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Abstract: Physical activity (PA) and body composition are important lifestyle factors that
influence public health. Research suggests that DNA regions (CpG site locations) are
differentially methylated in a physically active population. This meta-analysis aimed to
identify CpG sites associated with various levels of PA and associated metabolic pathways.
The meta-analysis followed PRISMA guidelines using PubMed, SportDISCUS, Embase,
Scopus, Cochrane and Web of Science. Epigenomic analyses performed on DNA of partici-
pants with no underlying health conditions were included. Articles were screened using
Rayyan AI and extracted CpG sites, and their location were confirmed using the EWAS
catalogue. Six studies comprising 770 subjects were included in this meta-analysis. The
meta-analysis was performed on clinical metrics extracted from the six studies and showed
that BMI, blood pressure, insulin and glucose testing are significantly improved upon PA
intervention. Amongst the included studies, a total of 257 CpG sites were differentially
methylated in physically active participants, with 134 CpGs located in 92 genes associ-
ated with obesity-related pathways. The identified differentially methylated genes either
belonged to the lipid metabolism or insulin signalling pathway. The genes which were
differentially regulated in multiple tissue types and studies are JAZF1 (insulin signalling,
and lipid and carbohydrate metabolism pathways) and NAV1 (mTOR signalling pathway).
In conclusion, the current epigenomic meta-analysis showed that PA levels induce differ-
ential DNA methylation signatures on genes that affect metabolism. To understand the
positive molecular effects of PA, further research on the above candidate genes needs to be
conducted amongst various levels of a physically active population.

Keywords: epigenetics; genetics; biomarker; methylation; CpG; obesity; physical activity;
body composition; BMI; body mass index

1. Introduction
Obesity is a significant global health problem. It affects one in eight adults, and this

figure has doubled since 1990; 2.5 billion adults are overweight and 890 million are living
with obesity worldwide [1]. Obesity places a significant burden on healthcare resources
and society, as it plays a contributing factor to numerous preventable diseases, including
type II diabetes (T2D), cardiovascular disease (CVD) and cancer.

Weight range classifications published by the National Institute for Health and Care
Excellence (NICE) are used to identify risk categories based on body mass index (BMI)
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measurements, using the formula weight (kg)/height (m)2. The threshold for those indi-
viduals described as overweight is BMI ≥ 25 kgm2, and for those living with obesity is
BMI ≥ 30 kgm2 [2]. BMI is a commonly used measure as it is quick and simple to calculate,
requiring only basic equipment for height and weight measurement; however, it has some
limitations [3]. Additional health indicators are increasingly being used alongside BMI,
such as waist circumference (WC), waist to hip ratio (WHR), body fat percentage and
lipid profiles, to provide a broader indication of health and body composition [4]. Recent
recommendations suggest that BMI alone should not be used to confirm excess adiposity
or as an individual measure of health, but should be used alongside other parameters that
better represent distribution of fat, such as WHR [5].

Physical activity (PA) is recommended by NICE [2] as a weight management approach.
PA is a broad term covering any bodily movement produced by skeletal muscles requiring
energy expenditure; this could be during leisure time, travel, or as part of a person’s work or
domestic activities [6]. Exercise is a form of PA, and goes a step further, describing planned,
structured, repetitive bodily movement, intended to improve or maintain components
of physical fitness [7]. The UK Chief Medical Officer has published recommendations
on weekly PA levels for a healthy lifestyle. For an adult aged 18+ years, this includes a
minimum of 150 min of moderate or 75 min of vigorous PA per week, including strength
building activities on at least two days per week and minimising sedentary time [8]. The
International Physical Activity Questionnaire (IPAQ) [9] describes vigorous activity as
requiring hard physical effort, resulting in harder breathing than normal, with examples
including aerobics, heavy lifting or fast cycling; moderate activity is described as requiring
moderate physical effort with somewhat harder breathing than normal, and examples
include carrying light loads or cycling at a regular pace; walking could be considered
light exercise. Sedentary behaviour (SB) is described as waking time spent sitting or
lying, with low energy expenditure. SB contributes significantly to obesity related diseases
including T2D and CVD, and metabolic syndrome [10]; it is positively associated with
adipose tissue insulin resistance, even where there is also moderate-to-vigorous PA taking
place, particularly in those with higher BMI [11]. A distinction should be made between a
sedentary person and SB, as an individual who is physically active may also display SB,
and an individual with low levels of PA may not display SB [12].

PA is known to have beneficial effects on overall health and weight loss, quality of
life and disease prevention [13]. Variations in individual responses to PA are influenced by
multiple intrinsic factors including sex, age, race, ethnicity, genetics and epigenetics [14].
Genome-wide association studies (GWAS) have identified genetic variants linked with
obesity, such as the FTO, MC4R, TMEM18, SEC16B and TFAP2B genes [15,16]. Epigenetic
changes are influenced by lifestyle factors, such as diet and level of PA. These changes
include DNA methylation (DNAm), micro-RNA expression and histone and chromatin
modifications. They affect transcription processes, gene expression and function without
affecting the DNA sequence itself. Improved understanding of molecular changes resulting
from PA at a DNAm level indicates further health results, such as chronic disease risk
reduction [17], which are not observed using clinical measures. The complex relationship
between PA and body composition (BC) needs further exploration, as PA acts as an external
epigenetic factor influencing DNAm [18], presenting an interesting question of epigenetic
cause and effect in weight loss and obesity [19].

DNAm changes are affected by DNA methyltransferase enzymes acting in response to
PA, including methylenetetrahydrofolate reductase, methionine synthase and methionine
synthase reductase, which provide methyl groups to DNA as part of the metabolic cycle [20].
As DNAm is a regulator of gene expression, an increase in DNAm (hypermethylation) in
cytosine–phosphate–guanine groups (CpG site) within a promotor region is associated with
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a decrease in transcription [21], which can inhibit gene expression and ultimately silence
or switch off the gene. Conversely, a decrease in DNAm of CpG sites (hypomethylation)
may enable increased gene expression [22] or lead to genetic instability through reduced
gene regulation. Effects may vary depending on the function of the gene affected and
any pathways it is associated with. For example, if PA induces DNAm changes in genes
and pathways associated with metabolism or disease, this may indicate a beneficial or
protective effect of PA [21].

Observational studies have identified variations in the DNAm profiles of those with
habitual PA routines versus those considered inactive, affecting epigenetic age compared
to biological age as an indicator of health and mortality markers [23]; a higher epigenetic
age in sedentary populations can be reduced following the introduction of PA [24]. Differ-
ences in DNAm profiles have also been observed in individuals classed as obese versus
those considered a healthy weight [25] and following PA interventions [17]; targeted gene
analysis found altered DNAm levels in genes associated with obesity following PA [26,27].
Epigenome-wide association studies (EWAS) in monozygotic twins found a correlation
between BMI and methylation of genes associated with obesity [28], and that environmental
and PA factors influenced epigenetic alterations associated with metabolic risk factors [29].
This indicates that PA can exert an epigenetic influence on genes associated with obesity
and metabolism even where there is genetic homogeneity.

DNAm responses to PA vary according to tissue type [30]; blood is commonly used for
DNAm analysis as it can be collected using less invasive methods than other tissue types.
Skeletal muscle (SKM) and adipose tissue (AT) are often obtained through biopsy for use in
epigenetic analysis relating to PA. Other factors causing variation in epigenetic responses
to PA include sex, with differential physiological responses in males and females [31], and
age, as epigenetic changes accumulate over the life span [32]. However, epigenetic profiles
are both heritable and reversible [33] which suggests that lifestyle changes can influence
DNAm profiles [34].

Several independent whole EWAS are available on understanding the molecular link
between PA and metabolic health. It is imperative to perform a comprehensive epigenomic
meta-analysis to find the molecular link and metabolic pathway replicated in all the EWAS
published. Therefore, this systematic review aims to compile a comprehensive data set
and meta-analysis detailing differentially methylated CpG sites resulting from PA and
any associated genes and pathways related to obesity. The review will improve our
understanding of how epigenetic profiles are affected by PA at specific CpG sites. This
information may be used to inform more in-depth laboratory investigations into DNA
methylation profiles resulting from PA, with an emphasis on understanding more about
interactions between PA, epigenetics, obesity and related diseases.

2. Materials and Methods
2.1. Protocol and Registration

The details of this systematic review were registered with PROSPERO in November
2023. The review protocol can be accessed on the PROSPERO website using the registration
number CRD42023471011 or through the following website address: https://www.crd.york.
ac.uk/prospero/display_record.php?ID=CRD42023471011 (accessed on 28 January 2025).

This literature review was completed using the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) framework [35].

2.2. Study Selection Criteria

Eligibility criteria were established using the population, intervention, comparison,
outcome and study (PICOS) framework (Table 1), to establish the PICOS design. All peer-
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reviewed articles in English, or that had been translated into English, up to the search date
of 16 November 2023 were reviewed, and searches were updated on 5 September 2024.

Table 1. PICOS framework used to establish eligibility criteria.

PICOS Element Criteria

Population Human population with no underlying health conditions, aged
18–65 years, non-smokers, pregnant or lactating excluded

Intervention Assessment of DNA methylation resulting from: (1) PA levels;
or (2) effects of PA programme

Comparison (1) Control group for population study or (2) non-exercising
group or participant baseline as control for PA programme

Outcome DNA hypermethylation or hypomethylation in CpG sites

Study design Population study or PA intervention study

Human-only study participants were recruited, between 18 and 65 years of age, male
or female and otherwise healthy with no underlying health conditions. Studies using
participants outside this age range were excluded. Excluded health conditions included
diabetes type I, type II and those known to be pre-diabetic; autoimmune disorders such as
multiple sclerosis; health complaints such as myalgic encephalomyelitis/chronic fatigue
syndrome or long-COVID; clotting conditions such as haemophilia; blood-borne viruses
such as human immunodeficiency virus or hepatitis; known genetic disorders; cardiovas-
cular disease; cancer. Participants were also excluded if pregnant or breastfeeding, or on
any prescribed medication. Studies focusing on elite athletes, military-trained personnel
and smokers were excluded.

Studies that analysed DNAm of CpG sites based on PA levels were considered. This
could have resulted from either an assessment of individual PA levels or a PA intervention.
Controls for the PA intervention studies were either participant baseline measures taken
pre-intervention or a comparable non-exercising group. Original epigenome-wide studies
and targeted DNA methylation studies analysing multiple genes were considered. Studies
including results for specific CpG sites relating to PA were selected; studies analysing only
one gene were excluded; studies reporting results including confounding factors, e.g., diet,
were excluded. Only studies using SKM, AT or blood samples were selected. Single case
reports, expert opinion manuscripts, letters to the editor, commentaries, conference papers
and review papers were excluded from the review.

2.3. Search Strategy

A range of online electronic databases were used for the literature search, including
Pubmed (including Medline), SPORTDiscus, Embase, Scopus, Web of Science and Cochrane
Library. All databases were last searched on 5 September 2024, using a combination of the
following keywords within the titles: epigenetic, genetic, biomarker, methylation, DNAm,
CpG, physical activity, physical exercise, PA, body composition, BMI, body mass index,
waist circumference (Supplementary File Table S1).

Search results were exported from the databases and uploaded into Rayyan AI [36] to
manage and track paper screening using titles and abstracts. Duplicates were automatically
detected using system filters and manually checked and removed. Titles were screened
for relevance against the search criteria. In cases where the scope of the study was unclear
from the title, an additional abstract screen was undertaken, using the Rayyan AI system.
Remaining articles which had not been excluded were then subject to a full-text screening.
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Details of the shortlisted papers were recorded in an Excel spreadsheet, including
database accessed, DOI, publication, title, citation reference and comments on inclusion or
exclusion decisions. This stage was completed by the lead researcher (J.C.). The shortlist
was shared with a panel of second researchers (A.D., C.M.P.R., C.C.) to ensure agreement
on articles selected for inclusion. The PRISMA search strategy can be viewed in Figure 1.
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2.4. Study Quality Assessment

Papers selected for inclusion were quality-checked using the BIOCROSS method [37],
a tool developed to evaluate biomarker studies. This was not intended as an additional
selection step, but to critically evaluate the selected studies for risk of bias.

The BIOCROSS method comprised five domains of questions and sub-domains to
examine study rationale, design and methods, data analysis, data interpretation and
biomarker measurement. Each section contained three elements; if all three elements had
been covered in the study, two points were awarded for that section; if one or two elements
were not covered, one point was awarded. If no elements were covered, that section would
achieve zero. A maximum score of 20 points was available, and studies with higher scores
could be considered more robust and good quality with low risk of bias, while studies with
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lower scores would be considered less reliable with a higher risk of bias. No thresholds of
acceptability were published at the time of evaluation (Supplementary File Table S2).

2.5. Analysis

Anthropomorphic characteristics and clinical metrics were compiled for each study
using Excel version 2408. These factors included the size and characteristics of the cohorts
and various measurements of health, fitness, body composition and classification of PA
levels. Forest plots were created using Cochrane Review Manager (RevMan) web software
version 9.0.0 [38] to determine the statistical significance of clinical metric changes post-
PA intervention.

CpG sites associated with PA from studies meeting the eligibility and inclusion criteria
were compiled into an Excel table, categorised by sample tissue type. Details included
methylation percentage levels, M values or beta-values for individual CpG sites and
p-values for significant differentials, where available. Associated genes or pathways iden-
tified in the studies were recorded. CpG sites were checked against the epigenome-wide
association studies (EWAS) [39], Accessible Resource for Integrated Epigenomic Stud-
ies (ARIES) [40], Genetics of DNA Methylation Consortium (GoDMC) [41] and Kyoto
Encyclopaedia of Genes and Genomes (KEGG) [42] databases for gene or pathway asso-
ciations with obesity. Statistical analysis of the compiled CpG data was conducted using
XY histogram plots in GraphPad Prism 10.4.1 for Windows (GraphPad Software, Boston,
Massachusetts, USA, www.graphpad.com, accessed on 25 March 2025). Any agreements
between data sets, such as consensus on CpGs, genes or pathways associated with obesity,
were identified and summarised. Studies were cross-referenced to establish whether CpGs
identified as significant in one study had been analysed and found not to be significant
in another study. Finally, the discussion sections were reviewed to identify any common
themes, findings or areas requiring further investigation, which could present opportunities
for future research.

3. Results
3.1. Study Selection

A total of 17,031 articles were identified through the keyword search across the six
electronic databases. Once uploaded into Rayyan, 5640 of these articles were automatically
identified as duplicates by the software, so were screened by title by the researcher (J.C.) and
selection decisions made with duplicates removed as one step. The remaining 11,391 articles
were then screened based on title, with an additional abstract screening where more clarity
was needed on the nature of the study. At this stage, 8568 papers were excluded due to not
meeting the study design selection criteria, mostly because they were not DNA methylation
studies or not specifically focused on PA. A total of 2538 studies were excluded for focusing
on the wrong population, for example, using participants from the wrong age group,
smokers, or with a specifically excluded condition or disease. A total of 243 articles were
excluded due to being the wrong publication type, for example, conference proceedings or
letters to the editor. Some articles fell into more than one of these exclusion categories. A
total of 42 papers subsequently remained and were subject to a full-text screening (Figure 1).

During the full-text screening, 36 further articles were excluded, mostly for being
the wrong study design or population. For example, some studies did not state the age
group being studied in the abstract and fell outside of the age criteria upon full article
screening [43]. Other studies mentioned PA in the abstract but did not specifically report
on this in the results or separate it out from other factors such as diet [44–46]. Other articles
were the wrong publication type, for example, DNA methylation and PA were mentioned
in the abstract, but the full-text screening revealed that it was a review paper rather than a

www.graphpad.com
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primary study and did not include specific CpG site details. The final number of studies
remaining for review was six (Figure 1; Table 2).

Table 2. Summary of study characteristics.

Citation Title Country
of Origin

Study
Characteristics

Study
Population

Study
Numbers

Tissue
Type Publication

Risk of
Bias Score
(Table S3)

[47]

Physical activity
and genome-wide
DNA methylation:
the REgistre GIroni

del COR study.

Spain

Population
study:

validation of
meta-analysis

using PA
questionnaires

and blood
sample

analysis.

Existing
cohort
(REGI-
COR)

619; 5%
female Blood

American
College of

Sports
Medicine

17

[48]

Can exercise
training alter

human skeletal
muscle DNA
methylation?

US

Exercise
intervention:

8 weeks
endurance
training.

Sedentary
healthy
adults

13; 61%
female

Skeletal
muscle Metabolites 15

[49]

Skeletal muscle
gene expression

signatures of obese
high and low
responders to

endurance exercise
training.

Germany

Exercise
intervention:

8 weeks
endurance
training.

Healthy
overweight

adults

18; 63%
female

Skeletal
muscle

Journal of
Clinical

Endocrinol-
ogy and

Metabolism

17

[50]

Sex differences in
muscle

protein expression
and DNA

methylation in
response to

exercise training.

Australia

Exercise
intervention:

4 weeks
endurance
training.

Healthy
adults

78; 36%
female

Skeletal
muscle BMC 16

[51]

A six-months
exercise

intervention
influences the
genome-wide

DNA methylation
pattern in human

adipose tissue.

Sweden

Exercise
intervention:

6 months
endurance
training.

Healthy
middle-

aged males

31; 0%
female

Adipose
tissue

PLOS
Genetics 17

[52]

Skeletal muscle
DNA methylation

and mRNA
responses to a bout

of higher versus
lower load

resistance exercise
in previously
trained men.

US

Exercise
intervention:

resistance load
testing, not

time-
constrained.

Active
young
males

11; 0%
female

Skeletal
muscle Cells 16

3.2. Participant Characteristics

All the participants were considered healthy with no known underlying health condi-
tions, but there were variations in the baseline requirements of the populations selected
for the studies. These included being classified as obese or a healthy weight, with BMI
ranging from 26 to 32 kg/m2. PA levels were described as ranging from sedentary [48,51],
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light, moderate, moderate–vigorous and vigorous PA [47], trained [52], and low responders
(LRE) and high responders (RES) to exercise [49]. There was also a wide age range between
the studies, with age means spanning 23 to 63 years. Gender split varied, with female
participants ranging from 0 to 63%. Participant characteristics for one cohort [50] were
sourced from a previous study paper [53].

Baseline measurement methods varied between studies, with one reporting waist cir-
cumference [51] and two reporting waist-to-hip ratio [49,51]. The population study cohort
was considerably larger than any of the PA intervention study cohorts. One study [49] used
two distinct cohorts of LRE and RES, which have been treated separately for the purpose of
this analysis. Table 3 provides a summary of the study population characteristics.

Table 3. Study population characteristics.

Study/
Characteristic [47] [48] RES [49] LRE [49] [50] * [51] [52] Total/

Average

Number of
participants 619 13 11 7 78 31 11 770 total

Mean age (yrs) 63.10
(11.70)

34.60
(11.10)

28.60
(4.72)

27.60
(3.96)

33.50
(7.50)

37.30
(4.40)

23.00
(4.00)

35.39
(6.76)

% female 49.90 61.00 54.50 71.40 35.90 0.00 0.00 38.96

Height (m) NS NS 1.72 (0.10) 1.71 (0.09) NS NS 1.80 (0.07) 1.74 (0.09)

Weight (kg) NS 87.50
(24.10)

91.80
(17.10)

96.90
(17.30) NS 91.80

(11.00)
86.00

(12.00)
90.80

(16.30)

BMI (kg/m2)
26.90
(4.00)

30.70
(7.40)

30.80
(3.65)

33.30
(5.84) NS 28.20

(2.90)
27.00
(3.00) 29.4 (4.47)

Waist
circumference

(cm)
NS NS NS NS NS 97.70

(8.60) NS 97.70
(8.60)

Waist-to-hip
ratio NS NS 0.90 (0.05) 0.87 (0.05) NS 0.93 (0.05) NS 0.90 (0.05)

Compiled from the six studies considered in this review. Mean values for cohort populations at the start of
the study. * Data sourced from previous Gene SMART cohort study [50,53]. (std dev) BMI = body mass index;
NS = not stated.

3.3. Study Design

Of the six studies selected, five were PA interventions and one was a population
cohort validation study (Table 2). PA intervention durations varied between the shortest
at four weeks [50] and the longest at six months [51], and load testing, which was not
time-constrained [52]. Participant baseline measures taken prior to the PA intervention
were used as an equivalent to a non-exercising control. Timings for sample collection varied
between intervention studies, from three hours post-load testing [52] to one week after
completing the final exercise session [50]. The types of exercise used in the PA interventions
included resistance training [52] and endurance training [48–51]. One study compared two
distinct cohorts for low responders and high responders to exercise [49], so both data sets
were used for the purpose of this meta-analysis.

The population study [47] sought to validate results from a meta-analysis identifying
CpG sites associated with PA using participant blood samples. This was completed using
PA questionnaires and interviews to categorise participants into groups based on PA levels
and calculated metabolic equivalents (METs), alongside a control population.
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3.4. Study Quality Assessment Results

The studies were assessed for quality using the BIOCROSS method (Supplementary File
Table S3). All scored between 15 and 17 points out of a possible 20, and all studies fulfilled
at least one criterion of the three from each domain. As a higher score indicates a lower risk
of bias, all studies could be considered as having a moderate-to-low risk of bias. All studies
provided a clear rationale, objectives and detailed statistical analysis methods. However,
none stated study power or rationale for sample size, one did not describe their participant
inclusion or exclusion criteria [48] and only two mentioned their participation drop-off or
completion rate [48,49].

3.5. Clinical Metrics

A range of clinical measures were used to establish the health of the cohorts pre- and
post-intervention. Blood pressure was reported in three studies, although none reported
significant improvements post-intervention [47,48,51]; another study [47] classified 46.7%
of the cohort as hypertensive. Cholesterol levels and triglycerides were measured in three
studies [47,48,51], with one study [51] recording a significant increase in high-density
lipoprotein cholesterol (p = 0.02) post-PA. A range of glucose testing was conducted in four
studies [47–49,51]; significant differences in insulin results were recorded in one study [49],
including insulin fasting pmol/L (p = 0.013), insulin oral glucose tolerance test (p = 0.009),
Matsuda insulin sensitivity indices (ISImats) (p = 0.001) and fasting serum insulin uIU/mL
(p ≤ 0.001) in another study [48] post-PA. Glycated haemoglobin tests were conducted in
three studies [48,49,51], and leukocytes and C-reactive protein were recorded in one [49],
although no significant changes were identified post-PA.

Physical analyses included AT measures in one study [49], with a significant reduction
in subcutaneous AT (p = 0.015), but not in visceral AT or total AT volume. One study [47]
recorded PA levels using METs per week, and two measured exercise performance in watts
(W) [48,49], with one study reporting significant differences in maximum W workload
(p < 0.001) [48]. VO2 max was recorded in two studies [50,51], and lactate threshold and
peak power in one [50]. VO2 peak was measured in one with significant differences post-
intervention (p < 0.0001) [48]. Pre-intervention training metrics were reported for one
cohort [52], including training age, squat tolerance, and muscle characteristics including
vastus lateralis thickness and muscle fibre percentages; no measures were reported post-PA
intervention.

Forest plots (Figure 2) were used to analyse changes in BMI, fasting glucose and fasting
insulin before and after the PA intervention. Although individual studies reported some
statistically significant changes as mentioned above, the overall effect changes were not
found to have changed significantly post-intervention. Statistical comparisons between
studies were limited, as very few studies reported on measures consistently.

3.6. Epigenomic Meta-Analysis

A range of tissue types were used for the DNAm analysis (Table 2). Four studies
used SKM [48–50,52], one study used blood samples [47] and one study used AT [51]. Two
SKM biopsies were taken at three and six hours following the short exercise bouts [52]; the
data taken at six hours was used for this meta-analysis, as the other studies used longer
timeframes for collection. All six studies used microarray analysis to identify CpG site
methylation. Two studies used an Infinium HumanMethylation 450 bead chip [47,51]
analysing 450 k CpG sites. Four studies used an Infinium MethylationEPIC 850 bead
chip [48–50,52], analysing 850 k CpG sites, which included those sites covered by the
Infinium HumanMethylation 450 bead chip [47].
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DNAm was measured using either methylation β-values [49,51] or M-values [47,50];
one study reported M-values converted from β-values [52]. Four studies used p-values to
identify significant results [47–49,52], and two used the false discovery rate (FDR), whilst
also reporting p-values [50,51].
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A total of 257 CpGs reported as having DNAm significantly affected by PA across the
six studies were compiled. Notably, 205 of these CpGs were located in 162 genes; of these
CpGs, 134 were located in 92 genes associated with pathways related to obesity (Figure 3;
Supplementary Information Tables S4–S6). CpG data were cross-checked between studies
where available to understand if CpGs found significant in one study were analysed and
found insignificant in other studies (Supplementary Information Table S7). Two studies
agreed that genes JAZF1 and NAV1 [50,51] had CpG sites significantly affected by PA
relating to obesity.
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Figure 3. Genes with number of hyper/hypomethylated CpG sites associated with PA and obesity
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obesity-related pathways are shown. The direction of the triangle indicates whether DNAm had
increased or decreased post-intervention.

Figure 4 provides a summary of significantly affected CpGs and genes with key path-
way associations related to obesity, covering metabolism, insulin and glucose regulation
and adiposity (Supplementary Information Table S8). Significantly affected genes were
compared by tissue type, and JAZF1 and NAV1 were identified in both adipose tissue and
skeletal muscle. Pathways were reviewed by tissue type, with insulin sensitivity and lipid
metabolism identified as common pathways across all three tissue types.
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Figure 4. Pathways associated with CpG sites and genes related to obesity. Identified using EWAS [39]
and KEGG [42] databases. Affected genes are grouped by association with obesity-related pathways
involved with metabolism, insulin and glucose regulation and adiposity. Genes associated with
more than one pathway grouping are shown overlapping the line. Colour code indicates tissue type
as follows: Pink: blood; yellow: adipose tissue; blue: skeletal muscle; green: all three tissue types
are represented.
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4. Discussion
The current systematic literature review and meta-analysis was conducted to deter-

mine the effects of PA in healthy participants on DNAm profiles associated with obesity.
This was completed by compiling results from DNAm studies of CpG sites in healthy
adult populations, with varying levels of PA and body composition. The key findings of
this research were that PA has an epigenetic influence on the DNAm of CpG sites and
genes associated with obesity-related pathways. The genes that were differentially methy-
lated in the current epigenomic meta-analysis belonged to the insulin sensitivity and lipid
metabolism pathways and are involved with metabolic health.

DNAm and obesity studies have focused on weight loss resulting from a combination
of lifestyle factor changes, including diet, alcohol consumption, smoking and PA [54],
measuring success using phenotypic BC indicators such as BMI and waist circumference
reduction. Although PA has been found to be more effective than diet alone [55], very
few DNAm studies have focused on the effects solely of PA [19]. The studies identified
in this meta-analysis were found to have a low risk of bias and could be considered of
good quality.

Three of the selected studies noted a small reduction in BMI post-PA interventi-
ons [48,49,51], and one a significant increase in high density lipoprotein (HDL) [51], which
indicate a change also observed in the molecular analysis. Excess adiposity is a hallmark
of increased BMI, weight gain and obesity, and the epigenetic effect of PA on pathways
associated with adiposity supports the principle of PA as an important factor in mitigating
weight gain. In the current epigenomic meta-analysis, a total of 32 genes associated with
adipogenesis and adipocyte differentiation were hyper methylated, including FOXP1,
LYPLAL1 and TMEM160; FTO and MAP2K5 also have associations with energy and lipid
metabolism [16]. One gene, TUB, was hypo-methylated, and two genes, STK40 and TCF7L2,
were hypo-methylated on some CpG sites and hyper-methylated on others (Supplementary
Table S8). This suggests that PA could help to mitigate weight gain through epigenetic
changes in genes associated with pathways for lipid metabolism and adiposity.

Effective insulin action is an important mechanism in regulating blood glucose levels
and energy storage, with insulin resistance being a risk factor for T2D. The glucose and
insulin testing undertaken in two studies found significant clinical changes following their
PA interventions [48,49], and there are multiple differentially methylated genes associated
with insulin signalling identified in the molecular analysis. Two genes were identified in
multiple studies, JAZF1 and NAV1 [50,51]. A total of 19 genes were hyper-methylated,
including TCF7L2, and three genes were hypo-methylated (DGAT1, FABP5, GPRC5B); three
genes, JAZF1, KCNQ1, and ST3GAL4, had both hyper- and hypo-methylation of CpG sites
(Supplementary Table S8). These genes have an established link with the insulin signalling
pathway and indirectly towards T2D disease pathology. Epigenetic changes in these genes
indicate that PA can potentially mitigate T2D risk through insulin signalling pathways.

Raised blood pressure is an early indicator of CVD risk, and some measurements taken
post-PA intervention indicate a reduction in systolic blood pressure [51] and diastolic blood
pressure [48,51]. Differential methylation was observed in genes associated with vascular
function and CVD, with three genes hyper-methylated (LY86, RBCTB1 and THNSL2),
three genes hypo-methylated (FCCR2A, GPRC5B and PRKG1), and one gene, TCFL2, with
both hyper- and hypo-methylated CpG sites (Supplementary Table S8). This suggests that
PA can have a protective effect on CVD development through molecular pathways and
physical health improvements.

Two genes of particular interest are NAV1 and JAZF1, which were identified in
two different studies, and in both AT and SKM [50,51]. NAV1 is associated with the
mammalian target of the rapamycin (mTOR) pathway, energy homeostasis control, and
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neurotransmitter signalling for gastrointestinal paths, including food intake and nutrient
sensing [56]. Studies involving ablation of neurons expressing NAV1 in mice identified an
exaggerated inflammatory response to a high-saturated fat diet, which suggests a role in
limiting acute-phase response to dietary fat in an obesogenic diet [57]; responses differed
by sex in mice on a high-fat, high-sugar diet, with males indicating weight gain resistance,
while females were observed to have improved oral glucose tolerance and homeostasis,
higher insulin levels and increased gastrointestinal transit [58]. JAZF1, juxtaposed with
another zinc finger protein 1, plays a role in regulating several nuclear receptors and protein
kinases involved in cellular energy metabolism processes [59], influencing downstream
lipid and glucose homeostasis and inhibiting inflammatory response [60]. Overexpression
of JAZF1 has been linked with reduced lipogenesis, increased lipolysis and a decrease
in weight gain [61]. As obesity-associated chronic inflammation contributes to insulin
resistance, JAZF1 has been identified as a potential target for therapeutic strategies for T2D
due to its role in mitigating insulin resistance [60]. DNAm changes affecting CpG sites in
genes involved with lipid metabolism and insulin sensitivity pathways were common in all
three tissue types, indicating that PA does have an epigenetic effect on pathways associated
with obesity.

The strengths of this systematic review and meta-analysis were the strict inclusion
criteria for study selection, use of EWAS data and analysis of results by tissue type. Clinical
metrics were aligned with genes and pathway findings, and genes of interest were identified
for future research, including JAZF1 and NAV1. The laboratory methods for DNAm
analysis were consistent across all six studies with the use of Infinium bead chip technology.

There were some limitations in the comparison due to the heterogeneity of the studies
selected, with some confounding factors known to contribute to genetic and epigenetic
variance, including diversity of cohorts for age [32] and sex [62] and limited information
provided on ethnicity and economic background [27]. The design of PA interventions
varied; resistance or endurance exercise type can affect DNAm profiles differently [63]. The
timing of tissue sample collection post-PA should be considered, as there were variations in
hours to days between the studies, which may have contributed to the heterogeneity of the
results. Data from the load-testing biopsies indicated a higher level of DNAm changes after
three hours than were identified at six hours compared to the pre-exercise baseline [52];
this could be attributed in part to an acute exercise-induced stress response [64], whereas
long-term sustained exercise has been linked with the hypomethylation of genes associated
with oxidative stress, such as OXR1, leading to a greater tolerance to oxidative stress in
SKM [65]. This is reflected in the meta-analysis results, with the highest number of affected
genes seen in the longest PA intervention [51], and the lowest number of affected genes in
the short-bout load testing [52]. Epigenetic effects of repeated or sustained bouts of PA have
been found to be more marked, suggesting that a cumulative effect of PA contributes to an
epigenetic memory that may not be observed in a single PA intervention [52]. These are all
factors that should be taken into consideration when designing a PA intervention study.

The results of this meta-analysis would benefit from further investigation and valida-
tion in a future cohort. The small number of studies that were selected and the heterogeneity
of cohorts, PA intervention design and variations in DNAm value reporting and statistical
analysis methods underline the need for more research in this area to build a more complete
and consistent understanding of the epigenetic effects of PA on DNAm.

Understanding the epigenetic consequences of increased PA levels, and the impact this
could have on metabolic health, highlights the importance of PA as a lifestyle intervention,
independent of diet. The impact of PA on weight loss at a molecular level is an important
contribution to our understanding of how lifestyle changes in this area can mitigate obesity-
related health risks. Early intervention with PA initiatives can help to tackle weight gain
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and longer-term disease development such as T2D, CVD and other obesity-related health
problems that have an impact on public health.

5. Conclusions
This study achieved the aims of identifying differentially methylated CpG sites and

genes associated with obesity-related pathways as an epigenetic effect of PA. Multiple genes
and pathways were identified as associated with BC and adiposity, which was supported by
a reduction in BMI in some cohorts following PA intervention. Differential methylation was
observed in genes associated with glucose and insulin pathways, with improvements also
noted in clinical tests for insulin sensitivity, an important indicator for T2D. Finally, blood
pressure changes in participants were observed, alongside DNAm changes seen in genes
associated with blood pressure and CVD. This supports the idea that PA has important
molecular consequences related to BC and obesity-related disease development such as
T2D and CVD, independent of other lifestyle factors such as diet. Little research has been
undertaken in this area so far, as evidenced by the small number and heterogenous nature
of studies meeting our selection criteria, and our knowledge would benefit from more
in-depth research to understand how PA can contribute to tackling the obesity challenge
from an epigenetic perspective. Establishing a link between increased levels of PA and
metabolic health improvements independent of diet underlines the importance of positive
lifestyle changes that can contribute to weight loss and mitigate obesity-related health risks.
PA as preventative medicine is a powerful message that could ultimately be used as part of
a public health campaign, or to influence PA initiatives and funding at a local level.
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