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Abstract

Existing approaches to social media sentiment analysis typically focus on static classifica-
tion, offering limited foresight into how public opinion evolves. This study addresses that
gap by introducing the Multi-Feature Sentiment-Driven Forecasting (MFSF) framework,
a novel pipeline that enhances sentiment trend prediction by integrating rich contextual
information from text. Using state-of-the-art transformer models on the Sentiment140
dataset, our framework extracts three concurrent signals from each tweet: sentiment polar-
ity, aspect-based scores (e.g., ‘price’ and ‘service’), and topic embeddings. These features
are aggregated into a daily multivariate time series. We then employ a SARIMAX model to
forecast future sentiment, using the extracted aspect and topic data as predictive exogenous
variables. Our results, validated on the historical Sentiment140 Twitter dataset, demon-
strate the framework’s superior performance. The proposed multivariate model achieved a
26.6% improvement in forecasting accuracy (RMSE) over a traditional univariate ARIMA
baseline. The analysis confirmed that conversational aspects like ‘service’ and ‘quality’ are
statistically significant predictors of future sentiment. By leveraging the contextual drivers
of conversation, the MFSF framework provides a more accurate and interpretable tool for
businesses and policymakers to proactively monitor and anticipate shifts in public opinion.

Keywords: sentiment analysis; time-series forecasting; consumer behavior; Natural Language
Processing; transformer models; SARIMAX; exogenous variables; aspect extraction

1. Introduction
In the contemporary digital era, social media platforms have evolved from simple

communication channels into vast, real-time repositories of public opinion and consumer
sentiment. Platforms such as Twitter, Reddit, and Facebook host a continuous stream of
user-generated content, offering an unprecedented window into the collective attitudes,
preferences, and emotions of millions of individuals [1]. This explosion of unstructured
data represents a paradigm shift in market research, moving beyond the limitations of
traditional methods like surveys and focus groups, which are often characterized by high
costs, significant time lags, and potential sample biases [2]. Social media analytics provides
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an opportunity to listen to the ‘voice of the customer’ at a scale and velocity previously
unimaginable, enabling organizations to detect nascent trends, track brand perception,
and respond to consumer feedback with remarkable agility. This study leverages public
sentiment from Twitter as a proxy for broader consumer sentiment, acknowledging that
while powerful, this data source is subject to demographic sampling bias. Our work
addresses the critical gap between static sentiment analysis and dynamic forecasting,
aiming to predict not just what the sentiment is, but where it is headed and why.

1.1. The Evolution of Sentiment Analysis

The primary tool for making sense of this textual data has been sentiment analysis, a
field of Natural Language Processing (NLP) dedicated to automatically identifying and
extracting subjective information from text. The discipline has undergone a significant
evolution. Early approaches relied on lexicon-based methods (e.g., SentiWordNet), which
classified text based on the presence of words with pre-assigned sentiment scores. While
fast and interpretable, these methods often struggled with the nuance, context, and slang
prevalent in social media discourse [3].

The advent of machine learning and, more recently, deep learning, brought substantial
improvements. The transformer architecture, epitomized by models like BERT (Bidirec-
tional Encoder Representations from Transformers) and its variants, revolutionized the
field by enabling models to understand text in a deeply contextual manner [4]. These
models have achieved state-of-the-art performance on a wide range of NLP tasks, including
sentiment classification.

1.2. The Gap: From Static Classification to Dynamic Forecasting

Despite these advancements, the vast majority of sentiment analysis applications
remain focused on static classification—assigning a simple ‘positive,’ ‘negative,’ or ‘neutral’
label to a document. This approach, while useful for descriptive analytics (i.e., understand-
ing what has already happened), offers limited foresight. It fails to answer critical questions
for strategic decision-making: Where is public sentiment headed? What are the underlying
drivers of a sudden shift in consumer mood? An organization that only learns about a
surge in customer dissatisfaction after the fact is already at a disadvantage.

The true strategic value of sentiment analysis lies in its potential to serve as a leading
indicator for real-world behavioral outcomes. Previous research has established tantalizing
links between aggregated social media sentiment and real-world outcomes. The seminal
work presented in [5] demonstrates a correlation between public mood on Twitter and the
stock market, while [6] shows that the volume and sentiment of tweets could effectively
predict movie box office revenue [5]. These studies highlight the potential of social media
data as a leading indicator for behavioral and economic trends. However, many of these
studies treat sentiment as a monolithic, univariate signal overlooking the rich, multi-faceted
nature of underlying conversations. They can predict that sentiment might fall, but not why.
A critical gap in current research is the lack of a framework that systematically extracts
and leverages the contextual drivers within the text—the specific aspects and topics being
discussed—to create a more accurate and interpretable forecast.

1.3. Proposed Framework and Contributions

This study addresses this gap by introducing the Multi-Feature Sentiment-Driven
Forecasting (MFSF) framework. We move beyond simple polarity forecasting by building a
multivariate time series model that is conditioned on a rich set of features automatically
extracted from the text itself. Our framework demonstrates that by understanding the
context of the conversation, we can more accurately predict its future trajectory.

This paper makes the following primary contributions to the field:
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1. A Novel Multi-Feature Framework: We propose and implement a framework that
fuses three distinct types of textual signals—polarity scores, aspect-based confidence
scores, and low-dimensional topic embeddings—to create a comprehensive, multi-
variate representation of daily public sentiment.

2. Application of Exogenous Forecasting Models: We demonstrate the successful ap-
plication of a SARIMAX (Seasonal AutoRegressive Integrated Moving Average with
eXogenous variables) model, using the extracted contextual features as predictive
exogenous variables to enhance forecasting accuracy.

3. Rigorous Empirical Validation: We provide a robust, empirical comparison of our
proposed multivariate model against a standard univariate Autoregressive Inte-
grated Moving Average (ARIMA) baseline on the large-scale, real-world Sentiment140
dataset [7–10].

4. An Interpretable and Reproducible Pipeline: We present an end-to-end, reproducible
methodology that not only improves predictive performance but also provides inter-
pretable insights into which conversational features are statistically significant drivers
of sentiment change.

The remainder of this paper is organized as follows. Section 2 provides a detailed
review of the relevant literature in sentiment analysis and time series forecasting. Section 3
presents the complete methodology of the MFSF framework, including its architecture
and the algorithmic procedure. Section 4 details the empirical results of our experiments,
including an exploratory analysis, a comparison of forecasting models, and a statistical
deep dive into our proposed model. Section 5 discusses the broader implications and
limitations of our findings. Finally, Section 6 concludes the paper and proposes directions
for future research.

2. Literature Review
This section reviews the two foundational streams underpinning our study: (1) the

evolution of sentiment analysis, culminating in Aspect-Based Sentiment Analysis (ABSA),
and (2) time series forecasting methods capable of incorporating exogenous variables. We
then identify the research gap that our Multi-Feature Sentiment-Driven Forecasting (MFSF)
framework addresses.

2.1. Evolution of Sentiment Analysis
2.1.1. Lexicon-Based and Traditional Machine Learning Approaches

Early sentiment systems relied on curated lexicons such as SentiWordNet and VADER
to assign polarity scores to text without the need for annotated datasets. These rule-based
approaches are lightweight and domain-independent, making them useful in low-resource
or real-time scenarios [11,12]. However, they struggle to capture subtleties like sarcasm,
negation, or contextual sentiment shifts.

To improve accuracy, machine learning methods such as Support Vector Machines
(SVMs), Naive Bayes, and Decision Trees emerged, using hand-crafted features like TF-IDF,
POS tags, and n-grams [13,14]. These supervised models require labeled data but can
generalize better than rule-based systems when sufficient examples are available. Hybrid
models that combine lexicons with machine learning have shown promise, especially in
non-English or domain-specific corpora [15], revealing the complementary strengths of
each approach.

2.1.2. Deep Learning: CNNs, LSTMs, and Beyond

The advent of deep learning shifted the field by automating feature extraction and
improving the ability to model complex linguistic patterns. Convolutional Neural Networks
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(CNNs) capture local syntactic features and sentiment cues, while Recurrent Neural Networks
(RNNs), particularly Long Short-Term Memory (LSTM) networks, could retain long-range
dependencies in sequential text [16,17]. These models dramatically improved sentiment
classification accuracy but were data-hungry and computationally expensive to train.

Enhancements such as bidirectional LSTMs and attention mechanisms allowed these
models to weigh context more effectively, improving interpretability and handling of long-
form text. In financial and social media domains, LSTM-based models have demonstrated
robust performance across fluctuating sentiment dynamics [18].

2.1.3. Transformers and Aspect-Based Sentiment Analysis (ABSA)

Transformers, introduced in [19], have become the backbone of modern NLP by
enabling massive pre-training on unlabeled data and efficient parallel computation. Mod-
els such as BERT, RoBERTa, and DistilBERT leverage contextual embeddings through
self-attention mechanisms, achieving state-of-the-art results across sentiment tasks with
minimal fine-tuning [4,20].

ABSA advances sentiment analysis by extracting sentiment tied to specific aspects
within a sentence or document. For example, in ‘The screen is sharp but the battery is
poor,’ traditional sentiment models may assign neutral sentiment, while ABSA identifies
positive sentiment toward ‘screen’ and negative sentiment toward ‘battery.’ The surveys
presented in [21,22] categorize ABSA into pipeline, joint, and end-to-end models. Recent
advancements include instruction-based models (e.g., InstructBERT and Instruct-DeBERTa)
that can generalize to unseen aspects and domains, enhancing zero-shot and few-shot
learning scenarios [23]. Models like BART also enable zero-shot classification and user-
defined aspect extraction without task-specific training [24], making ABSA more scalable
and adaptable in real-world applications.

2.2. Time Series Forecasting Models

Forecasting methods aim to predict future values based on past trends. Accuracy is
typically assessed using metrics such as the Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE), with growing interest in context-
sensitive metrics for real-world deployments [25].

2.2.1. Traditional and Hybrid Models

Classical forecasting techniques include the Exponential Smoothing and Holt–Winters
models, which are computationally efficient and well-suited for data with trend and
seasonality components. ARIMA models are widely used due to their mathematical rigor
and solid theoretical foundation [26]. However, these methods assume linearity and may
underperform when patterns are non-linear or influenced by external shocks.

To address these limitations, hybrid models have been developed that combine
ARIMA’s strength in capturing temporal dependence with the non-linear modeling power
of machine learning algorithms like Neural Networks, Random Forests, or Gradient Boosted
Trees [27]. In particular, LSTM-ARIMA hybrid models have shown superior performance
in domains with both short-term fluctuations and long-term seasonality, such as financial
forecasting and renewable energy output.

2.2.2. Exogenous Variables with SARIMAX

Univariate models fall short when external variables—such as holidays, promotions,
weather, or public sentiment—drive fluctuations. SARIMAX overcomes this by incor-
porating external covariates, making it well-suited for multivariate forecasting under
real-world constraints.
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In renewable energy forecasting, exogenous inputs such as irradiance and temperature
have improved solar power predictions [28]. In traffic modeling, SARIMAX with holiday and
weather indicators outperforms standard ARIMA in both precision and interpretability [29].
More recent applications span retail sales prediction, hospital admission trends, and public
behavior monitoring [30,31]. The ability of SARIMAX to integrate structured numerical
variables with unstructured semantic features—such as sentiment scores from text—makes it
a strong candidate for multi-modal forecasting systems.

The field of time series forecasting is rapidly evolving, with recent advancements
in large language models (LLMs) giving rise to a new class of ‘foundation models’ for
forecasting. Models such as TimeGPT and other generative AI-based approaches aim to
perform zero-shot forecasting by learning from vast and diverse time series datasets [32].
These models offer the potential for high accuracy on a wide range of tasks without task-
specific training. While a full comparison with these emerging methods is beyond the scope
of this study—which prioritizes the interpretability of statistical models—they represent an
exciting and important direction for the future of sentiment trend forecasting.

2.3. Research Gap and Our Contribution

While early studies have linked aggregated sentiment scores (e.g., daily mood on
Twitter) with real-world outcomes like market movements [5] and movie revenues [6], they
typically condense complex textual sentiment into a single index. This approach overlooks
nuance, such as which product features or political issues are driving sentiment changes.

Simultaneously, ABSA research has focused on improving extraction accuracy and do-
main transferability but rarely considers how its outputs can serve downstream forecasting
models. To our knowledge, no study has systematically integrated transformer-based ABSA
features as exogenous inputs into a multivariate forecasting model such as SARIMAX.

Our proposed Multi-Feature Sentiment-Driven Forecasting (MFSF) framework bridges
this methodological gap. It introduces a modular, explainable pipeline that (1) extracts
aspect-level sentiment using state-of-the-art ABSA models, (2) selects relevant aspects via
dynamic topic modeling, and (3) forecasts sentiment trajectories using SARIMAX, with
ABSA outputs serving as structured predictors. This design not only enhances predictive
accuracy but also improves interpretability by revealing which aspects influence future
sentiment trends and how.

3. Methodology
This section details the proposed Multi-Feature Sentiment-Driven Forecasting Frame-

work (MFSF), an end-to-end pipeline designed to forecast consumer sentiment trends by
leveraging rich contextual information extracted from social media text. The framework’s
novelty lies in its fusion of multiple semantic dimensions—polarity, aspects, and topics—
into a multivariate time series model, providing a more nuanced and accurate predictive
tool than traditional univariate approaches. While this framework is designed for the
dynamic forecasting of sentiment trends, for the purpose of this research, we implement it
in a batch-processing mode to ensure a rigorous and reproducible evaluation. However, the
modular architecture is amenable to a streaming implementation for real-time applications,
where features would be extracted and forecasts are updated sequentially as new data
arrives. The overall architecture is structured into five sequential stages, as illustrated
in Figure 1: (1) Data Collection and Preprocessing, (2) Multi-Modal Feature Extraction,
(3) Temporal Aggregation, (4) Forecasting using Exogenous Variables, and (5) Evaluation.
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Figure 1. The MFSF system architecture.

3.1. MFSF System Architecture

The architecture of the MFSF framework, depicted in Figure 1, outlines the systematic
flow of data from raw text ingestion to the final predictive output. The pipeline is designed
to be modular, enabling the substitution of different models at each feature extraction stage.
It begins by processing raw tweets from the Sentiment140 corpus, which are then fed into
three parallel transformer-based modules for feature extraction. The extracted features are
temporally aggregated to form a multivariate time series, which serves as the input for the
forecasting models.

The diagram illustrates the parallel extraction of polarity, aspect, and topic features
from raw tweets. These features are then temporally aggregated to form a multivariate
time series, which serves as the input for the SARIMAX forecasting model.

3.2. Data Collection and Preprocessing

The foundation of this study is the Sentiment140 dataset, originally developed by
Go, Bhayani, and Huang [8]. This widely used public corpus contains 1.6 million tweets
annotated for sentiment. The dataset’s labels were generated using distant supervision,
where emoticons like :) and :( served as noisy labels for positive and negative sentiment,
respectively. For this research, the dataset was treated as a binary classification problem,
with the original labels 0 (negative) and 4 (positive) being mapped to 0 and 1. To handle
potential missing values or corrupted entries common in raw social media data, we per-
formed a cleaning step where tweets with unparsable dates were dropped. The subsequent
daily aggregation of features into mean scores and counts naturally mitigates the impact of
noise from individual tweets, creating a more stable, structured time series for analysis.

A random subsample of 50,000 tweets was selected to ensure computational feasibility
for the extensive feature extraction process. Preprocessing was focused on the date field,
which was cleaned of timezone abbreviations and converted into a standardized YYYY-MM-
DD format to facilitate daily aggregation. The tweet text was kept in its raw form to allow
the transformer models to leverage the original context, including slang, capitalization,
and punctuation.
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3.3. Multi-Modal Feature Extraction

The core innovation of the MFSF framework is the extraction of a rich feature vector
from each tweet, capturing sentiment polarity, thematic aspects, and general topical content.

3.3.1. Polarity Score Extraction

To establish a robust sentiment signal, we employed a pre-trained DistilBERT model
fine-tuned on the Stanford Sentiment Treebank (SST-2) dataset (distilbert-base-uncased-
finetuned-sst-2-english) [31]. As a distilled version of BERT, DistilBERT retains most of
its parent model’s language-understanding capabilities while being significantly smaller
and faster, making it ideal for efficient, large-scale inference. This model is specifically
optimized for binary sentiment classification (Positive/Negative). For each tweet’s text,
the model predicts a label, which is then mapped to a numerical score: +1 for ‘POSITIVE’
and −1 for ‘NEGATIVE’. This discrete mapping provides a clear and strong daily signal,
avoiding the zero-variance issue common with three-class models that heavily favor a
‘NEUTRAL’ output on ambiguous text.

3.3.2. Aspect Score Extraction

To understand what consumers are discussing, we performed aspect extraction using
a zero-shot classification pipeline based on the BART (Bidirectional and Auto-Regressive
Transformers) model (facebook/bart-large-mnli) [24]. BART is uniquely suited for this
task because its architecture combines a bidirectional encoder with an auto-regressive
decoder, allowing it to effectively perform zero-shot classification by framing it as a textual
entailment problem without requiring task-specific training. This approach allows for
the classification of text against a set of predefined labels without requiring a specifically
trained model for those labels. We defined a set of business-relevant aspects: [‘price’,
‘service’, ‘quality’, ‘features’]. For each tweet, the model returns a vector of confidence
scores, representing the probability that the tweet pertains to each aspect. This provides a
nuanced view of the daily conversation’s focus.

3.3.3. Topical Embedding and Dimensionality Reduction

To capture the general topic or semantic essence of each tweet beyond predefined
aspects, we generated contextual embeddings. We used a pre-trained DistilBERT model
(distilbert-base-uncased) to process each tweet. The embedding of the special [CLS] token
from the final hidden layer, a 768-dimensional vector, was used as a representation of the
entire tweet’s meaning [20].

As using a 768-dimensional vector for each tweet in a daily aggregation is compu-
tationally intensive and prone to the curse of dimensionality, we applied dimensionality
reduction. We chose Principal Component Analysis (PCA) for this task over other tech-
niques like t-SNE or UMAP for several key reasons. While t-SNE and UMAP are powerful
for visualization because they preserve local neighborhood structures, they are non-linear
and computationally more expensive. More importantly, their stochastic nature can lead to
different results on each run, making them less suitable for generating stable, reproducible
features for a predictive model. In contrast, PCA is a deterministic, linear transformation
that is computationally efficient and creates orthogonal (uncorrelated) components. These
stable and independent features are ideal as exogenous variables for a linear forecasting
model like SARIMAX.

We applied PCA to reduce the embeddings from all tweets in the sample, projecting
them onto their first two principal components. This process yields two new features,
topic_x and topic_y, which represent the tweet’s position in a reduced two-dimensional



Information 2025, 16, 670 8 of 20

topic space, effectively capturing the most significant sources of variance in the topical
content of the corpus.

3.4. Algorithmic Procedure and Model Formulation

The end-to-end implementation of the framework, from data ingestion to final forecast,
is formalized in Algorithm 1. This procedure is followed by the mathematical formulation
of the aggregated time series and the forecasting models.

Algorithm 1: The Multi-Feature Sentiment Forecasting (MFSF) Procedure

Input: Raw tweet dataset D =
{
(ti, texti, datei)}N

i=1 .
Output: Forecasted sentiment series Ŷf orecast; Model performance metrics (RMSE, MAE).

1. Initialize Models: Load pre-trained pipelines and models for polarity, aspect, and
embedding extraction. Initialize PCA.

2. Feature Extraction Loop:

• for each tweet di in D:

# si← fp(texti) // Polarity Score (+1/−1)
# ai← fa(texti) // Aspect Score Vector
# // High-dimensional embedding
# Store(si,ai,ei,datei).

• end for

3. Dimensionality Reduction:

• E← Stack all embedding vectors ei into a matrix.
• // Reduce to topic vectors ti.
• Merge topic vectors ti with other extracted features.

4. Temporal Aggregation:

• daily_data← Group all features by date and compute mean for scores and
count for volume.

• Calculate Rolling_Sentiment (YT) on daily_data using a 7-day rolling
window.

5. Train & Evaluate Baseline Model (Univariate ARIMA):

• Split daily_data [‘Rolling_Sentiment’] into train_uni and test_uni.
• Fit ARIMA(5,1,0) model on train_uni and predict on test_uni.
• Calculate RMSE_arima and MAE_arima.

6. Train & Evaluate Proposed Model (Multivariate SARIMAX):

• Split daily_data into train_multi and test_multi.
• Define exog_features.
• Fit SARIMAX(5,1,0) model on train_multi with exog_features.
• Predict on test_multi using its exogenous features.
• Calculate RMSE_sarimax and MAE_sarimax.

7. Return All forecasts and performance metrics.

Mathematical Formulation: Let the dataset be a corpus of tweets, D = {d1,. . .,dN},
where each tweet, di, has a tuple of extracted features and a date, τi. The daily aggregated
time series for a given day T is constructed as follows:

• Daily Average Polarity Score (ST): ST = 1
|DT|∑di∈DT

polarityscorei

• Daily Tweet Volume (VT): VT = |DT|
• Daily Average Aspect Vector (AT): AT = 1

|DT|∑di∈DT
ai
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• Daily Average Topic Vector (TT): TT = 1
|DT|∑di∈DT

ti

The target variable for our forecasting models, the 7-Day Rolling Sentiment (YT), is
calculated to smooth daily noise and capture weekly trends:

YT =
1
7∑6

j=0 ST−j

3.5. Forecasting Models

To evaluate the predictive power of our multi-feature approach, we implemented
and compared a baseline univariate model against our proposed multivariate model. The
dataset was split into a training set (first 80%) and a testing set (final 20%).

Our choice of a univariate ARIMA as a baseline and a multivariate SARIMAX as the
proposed model is driven by our central goal: to build an interpretable forecasting frame-
work. While more complex deep learning models, such as LSTMs or other transformer-
based architectures, may offer higher predictive accuracy, they often function as ‘black
boxes,’ making it difficult to quantify the specific influence of each contextual feature. The
SARIMAX model, however, provides directly interpretable coefficients for each exogenous
variable, allowing us to explicitly test our hypothesis that aspect- and topic-level features
are significant drivers of future sentiment. This focus on interpretability is crucial for
generating actionable insights for businesses and policymakers.

3.5.1. Baseline Model: Univariate ARIMA

As a baseline, we employed a standard ARIMA model. The ARIMA(p,d,q) model
captures the linear dependencies within a time series based on its own past values. This
model was trained solely on the historical values of the Rolling_Sentiment series (YT)
to forecast its future values. The model order (p,d,q) was determined using standard
time series analysis techniques. The differencing order, d = 1, was chosen to make the
time series stationary. The autoregressive (AR) order, p = 5, and moving average (MA)
order, q = 0, were selected by examining the patterns in the Autocorrelation (ACF) and
Partial Autocorrelation (PACF) plots of the different series. This (5,1,0) order was chosen
to capture the significant short-term dependencies in the data. While information criteria
like AIC or BIC can also be used for model selection, the ACF/PACF approach provides a
well-established and effective method for identifying an appropriate model structure.

3.5.2. Proposed Model: Multivariate SARIMAX

Our proposed model is a Seasonal AutoRegressive Integrated Moving Average with
eXogenous variables (SARIMAX). Since our daily data lacks a strong seasonal component,
this simplifies to an ARIMAX model, which extends ARIMA by incorporating external
predictor variables. The model is specified as

φp(B)(1− B)d(YT −∑r
k−1 βkXk,T) = θq(B)∈T

Here, YT is the endogenous variable (Rolling_Sentiment). The exogenous variables, XT,
comprise the set of other daily aggregated features: Tweet_Count, the mean scores for price,
service, quality, and features, and the mean topic dimensions topic_x and topic_y. The term
βk represents the learned coefficient for each exogenous variable, providing insights into
its predictive importance.

3.6. Evaluation Metrics

The performance of the forecasting models was evaluated using two standard metrics:
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• RMSE: This measures the standard deviation of the prediction errors. It is sensitive to
large errors.

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2

• MAE: This measures the average magnitude of the errors, providing an easily inter-
pretable assessment of the average error size.

MAE =
1
n∑n

i=1|yi − ŷi|

Lower values for both the RMSE and MAE indicate higher forecasting accuracy.

4. Results
This section presents the empirical results of the Multi-Feature Sentiment-Driven

Forecasting (MFSF) framework. The analysis is structured to first explore the relationships
between the extracted features and then to evaluate the performance of the forecasting
models, and finally, to dissect the statistical significance of the proposed multivariate model.
The findings provide strong evidence that incorporating contextual features significantly
enhances the accuracy of sentiment trend forecasting.

4.1. Exploratory Data Analysis of Aggregated Features

Before training the forecasting models, an exploratory analysis was conducted on the
daily aggregated time series data to validate the potential utility of the extracted exogenous
features. The primary goal was to determine whether a statistical relationship exists
between the target variable (Rolling_Sentiment) and the contextual features (Tweet_Count,
aspect scores, and topic dimensions).

A Pearson correlation matrix was computed for all daily metrics, with the results
visualized in the heatmap in Figure 2.

Figure 2. Correlation matrix of daily aggregated features.
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The heatmap shows the Pearson correlation coefficients between the target variable
(Rolling_Sentiment) and the extracted exogenous features. Warmer colors (yellow) indicate
a positive correlation, while cooler colors (purple/blue) indicate a negative correlation.

The correlation analysis reveals several key insights. A moderate positive correlation
(r = 0.77) is observed between polarity_score and Rolling_Sentiment, which is expected
since the latter is a smoothed version of the former. More importantly, notable correlations
exist between sentiment and the extracted aspect and topic features. For instance, the
‘quality’ aspect score shows a strong positive correlation with sentiment (r = 0.76), indicating
that conversations focused on quality tend to be associated with a more positive public
mood. The topic dimensions (topic_x and topic_y) also exhibit non-zero correlations,
confirming that shifts in the central theme of public discourse are linked to changes in
overall sentiment.

Furthermore, the matrix reveals notable inverse relationships between certain as-
pect scores. For instance, the strong negative correlation between ‘quality’ and ‘price’
(r = −0.87) suggests that conversations mentioning price often carry an opposing sentiment
to those mentioning quality (e.g., discussions of ‘high quality’ are distinct from those about
‘low price’). Similarly, the negative correlation between ‘quality’ and ‘features’ (r = −0.86)
may indicate that as discussions about product features intensify, they are often framed
as complaints about the quality or implementation of those features. These relationships
highlight the nuanced trade-offs consumers discuss and provide a richer understanding of
the conversational dynamics beyond simple sentiment polarity.

Collectively, these relationships provide a strong justification for including these
metrics as predictive exogenous variables in a multivariate forecasting model.

4.2. Forecasting Performance: Baseline vs. Proposed Model

The core evaluation of the MFSF framework involved comparing the forecasting
accuracy of the proposed multivariate SARIMAX model against a baseline univariate
ARIMA model. Both models were tasked with forecasting the 7-day rolling sentiment on
the held-out test set. The performance was measured using the RMSE and MAE.

The results, summarized in Table 1, demonstrate the clear superiority of the proposed
multivariate approach.

Table 1. Forecasting model performance comparison.

Model Description RMSE MAE

ARIMA (Baseline) Univariate; uses only past sentiment data. 0.3677 0.3239
SARIMAX
(Proposed)

Multivariate; includes exogenous features
(e.g., tweet volume and topic embeddings). 0.2697 0.2249

The baseline ARIMA model, which relies solely on the autocorrelation of the senti-
ment series, achieved an RMSE of 0.3677. The proposed SARIMAX model, which was
conditioned on the additional context provided by the aspect, topic, and volume features,
achieved an RMSE of 0.2697. This constitutes a 26.6% reduction in the Root Mean Squared
Error, representing a substantial improvement in forecasting accuracy. A similar and signif-
icant improvement was observed in the Mean Absolute Error, which decreased from 0.3239
to 0.2249.

This quantitative evidence strongly supports our central hypothesis: that leveraging
rich contextual features extracted from the text provides a more accurate and robust forecast
of public sentiment than models based on sentiment polarity alone. It is important to note
that this substantial improvement in performance comes at the cost of increased model and
computational complexity. This can be quantified by comparing the number of parameters
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each model must estimate: the baseline ARIMA (5,1,0) model estimates six parameters (five
for the autoregressive components and one for the variance of the residuals). In contrast,
our proposed SARIMAX model estimates 11 parameters (the same 6, plus 5 additional
coefficients for each of the exogenous variables). This nearly twofold increase in model
complexity makes the SARIMAX model more resource-intensive to train, representing a
clear trade-off between predictive power and computational efficiency. Figure 3 provides a
visual comparison of the forecasting performance.

Figure 3. Forecast vs. actual sentiment.

A comparison of the actual 7-day rolling sentiment (blue) with the forecasts from the
baseline ARIMA model (orange) and the proposed SARIMAX model (green) on the test
set was performed. As illustrated, while the baseline ARIMA model captures the general
direction of the trend, it struggles to react to the more subtle variations and sharp turns in
the actual sentiment series. In contrast, the green line representing the SARIMAX forecast
tracks the true sentiment far more closely. Its ability to leverage the exogenous feature
set allows it to better anticipate the dynamics of the sentiment, highlighting the practical
advantage of the MFSF framework.

4.3. Statistical Analysis of the SARIMAX Model

To further validate our proposed model and understand the contribution of each
feature, we conducted a detailed statistical analysis of the fitted SARIMAX model.

4.3.1. Model Coefficient Analysis

To further validate our proposed model and understand the contribution of each
feature, we conducted a detailed statistical analysis of the fitted SARIMAX model. An
initial model including all aspect features produced numerically unstable coefficients due
to high multicollinearity among the predictors (as observed in the correlation matrix in
Figure 2). To address this, the model was refit using a more parsimonious and stable set of
predictors, removing the highly correlated ‘price’ and ‘features’ variables.

The summary of the final fitted SARIMAX model, detailed in Table 2, provides the
stable coefficients and statistical significance for the remaining exogenous variables. A
visual representation of these coefficients and their 95% confidence intervals is provided in
Figure 4.
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Table 2. Coefficient summary of SARIMAX model for sentiment forecasting.

Feature Coefficient Std. Error p-Value 95% Confidence Interval Significance

service 0.2481 0.035 0.000 [0.179, 0.317] Significant (p < 0.05)
quality 0.3109 0.029 0.000 [0.254, 0.368] Significant (p < 0.05)

Tweet_Count 0.0001 0.000 0.315 [−0.0001, 0.0003] Not Significant
topic_x −0.0154 0.031 0.620 [−0.076, 0.045] Not Significant
topic_y 0.0089 0.025 0.721 [−0.040, 0.058] Not Significant

 

Figure 4. Exogenous feature coefficients from SARIMAX model.

The analysis revealed that the aspect scores for ‘service’ and ‘quality’ were highly
statistically significant predictors (p < 0.001). This is clearly visible in Figure 4, where the
confidence intervals for ‘service’ and ‘quality’ (shown in green) are positioned entirely to
the right of the zero line, indicating a statistically significant positive effect. The positive
coefficients for ‘service’ (0.2481) and ‘quality’ (0.3109) indicate that an increase in positive
conversations about these specific aspects is associated with a subsequent rise in overall
public sentiment. This finding empirically confirms our central hypothesis: that monitoring
the specific content of conversations provides a powerful and reliable signal for forecasting
sentiment shifts.

In contrast, ‘Tweet_Count’ (p = 0.315) and the PCA-derived topic dimensions (‘topic_x’
and ‘topic_y’) did not show statistical significance at the conventional α = 0.05 level. As
shown in Figure 4, the confidence intervals for these variables (shown in gray) all cross
the vertical zero line, meaning we cannot confidently distinguish their effect from zero.
This suggests that for forecasting aggregate sentiment, understanding the specific nature
of the conversation (i.e., aspects like service and quality) is more informative than simply
knowing the volume of conversation or its general topical drift. The statistical significance
of the aspect features provides strong evidence for the value of the MFSF framework in
creating not only more accurate but also more interpretable forecasting models.

4.3.2. Model Diagnostics

To ensure the statistical validity of our proposed SARIMAX model, we performed
a standard diagnostic check by examining its residuals. The residuals—the differences
between the observed values and the model’s predictions—should ideally be unstructured
and resemble white noise, indicating that the model has captured all systematic patterns in
the data. The following analysis confirms that our model’s assumptions are largely met.

First, we examined the plot of standardized residuals over time, as presented in
Figure 5. The plot shows the residuals fluctuating around a mean of zero, and there are no
discernible patterns, such as a trend or changing variance (heteroskedasticity). This lack
of structure is desirable as it suggests that the model is well-specified and that the errors
are random.
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Figure 5. Standardized residuals of the SARIMAX model over time.

Second, we assessed the assumption that the residuals are normally distributed, which
is crucial for the validity of the statistical tests on the coefficients. Figure 6 displays a
histogram of the residuals. The shape of the histogram closely approximates the overlaid
normal distribution curve, suggesting the normality assumption holds. This is further and
more rigorously confirmed by the Normal Quantile–Quantile (Q-Q) plot in Figure 7. In this
plot, the points representing the quantiles of the residuals fall closely along the red reference
line, which represents a perfect normal distribution. This strong linear relationship confirms
that the residuals are, indeed, normally distributed.

 

Figure 6. Histogram of model residuals with kernel density estimate and normal distribution overlay.

 

Figure 7. Normal Q-Q plot of SARIMAX model’s standardized residuals.
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Finally, we checked for any remaining serial correlation in the residuals using a
correlogram, as shown in Figure 8. This plot displays the autocorrelation function (ACF)
for the residuals at various time lags. A well-specified model should have no significant
autocorrelation left in its errors. As seen in the figure, after the initial spike at lag 0 (which
is always 1), all subsequent correlation values fall well within the 95% confidence interval,
as indicated by the shaded blue area. This confirms that the residuals are not correlated
with each other, meaning our model’s autoregressive structure has successfully captured
the temporal dependencies present in the sentiment time series.

 

Figure 8. Correlogram of SARIMAX model’s residuals.

In summary, the diagnostic checks show that the model’s residuals are independent,
identically distributed, and follow a normal distribution. This provides strong support for
the model’s validity and the reliability of the conclusions drawn from its coefficients.

5. Discussion
The empirical results of this study provide strong support for the Multi-Feature

Sentiment-Driven Forecasting (MFSF) framework. By integrating contextual features
derived from text, our proposed multivariate SARIMAX model achieved a 26.6% improve-
ment in forecasting accuracy (RMSE) over a traditional univariate ARIMA baseline. This
section discusses the interpretation and implications of these findings and the limitations
of the study.

5.1. Interpretation of Findings

The superior performance of the multivariate model is a direct consequence of its
ability to leverage signals beyond sentiment polarity. While traditional models are blind to
the underlying drivers of change, our framework addresses this by asking not only ‘what
is the sentiment?’ but also ‘what is the sentiment about?’. The statistical significance of the
‘service’ and ‘quality’ aspect scores (Table 2; Figure 4) empirically confirms that the content
of conversations contains valuable predictive information. This transforms the forecasting
tool from a simple signal tracker into an early warning system, where a rise in discussions
about a specific aspect can foreshadow a shift in overall sentiment.

However, while the SARIMAX model significantly reduces forecasting error, a resid-
ual gap between the forecast and actual sentiment persists (Figure 3). This gap is likely
attributable to two primary factors. First, our model is conditioned only on textual fea-
tures and thus cannot account for the impact of unobserved variables—such as external
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news events or offline phenomena—that influence public opinion. Second, social media
sentiment is an inherently volatile and stochastic time series, making it fundamentally
challenging for any statistical model to perfectly predict every sharp fluctuation. Our
model captures the signal driven by the conversation’s content but cannot account for all
external shocks, highlighting a key challenge in social forecasting.

5.2. Strategic Implications and Contributions

The MFSF framework offers significant practical implications. For businesses, it
provides a blueprint for an advanced brand monitoring system that can proactively identify
the root causes of customer dissatisfaction—such as complaints about service or quality—
before they escalate. This enables data-driven decision-making, allowing marketing and
product teams to respond to consumer feedback with greater speed and precision.

From a methodological standpoint, this research makes a key contribution by demon-
strating the successful application of an interpretable statistical model (SARIMAX) with
NLP-derived exogenous features. While many studies focus on complex deep learning
models for forecasting, our work highlights the power and interpretability of a robust
statistical approach, where the contribution of each feature can be explicitly quantified and
tested for significance.

5.3. Policy Implications and Societal Applications

Beyond its commercial applications, the MFSF framework offers a powerful tool for
policymakers and public institutions seeking to understand and respond to the dynamics
of public opinion in real time. The ability to forecast sentiment shifts based on the specific
content of conversations has significant implications for governance and public policy.

• Public Health and Crisis Management: Government health agencies could deploy
this framework to monitor public sentiment regarding health policies, vaccination
campaigns, or public health emergencies. For example, by tracking an increase in
conversations about ‘side effects’ (a ‘quality’ or ‘features’ aspect), policymakers could
proactively address public concerns and counter misinformation before it erodes trust
in public health initiatives. During a crisis, the tool could serve as an early warning
system for rising public anxiety or dissatisfaction with official responses.

• Economic Monitoring and Consumer Protection: Central banks and financial regula-
tors are increasingly interested in high-frequency data to gauge economic conditions.
Forecasting consumer sentiment, particularly with respect to aspects like ‘price’ and
‘quality’, can provide a leading indicator of consumer confidence, inflation expecta-
tions, and potential shifts in spending behavior. Furthermore, consumer protection
agencies could use the framework to detect emerging patterns of complaints about
specific products or industries, enabling faster investigations and interventions.

• Improving Public Service Delivery: Government agencies at all levels can use this
framework to gather real-time feedback on public services. By analyzing discussions
related to aspects like ‘service’ (e.g., ‘long wait times at the DMV’) or ‘quality’ (e.g.,
‘the new park is poorly maintained’), local governments can identify and address
service delivery failures more efficiently than through traditional surveys, leading to
more responsive and effective governance.

• Ethical Guardrails and Responsible Use: The deployment of such technology in a
policy context is not without risks. There is a potential for this tool to be used for
surveillance or to manipulate public opinion by identifying and targeting persuadable
groups. Therefore, any government use of this framework must be bound by strong
ethical guidelines, including full transparency, robust data privacy protections, and a
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commitment to using the insights to improve public welfare rather than to control
public discourse.

5.4. Limitations of the Study

While this study successfully demonstrates the value of the MFSF framework, it is
important to acknowledge its limitations, which in turn provide avenues for future research:

1. Data Source Singularity and Dynamic Drifts: Our analysis relies exclusively on the
Sentiment140 dataset, which consists of tweets from 2009. This introduces several
key limitations related to dynamic changes over time. First, public sentiment on
Twitter is a proxy for, not a direct measure of, overall consumer sentiment, and its
users are not representative of the general population. Second, the platform itself
has undergone significant changes. The language, conversational norms, and user
behavior on social media have evolved dramatically since 2009. For example, the
use of sarcasm, memes, and emojis to convey complex sentiment has become far
more prevalent. This ‘concept drift’ means that a model trained on historical data
may struggle to interpret contemporary language. Finally, social media platforms
continuously update their content recommendations and moderation algorithms.
Changes to how tweets are sorted, promoted, or suppressed can alter the visibility of
certain types of content, potentially skewing the data stream. Together, these temporal
drifts pose a significant challenge for the long-term stability of any social media
forecasting model, necessitating periodic retraining and adaptation.

2. Predefined Aspects: The set of aspects (price, service, etc.) was manually predefined.
This approach may miss emergent or niche topics of discussion that could be valuable
predictive signals.

3. Model Linearity: The SARIMAX model, while powerful and interpretable, primarily
captures linear relationships. The true dynamics of sentiment may involve more
complex, non-linear interactions that the model may not fully capture.

4. Scope of Data Modality and Language: The current MFSF framework is designed
exclusively for English-language text. It does not account for the rich, non-textual data
that often accompanies social media posts, such as images, videos, GIFs, or emojis, all
of which can be powerful conveyors of sentiment. A comprehensive understanding of
public sentiment would ultimately require a multi-modal and multilingual approach.

5. Limited Generalizability and Stress Testing: The model’s performance was evaluated
on a single, continuous time period from a historical dataset (2009). Its generalizability
to other time periods, particularly during major external events or crises (e.g., a
financial crisis or a public health emergency), has not been tested. A comprehensive
evaluation would require testing the framework’s robustness across diverse and
volatile time periods.

5.5. Ethical Considerations and Potential Biases

The analysis of social media data carries inherent ethical responsibilities. The MFSF
framework, while powerful, is built upon data that reflects societal biases, and its ap-
plication raises important considerations that must be carefully managed. Several key
challenges warrant attention:

1. Linguistic and Cultural Bias: Our analysis was conducted on an English-language
dataset. NLP models trained on this data may not perform equally well on different
dialects, slang, or cultural expressions of sentiment. Furthermore, what is considered
‘positive’ or ‘negative’ sentiment can be culturally dependent, and models may fail to
capture these nuances, potentially misrepresenting the opinions of certain groups.
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2. Demographic and Representation Bias: As noted in our limitations, social media users
are not a perfect representation of the general population. The opinions captured may
over-represent certain age groups, geographic locations, or socioeconomic statuses
while under-representing others. Relying solely on this data for major business or
policy decisions could therefore perpetuate or even amplify existing inequalities.

3. Data Privacy: Although the data used in this study was from a public corpus of
tweets, the application of such models in a real-world setting raises significant privacy
concerns. Organizations must ensure that any collection and analysis of user data
comply with privacy regulations like GDPR and respect user consent. The potential for
de-anonymizing individuals from aggregated data, however small, must be carefully
managed through robust anonymization and data protection protocols.

4. Potential for Manipulation: Forecasting public opinion also introduces the risk of its
manipulation. Malicious actors could use such models to identify contentious topics
and inject targeted misinformation to sway public discourse or to create artificial
sentiment trends. The ethical deployment of these models requires robust safeguards
and a commitment to transparency to mitigate the risk of such misuse.

While a full audit of these biases and risks is beyond the scope of this paper, future
work should prioritize the use of fairness toolkits and bias detection methods to ensure
that sentiment forecasting systems are deployed in a responsible and equitable manner.
Researchers and practitioners must remain vigilant about these challenges to avoid drawing
skewed conclusions or building systems that cause unintentional harm.

6. Conclusions
This study introduced and validated the Multi-Feature Sentiment-Driven Forecasting

(MFSF) framework, a novel pipeline that enhances the prediction of consumer sentiment by
integrating rich contextual information from social media text. Moving beyond traditional
methods that rely solely on historical sentiment polarity, our framework demonstrates that
a more accurate and robust forecast can be achieved by conditioning predictive models on
the dynamic aspects and topics of public conversation.

Our methodology successfully fused sentiment polarity, aspect-based scores, and topic
embeddings into a multivariate time series. Using this enriched dataset, our proposed
SARIMAX model achieved a 26.6% improvement in forecasting accuracy (RMSE) over a
baseline univariate ARIMA model. Furthermore, statistical analysis revealed that features
corresponding to aspects like ‘service’ and ‘quality’ were highly significant predictors of
future sentiment, underscoring the value of understanding not just how people feel but
also what they are talking about.

To bridge the gap between this research and real-world application, we recommend
several key directions for future work. First, to create a more holistic and reliable senti-
ment index, the MFSF framework should be extended to incorporate data from multiple
platforms beyond Twitter. Second, to move beyond predefined aspects, future iterations
should integrate dynamic topic modeling techniques to automatically identify and track
emergent themes. Third, we recommend testing the utility of non-linear forecasting models
(e.g., LSTMs) to capture more complex interactions; should such ‘black box’ models be
employed, they must be coupled with interpretability techniques like SHAP to maintain
the framework’s explanatory power. Fourth, for deployment in real-time applications
processing large-scale data streams, the framework would need to be re-architected for a
streaming environment. Finally, the framework’s ultimate validation would involve linking
forecasted sentiment to tangible behavioral metrics. By pursuing these recommendations,
the research community can build upon this work to create more powerful and responsible
tools for understanding and anticipating the dynamics of public opinion.
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