12]. 

Within the UK, estimates of the costs associated with lower limb amputations to the NHS span 

£10,000–15,000 per procedure, which accumulates to around £50–75 million per annum and accounts 

for 0.5% of the NHS’ budget [13]. This figure rises when factors such as rehabilitation care and pros-

thesis support are added into the costing model [13].  

In terms of functional replacements for the loss of a lower limb, prosthesis devices can be 

adopted by amputees. There are three categories of lower limb prosthesis: i) the passive, which has 

components of fluidic and mechanized configurations; ii) the active, which are driven by an electro-

mechanical output; and iii) the semiactive, which embodies a hybrid between the aforementioned 

pair [1]. A hierarchical snapshot showing the various kinds of prosthesis, as well as their subcatego-

ries, can be seen in Figure 4. 

 

Figure 4. A hierarchical snapshot of the various kinds of prosthesis, along with subcategories [1]. 

There are currently 10 branded variants of lower limb prosthesis, which are embedded with vari-

ous kinds of sensors, including inertial measurement units (IMUs), force resistance sensors, accel-

erometers and EMG sensors, to name a few [14–16]. These brands include: SACH foot, which is a clas-



 

 

sic variant with mostly mechanical components; Orion is a microprocessor-based, transfemoral pros-

thesis; Plie is fairly lightweight and allows for loading up to 125 kg; Genium is a microprocessor-

based, passively driven hydraulic prosthesis with embedded IMUs; and Empower presents a variant 

of a bionic prosthesis which is tailored towards transtibial amputees who require functionality up-

stairs, and on ramps and hills [1,17–19]. Rheo Knee is based around a microprocessor magnetorheo-

logical system which is capable of a continuous adaptation to the various terrains that it is sur-

rounded by; while Power Knee represents a kind of intelligent prosthesis for transfemoral amputees 

which aids the restoration of lost power in the muscles and the symmetry of movement patterns 

[1,17–19]. SmartIP is a semiactive prosthesis system powered through hydraulic, pneumatic and elec-

trochemical power; whereas the PROPRIO FOOT is a semiactive transtibial prosthesis with an objec-

tive that is based around the replication of the human foot via a series of motorized ankle flexion sys-

tems [1,17–19]. Finally, C-Leg is a transfemoral prosthesis which has IMUs, strain gauges and knee 

angle sensors embedded within it [1]. 

Some of the control strategies adopted as part of the lower limb prosthesis include finite state, 

impedance, least square, dynamic programming, predictive control, and fuzzy logic [20–26]. All of 

these are tailored towards achieving various control objectives such as aiding natural movement, sta-

bility, and gait approximations [20–26]. As part of the estimation and identification problem in the 

control scheme, machine learning models have been adopted with the aims of achieving feats such as 

terrain trajectory planning, fall detection, terrain identification, gait detection, and stance phase detec-

tion [20–26].   

Within the field of lower limb amputation, the K-level is a metric that is used to determine the 

level of disability of an amputated patient [27]. The scheme works with a rating of 0–4, where a lower 

figure indicates a lessened level of mobility [27]. The various ratings are described as follows [27]:  

 

K-0: is indicative of a patient with limited mobility who requires support for basic movement ac-

tivities, and the provision of a prosthesis would not enhance their overall quality of life. 

K-1: this kind of patient would benefit from the use of prosthesis, which would allow for them to 

walk at a fixed speed or cadence. 

K-2: this kind of patient has mobility to a degree with a prosthesis, which would allow for them 

to navigate their way through environmental barriers such as uneven surfaces and curbs. 

K-3: a prosthesis for this type of patient allows for mobility at various cadences or multiple 

speeds, including for activities that supersede basic locomotion, i.e., exercise etc. 

K-4: the patient is capable of an exceedingly high amount of mobility, and this level is typically 

indicative of amputee patients who are Paralympians and/or athletes.  
 

The conventional means towards the assignment of K-levels typically involves the holistic assess-

ment of patient history, along with the state of the residual limb and the psychological condition of 

the patient, all of which are subjectively evaluated to yield a final K-level value [28–36]. These meth-

ods have been criticized considerably due to their subjective nature, and of course, occasionally being 

opinion-based [28–36]. Thus, there has been a growing desire for an alternative means towards the 

assignment of distinct K-level values based on gait and walking performance characteristics over the 

course of daily life [28–36]. However, significant work needs to be acknowledged which has been 

done by a group of authors who have adopted a set of biomechanical diagnostic devices for evaluat-

ing key mobility factors such as hip strength and mobility, as well as overall balance [37–42]. 

The steady uprise of wearable technologies has made it possible to have, in a sense, forms of mo-

bile health monitoring schemes, which in this case can help support the monitoring of the mobility 

level of amputees [36]. These wearable technologies are primarily accelerometers and pedometers 

[36]. Using this approach, previous work has shown that the average amputee takes less than the rec-

ommended 10,000 steps per day [36,43]. More specifically, cadence and walking speed have been said 

to provide key information that can be related back to K-levels, and can be recorded inexpensively 

[36,43]. Prior related work has estimated the cadence rhythm using Weibull scale statistical parame-

ters, from which it was deduced that smaller scale parameters were linked with a lower cadence rate, 

and so on, but relied on a continuous walking pattern [44]. The availability of wearable sensors has 

shown recorded uncertainty metrics under 0.10% [36]. 



 

 

In this study, we utilize the information from wearable sensors to monitor the cadence of various 

lower limb amputees towards a more quantitative method of assigning the K-level of an amputee. As 

part of this, and due to the information present alongside the accompanying data, we also look to in-

vestigate the extent to which an amputee vs a nonamputee could be differentiated solely based on 

their cadence. Furthermore, we conduct an auxiliary study to investigate whether there are distinct 

characteristics in the stride cadence of amputees who were amputated for different reasons, and thus 

have a varied perception of a phantom limb and a unique cadence rhythm. We aim to do all of this 

with the aid of advanced signal processing and machine learning models. 

In terms of advanced signal processing, multiresolution and signal decomposition methods are 

chiefly used towards the separation of a signal into component parts in an attempt to minimize uncer-

tainty and boost the overall quality of a signal [45–47]. The related literature includes the linear series 

decomposition learner (LSDL) and deep wavelet scattering (DWS) [48,49]. The LSDL represents a me-

taheuristic format, underpinned by a set of heuristics towards a continued systematic separation of a 

signal in subcomponents, with the knowledge that an optimal region within the signal would carry 

the greatest information quality and relatively less uncertainty [49,50]. The LSDL has proven to be 

useful in case studies involving nonlinear physiological signals, where it has been noted that the in-

clusion of the LSDL as a preprocessing mechanism prior to modelling activities has boosted the pre-

diction accuracy within the case study itself [49,50]. 

On the other hand, the DWS represents a unique signal decomposition method which is embed-

ded upon a merger between the wavelet transform and a deep learning architecture, i.e., a convolu-

tional neural network, thus rendering aspects of its architecture to be black box based [48,51]. In addi-

tion to being a signal decomposition tool, the DWS also serves as a means towards (unsupervised) 

feature extraction, where its features are not interpretable due to its deep learning architecture [52]. 

The DWS represents a growing method that is beginning to be favored in the area of nonlinear signal 

processing since it also offers a feature extraction prowess, therein negating the need for expert 

knowledge in the context of feature extraction of the signal. 

Machine learning represents the underpinning AI methods that are typically employed in pat-

tern recognition exercises as a means towards creating a form of classification between various classes 

of data [53,54]. Machine learning models are broad and numerous, while a range of these models 

have seen a fluent application within rehabilitation and a multitude of other aspects of clinical medi-

cine [53,54].  

In this paper, we utilize accelerometer recorded cadence data from the feet of amputee and non-

amputee subjects towards reaching the following contributions: 

 

 The use of the cadence sequence from the accelerometer for the differentiation between amputee 

vs nonamputee patients. 

 The differentiation of the mobility extent/K-level of various amputees using strictly the accel-

erometer data. 

 An exploratory exercise to investigate whether the cadence data of subjects who have been am-

putated for different reasons—and thus experience varied phantom sensations—result in a dif-

ference in accelerometer data. This could lead towards the differentiation between the two clas-

ses of amputee patients. 

 

From these, it is hypothesized that a deeper scientific understanding of the kind of biomechani-

cal information that can be inferred from accelerometry datasets on lower limb amputees would be 

established. 

 

2. Dataset 

The dataset used for this study is taken from Kim et al. [36], where a mixture of amputated and 

nonamputated individuals were recruited at the University of Michigan Orthotics and Prosthetics 

Center. All of the chosen participants had to be over 18, and the amputees needed to have been using 

a prosthesis for around 6 months and be able to walk unaided. The amputees recruited as part of the 

study had a K-level range of around K2–K4, with all amputees ensuring that they had no neurological 



 

 

diseases prior to being recruited. Informed consent was provided by both groups of participants, 

which was approved by the University of Michigan Institutional Review Board (HUM00096819) [36].  

All subjects were directed to walk at a comfortable pace with both the ActiGraph GT9X Link and 

a Global Positioning System over the duration of the acquisition. The activity monitors were attached 

to the foot of each subject, as seen in Figure 5, where the sampling rate of the sensor used was 100 Hz.  

 

Figure 5. An image showing the accelerometer and IMU attached to a subject’s foot, and a geographical tracking 

system in the form of a mobile phone (note that only the accelerometer data was utilized as part of the study) 

[36]. 

Figure 6 shows a breakdown of the various subjects whose data was recorded as part of the ac-

quisition. Here, it can be seen that the majority of the subjects were unilateral transtibial amputees 

who were amputated for a range of reasons; namely, trauma, dysvascular and congenital. A total of 

28 subject datasets were utilized as part of the study, where 14 of which were the nonamputees and 

the remaining 14 were amputees with ID numbers ranging from 1–15, since ID 03 amputee produced 

an error during the downloading process.  

 

Figure 6. Breakdown of the various subjects whose data was recorded as part of the acquisition. The source table 

can be found in Kim et al. [36]. 



 

 

From each subject, 20,000 samples x 3-axes from the accelerometer were used towards conduct-

ing the signal processing and machine learning exercise, resulting in 60,000 samples per subject. A 

visualization of the accelerometer signal from a sample segment of an amputee vs nonamputee can be 

seen in Figure 7. 

 

Figure 7. From left, the top three graphs correspond to the X, Y and Z axes of the accelerometer for the ampu-

tated subject, while the bottom three graphs correspond to the X, Y and Z axes of the accelerometer for the non-

amputated subject. 

When comparing the sets of graphs, it can be seen that there is a greater number of strides per 

interval and per unit time for the nonamputated subject than there is for the amputated patient. This 

elegantly reflects the mobility differences between the two cohorts by the level of dynamic activity in 

the timeframe visualized in the plots. 

Methods and Approach (3–5) 

3. Signal Decomposition Methods  

Signal decomposition methods are based around a methodical separation of the signal into com-

ponent parts in order to minimize noise, interferences and uncertainty, while boosting the overall sig-

nal quality. Two candidate methods were utilized for the signal decompositions in this work, namely, 

the metaheuristically driven LSDL and the deep learning based DWS. These two methods are de-

scribed in sections 3.1 and 3.2.  

 

3.1. LSDL 

The LSDL represents the use of metaheuristic reasoning for the systematic decomposition of a 

candidate signal into component parts, with the use of a set of defined heuristics alongside a candi-

date basis function with an embedded cost function capable of assessing the quality of each candidate 

decomposition [49,50,53–57]. The inception case study for the LSDL was for source separation of a 

heterogenous powder mixture from structural borne acoustic emission waves for the inference of the 

particle size distribution [58]. During this study it was seen that the LSDL has unique capabilities to-

wards the steady decomposition of nonlinear and stochastic signals, and when benchmarked with the 

classical wavelet transform the LSDL was seen to surpass its performance. 

Due to this feat, the LSDL has seen applications in wider areas outside of its inceptive case study, 

namely, in aspects of clinical medicine where mostly nonlinear physiological signals are acquired. 



 

 

The application of the LSDL has spanned areas such as rehabilitation, preterm pregnancy, surgical 

anesthesia and psychiatric medicine [54,57,59,60]. The LSDL has found a pivotal base being utilized as 

a preprocessing tool for the various sources of physiological signals prior to modelling and the associ-

ated prediction exercises.  

The LSDL contains an embedded cost function which is capable of assessing the “goodness” and 

quality of information from the subsequent decomposed time-series, where the embedded cost func-

tion is in the form of the normalized Euclidean distance metric. The normalization act serves to null 

out the limitation of a scale variance typically associated with the Euclidean distance. 

A mathematical formulation of the LSDL, alongside its supporting heuristics and underpinning 

reasoning, can be seen in Nsugbe et al. [50]. 

 

3.1.1. Optimal Threshold Search 

As per the sequence of the LSDL, two candidate signals were selected from different classes and 

utilized as part of the optimization process, which saw a multitude of decompositions using the pre-

formulated tuning heuristics. Each candidate decomposition was assessed using the embedded cost 

function, the results of which can be seen below in Table 1. 

Table 1. Results of candidate decomposition for the LSDL. 

 1st Iteration 2nd Iteration 3rd Iteration 

Upper Threshold 2.099 2.014 n/a 

Lower Threshold 2.005 2.007 2.071 

 

For each figure displayed in Table 1, the same decomposition region for the two classes being 

considered were compared, from which a final figure was obtained, as seen in Table 1. It can be noted 

that a total of 12 slices of decomposed signals were considered to assemble the list of figures, where 

the optimization objective here is the selection of the region with the highest performance index. The 

region with this value is subsequently regarded as the optimal threshold region, alongside its associ-

ated decomposition threshold parameters. 

The results show that the optimal threshold region resides within the 1st iteration of the upper 

threshold, which largely reflects that the upper amplitude region and the lower frequency aspects of 

the signal contain the key information within the signal, which is necessary for the modelling of the 

various signals. 

 

3.2. DWS 

Convolutional neural networks (CNNs) are a form of unsupervised feature learning method 

where multiscale features of a training sample are learned and acquired [61–63]. The DWS combines 

properties of both the CNN and the classical wavelet transform towards producing multiscale decom-

positions and learned features from candidate samples [61–63]. It is said that the DWS possesses the 

following key properties associated with its main stages: convolution with a mother wavelet; nonline-

arity due to a modulus; which is succeeded by a filtering and averaging act using wavelet low pass 

filters, which forms an analogue for pooling [61–63]. 

The joint property of the DWS makes it a form of both a signal decomposition mechanism and an 

unsupervised feature extraction tool. It is said that the acquired multiscale features from the DWS are 

of low variance, which are continuous and also robust to translations [61–63]. The key difference be-

tween the DWS’s CNN architecture and a standard CNN is the use of predefined configurations, i.e., 

wavelet and scaling filters, instead of an iterative learning sequence from data. In a way this poses as 

a strength, as fewer samples are required to reach a computational optimum [61–63]. 

Some of the key similarities between both architectures include contractions at a multiscale and 

linearization of hierarchical symmetries, as well as sparse representations. A block diagram series de-

picting the various stages associated with the DWS can be seen in Figure 8 [61–63]. 



 

 

 

Figure 8. Stages of the DWS [61]. 

In terms of the mathematical formalism of the method, Liu et al. [64] proposed a signal 𝑓(𝑡) be-

ing analysed by a low pass filter Ø, and a wavelet function Ψ spanning different frequencies for a low 
pass filter ØJ(𝑡), which provides a form of specialized translation invariance 𝑓 with a specified scale 

𝑇. A family of wavelet indices possessing an octavian-based resolution 𝑄𝑘 is denoted as ∧k, while 

the multiscale high pass filter banks {Ψjk}
𝑗𝑘∈∧k

 are assembled with a dilation of the wavelet Ψ [61–

63].  

In the DWS, a wavelet scattering network is put into play with the use of a deep CNN which, as 

anticipated, performs a convolutional act via classical wavelets, a nonlinear modulus, and an averag-
ing scaling function [61–63]. For the convolution part, 𝑆0𝑓(𝑡) = 𝑓 ∗ ØJ(𝑡) (for which 𝑆0 is the zero-

order scattering coefficients) generates locally translation invariant features of 𝑓 where, despite 

yielding a degree of information loss at the higher frequencies, an information recovery act is initiated 

via a wavelet modulus transform |𝑊1|, as expressed in Equation 1 [61–63]:  

 

|𝑊1|𝑓 = {𝑆0𝑓(𝑡), |𝑓 ∗ Ψj1(𝑡)|}
𝑗1∈∧1

 (1) 

In a hierarchical manner, the first order scattering coefficients can be obtained with the averaging of 
the modulus coefficients with ØJ(𝑡), as described in Equation 2 [61–63]: 

 

𝑆1𝑓(𝑡) = {|𝑓 ∗ Ψj1(𝑡)|  ∗ ØJ(𝑡)}
𝑗1∈∧1

  (2) 

Once again, the sequence to recover any information lost during the averaging process, with respect 
to the notion that 𝑆1𝑓(𝑡), can be viewed as the low frequency component of |𝑓 ∗ Ψj1|, while the 

wavelet modulus of the high frequency can be expressed as Equation 3 [61–63]: 

 

|𝑊2||𝑓 ∗ Ψj1| = {𝑆1𝑓(𝑡), ||𝑓 ∗ Ψj1| ∗ Ψj2(𝑡)|}
𝑗2∈∧2

 (3) 

Which subsequently gives rise to the second order coefficients in Equation 4: 

 

𝑆2𝑓(𝑡) = {||𝑓 ∗ Ψj1| ∗ Ψj2| ∗ ØJ(𝑡)}
𝑗2∈∧2

 𝑖 = 1,2. (4) 

A continuous iteration of the defined process yields the wavelet modulus convolutions shown in 

Equation 5: 

 

𝑈𝑚𝑓(𝑡) = {||𝑓 ∗ Ψj1| ∗ … . . | ∗ Ψjm|}
𝑗1∈∧1

, 𝑖 = 1,2, … 𝑚. (5) 

Where 𝑈𝑚 is an mth order modulus. The procedure towards obtaining the mth order scattering coef-
ficients, 𝑈𝑚𝑓(𝑡) with ØJ, can be seen as follows in Equation 6: 

 

𝑆𝑚𝑓(𝑡) = {||𝑓 ∗ Ψj1| ∗ … . . | ∗ Ψjm| ∗ ØJ(𝑡)}
𝑗1∈∧1

, 𝑖 = 1,2, … 𝑚 (6) 

This approach is utilized towards obtaining the final scatter matrix 𝑆𝑓(𝑡) = {𝑆𝑚𝑓(𝑡)}0≤𝑚≤𝑙, which 

merges all the scattering coefficients from all orders as a means of characterizing an input signal for 𝑙 

decompositions. A hierarchical tree visualization of the method, can be seen in Figure 9. 



 

 

 

Figure 9. A tree-based visualization of the scattering decomposition network, where the output features are not 

solely from the final layer, as per the standard CNN, but a from combination of all preceding layers [64]. 

As the energy content of the scattering coefficients saturates with an increasing number of layers, 

it has been noted that the bulk of the energy in the signal is hosted within the first two layers. Due to 

this, only the information of the first two layers of the network was utilized for the analysis in this 

work. Supporting parameters utilized as part of the wavelet scattering decomposition involved the 

use of the Gabor wavelet as the mother wavelet, with the scale invariance set to 1, based on the results 

from previous work [57]. The other default parameters were 8 wavelets per octave in the first filter 

bank, in addition to 1 wavelet per octave in the second filter bank [57]. 

4. Feature Extraction 

A range of features were extracted from the accelerometer signals, which were applied in a prior 

study for the characterization of nonlinear signals [65]. This group of features comprises the linear 

statistics all the way towards chaos-based features, which are expected to contribute towards an effec-

tive characterization and modelling of the candidate signal [65]. The range of features were adopted 

from Nsugbe et al. [65], which readers should consult for more details on the feature set itself. For all 

features a threshold of 1 µv was used, while for the entropy features, 0 and 0.2 values were chosen for 

m and r respectively. 

5. Machine Learning 

 Decision Tree (DT): is a grey box model driven off Boolean logic, and partitions data into vari-

ous groups in a hierarchical fashion [66]. The decision making scheme of these models is largely 

interpretable, hence they have an air of transparency associated with their decision making [66]. 

 Discriminant Analysis: this machine learning model is embedded upon statistical reasoning 

where, at first, a lower dimensional projection of the dataset is performed, and succeeded by a 

placement of the various class boundaries [67]. In this work, both the linear and quadratic class 

boundaries were utilized in various capacities, hence the linear discriminant analysis (LDA) and 

quadratic discriminant analysis (QDA). 

 Logistic Regression (LR): represents another statistically driven classification framework which 

outputs classification scores in a range that spans 0–1 [68]. The approach utilizes a sigmoid to-

wards the robustified distinguishing between classes when contrasted against its linear regres-

sion counterpart [68]. 
 K-Nearest Neighbor (KNN): is a kind of nonparametric classification model which is based 

upon a majority voting scheme towards assigning samples to different classes [69]. K was se-

lected as 1 in this work, in the interest of computational efficiency, while the Euclidean distance 

was used as the means of calculating the distance between data classes [69]. 

 

The MATLAB classification learner application was utilized for all the machine learning model 

build exercises, where the hyperparameters associated with each model were tuned automatically 



 

 

and iteratively as part of the build process. The k-fold cross validation scheme was used for validat-

ing the final models, where k was chosen to be 10. 

6. Results 

6.1. Differentiation of Amputees vs Nonamputees via Cadence 

The results in Table 2 show the various classification accuracies for the differentiation between 

amputees vs nonamputees, based purely from the cadence pattern obtained from their accelerometer 

datasets. For the direct use of the raw signal, the best model performance was seen to be the LDA, 

with a classification accuracy of 61%. A substantial performance increase was seen in the case of the 

LSDL, where the best accuracy was obtained at 96% for the LR model, once again showcasing the 

power of the LSDL as a preprocessing tool for time-series signals. For the DWS, the best classification 

accuracy was 85%, this time for the KNN model. Contrasting the performance metrics obtained for all 

three methods, it can be seen that the LSDL boasts the best performance across the board, emphasiz-

ing its prowess in reducing the overall uncertainty within a time-series signal. However, it needs to be 

mentioned that there is no one-size-fits-all best classification model, irrespective of the method used. 

Rather, it can be noted that the optimal classification model varied across all methods, spanning the 

LDA, LR, and KNN. 

Table 2. Classification accuracies for differentiation between amputees vs nonamputees. 

Model Raw Signal (%) LSDL (%) DWS (%) 

Tree 59 60 69 

LDA 61 94 58 

QDA n/a n/a 57 

LR 61 96 59 

KNN 64 76 85 

 

Figure 10 shows the principal component analysis (PCA) projection for the various tables pre-

sented in this subsection, from which it can be seen that the best projection and maximal cluster sepa-

ration was seen to occur for the LSDL. Once again, this showcases the power of the LSDL as a prepro-

cessing tool prior to subsequent signal modelling. It can be noted that the number of samples for the 

DWS is increased relative to the other two methods, due to the multiscale dilation properties of the 

DWS. 



 

 

 

Figure 10. PCA plot with 98% variability explained. Left: DWS; Middle: LSDL; Right: Raw signal. 

6.2. Prediction of K-level 

For this case study, the DWS was used as the analytical method. This was due to the optimal 

LSDL threshold not finding any signal peaks for some of the selected amputee dataset, thus returning 

zeros in certain cases. A total of six amputee patients’ datasets were used, of which there were two 

patients from the K-levels 2–4. This case study was based around the investigation to see if the K-lev-

els can be inferred solely from the accelerometer dataset, and therein be used as a means towards as-

signing the K-level in future scenarios.  

The results from the K-level prediction exercise can be seen in Table 3, from which it can be 

noted that the best performance metric was for the LR model, which boasted an accuracy of 82%. This 

indicates a generally high and reliable performance metric, suggesting that the proposed method 

could be leveraged towards the assignment of K-level based on a combination of accelerometer data 

and the DWS postprocessing. 

 

Table 3. Classification accuracy of the DWS from the accelerometer dataset. 

Model Classification Accuracy (%) 

Tree 72 

LDA 55 

QDA 48 

LR 82 

KNN n/a 

 

However, it should be mentioned that the sample size used as part of this case study was rather 

small and constrained, but the multiscale contraction property of the DWS helped to serve as a sam-

ple population characteristic to broaden the sample size. Nevertheless, further work would need to be 

done with a broader sample size in order to investigate this notion more thoroughly. 

 

 

 

 



 

 

6.3. Cause of Amputation Differentiation 

As per the Penfield homunculus, the different body parts requiring a sense of motor activity 

have a unique mapping across the cortex in the human brain [70–72]. Postamputation, the neurologi-

cal mapping of that particular limb remains in the homunculus, as well as the afferent and efferent 

nerve pathways in a closed loop within the brain [70–72]. This accounts for a plausible explanation 

behind so-called phantom limb sensations, or the ghosts of departed limbs [70–72].  

It is presumed that different kinds of underpinning reasons behind amputations could contribute 

towards a unique kind of phantom sensation, post-limb-loss. This could manifest itself further by re-

sulting in varied stride biomechanics and cadence rhythm in the subamputee population, and can be 

captured with an accelerometer.  

For this case study, the DWS was used once again, and two patients’ data was used from two 

groups: amputation due to, i) trauma; and ii) a dysvascular disease, which thus amounted to four da-

tasets in total. The results can be seen in Table 4, where the KNN model provided the best classifica-

tion accuracy. In a sense, this provides some evidence that the phantom motions do indeed influence 

the subsequent stride and cadence patterns of the amputees. As with the prior case study in section 

6.2, a much bigger study would need to be done in order to thoroughly investigate the consistency of 

this. 

Table 4. Classification accuracy of the DWS for two types of amputation (trauma and dysvascular disease). 

Model Classification Accuracy (%) 

Tree 83 

LDA 68 

QDA 70 

LR 69 

KNN 88 

7. Conclusion and Future Work 

Amputations are widespread and occur around the world for a multitude of reasons, including 

trauma and disease. Epidemiological studies have shown that the drivers behind amputations can be 

linked and traced to the socioeconomic region and political agenda of a country. Lower limb prosthe-

ses serve as a functional replacement for various degrees of lower limb losses, which are categorized 

as passive, active, and a semiactive intermediary. Not long after amputation, the mobility extent of an 

amputee is evaluated using a derived K-level scheme which spans from 0–4, with a higher figure in-

dicating a greater level of mobility. The typical means of assigning K-levels include a qualitative as-

sessment of both the mobility patterns and the nature of the residual tissue of the amputated stump. 

Results have indicated that there is a considerable amount of subjectivity in the assignment of these 

various K-levels, which warrants the desire for a more quantitative approach towards the assignment 

of these values.  

In this study, we utilized the accelerometer dataset from both amputated and nonamputated 

subjects to investigate whether it is possible to differentiate between them purely from their stride 

rhythm and cadence, while also identifying the K-levels of amputees. The results showed that the 

subjects can be differentiated between with a high degree of accuracy while utilizing the LSDL pre-

processing algorithm. For the K-level identification work, it was seen that the K-levels could be identi-

fied using purely accelerometer data from stride patterns with the use of the DWS. Hence, this forms 

initial evidence supporting potential application in a clinical setting towards a more accurate means 

of assessing degrees of mobility in amputated patients. 

Subsequent work in this area could involve the collection of a broader range of data from ampu-

tees with a full range of K-levels in order to further, and more robustly, test and investigate this no-

tion and developed model. 
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