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Abstract

The mechanical performance of biological tissues is underpinned by a complex and finely
balanced structure. Central to this is collagen, the most abundant protein in our bodies,
which plays a dominant role in the functioning of tissues, and also in disease. Based on
the collagen meshwork of articular cartilage, we have developed a bottom-up spring-node
model of collagen and examined the effect of fibril connectivity, implemented by crosslinking,
on mechanical behaviour. Although changing individual crosslink stiffness within an order
of magnitude had no significant effect on modelling predictions, the density of crosslinks
in a meshwork had a substantial impact on its behaviour. Highly crosslinked meshworks
maintained a ‘normal’ configuration under loading, with stronger resistance to deformation
and improved recovery relative to sparsely crosslinked meshwork. Stress on individual fibrils,
however, was higher in highly crosslinked meshworks. Meshworks with low numbers of
crosslinks reconfigured to disease-like states upon deformation and recovery. The importance
of collagen interconnectivity may provide insight into the role of ultrastructure and its
mechanics in the initiation, and early stages, of diseases such as osteoarthritis.
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1. Introduction

Articular cartilage performs an impressive mechanical function, which is underpinned
by a hierarchical structural configuration of type II collagen, proteoglycans, and interstitial
fluid [1]. As one of the main determinants of function in the tissue, changes to the collagen
meshwork are central to disease processes [2, 3, 4, 5]. Collagen-collagen interactions dominate
the cohesive strength of the matrix [6] and therefore the resistance to mechanical damage
progression.

The breakdown from the intermeshed, pseudo-random collagen configuration at the mi-
crometer scale to form aligned fibre bundles has been identified as a mechanically irreversible
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step in the damage process [4] and has long been associated with abnormal cartilage soft-
ening [7]. A recent study has further found localised regions of collagen meshwork dis-
ruption and reconfiguration at early stages of disease before the appearance of histological
changes [8]. An improved understanding of the mechanics of the collagen meshwork, and
the implications of its properties and connectivity, is therefore of interest for osteoarthritis
pathogenesis, diagnostics and the design of regenerative medicine strategies.

Computational modelling provides an ideal platform from which to explore mechano-
structural changes. In recent years, increasingly sophisticated constitutive models have
been developed to represent tissue-level cartilage mechanics [9, 10, 11, 12, 13, 14]. With
this sophistication has come an improved representation of structure. Wilson et al., for
example, integrated the relation between permeability and tissue composition with a vis-
coelastic constitutive relation within a fibril-reinforced model for predicting the equilibrium
and transient response of articular cartilage during compression, indentation and swelling
tests [9]. Ateshian et al. applied continuous fibre angular distributions to model the solid
matrix of cartilage and successfully predicted experimental observations of the tissue’s equi-
librium response to mechanical and osmotic loading [11].

However, such models do not incorporate details from individual fibres but instead con-
sider the impact of average fibril orientations on the scale of continuum. In particular,
while there have been advances in the theoretical mechanics of upscaling (e.g.[15, 16, 17]),
whereby material properties at the sub-continuum scale are systematically incorporated into
the constitutive relation of continuum models with controlled accuracy, such approaches are
generally not tractable for collagen networks and cartilage [18, 19]. Hence, it is currently not
feasible to assess the impact of fibril-scale changes and individual crosslinks in a continuum
model. Thus one must instead adopt a bottom-up approach and represent collagen fibrils
individually; furthermore elastic dominated constitutive relationships are indicated for fib-
rils [18] in contrast to entropic dominated models at lower scales. An exemplar of such a
model has already been explored by Lee et al [20], who concentrate on elucidating the stress
strain relationship of material made from networks of collagen fibrils. In contrast, here, our
objective is to explore how crosslink properties and densities within a collagen meshwork
representing cartilage impact on mechanical performance and structure, in particular fibril
alignment as it is a signature of cartilage pathology [7, 21, 4].

2. Methods

2.1. Collagen structure simulation

A 2-D model of collagen structure was implemented in C/C++. For simplicity collagen
fibrils were not represented as Euler-Bernoulli filaments; instead each fibril was modelled
as a series of 1-D springs of length approximately 1 µm connected at nodes, via torque
free pin joints. Assuming a fibril diameter of 100 nm and a linear stress-strain relation,
the material property of the fibrils were calculated by fitting experimental data from a
single fibril tensile test [22] to give a force-strain relation of 4 µN/unit strain (equivalent
to a Young’s modulus ≈ 500 MPa). Crosslinks were implemented with a linear force-strain
relation on the assumption of small deformation, with parameters chosen a posteriori due
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to a lack of available data. It should be noted that crosslinking in this model refers to inter-
fibril connectivity, and does not probe, for example, enzymatic or AGE-related crosslinking
[18, 23]. Validation of the fibril implementation was performed using a single fibril of length
20 µm (20 segments) under load in one dimension. Validation of crosslink behaviour was
similarly performed by linking two fibrils in series. Each spring had the linear force-strain
relation

F = k(L
′−L0

L0
), (1)

where L′ was the displaced length of the spring, L0 was the resting length of the spring,
F was force and k is the spring constant, a material property. The error in the numerical
solution, relative to the analytical solution, was considered by calculating the spring length
on reaching equilibrium (ie. all spring movement was below a very small tolerance). The
accuracy of numerical solution was better than 99.9% (see Table 1).

Table 1: Numerical spring length error under one dimensional tensile test load for an isolated spring segment
(single spring) and a single, 20-segment spring (single fibril).

single spring single fibril
Spring resting length 1µm 0.5µm 1µm 2µm

Error(%) -0.006 -0.022 -0.003 -0.003

Thirty collagen meshwork configurations were constructed to simulate the pseudo-random
collagen microstructure observed in electron micrographs [24, 5, 25], with anisotropy and
connectivity forming the Benninghoff arcades [26] at larger scales. A representative struc-
ture is given in Figure 1A. Each node, shown in yellow, is connected to two neighbours on
the same fibre by linear springs, shown in green. All structures were based on 30 parallel
sets of 24 springs, giving a total length 24 µm, initially aligned with the y-axis and separated
by 1 µm in the x direction. Nodes were then randomly displaced in x direction within ± 1
µm. Crosslinks (shown in red in Figure 1) were incorporated based on proximity of nodes
from adjacent fibrils. Proximity thresholds of 0.3 µm, 0.5 µm and 0.8 µm were applied to
each structure, with a linear stress-strain relation for the crosslink varied between 2 and 12
µN/unit strain. Once a crosslink formed in the model, it was not allowed to break.

Uniaxial tensile loading, in the direction of predominant fibril alignment, was applied
as an exemplar to simplify the complex stress environment of the tissue while capturing
the tensile response of the collagen meshwork to macroscale applied loads [27, 28]. In
each simulation, the end nodes of each fibril were fixed in the x-direction and subjected
to a constant tensile force of 0.5 µN in the y-direction. Node positions were timestepped
according to a linear overdamping law. When the structure reached equilibrium, the load
was released and the structure allowed to recover. Node positions were recorded at original,
equilibrium and recovered positions and passed to MATLAB (2015a, The MathWorks Inc.,
Natick, USA) for analysis.

Strains and fibril organisations were calculated for each simulation. Fibril strains in
each structure were calculated based on the change in distance between adjacent nodes.
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Bulk strains were calculated based on the mean distance between the fibril end nodes.
Organisation was classified using an anisotropy parameter rmean based on polarised optical
parameters used for cartilage measurements [29, 30, 31], providing a means for comparison
with experiments. In particular rmean is defined by

rmean = 1
N

N∑
i=1

δYi − δXi

δYi + 2δXi

, (2)

where N is total number of springs, δXi = |δxi+1 − δxi|, δYi = |δyi+1 − δyi| and δxi and δyi
are the x and y positions of the ith node. Note for instance that when rmean = 1, the fibrils
are aligned in the direction of loading.

3. Results

3.1. Effect of crosslink density

Representative microstructures before and after stretching (along the y direction) and af-
ter relaxation are shown in Figure 1. Qualitatively, different numbers of crosslinks resulted
in substantially different configurations after loading. Highly-crosslinked microstructures
maintained a ‘normal’ configuration with loading (Figure 2A). Microstructures with lower
crosslink densities were more aligned with the direction of loading, and formed fibre bun-
dles (Figure 2B) similar to those observed in electron microscopy of osteoarthritic cartilage
(Figure 2C [21]).

Figure 1: Representative structure before stretching (A), after stretching (B) and after relaxation (C). White
arrows show the force direction. Springs shown in green, nodes in yellow and crosslinks in red.
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Figure 2: Representative structure with 314 crosslinks (A) and with 81 crosslinks (B) after stretching.
Transmission electron micrograph of collagen fibril organisation in osteoarthritic cartilage (C), reproduced
from [21]. Scale bar 1.5µm.

For a given structure and crosslinking threshold, the crosslink density was inversely
proportional to the anisotropy measure of the pre-loaded meshwork structure (Figure 3),
with r2 > 0.9 (Pearson’s correlation coefficient).

Figure 3: Relationship between crosslink density and angular anisotropy (rmean) of the pre-loaded structure.
Each line represents data from a single crosslink threshold. Black represents 0.3 µm, blue represents 0.5 µm
and green represents 0.8 µm crosslink proximity thresholds.

Quantitative differences due to crosslink density were also observed. Due to the random
modification of node positions for each microstructure, threshold distances for crosslinking
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produced a range of crosslink densities in the structures. The reconfiguration of fibrils
under loading, quantified by the above anisotropy parameter rmean (equation 2) is presented
in Figure 4. At low crosslink densities, fibrils aligned with the direction of load, with minimal
recovery. At higher crosslink densities, the microstructures resisted realignment (Figure 4A)
and recovered their isotropy to a greater extent (Figure 4C). The maximum recovery of
isotropy (% recovered rmean relative to rmean at equilibrium), however, was only 35%.

Figure 4: Structural anisotropy as defined by rmean under loading and recovery. Greater isotropy was
maintained (A), and recovered (B,C), in highly crosslinked microstructures. Dashed lines plot the trends
within the same structure at different crosslink thresholds. Different crosslink proximity thresholds are
presented with colours where 0.3 µm is shown in black, 0.5 µm is shown in blue and 0.8 µm is shown in
green.

For a fixed crosslink proximity threshold, bulk strain data clustered into groups. Within
these groups (i.e. black, green or blue dots in Figure 5), bulk strain increased with increasing
crosslink density, both after stretching (Figure 5A) and after relaxation (Figure 5B). This
was likely due to the relationship between crosslink density and angular isotropy in the pre-
loaded state (Figure 3), and therefore greater structural reconfiguration under load. Within
a structural configuration (linked by dashed lines, Figure 5), however, increasing crosslink
densities consistently reduced bulk strain. In both cases, greater bulk strain was recovered
upon relaxation with increasing crosslink density (Figure 5C).
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Figure 5: Bulk mechanical strain under loading and recovery. Bulk strain decreased with increasing crosslink
density (A,B), with greater recovery in highly crosslinked microstructures (C). Dashed lines plot the trends
within the same structure at different crosslink proximity thresholds. Different crosslink proximity thresholds
are presented with colours where 0.3 µm is shown in black, 0.5 µm is shown in blue and 0.8 µm is shown in
green.

Fibril strain (the mean of the distribution of fibril strains) after stretching increased with
crosslink density (Figure 6). Two exceptions to this trend were apparent, however, reasons
for this are unclear. Recovery of fibril strain after relaxation was near 100%, with mean
fibril strain reduced to 0.037± 0.004%.

Figure 6: Fibril strain at equilibrium at different crosslink densities. Dashed lines link the same structure
with different crosslink threshold. Different crosslink threshold shows in different colour where 0.3 µm is
shown in black, 0.5 µm is shown in blue and 0.8 µm is shown in green.

3.2. Effect of crosslink stiffness

Six different material properties were assigned to test the effects of crosslink properties
on the mechanical behaviour of the microstructure. Output parameters generated for a
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representative structure are given in Table 2. Kruskal-Wallis tests (SPSS Statistics 17.0,
IBM) showed no significant differences (all p > 0.4) in the structural response to loading for
different crosslink stiffnesses.

Table 2: Mechanical behaviour of a representative structure (293 crosslinks) with different crosslink stiffness.

Material property of crosslink (Force (µN)/unit strain)
Output parameter 2 4 6 8 10 12

fibril strain at equilibrium (%) 6.540 6.554 6.560 6.563 6.565 6.566
bulk strain at equilibrium (%) 28.935 28.654 28.549 28.493 28.459 28.435

anisotropy at equilibrium 0.439 0.433 0.431 0.430 0.429 0.429
fibril strain after relaxation (%) 0.037 0.036 0.036 0.036 0.035 0.035
bulk strain after relaxation (%) 17.306 17.296 17.289 17.283 17.279 17.276

anisotropy after relaxation 0.362 0.362 0.362 0.362 0.362 0.362

4. Discussion

Using a bottom-up model of a cartilage-like collagen meshwork, we have demonstrated
the effect of fibril interconnectivity, represented by crosslinking, on restructuring under load.
Although crosslink stiffness, within the parameter range considered, had no significant ef-
fect, the number of crosslinks in each structure consistently altered the structural response to
loading, in agreement with previously published studies, though these are based on entropy-
based mechanics [32] in contrast to the elastic dominated regime adopted here for collagen
fibrils [18]. Increasing crosslink density increased resistance to bulk deformation, and im-
proved the recovery of both bulk deformation (Figure 5) and structural isotropy (Figure 4).
This improved resistance to network reconfiguration under loading, though at the expense
of higher stresses for the collagen fibrils themselves (Figure 6).

In the context of cartilage and cartilage degradation, this may provide an insight into
the mechanisms underpinning the transition from a normal, intact meshwork to the de-
graded collagen architecture observed in experimental studies [24]. In particular, a highly
connected meshwork was predicted to maintain its ‘normal’ configuration under loading.
In Figure 2A for example, the highly crosslinked structure maintained its pseudorandom
organisation after loading, also shown by the lower anisotropy at high crosslink densities
in Figure 4. The same structures with lower connectivity, however, transformed to a ‘dis-
eased’ configuration (Figure 2B). This ‘diseased’ configuration, as observed experimentally
by electron microscopy (e.g. [21], Figure 2C) of osteoarthritic cartilage, was characterised
by bundling of fibrils in the direction of applied force, and increased anisotropy (Figure 4).

Expanding findings and hypotheses from previous experimentally-driven studies [4, 8, 25]
which focussed on structural disease progression rather than initiation, the role of collagen
connectivity provides insight into the mechanisms by which bundle formation and micro
cracking occur. Small regions of fibril alignment, of the size of a few tens of microns for
example, have been observed in the deep zone of human cartilage sections prior to changes
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in histological score, with increasing bundling during progression [8]. While progression
can be explained by stress concentrations and critical-size crack formation, the initiation
of bundling may be explained by a local loss of connectivity through the breaking/removal
of crosslinks with the latter being consistent with the modelling predictions presented here.
Specifically, high inter-fibril connectivity appears critical in maintaining the balance between
swelling pressure and collagen tension [33] required for cartilage function.

In this context, the same effect would be obtained by either a loss of direct collagen-
collagen connectivity or the loss of physical separation of fibrils by aggrecan digestion. Our
results suggest, due to the increased stress on a fibril level in highly crosslinked structures
(Figure 6), that such restructuring is likely to be driven by damage to connecting elements
rather than the collagen fibrils themselves. The reduced fibril-level strain observed with
reduced connectivity further suggests that recovery from a ‘diseased’ collagen configuration
is energetically unfavourable while loading is maintained. In addition to describing disease
processes, this model may be expanded to provide an additional platform for the design of
fibre-based scaffolds for tissue engineering, particularly allowing the modification of collagen
organisation and properties across tissue interfaces or inter-zonal reconfigurations to recreate
physiological cell environments.

The structural realism of our model is limited by two main factors. Firstly, aggrecan, a
major component of the cartilage matrix, has not been considered directly. Large aggrecan
macromolecules are trapped by, and swell against, the collagen meshwork and play an impor-
tant role in load carriage. A number of methods have been developed for simulating osmotic
pressure in cartilage [34, 35, 36, 37, 38], however, collagen-aggrecan interaction is problem-
atic in a 2-D implementation due to the difficulty in replicating entrapment processes. The
generalisation of our model to three dimensions to allow the investigation of these processes
is planned for future work, further enabling the resolution of structural response to the com-
plex mechanical environment of the tissue. Secondly, collagen fibril properties have been
based on a linear elastic fit to a highly nonlinear material without including viscoelasticity
and the related transient response. This transient response, along with the incorporation of
material level damage feedbacks, will be necessary for mechanistic insight into the coupling
between damage initiation and progression.

5. Conclusion

In this study, we used a node-spring model to investigate the role of inter-fibril connec-
tivity in the cartilage collagen meshwork. The level of interconnectivity (implemented as
crosslink density) had a substantial effect on mechanical behaviour of the structure; how-
ever, no effect was observed with changes to crosslink stiffness within the regimes considered.
Highly crosslinked structures can maintain their configurations under loading more than less-
crosslinked structures, and more strongly recover with relaxation after removal of the load,
though exhibit a higher level of stress per fibril during bulk deformation. The configurations
of less-crosslinked structures were also qualitatively similar to diseased collagen configura-
tions observed in experimental studies. Specifically these structures were more prone to the
formation of fibre bundles aligned with the direction of tensile force during a loading and
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unloading cycle. This model aids the understanding of the role of collagen structure and
mechanics in the initiation of diseases such as osteoarthritis, and may contribute to scaffold
design aimed at restoring function in regenerative treatments.
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