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ARTICLE INFO ABSTRACT

Keywords: This work proposes a stochastic multiscale computational framework for damage modelling in 3D woven
Multiscale composite laminates, by considering the random distribution of manufacturing-induced imperfections. The
Stochastic

proposed method is demonstrated to be accurate, while being simple to implement and requiring modest
computational resources. In this approach, a limited number of cross-sectional views obtained from micro-
computed tomography (uCT) are used to obtain the stochastic distribution of two key manufacturing-induced
defects, namely waviness and voids. This distribution is fed into a multiscale progressive damage model to
predict the damage response of three-dimensional (3D) orthogonal woven composites. The accuracy of the
proposed model was demonstrated by performing a series of finite element simulations of the un-notched and
notched tensile tests (having two different hole sizes) for resin-infused thermoplastic (Elium®) 3D woven
composites. Excellent correlation was achieved between experiments and the stochastic finite element simula-
tions. This demonstrates the effectiveness of the proposed stochastic multiscale model. The model successfully
captured the stochastic nature of tensile responses (ultimate tensile strength and stiffness), damage modes
(matrix damage and fibre failure), and initiation and propagation of transverse cracks in thermoplastic 3D woven
composites, consistent with experimental observation. The stochastic computational framework presented in this
paper can be used to guide the design and optimization of 3D textile composite structures.

Progressive damage model
3D woven fabric composites
Thermoplastic

1. Introduction architecture and the significantly different nature of progressive dam-

age, the progressive damage in each constituent must be simulated

Accurate and fast predictive modelling of damage tolerance in fibre-
reinforced composite materials has been an active topic of interest for
researchers and industry for many decades [1,2]. A progressive damage
model, which is realistic, easy to implement and computationally highly
efficient, on one hand, can be used as a generative design tool for new
product development and on the other, for creating digital twins for
structural health monitoring and predictive maintenance. While signif-
icant success has been achieved for damage modelling of unidirection-
ally (UD) reinforced laminates as well as multidirectional stacks of UD
lamina using conventional (single scale) continuum damage mechanics
models [3,4]; major challenges still impede such development for
composites with more complicated reinforcement architecture such as
the 3D fabric composites. For example, due to the complexity of the
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independently. To address this challenge researchers have often resorted
to micromechanics-based models. In a pure micro-mechanics approach
either an idealized or near to realistic [5], periodically repeating
representative volume element (RVE) is considered and the elastic
response, as well as strengths of the homogenized medium, are predicted
based on this RVE model [6-8]. This approach is contentious because
the damage growth process does not repeat periodically across the
structure and therefore the damage growth response based on periodic
homogenisation strategies is unrealistic. If a full-scale FE model of the
entire structure is built using such approaches then that becomes
computationally very demanding even for moderately sized parts due to
the need for a very high mesh density. For example, the work done by
Green et al. [5] reported a five-day running time of the model for a
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27.8 x 9.9 x 5.3 mm> RVE just with the baseline mesh. One could easily
imagine the months of simulation time required for even a moderately
sized part. To address these limitations a series of multiscale methods
have been developed. One possible approach for multiscale modelling
involves two finite element (FE) simulations — one at the microscale and
the other at the macroscale for uni-directional composites [9] or at the
meso-scale for multidirectional (textile) composites [9] — carried out in a
nested manner, also called the FE2 method. This method is computa-
tionally very expensive, particularly for large-scale dynamic simulations
[10,11]. To improve the efficiency of FE? methods, some new ap-
proaches have been proposed recently, such as the work of Spahn et al.
[12] and Huang et al. [13]. Other alternate multiscale modelling
methodologies have also been presented and a summarised review of the
various strategies for multiscale modelling of composites is presented in
our earlier publication [14]. In that work, a new deterministic multi-
scale modelling framework for 3D composites was presented. In that
approach [14] the global or part-level FE analysis is performed at the
macro-scale, while the damage initiation was predicted at the meso-scale
using an analytical meso-scale unit-cell/RVE model of a 3D woven
composite. The damage evolution, in that case, was modelled separately
in impregnated yarns and matrix regions. This approach provided a high
level of computational efficiency at a reasonable level of accuracy. For
example, a typical runtime for a tensile test simulation in [14] for a
specimen size of 8000 elements is around 30 min (4 CPU cores). This
approach can be easily extended to any part size. Although the approach
efficiently solves the challenges of the heterogeneity and non-periodicity
of damage progression, it is still limited in accuracy because the initial
input elastic and geometric properties of RVE are assumed to be the
same for every region of the global part model. This assumption is not
completely true because even when one uses advance NDT techniques,
like X-ray CT to accurately model the geometric microstructure for an
RVE there will be local variations in effective mechanical properties
from one unit-cell (RVE) to the other due manufacturing limitations and
changing contours of part geometry. In practice, the geometrical
imperfection or defects, such as matrix voids, resin-rich pockets, fibre
spatial distribution, fibre misalignment, local variability in the fibre
volume fraction, waviness in yarn’s cross-section, which mainly arise as
a consequence of the manufacturing processes [15-20], cause local
variations of effective mechanical properties of unit-cell (RVE). A better
and more accurate modelling framework must take into account these
manufacturing-induced variabilities, which are typically observed in
real composites, while still keeping the computational cost low. Thus in
this paper, our focus is presenting the development and validation of
such a novel multiscale model that indirectly accounts for local and
global variations in geometric and material property uncertainties
without making the model significantly computationally demanding.
In textile composites, the macro-scale variabilities in effective me-
chanical properties such as stiffness and strength are manifestations of
commutative defects that exist at a sub-scale level, i.e., micro- and meso-
scales [21-23]. The quantification of variabilities at the sub-scale level
and subsequent propagation to the macro-scale (or component level) is
crucial for the stochastic multiscale analysis of textile composite. With
the advancement of micromechanics-based homogenization theories,
researchers have now a better understanding of the relationships be-
tween sub-scale and macro-scale composites [24]. Zhang et al. [25]
proposed a multiscale progressive damage model based on a local-
—global (mesoscale-macroscale) method to predict the flexural response
of 3D hybrid composites. However, authors did not account
manufacturing induced defects in the local (mesoscale) model. In recent
years, it has enabled researchers to establish several stochastic predic-
tive models, to predict variabilities in mechanical properties by incor-
porating uncertainties at different length scales [10,19,26,27]. In this
regard, a detailed review of the stochastic multiscale analysis of com-
posites is given by Zhou et al. [21]. The authors concluded that the
existing multiscale models did not consider manufacturing defects and
their resulting variabilities were not successfully implemented in a
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realistic way.

Several authors proposed stochastic multiscale approaches to predict
the mechanical properties of two-dimensional (2D) textile composites
[27-34]. In these models, uncertainties in material properties were
introduced in a micro-scale unit-cell model and the FE simulations were
performed at meso-scale, which makes these approaches computation-
ally expensive for large-scale or component-level simulation. Patel et al.
[32,33] developed a multiscale progressive damage model to predict the
tensile and compressive responses of hybrid 3D textile composites. The
authors generated a mesoscale FE model using uCT data; thus, the model
considers manufacturing-induced defects. However, the mesoscale
model is directly generated from pCT data, which is computationally
inefficient and not practical for component-level analysis. Recently, Wei
et al. [16] proposed a stochastic multiscale model considering local
variabilities of material properties at the micro- and meso-scales to
predict the macroscopic response of 3D composites. In the proposed
approach, the macro-scale analysis was performed using the shell model,
which is not suitable to predict the through-thickness damage response
of 3D textile composites. Han et al. [17] developed a multiscale model
using the probabilistic distribution of fibre modulus and voids to predict
the stochastic response of 3D braided textile composites. The authors did
not consider waviness in individual impregnated yarns caused during
manufacturing processes. Similarly, Lei et al. [18] and Huang et al. [35]
proposed a stochastic multiscale model for 3D textile composites by
considering voids defects only. In recent years, researchers have also
proposed coupled data-driven multiscale uncertainty quantification and
propagation frameworks, to predict the mechanical performance of
textile composites [16,36-38]. Additionally, several authors proposed a
computational framework based on coupled unit-cell/RVE homogeni-
zation and the Monte-Carlo method to predict the effect of uncertainties
on the effective properties of fibre-reinforced composites (FRCs)
[26,39-41].

This review of literature highlighted that for 3D composites, there is
a need to develop a strategy for component-level multiscale damage
simulations that can account for manufacturing-induced variability in
part quality and while doing so is also computationally less demanding
and easy to set up. Thus in this paper we aim to address this dual
challenge and propose a strategy that involves (a) realistic statistical
quantification of manufacturing induced random geometrical variabil-
ities (i.e., localized geometrical imperfection or defects) at the sub-scale
level, (b) propagating this statistical information in the virtual sub-scale
model (i.e., at the two-scales (micro-scale and meso-scale)) and generate
stochastic material properties for the macro model), (¢) perform sto-
chastic multiscale progressive damage analysis to predict damage
response of textile composites and d) carry out a global part level finite
element simulation of the test case in a reasonable time frame. In this
paper, we demonstrate the use of this strategy for both un-notched and
notched 3D composites with excellent correlation with experimental
results.

This paper is organised as follows. In Section 2, we explain the details
of the stochastic multiscale progressive damage model for textile com-
posites. In Section 3, we discuss the experimental evaluations of the un-
notched and notched response of 3D woven composites. In Section 4, we
explain the FE implementation of the framework and show how it is
applied to simulate the damage response of un-notched and notched
composites. In Section 5, we establish the predictive capabilities of the
proposed modelling framework by comparing it with the experiments
described in Section 2. Finally, we summarise the conclusions in Section
6.

2. Stochastic multiscale progressive damage model

Fig. 1 shows the overall flowchart of the proposed stochastic multi-
scale progressive damage model. The model consists of four main steps,
i.e., (a) a stochastic material model to generate a normal distribution of
waviness in impregnated yarns and voids in a polymer matrix; (b) a
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Step-a: Characterisation of

Manufacturing Uncertainties RCy,
¢ CT scan of 3D woven composites Uy
¢ Identify idealized UC of 3D-FRC x,y, z 4

*  Geometric parameters of constituents in UC
*  Volume proportions of constituents in UC V,
* Uncertainties identification: Statistical
distribution (u,S) of constituents V,,, 6, ¢,
*  Generate random numbers RC, (1, S),
RQp (1, 5), RC, (1, S)

Step-b: Stochastic Analytical Micro-

Model
Fiber/matrix properties Ez /. Gr /m , Vs /m
Elastic constants of impregnated yarns
using statistical distribution of voids C,
Strength parameters of impregnated
yarns using statistical distribution of
voids X, ¥, Z,,

Ko ViiZs

| Ef/m: Gg pm » Vs /m

Step-d: Macro-Model (FE Model)
« Evaluate macro-stresses (GCS)
« Explicit FE analysis in Abaqus
+ Evaluate strain increment for next iteration A&

al

As

Step-c: Stochastic Constitutive Meso-

RC,,RQ,

Model
Transformed stiffness matrix of
impregnated yarns in LCS TC,
Evaluate meso-stresses in impregnated
yarns and polymer matrix g, d,,
Evaluate damage in impregnated yarns
and polymer matrix d,, d,,
Update meso-stresses in impregnated
yarns and matrix o), o),

Fig. 1. Stochastic multiscale progressive damage model. x,y, z = Dimension of unit-cell (UC); p = Impregnated warp, weft, and binder yarns; V, = Volume pro-
portions of the constituent; 6,9,y = Waviness in impregnated yarns (see Table 1 and Fig. 2); V,,= Void content; RC,,RCrn,RQ,= Random numbers (R) for stiffness (C)
& strength (Q); Az = Macro-strains in GCS; & = Macro-stresses in GCS; Ae?P= Meso-strains in LCS; ¢’= Meso-stresses in LCS.

stochastic analytical micromechanics model to generate a corresponding
normal distribution of elastic constants and strength properties of
impregnated yarns, using fibre volume fraction, elastic constants and
strength properties of fibre and polymer matrix. These normal distri-
butions are fed into the meso-model to evaluate the damage state of each
constituent; (c) a stochastic constitutive meso-model of 3D woven com-
posites to evaluate for each unit-cell a unique stiffness matrix corre-
sponding to the unique set of parameters (elastic constants and
waviness) obtained in steps a and b; and (d) a macro-scale explicit dy-
namic FE model of 3D woven composites to determine homogenized
macro-stresses on the component being virtually tested in a global co-
ordinate system (GCS). The models in steps c and d have a bidirectional
flow of information. Thus, the macro-model (step d) is used to provide
the strain increment for each material integration point within the FE
mesh to the unit-cell model (step c¢). The macro model is then updated by
evaluating the meso-stresses and damaged state of each constituent in a
local coordinate system (LCS) using the unique stiffness matrix for that
unit cell. The process is repeated for each unit cell within the macro
model for each time increment.

All the sub-models (steps a—c) used to describe the stochastic varia-
tion in material properties are coupled to the macro-model (step d) for
finite element implementation through a user-defined material subrou-
tine. In this study, we have achieved this using a vectorized user material
(VUMAT) subroutine in Abaqus/explicit. The approach, however, is
generic and may be implemented in other FE software that allows for
user-defined material behaviour. Details of each of these sub-models are
presented in the following sections.

2.1. Characterisation of manufacturing uncertainties for material model

The development of a stochastic material model required accurate
identification of geometric uncertainties present in fabricated compos-
ites. Therefore, uCT was undertaken to quantify inherent geometric
uncertainties produced by the composite manufacturing process. Using
uCT it is possible to generate detailed 3D model of a localised region
within the composite and several researchers have used this to directly
create the 3D micro and meso-level unit cell [42-44]. This approach is
not pursued in this study because the unit cell generated from a single
scanned region is not necessarily representative of the variations in the

entire sample. In order to obtain a better representation of the random
distribution of defects within the entire specimen, we have used multiple
cross-sectional views from randomly selected sampling points from
various locations in a representative test piece. Thus, Fig. 2 shows a
typical cross-sectional pCT images of 3D orthogonal woven composites
used in this study. The resolution and filter used during to are 28 um and
LE2 (Low Energy filter 2), respectively. These images were used to
manually determine the mean (¢) and standard deviation (S) of waviness
in impregnated warp yarn (¢), weft yarn (¢) and binder yarn (),
respectively, as summarised in Table 1. The S of yarn waviness is ob-
tained from seven different cross-sections along the warp and fill di-
rection. The waviness along the warp and weft directions is measured
using the same method. The void content of fabricated 3D orthogonal
woven composites is measured using the burn-off method [45]. The
variabilities in the void content among ten different samples are also
given in Table 1.

The stochastic material model was implemented within the VUMAT
subroutine and was called at every time increment for each unit cell in
the macro-FE model to generate a uniform, random distribution of
waviness in impregnated yarns and voids in the matrix and to evaluate
the corresponding stochastic distribution in the elastic constants and
strength properties. Fig. 3 depicts the proposed algorithm’s pseudo-
code, which generates a stochastic distribution of elastic constants and
strength properties for the meso-scale model. The code requires inputs of
the number of unit-cells (n) in the macro-model, and the mean (1) and
standard deviation (S) of the waviness of warp, weft, and fill yarns, and
void content (see Table 1). The Box-Muller (BM) transformation algo-
rithm [46] is then employed to obtain the Gaussian distribution of
random material properties. The BM algorithm generates an indepen-
dent random variable (Z) with a standard normal distribution, given by
Eq. (1).

Z(0,1) = sin(22R,) /—2In(Ry) @

where, R; and R, are uniformly distributed random numbers on a
unit interval [0, 1]. The uniformly distributed random variable (Z) is
then scaled based on the mean (x) and standard deviation (S) of prop-
erties (elastic constants and strength properties) in a specific range, i.e.,
RQ; (1, S) or RC;;

ijp

(1,8) = py £ 85 x 2,(0,1) (2)
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Top view of 3D
orthogonal woven fabric

Fig. 2. Cross-sectional pCT images of 3D-FRC with waviness along the warp yarn () and the binder yarn (y).

Table 1
Mean and standard deviation of waviness in impregnated yarn and voids.

Scale Uncertainty sources Mean value Standard deviation
(D) (0)
Meso- Waviness in the warp yarn 0 7.3
scale “o°
Waviness in the fill yarn “p”  90° 7.5
Waviness in the binder yarn 90° 30.5°
“y
Micro- Voids “V,,” 2.7 % 1.1%
scale
where Qj, and Cjj, each represents a value of randomly generated

strength properties and elastic constants (Youngs’s moduli, shear moduli
and Poisson’s ratios) in the three principal directions. The python code
assigns these properties (Qj, and C} ) to the n™ unit cell in the model,
which in this study corresponds to the n finite element in the mesh.
This process is repeated until random properties were assigned to all the
unit cells defining the part (i.e., the entire finite element mesh),
consistent with our previous work [47]. It should be pointed out that in
this study the choice of Gaussian distribution to represent yarn waviness
was based on a previous study [48]. The close correlation with the re-
sults in later sections, however, further demonstrates that this was a
reasonable assumption. Had this proved insufficient to capture the
strength distribution at the global level then the model could have been
improved by first identifying the appropriate distribution from a sta-
tistical test like Kolmogorov-Smirnov or Shapiro-Wilk.

2.2. Stochastic analytical micro-model

The impregnated warp, fill, and binder yarns were treated as trans-
versely isotropic materials, which means that their elastic response
could be described by five elastic constants. The elastic constants and
their corresponding strength properties can be evaluated either using a
FE micro-mechanics model or an analytical micro-mechanical model. In
the proposed stochastic multiscale model a unique set of elastic con-
stants and strength properties of impregnated yarns were determined for
each unit-cell corresponding to the stochastic distribution of void vol-
ume fraction V, in the unit cell. This was done by using uniformly
distributed random numbers generated by the stochastic material model
(Section 2.1) to represent the changing values of void volume fraction

Read:

Element/Material data points (")
Mean (u) & standard deviation (S) of yarns waviness
Mean (1) & standard deviation (S) of voids

!

Apply the Box Muller Algorithm

A

Generate random number RT, R%,,

v

Generate: h
Random elastic constant of yarns (RCy) Ep, Gp , vp
Random Strength Prop. of yarns (RQ,) X;/ € ypT Ve zz/ 4B,

Random elastic constant of matrix (RCy,) E, G, v
Random void volume fraction V;, matrix strength Ti,, Cp

v

Yes

Generate new
set of properties

Assign stochastic RCy, RC,, and RCyp, to the
n™ element/UC

66 %
Cligcke"s Generate stochastic
Yes properties for next element
(n)

End

Fig. 3. Sudo-code algorithm for stochastic material property generation
and assignment.

(Vy) in the Chamis model (Eq. (3)) [49]. In doing so, it was assumed that
the elastic constants and strength properties of the polymer matrix were
degraded linearly with void volume fraction. These properties were then
used by the meso-model to evaluate a unique stiffness matrix, meso-stress
and the damaged state of each impregnated yarn.
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El, =VpEus + V,,,E,,,(l - Vf)

E,
E;Zp = E;&p = E (1 n
’ m - VV
1- V Vf«P (l - (ETJ‘)
G,(1-V1)
Gr]lz P = GTB./) = :
: , G, (1-V"
v
" Gu(1-V))
Bo = G, (1-7)

1- A% Vf-p (1 - G
23f

Vi = Vipvr + Ve (1 = V)
n
VL E22.[) 1
23p T
P 2Gg3p

where Vy,, Vi, and V] each denotes the fibre volume fraction of
impregnated yarns, matrix volume fraction, voids volume fraction of n*
element; v, Ey, and Gy indicates Poisson’s ratio, elastic modulus, and
shear modulus of the fibres, while v,,, E,, and G,, are those for the
matrix; E}, ,, Eg, , By, Glopy Gisps Ghzps Viap, and vis, represent the
effective (bulk) elastic and shear moduli, and Poisson’s ratio of the
impregnated yarns for n* element in a local coordinate system (LCS).
Similarly, the strength properties of impregnated yarns are estimated
using the Chamis model [49] given by Eq. (4).

X1, = Vi X!
Xit) = VipXf
\ E,(1—V" )
xtt = [1- (7 =) - 20wy
2.
C)]
. E.(1- V! )
XZCi:p = {1 - (\/ Vip — Vf-p) _(ETf)}C'”(I - VV)
Gu(1— V" )
Ty = {1 ~(VVi» = Vip) — (1 —(fo)) }Sm(l -V
a

where XlT'l'fp, Xf’{fp, ngp, x§~2"_p and S, , represents longitudinal tensile
strength, longitudinal compressive strength, transverse tensile strength,
transverse compressive strength, and in-plane shear strength, respec-
tively, of the impregnated yarns for n element in LCS. X{ and XfC each
denotes the tensile and compressive strength of the fibre. T;,, C,, and S,,
refers to the tensile, compressive and shear strength of the matrix,
respectively.

2.3. Stochastic constitutive meso-model (unit-cell model)

The stochastic constitutive meso-model is the most important part of
the stochastic, multiscale, progressive damage modelling framework. It
takes the normal distributions of impregnated yarn and polymer matrix
properties from the micro-model and the normal distribution of wavi-
ness in each impregnated yarn from the stochastic material model as an
input. These inputs are utilized in evaluating the unique stiffness matrix
and meso-stresses of each constituent of the meso-model using appro-
priate transformation equations. The meso-stresses are then used to
determine the damage response of impregnated yarns and the polymer
matrix using appropriate failure criteria. The proposed stochastic meso-
model was developed to address the limitations of our previous deter-
ministic meso-model [14] of 3D woven composite (Fig. 4), i.e., (a)
impregnated yarns are not necessarily perfectly perpendicular to each
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other, (b) each impregnated yarn contains waviness and (c) there are
voids in the resin-rich pockets. Therefore, the proposed stochastic meso-
model is a non-idealised unit-cell model and represents the actual in-
ternal architecture of a 3D woven composite.

To mimic the physical reality, each element in the macro-FE model is
associated with a stochastically unique meso-model (or unit-cell) in the
multiscale model. The uniqueness of the meso-model is a consequence of
the differences in the yarn waviness and voids in resin-rich pockets for
each unit cell. Thus, each impregnated yarn in the meso-model is
assigned with unique elastic constants and strength properties from the
stochastic analytical micro-model (Egs. (3) and (4)), which results in
unique effective elastic and strength constants for each instance of the
unit-cell model. This means that, unlike a traditional FE mesh where
only one set of material properties is assigned initially to the macro-
model mesh, the elastic response and damage state of each element in
the macro-model for the stochastic multi-scale model are different.
Similarly, the damage also develops independently in each unit-cell and
the constitutive meso-model is called by the macro-model explicit FE
solver at each integration point to update the damage index of the 3D-
FRC part being virtually simulated.

2.3.1. Damage modelling of impregnated yarn

The 3D orthogonal woven composites ideally consist of three
perpendicular impregnated yarns (warp, weft and binder). In this work,
each yarn was locally treated as a transversely isotropic material and
analytically modelled according to their orientation and volume fraction
in a unit cell (Fig. 4). The constitutive model of impregnated yarns was
transformed from local (1 2 3) to a global (XYZ) coordinate system, using
Eq. (5).

y y

60— [T;.G‘L] " oL 5)

T
G _ |pnGlL|" L
E‘U = [JF ] SU

—1 -7
G _ [ynGiL L G|L
;= [mer] legt] [met]
where ij are 1, 2, and 3, and p = warp, weft, and binder yarns. o, ¢},
and C;‘L represents the stress vector, strain vector, and stiffness tensor in
the local coordinate system (123), respectively. of, f, and C;G each
denotes the stress vector, strain vector, and stiffness tensor in the global
coordinate system (XYZ). T;LG‘L depicts the unique transformation matrix
for each impregnated yarn from the local to the global coordinate sys-
tem, defined as yarn orientations, i.e., &", ", and y". The transformation
matrix for the warp and weft yarn is given by Eq. (6).

[ cos’a" sinrfe" 0 0 0 2cosa" sinw" 1
sin*@" cos’w” 0 0 0 —2cos@" sin@”"
[T""G‘ L} B 0 0 1 0 0 0
’ - 0 0 0 cos@" —sinw" 0
0 0 0 sin®" cos@" 0
—cos@"sinw" cos@"sinw" 0 0 0 cos* 0" —sin* "

(6)
where omega " is the angle of warp and weft yarns, between global
and local coordinate systems, which is ideally 0" =6"=0" and " =¢"=

90" counter-clockwise, respectively. The transformation matrix for
binder yarn is given by Eq. (7).
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[a]

. Warp yarn .Weft yarn - Z yarn
(a) Micro-scale UC in global GCS (XYZ)

Matrix
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(c) GCS (XYZ) and LCS (123) of Warp Yarn (WY)

(c) GCS (XYZ) and LCS (123) of Fill Yarn (FY)

Fig. 4. Idealized 3D woven composite unit-cell model. The dotted lines in the figures represent yarn waviness.

[ cos”y" 0 sin*y" 0 2cosy" siny" 0 |
0 1 0 0 0 0
[T"' ol ] _ sin*y" 0 cos*y" 0 —2cosy"siny" 0
’ 0 0 0 cosy”" 0 —siny"
—cosy"siny" O cosy'siny" 0 cos*y" —siny" 0
0 0 0 siny" 0 cosy"
@

where, angle y" is the angle binder yarn angle, between global and
local coordinate systems, which is ideally y"=—90" (clockwise). There
are two main differences between our previous damage model in [14]
and the current work: (1) 6", ¢", and y" are no longer constant param-
eters and instead vary in accordance with the values computed from Egs.
(2) and (2)) the impregnated yarn failure initiation strengths also exhibit
stochastic variations as explained earlier (Egs. (3) and (4)). This ensures
that the stochastic variation of these parameters as observed in real
composites is captured and thus the model is more realistic as compared
to our earlier model [14].

The damage response of impregnated yarns was modelled as linear
elastic until damage initiation, followed by linear damage evolution.
Modified 3D quadratic failure criteria [14] were employed to predict
damage initiation in each impregnated yarn. On the onset of damage,
the stiffness of damaged yarns was degraded according to the linear
damage evolution law (see Fig. 5a), given by Eq. (8), which is used to
update the damage stiffness matrix of impregnated yarns.

e, eir_€M
d[ — 1, — g} 1, 8
! <efrez-t'; ( &ir ) ®

: ini
die = €e <€i=C*€i.C)
1, - ..
de—el )\ eic

where, €%, ¢

> and &/, represent the strain value at damage initia-

tion, current strain and strain at the final damage state under tensile (T)
load, respectively. e, €, ., and €] represent the strain value at damage

initiation, current strain and strain at the final damage state under
compressive (C) load, respectively. The subscript i = 1, 2, and 3 repre-
sents the longitudinal, in-plane transverse, and out-of-plane transverse
directions. The micro-stresses 0{1 in individual yarns were updated using

the damaged stiffness matrix Cf; f and micro-strains ¢/, given by Eqn. (9).

ij>

0{/ = Cf/')lfeﬁ (9)

2.3.2. Damage modelling of polymer matrix

The polymer matrix was considered an isotropic material. The tensile
and compressive yield strengths of the polymer matrix may be different
due to the dependency of yielding on the hydrostatic components of the
applied stress state. Therefore, a modified von Mises failure criteria in
terms of tensile and compressive strength is given by Eq. (10).

o2 1 1
v — | =1 1
CuTy © (T cm) ! 10

where C,, Tn, oy, and I; represent the compressive and tensile
strengths of the polymer matrix, von Mises stress and the first stress
invariant, respectively. Prior to damage initiation, the response of pure
matrix is treated as linear elastic, followed by elastoplastic deformation
occurring as a result of damage growth (Fig. 5b). The matrix damage
evolution used in this work is based on the multi-linear damage evolu-
tion law proposed by Xu et al. [50], where yield stress and equivalent
strain relationship are used to evaluate the damage state for each step,
given by Eq. (11).

() reifen )
EO.mgeq(g;I‘ - 83‘_])(1 - Vv)

m

an

where el s;‘l, o}, 03‘1 and &, represent yield strain at the damage
stage q, yield strain at the damage stage g-1, yield stress at the damage
stage g, yield stress at the damage stage g-1, and equivalent strain in ith
damage stage (6}?’1 < g < e}), respectively. Ey, is the undamaged
stiffness of a polymer matrix. The matrix damage is evaluated in each
stage and the final matrix damage D,, at each integration, the point is
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Fig. 5. Damage initiation and evolution laws: (a) impregnated yarns and (b) polymer matrix. Note that ¢, o}, and E, represent stress at failure initiation,
instantaneous stress, and undamaged stiffness matrix of impregnated yarn, respectively. Eg m, 03 and e;’ each refers to the undamaged stiffness matrix, yield strength,

and corresponding yield strain damage initiation of the matrix.

evaluated based on the maximum matrix damage achieved, given by
Dy, = Max(1 — d%). The micro-stresses in the polymer matrix region are
updated based on the damaged stiffness matrix Cf; "™ and micro-strain ¢,
given by Eq. (12).

m D,m
O-ij = (1 — V‘,)Cij 8,7 (12)

This damage model proposed for matrix failure is more realistic than
the ones proposed in our earlier work [14] because it accounts for sto-
chastic variation in matrix failure strength based on the stochastic
variation of void content (V,).

2.4. Macro-model (FE Model)

To evaluate macro-strains at each integration point due to applied
load, FE analysis was conducted at the macro-scale using Abaqus/
Explicit software. The macro-strains were used to evaluate the damage
state of the FE model in the next time increment. The homogenized
macro stresses ¢ at each integration, points were determined using a
volume averaging method, by adding the individual contributions of all
constituents according to their volume proportion in the unit-cell, i.e.,
Eq. (13).

5= 0"Vl = V) + 6" " Viary + " Vit + 6" Viuir 13

where 6™, 6*7?, ¢! and ¢""®" represent micro stresses in the matrix,
warp yarn, weft yarn, and binder yarn, respectively. Vi, , Viyarp, Van and
Vhindger denotes the volume fraction of pure matrix, warp yarn, fill yarn
and binder phases, respectively in the unit-cell model. These volume
fractions were obtained from CT-scan images of warp, fill and z-binder
cross-sections, more details can be found in the reference [14].

3. Experimental evaluations
3.1. Material used

3D orthogonal E-glass woven fabrics (3D-9871, TexTech® Industries,
USA) were used in this study. The thickness and areal density of the 3D
fabric were 4.3 mm and 5200 GSM. The fabric had 49%, 49%, and 2%
fibres along the warp, fill and through-thickness directions, respectively.
The fabric had a warp count of 2.8 ends per centimetre (EPCM) and a fill
count of 1.9 picks per centimetre (PPCM). The Elium® (188x0, Arkema,
France) thermoplastic resin was used to manufacture thermoplastic 3D-
FRC using a vacuum-assisted resin infusion process (VARI). More details

on the complete 3D-FRC fabrication process can be found in the refer-
ences [51-53]. The fibre volume fraction and nominal thickness of cured
3D-FRC were 52% and 4 mm, respectively.

3.2. Testing methods

The notched and unnotched tensile tests were carried out along the
warp (0°) and fill (90°) directions, according to ASTM D5766 [54] and
D3039 [55] standards, respectively. Note that the ASTM standards
recommend an un-notched tensile of 250 x 25 mm? and a notched
tensile test specimen of 200 x 36 mm? with a 6 mm hole diameter,
leading to hole diameter (d)-to-width (w) ratio d» = 0.166. Fig. 6(a)
shows six testing configurations (i.e., three warp loaded and three fill
loaded), divided into the unnotched (Case-A) and notched (Case-B and
Case-C) 3D-FRC specimens. In this study, 250 x 25 mm? samples were
used for both notched and un-notched configurations. In notched con-
figurations, a 4.1 mm diameter hole was drilled to maintain d. = 0.166
in Case-B, whereas a 10 mm diameter hole was drilled in Case-C with d,
= 0.4, as shown in Fig. 6(b). Table 2 shows the details of six testing
configurations, along with dimension, hole size, intact area and d,. A
total of eighteen samples were tested including six for un-notched
configuration (Case-A) and twelve for notched configurations (Case-B
and Case-C). All tests were carried out at a displacement-controlled load
rate of 2 mm/minute using a ZwickRoell hydraulic-driven load frame
equipped with a 50 kN load cell (Fig. 6(c)). A minimum of three repeat
tests were performed for each configuration investigated in this study.
Tensile strains were measured using an axial extensometer (50 mm
gauge length) and digital image correlation (DIC). The schematic dia-
gram of boundary conditions is shown in Fig. 6(b).

3.3. Evaluation method

The un-notched and notched performance of resin-infused thermo-
plastic 3D-FRCs is evaluated using global load (P) versus deflection (8)
curves obtained from load-frame, gross ultimate tensile strength o5, ",
net axial tensile strength ¢}, maximum tensile strains obtained from an

extensometer. The gross strength was evaluated by dividing the applied

load by gross cross-sectional area i.e., 6§, = z£—, whereas the net
y—

strength was calculated by dividing the applied load by the net cross-

sectional area, i.e., oy = ﬁ[ = ﬁ. The maximum tensile failure
strain was obtained from a 50 mm gauge length extensometer.
In this study, the notch sensitivity was evaluated using d, and
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Fig. 6. Tensile specimens along with the experimental setup. (a) specimen configurations along the warp and fill directions, (b) a schematic diagram of specimen
dimensions along with boundary conditions applied during testing, and (c) experimental setup.

Table 2
3D-FRC tensile specimen configurations.
Configurations  Details Hole Dimensions  Intact Hole dia.
diameter 1 x w(mm) area A; to width
(mm) (mm?) ratio d,
Case-A 3D- _ 250 x 25 100 _
Warp
3D-Fill _ 250 x 25 100 _
Case-B 3D- 4.1 250 x 25 83.6 0.164
Warp
3D-Fill 4.1 250 x 25 83.6 0.164
Case-C 3D- 10 250 x 25 60 0.4
Warp
3D-Fill 10 250 x 25 60 0.4

normalized strength o5, similar to the work by Mufoz et al. [56].
Here, the normalized strength indicates a ratio between axial gross
strength and axial net strength, i.e., o5, = oyy " /o3&, To evaluate the
notch sensitivity of 3D-FRC at a specific d,, notched axial ultimate tensile
strength is normalized with un-notched axial ultimate tensile strength
measured experimentally. The normalised value was then compared to
the ideally ductile “notch insensitive” and ideally brittle “notch sensitive”
curves. The ideal notch insensitive (for a ductile material) and sensitive

(for a brittle material) response is given by Egs. (14) and (15) [57,58],
respectively.

o d

a==1-(5) o
ot d

Tl
Ky =2+[1 = (d/w)]’ (15b)

where d and w refer to hole diameter and specimen width.
4. Numerical simulation

4.1. Numerical implementation of the stochastic progressive damage
model

The overall algorithm of the stochastic multiscale progressive dam-
age model is implemented through a VUMAT subroutine. Fig. 7 explains
how different length-scale models (described in Section 2) interact with
each other for damage prediction within a stochastic, multiscale
modelling framework. At the start of the analysis before the application
of loads (time = 0), a function within the VUMAT generates uniformly
distributed random numbers (for yarn waviness and voids) for each
integration point/element (representing unit-cell) in the FE model,
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using the Box-Muller transformation algorithm. These random numbers
are stored in the state variables (SDVs) and remain constant for each
increment to perform stochastic FE analysis. The stochastic micro-
mechanics model evaluates the unique effective elastic constants and
strength properties for each unit-cell element in GCS using the stochastic
distribution of defects obtained from uCT. The effective elastic constants
are used to evaluate meso-stresses in the pure matrix E,(f},, and impreg-
nated yarns E,(f_l), for each integration point in GCS. These meso-stresses
are then transformed with respect to their orientations (yarn orientation
and its stochastic distribution) to get meso-stresses in LCS. The meso-
stresses are used to evaluate the damage state of each constituent and
update meso-stresses at the end of the current time increment. The

Stochastic Material Model
CT scan of 3D composites
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updated meso-stresses are then transformed back into GCS, using Eq. (5).
Lastly, the homogenised macro-stresses at each integration point are
calculated using the micro-stresses in GCS and the volume fraction of
each unit cell constituent. These macro-stresses are fed back into Abaqus
to calculate strain increment for the subsequent time increment. The FE
simulation has been conducted at a macro-scale using a hexahedral solid
element (i.e., C3D8R in Abaqus), with each element representing a full
unit cell of 3D orthogonal woven composites. The proposed framework
is computationally efficient firstly because the micro-mechanics model
for yarn and matrix as well as the meso-scale model for the unit-cell is
analytical and thus does not require high computational cost associated
with FE-based micro and meso- models. Secondly, the global macro
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Fig. 7. Overall algorithm for stochastic, multiscale, progressive damage prediction in 3D woven composite.
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model uses explicit dynamic FE simulation which is inherently more
stable and quicker to converge for damage growth modelling simula-
tions as compared to implicit models. The framework is also easy to
implement as part modelling can take place using the existing solid
geometry modelling tools available in finite element software like
Abaqus or Ansys and does not require third-party tools for explicit
modelling of textile geometry and matrix regions. Another thing that
should be pointed out is that although we have used X-ray uCT to obtain
the variation in yarn waviness, traditional stereo microscopy of carefully
prepared cross-sections may also be used as a suitable alternative if uCT
equipment is not available.

4.2. Finite element model of the notch and un-notch tests

To evaluate the performance of the stochastic, multiscale, progres-
sive damage model, notched and un-notched tensile tests are simulated
on 3D-FRCs along the warp (0°) and fill (90°) directions. Fig. 8 shows the
geometry, boundary conditions and FE mesh for un-notched (Case-A)
and notched (Case-B and Case-C) configurations. The geometry and
boundary conditions used in the finite element analysis of the notch and
un-notched tensile coupon are shown in Fig. 8(a) and 8(b), respectively.
For each configuration, 10 stochastic FE simulations were performed to
show variations in ultimate strengths, stress/strain curves and damage
responses.

4.3. Material properties

The elastic constants and strength properties of E-Glass fibre and
Elium matrix of E-Glass/Elium composites used in the stochastic mul-
tiscale progressive damage model are summarized in Table 3.

The critical energy release rates of E-Glass/Elium in longitudinal
directions (Gi/, GI.), in-plane transverse direction (G2, G%, ), and out-
of-plane transverse direction (G5!, G3;), are given in Table 4.
5. Results and discussion

To demonstrate the effectiveness of the proposed stochastic, multi-
scale, progressive damage model, this section presents three different
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Table 3
Elastic constants and strength of E-Glass fibre and Elium matrix.

Materials Material Properties
E-Glass fibre  Elastic constants [59] ~ Modulus of Elasticity E; (GPa) 73
Modulus of Rigidity Gy (GPa) 30
Poisson’s Ratio vy 0.22
Strength properties Fiber tensile strength (MPa) 2000
[60] Fiber compressive strength 1350
(MPa)
Elium Elastic constants Modulus of Elasticity E,, (GPa) ¢ 3.10
matrix Modulus of Rigidity G, (GPa) 1.13
Poisson’s Ratio v, * 0.37
Strength properties Matrix tensile strength (MPa) ¢ 70
Matrix compressive strength 130
(MPa) ¢
Matrix shear strength (MPa) 42

2 Reported in literature [59], ® Reported in literature [61], ¢ Reported in

literature[60].

Table 4

The critical energy release rate of impregnated yarns used in the present study.
The critical Gt Gl N/ G G% Gy G
energy release  (N/ mm) (N/ N/ N/ (N/
rate mm) mm) mm) mm) mm)
E-Glass/Elium 60 39.15 1.5 4 1.5 4

[62]

types of results. First, the notched and un-notched damage responses of
3D-FRC obtained experimentally are discussed in terms of load/deflec-
tion curves, gross strength, net strength, and notched sensitivity. Sec-
ond, deterministic FE simulation results obtained using the multiscale
model proposed in our previous work [14] are compared with experi-
mental data, to highlight the limitations of the existing model. Finally, to
overcome the limitations of the existing (deterministic) multiscale
model notched and un-notched responses and corresponding damage
states predicted by the proposed stochastic FE simulations are compared
with experimental data.

Notched (open hole) tension specimen

25 mm 4 mm
—>
)
DT T<I Detail “A”
DT M Case-B
DT ?4 5 mm dia. hole
o Case-C
10 mm dia. hole
e S
DIt
D N3
Geometry BC’s FE Mesh

Fig. 8. Schematic of geometry, boundary conditions and FE mesh. (a) un-notched and (b) notched tensile specimens.
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Fig. 9. Load-deflection responses of un-notched and notched 3D-FRC specimens: (a) warp loaded un-notched specimen, (b) warp loaded notched specimen, (c) warp
loaded notched specimen, (d) fill loaded un-notched specimen, (e) fill loaded notched specimen, and (f) fill loaded notched specimen.
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Fig. 10. Comparison of un-notched and notched tensile performance of 3D-FRC: (a) gross strength along the warp and fill direction, (b) net strength along the warp
and fill direction, (c) failure strains along the warp and fill direction, and (d) notch sensitivity plot of 3D-FRC with different notch size.
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5.1. Experimental un-notched and notched tensile response of 3D-FRC

Fig. 9 shows the un-notched (Case-A) and notched (Case-B and Case-
C) load/displacement responses of 3D-FRC along the warp (0°) and fill
(90°) directions. A good agreement was achieved in the load/deflection
curves obtained from three sets of samples for each (un-notched and
notched) configuration. The warp and fill configurations showed nearly
identical peak load and load/displacement curves due to similar fibre
volume fraction (~49%) in both directions. However, because of the
increased waviness induced by the binder yarn, the fill loaded specimens
had slightly lower strength. The un-notched configuration showed the
highest peak load (48.7 kN). For the notched configurations, the peak
load was observed to decrease with an increase in the notch size (e.g.,
32.1 kN in Case-B and 24.3 kN in Case-C). All the load/deflection curves
showed a nearly linear-elastic response, in the beginning, followed by
some nonlinearity at higher loads. The slight reduction in the tensile
stiffness of samples can be partially due to 1) the deformation in the
ductile Elium matrix and 2) the glass fibre’s straightening effects
explained by Warren et al. [63].

The notched specimens in Case-B (Fig. 9(b) and (e)), showed the first

Table 5
Summary of un-notch and notch tensile performance of 3D-FRC.

Configurations/  Warp specimens Fill specimens

Property Case-A Case-B Case-C Case-A Case-B Case-C

Finax(KN) 48.7 31.6 23.7 46.5 32.1 24.3
(£3.5) (£4.0) (£3.1) (£2.4) (+£10.0) (£5.1)

o5 (MPa) 487 316 237 465 321 243
(+3.5) (+4.0) (£3.1) (+£2.49) (£10.0) (£5.1)

o‘;;[(MPa) 487 382 395 465 394 406
(+3.5) (+4.0) (£3.1) (+2.4) (£10.0) (£5.1)

Emax (%) 2.48 1.74 1.48 2.35 1.72 1.68
(+8.8) (£7.0) (£3.03) (+4.3) (+8.5) (£9.1)

Note: the values in the bracket represent the standard deviation (in percentage)
from three specimens for each configuration.
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small drop in load at higher displacement (~6 mm in warp and fill
specimens), caused by the initiation of transverse matrix cracks. These
cracks were subsequently arrested by the ductile matrix and resisted
further crack growth along the transverse direction. As a result, the load
recovered and reached the second final peak load, followed by the
sudden large drop in load upon further propagation of transverse cracks.
In comparison, the notched specimens in Case-C (Fig. 9(c) and (f))
exhibited sudden failure due to a small load-bearing area (due to a large
notch size), which accrues rapid propagation of transverse cracks. Thus,
due to the discontinuous crack propagation and higher load-bearing
area, the Case-B samples withstood a high load of 32.1 kN compared
to 24.3 kN in Case-C.

Fig. 10 compares gross ultimate tensile strength, tensile failure
strain, and notch sensitivity of 3D-FRC considered in this work. The
reduction in the gross ultimate tensile strength is almost constant along
the warp and fill direction (i.e., up to 35% for Case-B and 51% for Case-
C), as shown in Fig. 10(a). This is due to the similar fibre content along
both directions, as mentioned earlier. However, in the case of the net
ultimate tensile strength (Fig. 10(b)), Case-B and Case-C show up to 21%
and 19% reduction. In addition, the presence of a notch affects the
failure strain in both directions, each showing up to 27% and 40%
reduction in Case-B and Case-C (Fig. 10(c)). Fig. 10(d) shows the notch
sensitivity plot for E-Glass/Elium composite, obtained by normalizing
the gross strength by the net strength, plotted against d,. As can be seen
in the figure, the normalized strength values are below the blue line
representing net strength equal to gross strength. This indicates that the
stress concentration (due to the presence of a hole) affects the failure
strength of 3D-FRC. Nevertheless, this strength reduction is not signifi-
cant in a ductile matrix [64], and is partially due to through-thickness
reinforcement in 3D fabric architecture. The ultimate tensile load,
gross tensile strength, net tensile strength and localized failure strains up
to a complete failure in each case along with the standard deviations are
summarized in Table 5.
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Fig. 11. Experimental and deterministic model prediction for un-notched and notched 3D-FRC tensile specimens:

Strains (%)
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(a) warp loaded un-notched specimen, (b) warp

loaded notched specimen, (c) warp loaded notched specimen, (d) fill loaded un-notched specimen, (e) fill loaded notched specimen, and (f) fill loaded

notched specimen.
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5.2. Comparison of un-notched and notched tensile response
(experimental vs. deterministic FE simulation)

Fig. 11 compares un-notched and notched tensile stress/strain curves
obtained from experiments and deterministic FE simulations using the
multiscale progressive damage model proposed in our earlier publica-
tion [14]. The FE simulation was performed along the warp and fill
directions. The multiscale model successfully predicted the key char-
acteristics of un-notched and notched tensile stress/strain curves, i.e.,

Table 6
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tensile modulus, and initial linear region followed by nonlinear region.
The nonlinear region starts approximately from 0.6 to 0.75% tensile
strains (see point “a” in Fig. 11). The transition from linear to nonlinear
region corresponds to damage initiation in the matrix. At the onset of
matrix damage, the stiffness of the 3D-FRC starts to decrease. Such
nonlinear behaviour is also explained by Callus et al. [65], for un-
notched specimens. The un-notched specimens undergo a sudden fail-
ure after reaching the ultimate tensile strength. In contrast, the notched
specimens show progressive failure due to the propagation of the

Un-notched and notched ultimate tensile strength from experiments and deterministic multiscale models.

Specimen Notch size Warp specimens (0°) Fill specimens (90°)
d (mm) Exp. Sim. % Diff Exp. Sim. % Diff
Unnotched Case-A 487 (+3.5) 507 4.1 465.0 (+2.4) 502 7.9
Notched Case-B 4.1 319 (+4.0) 350 9.7 321.0 (£10.0) 345 7.5
Case-C 10 237 (+3.1) 262 10.5 243.0 (£5.1) 258 6.2
Note: the values in the bracket represent the standard deviation from three specimens for each configuration.
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Fig. 12. Un-notched and notched ultimate tensile strength predicted by the stochastic multiscale model and the deterministic multiscale model (ideal model) and
their comparison with experimental data: (a) warp specimen, (b) fill specimen, (c) warp specimen, (d) fill specimen, (e) warp specimen, and (d) fill specimen.
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transverse matrix cracking in 3D-FRC. In the current study, the trans-
verse matrix crack initiated roughly at 1.3-1.4% tensile strains for case-
B, and 1.1-1.2% tensile strain for case-C. The initiation of transverse
cracks corresponds to the initiation of fibre failure, highlighted by the
slight dip in the stress/strain curve (see point “b” in Fig. 11). These
transverse cracks propagate upon further loading, which leads to the
complete failure of specimens.

The deterministic, multiscale model over-predicted the un-notched
and notched ultimate tensile strength by 5-10 %. This over-prediction
is primarily due to the idealised unit-cell model, i.e., the impregnated
yarns perpendicular to each other, no waviness in impregnated yarns,
and no voids in resin rich-pockets. All these factors significantly affect
the elastic constants and strength properties of FRC, which accrue
inaccuracies in the predicted ultimate tensile strength. Table 6 sum-
marizes the comparison of experimental and FE simulation results, along
with the relative percentage difference in the predicted notch and un-
notched ultimate tensile strength.

Table 7
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5.3. Improvements in predictive accuracy through stochastic model

Fig. 12 compares the un-notched and notched ultimate tensile
strength predicted by the proposed stochastic multiscale model with
both the experimental data and the deterministic multiscale simulation.
A total of 10 stochastic FE simulations were performed for each spec-
imen configuration and predicted notched and un-notched ultimate
strength is included in the figure. The deterministic multiscale model,
named as an ideal model in the figure, over-predicted the ultimate
tensile strength in all cases. Meanwhile, the stochastic model success-
fully predicted the notched and un-notched ultimate tensile strength
(represented by black dots), which is within the experimental bounds
(represented by a grey colour region). Table 7 summarizes the ultimate
tensile strength obtained from the experiment and FE simulations, along
with their coefficient of variance (COV) and percentage difference. The
maximum COV in the ultimate tensile strength predicted from the sto-
chastic model is 1.7, 1.6, and 2.3 % for Case-A, Case-B and Case-C,
respectively. This is within the experimental bounds. The maximum
relative percentage of difference in the predicted tensile strength is
<3%. These results elucidate that the proposed stochastic multiscale

Un-notched and notched ultimate tensile strength from experiments and stochastic models.

Specimen Notch size d, (mm) Warp specimens (0°) Fill specimens (90°)
Exp. Sim. % Diff Exp. Sim. % Diff
Unnotched Case-A 487 (+3.5) 481.0 (+1.4) 1.2 465.0 (£2.4) 471.0 (£1.7) 1.3
Notched Case-B Dia 4.1 319 (+4.0) 320.5 (+1.6) 0.5 321.0 (+10.0) 323.3 (+1.5) 0.7
Case-C Dia 10 237 (£3.1) 244.0 (+2.0) 2.9 243.0 (£5.1) 241.0 (£2.3) 0.9

Note: the values in the bracket represent the standard deviation from three specimens for each configuration.
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Fig. 13. Comparison between experiment and stochastic model prediction of the tensile stress—strain curve, along with damage index distribution at different stress
levels: (a) warp-loaded notched specimen (Case-B) and (b) warp-loaded notched specimen (Case-C).
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Fig. 14. Comparison between digital image correlation (DIC) measurement and stochastic FE simulation at failure: (a) DIC (Case-B), (b) DIC (Case-C), (c) simulation

(Case-B), and (d) simulation (Case-C).

model significantly improved the prediction accuracy over the deter-
ministic multiscale model based on ideal unit-cell.

5.4. Comparison of damage evolution states (experimental vs. Stochastic
FE simulation)

The stress/strain curves and corresponding damage index (state)
distributions obtained from stochastic FE simulation of notched speci-
mens (Case-B and Case-C) at different stress levels are shown in Fig. 13.
In the figure, the damage index distributions (points a-d) are taken from
a 25 x 25 mm? section of a typical simulated notched specimen and the
damage variable (SDV26) indicates the extent of combined longitudi-
nal/transverse fibre failure. Note that the stochastic model prediction
varies from specimen to specimen, consistent with a specimen-to-
specimen variation in actual testing. The stress/strain curve depicts a
linear response until 0.75 % strains, followed by the nonlinear region
due to damage growth. The first damage state distributions (at points 1a
and 1b) show the initiation of a transverse crack, at the highly stress-
concentration area (i.e., at a circular notch) in the form of longitudi-
nal fibre failure due to tensile load. The second damage state distribu-
tion (at points 2a and 2b) shows the proportion of transverse cracks
(fibre damage) until it reaches the peak stress value, i.e., 324 MPa (Case-
B) and 242 MPa (Case-C). In the third damage state distribution (at
points 3a and 3b), the transverse cracks reach the maximum crack
length, which immediately results in the sudden failure of the 3D-FRC
(at points 4a and 4b).

The final damage state of notched specimens obtained from experi-
ments and stochastic FE simulation is compared in Fig. 14. The notched
specimens failed due to the propagation of transverse cracks initiated
due to intensive fibre failure in a near-circular notch. The 3D-FRC failed
in the form of through cracks upon extensive fibre failure. The stochastic
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multiscale model successfully captured the final damage states observed
experimentally.

Fig. 15 compares the damage index distributions (at failure) ob-
tained from the deterministic multiscale model (reference) and five
consecutive runs of the proposed stochastic multiscale models. Each
image is taken from a 25 x 25 mm? section of the simulated specimen.
The final failure in un-notched and notched specimens occurs when fibre
failure has progressed across the width of the specimen. Although the
deterministic model predicted the ideally desired damage patterns in
both the un-notched and notched specimens, i.e., matrix and fibre fail-
ure in the guage section, along the width of the specimens as well as
symmetric nature of damage owing to the same elastic constants and
strength properties of all elements. The reference model was unable to
fully capture a specimen-to-specimen variation, meaning that the
simulated specimens from several simulations fail exactly at the same
location and with the same pattern. In contrast, the damage index dis-
tribution at failure predicted by the stochastic model was somewhat
unsymmetric, thus being more consistent with experimental observa-
tion. The discrete damage patterns in Fig. 15 are associated with the
stochastic distribution of yarn waviness and voids, which are expected to
appear during the manufacturing process. The presence of these in-
homogeneities locally improves or degrades the elastic constants and
strength properties of 3D-FRC. As a result, the initial transverse crack
(upon fibre failure) and subsequent propagation depend on a local
variation in the inhomogeneities. Such discrete damage patterns are
consistent with experimental observations in all configurations tested in
this study. Again, these results elucidate that the stochastic, multiscale,
progressive damage model significantly improves the prediction accu-
racy over the deterministic multiscale model.
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Fig. 15. Damage index distribution around the notch at failure, obtained from the reference (deterministic multiscale) model and five consecutive runs of the
stochastic multiscale model: (a) fill-loaded un-notched specimen (Case-A), (b) fill-loaded notched specimen (Case-B), and (c) fill-loaded notched specimen (Case-C).

6. Conclusion

A novel stochastic, multiscale, progressive damage model is proposed
to predict the damage response of a three-dimensional (3D) orthogonal
woven composite. The spatial distribution of manufacturing-induced de-
fects (waviness in impregnated yarn and voids) was obtained from a
limited set of micro-computed tomography (uCT) images. This informa-
tion was used to calculate the stochastic distribution of material properties
at the micro- and meso-levels, which consequently results in a local vari-
ation of the stress and strain within the macro-model. The model pre-
dictions were validated with experimental results and were also compared
with our earlier deterministic multiscale model. Excellent correlation was
achieved between experiments and stochastic FE simulations. The pre-
dicted ultimate tensile strength from the stochastic model was within 3%
of the actual average ultimate strength from physical experiments. Our
proposed stochastic, multiscale, progressive damage model provides a
more accurate estimate of tensile response and corresponding damage
evolution in both un-notched and notched 3D woven composites.

The experiments and stochastic FE simulations revealed that un-
notched specimens failed abruptly after reaching the peak load. In
contrast, notched specimens failed progressively due to the propagation
of transverse cracks, i.e., failure starts with the initiation of transverse
cracks upon fibre failure (at the notch tip) and subsequent crack prop-
agation of the crack across the width of the specimen. The FE simulation
results elucidate that the proposed stochastic multiscale progressive
damage model, developed based on a combination of stochastic
manufacturing defects, multiscale model, and continuum damage me-
chanics, can effectively predict the ultimate tensile strength, crack
propagation, and final failure of notched 3D woven composites. The
developed model will be beneficial in designing robust composite
structures and achieving better usage of textile composites as it is ac-
curate as well as computationally efficient. The proposed framework is
expected to solve large parts of 50,000 elements in around 3 h.

CRediT authorship contribution statement

S.Z.H. Shah: Conceptualization, Methodology, Formal analysis,

16

Investigation, Visualization, Writing — original draft, Funding acquisi-
tion. Juhyeong Lee: Writing — review & editing. P.S.M. Megat-Yusoff:
Supervision, Investigation, Project administration. Syed Zahid Hus-
sain: Resources. T. Sharif: Investigation, Writing — review & editing. R.
S Choudhry: Supervision, Methodology, Investigation, Writing — orig-
inal draft, Writing — review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The authors would like to acknowledge the financial support pro-
vided by Universiti Teknologi PETRONAS (grant number 015LA0-031).
The authors would also like to acknowledge the support of Dr. Pierre
Gerard from Arkema and Dr. Sharp Keith in acquiring Elium® resin and
3D fabric for this research work.

References

[1] Kaddour A, Hinton M. Progress in failure criteria for polymer matrix composites: A
view from the first World-Wide Failure Exercise (WWFE). Failure Mechanisms in
Polymer Matrix Composites. Elsevier; 2010. p. 3-25.

Kaddour A, Hinton M, Smith P, Li S. The background to the third world-wide
failure exercise. J Compos Mater 2013;47:2417-26.

Vignoli LL, Savi MA, Pacheco PM, Kalamkarov AL. Multiscale approach to predict
strength of notched composite plates. Compos Struct 2020;253:112827.

Ud Din I, Tu S, Hao P, Panier S, Khan KA, Umer R, et al. Sequential damage study
induced in fiber reinforced composites by shear and tensile stress using a newly
developed Arcan fixture. J Mater Res Technol 2020;9:13352-64.

Green S, Matveev M, Long A, Ivanov D, Hallett S. Mechanical modelling of 3D
woven composites considering realistic unit cell geometry. Compos Struct 2014;
118:284-93.

[2

—

[3

=

[4]

[5]


http://refhub.elsevier.com/S0263-8223(23)00453-1/h0010
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0010
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0015
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0015
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0020
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0020
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0020
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0025
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0025
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0025

S.Z.H. Shah et al.

[6]
[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Ansar M, Xinwei W, Chouwei Z. Modeling strategies of 3D woven composites: a
review. Compos Struct 2011;93:1947-63.

Shah SZH, Choudhry RS, Khan LA. Challenges in compression testing of 3D angle-
interlocked woven-glass fabric-reinforced polymeric composites. ASTM J Test Eval
2017;5:1502-23.

Shah SZH, Megat Yusoff PSM, Karuppanan S, Sajid Z. Elastic constants prediction
of 3D fiber-reinforced composites using multiscale homogenization. Processes
2020:8.

Feyel F. A multilevel finite element method (FE2) to describe the response of highly
non-linear structures using generalized continua. Comput Methods Appl Mech Eng
2003;192:3233-44.

Wang B, Fang G, Wang H, Liang J, Dai F, Meng S. Uncertainty modelling and
multiscale simulation of woven composite twisted structure. Compos Sci Technol
2022;217.

Bostanabad R, Liang B, Gao J, Liu WK, Cao J, Zeng D, et al. Uncertainty
quantification in multiscale simulation of woven fiber composites. Comput
Methods Appl Mech Eng 2018;338:506-32.

Spahn J, Andra H, Kabel M, Miiller R. A multiscale approach for modeling
progressive damage of composite materials using fast Fourier transforms. Comput
Methods Appl Mech Eng 2014;268:871-83.

Huang W, Xu R, Yang J, Huang Q, Hu H. Data-driven multiscale simulation of FRP
based on material twins. Compos Struct 2021;256.

Shah SZH, Megat-Yusoff P, Karuppanan S, Choudhry R, Sajid Z. Multiscale damage
modelling of 3D woven composites under static and impact loads. Compos Part A:
Appl Sci Manuf 2021;151:106659.

Turner P, Liu T, Zeng X, Brown K. Three-dimensional woven carbon fibre polymer
composite beams and plates under ballistic impact. Compos Struct 2018;185:
483-95.

Tao W, Zhu P, Xu C, Liu Z. Uncertainty quantification of mechanical properties for
three-dimensional orthogonal woven composites. Part II: Multiscale simulation.
Compos Struct, 235; 2020.

Han J, Wang R, Hu D, Bao J, Liu X, Guo X. A novel integrated model for 3D braided
composites considering stochastic characteristics. Compos Struct 2022;286.

Ge L, Li H, Zhang Y, Zhong J, Chen Y, Fang D. Multiscale viscoelastic behavior of
3D braided composites with pore defects. Compos Sci Technol 2022;217.
Bhattacharyya R, Adams D. Multiscale analysis of multi-directional composite
laminates to predict stiffness and strength in the presence of micro-defects. Compos
Part C: Open Access 2021;6.

Pankow M, Justusson B, Riosbaas M, Waas AM, Yen CF. Effect of fiber architecture
on tensile fracture of 3D woven textile composites. Compos Struct 2019;225.
Zhou X-Y, Qian S-Y, Wang N-W, Xiong W, Wu W-Q. A review on stochastic
multiscale analysis for FRP composite structures. Compos Struct 2022;284.
Bhattacharyya R, Mahadevan S, Basu PK. Computationally efficient multiscale
modeling for probabilistic analysis of CFRP composites with micro-scale spatial
randomness. Compos Struct 2022;280.

Shah SZH, Karuppanan S, Megat-Yusoff P, Sajid Z. Impact resistance and damage
tolerance of fiber reinforced composites: a review. Compos Struct 2019;217:
100-21.

Gao Z, Chen L. A review of multi-scale numerical modeling of three-dimensional
woven fabric. Compos Struct 2021;263:113685.

Zhang D, Waas AM, Yen C-F. Progressive damage and failure response of hybrid 3D
textile composites subjected to flexural loading, part II: Mechanics based multiscale
computational modeling of progressive damage and failure. Int J Solids Struct
2015;75-76:321-35.

Shi D, Teng X, Jing X, Lyu S, Yang X. A multi-scale stochastic model for damage
analysis and performance dispersion study of a 2.5D fiber-reinforced ceramic
matrix composites. Compos Struct 2020:248.

Zhou L, Chen M, Liu C, Wu H. A multi-scale stochastic fracture model for
characterizing the tensile behavior of 2D woven composites. Compos Struct 2018;
204:536-47.

Wang H, Wang Z-w. Quantification of effects of stochastic feature parameters of
yarn on elastic properties of plain-weave composite — Part 2: Statistical predictions
vs. mechanical experiments. Compos A Appl Sci Manuf 2016;84:147-57.

Wang P, Lei H, Zhu X, Chen H, Wang C, Fang D. Effect of manufacturing defect on
mechanical performance of plain weave carbon/epoxy composite based on 3D
geometrical reconstruction. Compos Struct 2018;199:38-52.

Vanaerschot A, Cox BN, Lomov SV, Vandepitte D. Experimentally validated
stochastic geometry description for textile composite reinforcements. Compos Sci
Technol 2016;122:122-9.

Balokas G, Kriegesmann B, Czichon S, Rolfes R. Stochastic modeling techniques for
textile yarn distortion and waviness with 1D random fields. Compos Part A: Appl
Sci Manuf 2019;127.

Patel DK, Waas AM, Yen C-F. Direct numerical simulation of 3D woven textile
composites subjected to tensile loading: an experimentally validated multiscale
approach. Compos B Eng 2018;152:102-15.

Patel DK, Waas AM, Yen C-F. Compressive response of hybrid 3D woven textile
composites (H3DWTCs): an experimentally validated computational model. J Mech
Phys Solids 2019;122:381-405.

Song S, Waas AM, Shahwan KW, Xiao X, Faruque O. Braided textile composites
under compressive loads: Modeling the response, strength and degradation.
Compos Sci Technol 2007;67:3059-70.

Huang T, Gong Y. A multiscale analysis for predicting the elastic properties of 3D
woven composites containing void defects. Compos Struct 2018;185:401-10.
Huang T, Gao J, Sun Q, Zeng D, Su X, Kam Liu W, et al. Stochastic nonlinear
analysis of unidirectional fiber composites using image-based microstructural
uncertainty quantification. Compos Struct 2021;260.

17

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[501

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Composite Structures 318 (2023) 117109

Peng X, Ye T, Li J, Wu H, Jiang S, Chen G. Multi-scale uncertainty quantification of
composite laminated plate considering random and interval variables with data
driven PCE method. Mech Adv Mater Struct 2020;1-11.

Balokas G, Czichon S, Rolfes R. Neural network assisted multiscale analysis for the
elastic properties prediction of 3D braided composites under uncertainty. Compos
Struct 2018;183:550-62.

Pitchai P, Jha NK, Nair RG, Guruprasad PJ. A coupled framework of variational
asymptotic method based homogenization technique and Monte Carlo approach
for the uncertainty and sensitivity analysis of unidirectional composites. Compos
Struct 2021;263.

Balasubramani NK, Zhang B, Chowdhury NT, Mukkavilli A, Suter M, Pearce GM.
Micro-mechanical analysis on random RVE size and shape in multiscale finite
element modelling of unidirectional FRP composites. Compos Struct 2022;282.
Zhi J, Tay T-E. Computational structural analysis of composites with spectral-based
stochastic multi-scale method. Multiscale Multidiscipl Model Exp Des 2018;1:
103-18.

Huang W, Causse P, Brailovski V, Hu H, Trochu F. Reconstruction of
mesostructural material twin models of engineering textiles based on Micro-CT
Aided Geometric Modeling. Compos Part A: Appl Sci Manuf 2019;124.

Wintiba B, Vasiukov D, Panier S, Lomov SV, Ehab Moustafa Kamel K, Massart TJ.
Automated reconstruction and conformal discretization of 3D woven composite CT
scans with local fiber volume fraction control. Compos Struct 2020;248.

Zeng Q, Sun L, Ge J, Wu W, Liang J, Fang D. Damage characterization and
numerical simulation of shear experiment of plain woven glass-fiber reinforced
composites based on 3D geometric reconstruction. Compos Struct 2020;233.
ASTM D3171-99, Standard Test Methods for Constituent Content of Composite
Materials, ASTM International, West Conshohocken, PA, 1999; 1999. <www.astm.
org>.

Box G. ME muller in annals of math. Stat 1958;29:610-1.

Shah S, Lee J. Stochastic lightning damage prediction of carbon/epoxy composites
with material uncertainties. Compos Struct 2022;282:115014.

El-Hajjar RF, Petersen DR. Gaussian function characterization of unnotched tension
behavior in a carbon/epoxy composite containing localized fiber waviness.
Compos Struct 2011;93:2400-8.

Chamis CC. Simplified composite micromechanics equations for hygral, thermal
and mechanical properties. SAMPE Q 1984;4:14-33.

Xu L, Jin CZ, Ha SK. Ultimate strength prediction of braided textile composites
using a multi-scale approach. J Compos Mater 2014;49:477-94.

Shah SZH, Megat-Yusoff P, Karuppanan S, Choudhry R, Ahmad F, Sajid Z, et al.
Performance comparison of resin-infused thermoplastic and thermoset 3D fabric
composites under impact loading. Int J Mech Sci 2020;189:105984.

Shah SZH, Megat-Yusoff PSM, Karuppanan S, Choudhry RS, Ahmad F, Sajid Z.
Mechanical properties and failure mechanisms of novel resin-infused thermoplastic
and conventional thermoset 3D fabric composites. Appl Compos Mater 2021;
515-45.

Shah SZH, Megat-Yusoff PSM, Choudhry RS, Sajid Z, Din IU. Experimental
investigation on the quasi-static crush performance of resin-infused thermoplastic
3D fibre-reinforced composites. Compos Commun 2021;28:100916.

ASTM D5766 / D5766M-11(2018), Standard Test Method for Open-Hole Tensile
Strength of Polymer Matrix Composite Laminates, ASTM International, West
Conshohocken, PA; 2018. www.astm.org.

Astm. D3039/D3039M-17 standard test method for tensile properties of polymer.
Matrix Compos Mater 2017.

Munoz R, Martinez V, Sket F, Gonzalez C, Llorca J. Mechanical behavior and
failure micromechanisms of hybrid 3D woven composites in tension. Compos A
Appl Sci Manuf 2014;59:93-104.

Saleh MN, Wang Y, Yudhanto A, Joesbury A, Potluri P, Lubineau G, et al.
Investigating the potential of using off-axis 3D woven composites in composite
joints” applications. Appl Compos Mater 2016;24:377-96.

Shah SZH, Megat-Yusoff PSM, Sharif T, Hussain SZ, Choudhry RS. Off-axis tensile
performance of notched resin-infused thermoplastic 3D fibre-reinforced
composites. Mech Mater 2022;175.

Kinvi-Dossou G, Matadi Boumbimba R, Bonfoh N, Koutsawa Y, Eccli D, Gerard P.
A numerical homogenization of E-glass/acrylic woven composite laminates:
application to low velocity impact. Compos Struct 2018;200:540-54.

Liu Y, Straumit I, Vasiukov D, Lomov SV, Panier S. Prediction of linear and non-
linear behavior of 3D woven composite using mesoscopic voxel models
reconstructed from X-ray micro-tomography. Compos Struct 2017;179:568-79.
Kazemi ME, Shanmugam L, Lu D, Wang X, Wang B, Yang J. Mechanical properties
and failure modes of hybrid fiber reinforced polymer composites with a novel
liquid thermoplastic resin, Elium®. Compos A Appl Sci Manuf 2019;125:105523.
Zhang D, Waas AM, Yen C-F. Progressive damage and failure response of hybrid 3D
textile composites subjected to flexural loading, part II: mechanics based multiscale
computational modeling of progressive damage and failure. Int J Solids Struct
2015;75:321-35.

Warren KC, Lopez-Anido RA, Vel SS, Bayraktar HH. Progressive failure analysis of
three-dimensional woven carbon composites in single-bolt, double-shear bearing.
Compos B Eng 2016;84:266-76.

Shah SZH, Megat-Yusoff P, Karuppanan S, Choudhry R, Ud Din I, Othman A, et al.
Compression and buckling after impact response of resin-infused thermoplastic and
thermoset 3D woven composites. Compos B Eng 2021;207:108592.

Callus P, Mouritz A, Bannister MK, Leong K. Tensile properties and failure
mechanisms of 3D woven GRP composites. Compos A Appl Sci Manuf 1999;30:
1277-87.


http://refhub.elsevier.com/S0263-8223(23)00453-1/h0030
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0030
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0035
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0035
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0035
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0040
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0040
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0040
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0045
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0045
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0045
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0050
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0050
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0050
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0055
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0055
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0055
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0060
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0060
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0060
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0065
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0065
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0070
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0070
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0070
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0075
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0075
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0075
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0080
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0080
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0080
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0085
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0085
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0090
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0090
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0095
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0095
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0095
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0100
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0100
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0105
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0105
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0110
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0110
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0110
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0115
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0115
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0115
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0120
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0120
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0125
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0125
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0125
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0125
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0130
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0130
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0130
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0135
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0135
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0135
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0140
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0140
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0140
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0145
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0145
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0145
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0150
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0150
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0150
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0160
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0160
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0160
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0165
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0165
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0165
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0170
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0170
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0170
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0175
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0175
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0180
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0180
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0180
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0185
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0185
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0185
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0190
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0190
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0190
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0195
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0195
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0195
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0195
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0200
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0200
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0200
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0205
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0205
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0205
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0215
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0215
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0215
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0220
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0220
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0220
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0230
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0235
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0235
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0240
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0240
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0240
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0245
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0245
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0250
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0250
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0255
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0255
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0255
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0260
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0260
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0260
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0260
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0265
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0265
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0265
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0275
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0275
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0280
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0280
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0280
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0285
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0285
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0285
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0290
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0290
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0290
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0295
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0295
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0295
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0300
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0300
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0300
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0305
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0305
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0305
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0310
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0310
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0310
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0310
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0315
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0315
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0315
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0320
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0320
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0320
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0325
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0325
http://refhub.elsevier.com/S0263-8223(23)00453-1/h0325

	Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects
	1 Introduction
	2 Stochastic multiscale progressive damage model
	2.1 Characterisation of manufacturing uncertainties for material model
	2.2 Stochastic analytical micro-model
	2.3 Stochastic constitutive meso-model (unit-cell model)
	2.3.1 Damage modelling of impregnated yarn
	2.3.2 Damage modelling of polymer matrix

	2.4 Macro-model (FE Model)

	3 Experimental evaluations
	3.1 Material used
	3.2 Testing methods
	3.3 Evaluation method

	4 Numerical simulation
	4.1 Numerical implementation of the stochastic progressive damage model
	4.2 Finite element model of the notch and un-notch tests
	4.3 Material properties

	5 Results and discussion
	5.1 Experimental un-notched and notched tensile response of 3D-FRC
	5.2 Comparison of un-notched and notched tensile response (experimental vs. deterministic FE simulation)
	5.3 Improvements in predictive accuracy through stochastic model
	5.4 Comparison of damage evolution states (experimental vs. Stochastic FE simulation)

	6 Conclusion
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


