On some results concerning generalized arithmetic triangles

Armen G. Bagdasaryan ${ }^{1}$
Department of Mathematics
American University of the Middle East
Eqaila, Kuwait
in affiliation with Purdue University
West Lafayette, IN 47907, USA

Ovidiu Bagdasar ${ }^{2}$
Department of Electronics, Computing and Mathematics
University of Derby
Kedleston Road, Derby, DER2 1GB, United Kingdom

Abstract

In this paper we present theoretical and computational results regarding generalized arithmetic m-triangles. The numerical values recover well-known number sequences, indexed in the OEIS including binomial coefficients and their extensions. Some combinatorial interpretations, generating functions and also asymptotic formulae for these triangles are provided.

Keywords: recurrent sequences, pentanomial numbers, generalized binomial coefficients, asympotic formulae.

[^0]
1 Introduction

Let m and n be positive integers. The element of the m-arithmetic triangle located at the intersection of the i th row and j th column denoted by $p_{i j}^{(m)}$ is defined by the recurrence

$$
p_{i j}^{(m)}=p_{i-1 j}^{(m)}+p_{i-1 j-1}^{(m)}+\cdots+p_{i-1 j-m+1}^{(m)},
$$

with the initial conditions

$$
p_{0 j}^{(m)}=\left\{\begin{array}{l}
0 \text { if } j<0, \\
1 \text { if } j=0, \\
0 \text { if } j>0
\end{array}\right.
$$

The element in each cell is the sum of m elements: the element directly above the given element and the $m-1$ elements to the left of it. Hence, the matrix

$$
P^{(m)}(n)=\left(p_{i j}^{(m)}\right), \quad 0 \leq i, j \leq n-1
$$

of the elements of the m-arithmetic triangle is defined as follows

$$
p_{i j}^{(m)}=\left\{\begin{array}{cl}
0 & \text { if } i=0,1 \leq j \leq n-1, \\
1 & \text { if } j=0,0 \leq i \leq n-1 \\
\sum_{l=j-m+1}^{j} p_{i-1, l}^{(m)} \text { if } 1 \leq i, j \leq n-1 .
\end{array}\right.
$$

For $m=2$ one obtains the elements in Pascal's triangle. Numerous OEIS sequences are obtained from particular columns of the m-triangle.

For example, for $p_{n 3}^{(3)}$ one obtains the sequence indexed as A005581

$$
0,0,2,7,16,30,40,77,112,156,210, \ldots,
$$

in the Online Encyclopedia of Integer Sequences (OEIS) [7].
The sequence $p_{n 4}^{(3)}$ whose terms are given by

$$
0,0,1,6,19,45,90,161,266,414,615, \ldots
$$

corresponds to sequence A005712.

2 Numerical computation of the m-triangles

For a fixed value of $m \geq 2$ and $n \geq 1$ one can compute the rows of the m triangle by matrix iterations. Denoting by $p_{i}^{(m)}$ the i th row of the m-triangle, the following formula holds

$$
p_{i+1}^{(m)}=p_{i}^{(m)} M_{m, n},
$$

where the matrix $M_{m, n}$ has size $[n(m-1)+1] \times[n(m-1)+1]$ and has m diagonals whose entries are all equal to 1 , as shown below

$$
M_{m, n}=\left(\begin{array}{ccccccccccc}
1 & 1 & 1 & \ldots & 1 & 0 & 0 & 0 & \ldots & 0 & 0 \tag{1}
\end{array}\right)
$$

One obtains recursively the following identities

$$
p_{i}^{(m)}=p_{i-1}^{(m)} M_{m, n}=p_{i-2}^{(m)} M_{m, n}^{2}=\cdots=p_{0}^{(m)} M_{m, n}^{i} .
$$

Numerous integer sequences are obtained as particular cases:

- $m=2$: binomial coefficients A007318;
- $m=3$: trinomial coefficients A027907; The first four rows give the values:

$$
1,1,1,1,1,2,3,2,1,1,3,6,7,6,3,1,1,4,10,16,19,16,10,4,1, \ldots
$$

- $m=4:$ quadrinomial coefficients A008287; First three rows give the values:

$$
1,1,1,1,1,1,2,3,4,3,2,1,1,3,6,10,12,12,10,6,3,1, \ldots
$$

- $m=5$: pentanomial coefficients A035343.

The sequence of maximum values over each row gives the sequences A001405 $(m=2)$, A002426 $(m=3)$, A035343 $(m=4)$ and A005191 $(m=5)$.

Other related results can be found in [2], [3] and [4].

3 Some Explicit Formulae

Let $p_{i j}^{(m)}$ be the element located at the intersection of the i th row and j th column of the m-arithmetic triangle. The generating function of these numbers is given by [1]

$$
\left(1+x+x^{2}+\ldots+x^{m-1}\right)^{i}=\sum_{j=0}^{(m-1) i} p_{i j}^{(m)} x^{j}, \quad m \in \mathbb{N}, \quad i \in \mathbb{N} \cup\{0\}
$$

The element $p_{i j}^{(m)}$ is the coefficient of x^{j} in the formal expansion of

$$
\left(1+x+x^{2}+\ldots+x^{m-1}\right)^{i} .
$$

We can formulate the following results.
Theorem 3.1 Let $l=\min \{i, j\}$. Then for $m \in \mathbb{N}$ and $i \in \mathbb{N} \cup\{0\}$

$$
p_{i j}^{(m)}=\sum_{\substack{s_{0}+s_{1}+\ldots+s_{m-1}=i \\ s_{1}+2 s_{2}+\ldots+m-1, s_{m-1}=j \\ s_{\nu}=0,1, \ldots, l}} \frac{i!}{s_{0}!s_{1}!\ldots s_{m-1}!}, \quad j=0,1, \ldots,(m-1) i .
$$

Theorem 3.2 Let $l=\min \{i, j\}$. Then for $m=3$ we have

$$
p_{i j}^{(3)}=\sum_{k=j-l}^{\lfloor j / 2\rfloor} \frac{i!}{k!(j-2 k)!(i-j+k)!}, \quad j=0, \ldots, 2 i .
$$

Example 3.3 As an example, we consider the case when $m=3, i=4, j=2$. Then, according to Theorem $3.2, l=2, j-l=0$, and $\lfloor j / 2\rfloor=1$, and we get

$$
p_{42}^{(3)}=\sum_{k=0}^{1} \frac{4!}{k!(2-2 k)!(2+k)!}=\frac{4!}{0!2!2!}+\frac{4!}{1!0!3!}=10
$$

which is exactly the number positioned in the 4th row and 2nd column of the 3 -arithmetic triangle (see the Table 1).

Example 3.4 Consider the 4 -arithmetic triangle and put $m=4, i=2$, and $j=3$. Then $l=2$, and by formula for $p_{i j}^{(m)}$ in Theorem 3.1, we have

$$
p_{23}^{(4)}=\sum_{\substack{s_{0}+s_{1}+s_{2}+s_{3}=2 \\ s_{1}+2 s_{2}+3 s_{3}=3 \\ s_{\nu}=0,1,2}} \frac{2!}{s_{0}!s_{1}!s_{2}!s_{3}!} .
$$

$R \backslash C$	-2	-1	0	1	2	3	4	5	6	7	8	9	10	\ldots
0	0	0	1											
1	0	0	1	1	1									
2	0	0	1	2	3	2	1							
3	0	0	1	3	6	7	6	3	1					
4	0	0	1	4	10	16	19	16	10	4	1			
5	0	0	1	5	15	30	45	51	45	30	15	5	1	\ldots

Table 1
3-Arithmetic Triangle
From the conditions

$$
s_{1}+2 s_{2}+3 s_{3}=3 \quad \text { and } \quad s_{1}+s_{2}+s_{3} \leq 2,
$$

we find two sets of solutions

$$
\left\{s_{1}=0, s_{2}=0, s_{3}=1\right\} \quad \text { and } \quad\left\{s_{1}=1, s_{2}=1, s_{3}=0\right\}
$$

Then the value of $s_{0}=1$ for the first set and $s_{0}=0$ for the second set.
Hence, we obtain $p_{23}^{(4)}=\frac{2!}{1!0!011!}+\frac{2!}{0!1!1!0!}=2+2=4$, which is the number positioned at the intersection of the 2 th row and 3 nd column of the 4 -arithmetic triangle (see the Table 2).

$R \backslash C$	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	\ldots
0	0	0	0	1												
1	0	0	0	1	1	1	1									
2	0	0	0	1	2	3	4	3	2	1						
3	0	0	0	1	3	6	10	12	12	10	6	3	1			
4	0	0	0	1	4	10	20	31	40	44	40	31	20	10	4	1

Table 2
4-Arithmetic Triangle

4 Future work

Future investigations will be dedicated to the identification of new integer sequences related to m-sequences and to establishing of asymptotic expansions for the numbers $p_{i j}^{(m)}$ when $i, j \rightarrow \infty$ and $m \in \mathbb{N}, m \geq 2$ fixed.

The key results in the proof are based on theory given in [5] and [6].
Proposition 4.1 Let ξ be a random variable with the probability distribution

$$
\mathbf{P}\{\xi=\mathbf{k}\}=\frac{1}{m}, \quad k=0,1, \ldots, m-1 .
$$

Then the cumulants \mathfrak{c}_{n} of a random variable ξ are defined by the formula

$$
\mathfrak{c}_{1}=\mathbf{E}[\xi]=\frac{m-1}{2}, \quad \mathfrak{c}_{2 \nu}=\frac{B_{2 \nu}}{2 \nu}\left(m_{2 \nu}-1\right), \quad \mathfrak{c}_{2 \nu+1}=0,
$$

where $B_{2 \nu}$ are the Bernoulli numbers, $\nu=1,2, \ldots$.
Proposition 4.2 Let ξ_{1}, \ldots, ξ_{i} be independent random variables with the probability distribution of ξ. Then we have

$$
p_{i j}^{(m)}=m^{i} \mathbf{P}\left\{\xi_{1}+\ldots+\xi_{i}=j\right\}, \quad j=0,1, \ldots,(m-1) i
$$

The formula for \mathfrak{c}_{n} above can be derived using the expression [5]

$$
\ln \mathbf{E}\left[e^{z \xi}\right]=\frac{m-1}{2} z+\sum_{n=2}^{\infty} \frac{\mathfrak{c}_{n}}{n!} z^{n}, \quad|z|<\frac{2 \pi}{m} .
$$

Theorem 4.3 Let $i \rightarrow \infty, m \geq 2, m \in \mathbb{N}$ and let $j \rightarrow \infty, j \in \mathbb{N}$, such that

$$
j=\frac{1}{2}\left((m-1) i+x \sqrt{\frac{i\left(m^{2}-1\right)}{3}}\right), \quad|x| \leq c, c=\text { const. }
$$

Then, uniformly with respect to $x \in[-c, c]$, we have

$$
p_{i j}^{(m)}=m^{i} \sqrt{\frac{6}{\pi i\left(m^{2}-1\right)}} e^{-\frac{x^{2}}{2}}\left(1+\sum_{\nu=1}^{r} \frac{Q_{2 \nu}(x)}{i^{\nu}}+O\left(i^{-r-1}\right)\right), \quad r=1,2, \ldots
$$

where $Q_{2 \nu}(x)$ are polynomials in $x, \nu=1,2, \ldots$, given by

$$
Q_{\nu}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \sum_{\substack{k_{1}+2 k_{2}+\ldots+\nu k_{\nu}=0 \\ k_{1}+k_{2}+\ldots+k_{\nu}=s}} H_{\nu+2 s}(x) \prod_{t=1}^{\nu} \frac{1}{k_{t}!}\left(\frac{\mathfrak{c}_{t+2}}{(t+2)!\sigma^{t+2}}\right)^{k_{t}}
$$

References

[1] B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, their Fractals, Graphs and Applications, The Fibonacci Association, Santa Clara, 1993. Translated from Russian by R. C. Bollinger
[2] R. Bacher, Determinants of matrices related to the Pascal triangle, J. Theorie Nombres Bordeaux, 14 (2002) 19-41.
[3] B. Birregah, P. K. Doh, K. H. Adjallah, A systematic approach to matrix forms of the Pascal triangle: The twelve triangular matrix forms and relations, European J. Combinatorics, 31 (2010) 1205-1216.
[4] A. R. Moghaddamfar, S. M. H. Pooya, S. Navid Salehy, S. N. Salehy, On the matrices related to the m-arithmetic triangle, Linear Algebra and its Applications, 432 (2010) 53-69.
[5] V. N. Sachkov, Probabilistic Methods in Combinatorial Analysis. Cambridge University Press, 1977.
[6] V. V. Petrov, Sums of Independent Random Variables. Springer, 1975.
[7] The On-Line Encyclopedia of Integer Sequences, http://oeis.org, OEIS Foundation Inc. (2011).

[^0]: ${ }^{1}$ Email: armen.bagdasaryan@aum.edu.kw
 ${ }^{2}$ Email: o.bagdasar@derby.ac.uk

