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ABSTRACT
This study proposes a three-staged approach to data envelop-
ment analysis (DEA) modeling for hospital efficiency. The
approach aims to overcome the constraint on the number of
inputs/outputs relative to the number of DMUs. Initially, the
principal components of all inputs and outputs are deter-
mined using principal component analysis (PCA). Next, these
principal components enter a factor analysis (FA) process to
construct a two-level hierarchy of inputs/outputs and to estab-
lish a weighting scheme based on explained variances of com-
ponents. Finally, a two-level DEA (TLDEA) method is applied
to the resultant framework to determine the relative efficiency
of hospitals using data from the healthcare context of Iran as
an emerging economy. The outcomes of applying the pro-
posed PCA-FA-TLDEA approach are argued to offer a substan-
tial increase in the discriminatory power of classical DEA
methods and could incorporate a relatively large set of
inputs/outputs already existing in the hospital efficiency litera-
ture. As demonstrated in the evaluated hospitals, the PCA-FA-
TLDEA methodology improved the discrimination from 0% in
the original DEA to 45%. The paper proposes a novel three-
stage DEA model by using PCA to extract the principal com-
ponents from the inputs and outputs; therefore, reducing the
number of inputs and outputs and their inter-correlations.
Secondly, a hierarchy of inputs and outputs by applying FA to
the principal components is constructed. Finally, the TLDEA
method to the hierarchy of inputs and outputs is applied to
evaluate the performance of public hospitals.
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Introduction

To ensure the welfare of its people, every society requires a health care sys-
tem that provides standard services, offers effective performance, and shares
common concerns with its shareholders’ benefits (Kohl et al. 2019).
Hospitals, clinics, and other health care institutions as members of health
care systems are often dealing with limited supplies of pharmaceutical and
non-pharmaceutical resources. The Covid-19 pandemic has also highlighted
the resource shortage remarkably and affected the healthcare system per-
formance (Mirmozaffari et al. 2022a(. Besides, healthcare systems have
been required to reduce the level of expenditures and, at the same time,
improve both the appropriateness and quality of services (Fragkiadakis
et al. 2014; Kohl et al. 2019). Thus, health care systems in general and hos-
pitals, in particular, are required to meticulously monitor their performance
to detect sources of inefficiencies and eliminate them to save resources and
ascertain that quality services are offered to their customers (Erickson
et al. 2020).
To date, several parametric and nonparametric models such as stochastic

frontier analysis (SFA), data envelopment analysis (DEA), and their combi-
nations have been developed to measure hospital efficiency (Omrani,
Shafaat, and Emrouznejad 2018; 2022). The DEA method only requires
information regarding the inputs and outputs’ quantities (Mirmozaffari
et al. 2022 b). Nevertheless, the issue of insufficient discrimination power is
omnipresent and mostly overlooked among those studies that use DEA.
The problem of discriminatory power deals with the fact that when the
dimension of DMUs exceeds the number of inputs and outputs, nearly
most of the DMUs are rated as efficient. Therefore, the lack of discrimin-
ation is referred to as the “curse of dimensionality” (Charles, Aparicio, and
Zhu 2019). Different methods have been proposed to deal with the cures of
dimensionality to improve the discrimination power. While some solutions
have been proposed in a general sense to eliminate this limitation (Adler
and Yazhemsky 2010; Omrani, Shafaat, and Emrouznejad 2018), the
enhanced DEA models are not yet capable of solving real-world problems
with relatively large numbers of inputs and outputs compared to the total
number of decision-making units (DMUs) (Marins et al. 2020; Wang
2020). Furthermore, few relevant studies have focused on the healthcare
systems of developing nations, particularly Iran (Bahrami et al. 2018;
Rezaee et al. 2020; Zare et al. 2019). These studies have considered a lim-
ited number of inputs and outputs in their proposed models that could
hardly capture the various aspects of hospital performance (Ferreira and
Marques 2021).
To address this gap and limitation in the academic literature, the present

paper proposes a novel three-stage data envelopment analysis approach for
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assessing the performance of hospitals. The proposed approach is com-
prised of the following phases: (i) using principal component analysis
(PCA) to extract the principal components from the inputs and outputs,
hence reducing the number of inputs and outputs and their inter-correla-
tions, (ii) constructing a hierarchy of inputs and outputs by applying factor
analysis (FA) to the principal components, and (iii) applying the two-level
DEA (TLDEA) method to the hierarchy of inputs and outputs to evaluate
the performance of DMUs. Accordingly, the numerical results are com-
pared to the results obtained from common and discriminatory-enhanced
DEA models to show the capabilities of the proposed model. The proposed
three staged data envelopment analysis approach can be employed by
healthcare providers, and in particular, hospitals, to measure and identify
efficiency improvement opportunities when using their resources to deliver
the expected services. Since public hospitals consume government resour-
ces, evaluating public hospitals’ efficiency can be used as an approach to
allocating such resources more purposefully. Also, results can be considered
as a benchmarking baseline for efficient hospitals by non-efficient units as
target setting.
The remainder of the paper is organized as follows. Section 2 provides a

review of the literature on the selective DEA models applied heretofore to
compare hospital efficiencies. This section also presents an overview of the
structure of the health care system and hospitals in Iran as the case study
of this research. Section 3 explains the common measures in the literature
as inputs and outputs to evaluate hospital efficiency. Section 4 presents the
proposed PCA-FA-TLDEA approach and adopts the resultant model to the
data obtained from 11 public hospitals in Iran. Further analysis is also pre-
sented to identify the roots of inefficiency in hospitals. The efficiency
decomposition includes finding the roots of inefficiency as managerial,
technical, or mixed inefficiency. Eventually, the study concludes by enu-
merating the main findings of the research and avenues for future attempts
to apply and extend the proposed model.

Hospital Efficiency Evaluation Measures

Numerous studies have been conducted heretofore aiming at improving the
procedure of hospitals’ efficiency comparison using DEA in diverse con-
textual environments. However, the outcomes of most of these studies have
identified a relatively large number of efficient DMUs, which might raise
some concerns about the discriminatory power of DEA models used in
them. Recent attempts to assess hospital efficiency include Bilsel and
Davutyan (2014) compared the operational performance of 202 rural hospi-
tals in Turkey using DEA with the ‘risk of mortality as an undesirable
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output. In another attempt, the DEA model proposed by Bilsel and
Davutyan (2014) using constant and variable returns to scale and a set of
six inputs and four outputs revealed roughly 90% of DMUs efficiency.
Using an additive super-efficiency DEA model, Du et al. (2014) measured
the efficiency of 119 general acute care hospitals in Pennsylvania/USA
using a set of seven inputs and outputs. The total number of efficient
DMUs using their model was limited to 31 hospitals. Since 2015, various
developments in DEA models and their application in hospital performance
measurement have been evolved. A group of researchers combined game
theory and DEA to consider the competition between hospitals (e.g.
Yeşilyurt et al. 2020; Zare et al. 2019). Other researchers considered net-
work and dynamic approaches in DEA models to evaluate hospital per-
formance (e.g. Khushalani and Ozcan 2017; Ko�ci�sov�a and Sopko 2020;
Pereira et al. 2021). Nonetheless, none of these enhanced DEA models are
capable of solving real-world problems with relatively large numbers of
inputs and outputs compared to the total number of decision-making units
(DMUs). There is also an abundant number of similar researches (e.g.,
Bahari and Emrouznejad 2014; Cheng and Zervopoulos 2014; Fragkiadakis
et al. 2014; Hu, Li, and Tung 2017; Ko�ci�sov�a and Sopko 2020; Razavi
Hajiagha, Hashemi, and Amoozad Mahdiraji 2014; Hajiagha et al. 2018,
Hajiagha, Mahdiraji, and Tavana 2019), which also overlook the criticality
of improving the discrimination power of DEA models. There have been,
however, several attempts using various statistical and operations research-
related techniques to enhance the discrimination power of DEA models in
general (e.g., Adler and Yazhemsky 2010; Hajiagha et al. 2018, Hajiagha,
Mahdiraji, and Tavana 2019), where some have particularly focused on
healthcare systems (Zare et al. 2019, Kohl et al. 2019). However, we later
argue that even these models could not fully capture all the necessary crite-
ria to measure limited numbers of hospitals compared to inputs
and outputs.
In Iran, healthcare institutions are divided into public and private.

Among these sectors, hospitals are the primary consumers of healthcare
funds. Unlike private hospitals, Iranian public hospitals are not allowed to
charge patients with fee rates higher than those approved by the govern-
ment. On the other end, healthcare expenditures in Iran have been rising
rapidly in the past few years (Davari, Haycox, and Walley 2012). This has
made expenditures and efficient budget assignments critical aspects of man-
aging public hospitals. Moreover, considering the 8.65% share of health
expenditures from Iran GDP in 2017, according to the Global Health
Expenditure Database, and the rapid growth in healthcare expenditure for
the past few years provide sufficient evidence that the measurement and
improvement of efficiency in Iranian public hospitals have become an
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overriding priority (Khosravi et al. 2020). While there have been studies
that considered the context of developing countries and the efficiency
measurement of healthcare systems, a limited number of these studies have
focused on Iran’s healthcare system (Bahrami et al. 2018, Zare et al. 2019,
Bastani et al. 2020). Additionally, all of these studies have considered a lim-
ited number of inputs and outputs which restrict their ability to capture
the various aspects of hospital performance.
Comparing efficiency levels of hospitals could be justified following the

social welfare point of view and Stakeholder Theory. From a social welfare
point of view, hospitals must provide quality medical services at a reason-
able cost for improving health in society (Cinaroglu 2020; Plaza-�Ubeda, de
Burgos-Jim�enez, and Carmona-Moreno 2010). Furthermore, according to
the Stakeholder Theory, in addition to increasing the wealth of their share-
holders, hospitals should also be concerned about the well-being of their
customers and all other stakeholders involved. This could, in turn, help
hospitals to maintain and/or improve their image and their competitive
advantage (Harrison et al. 2019). Thus, hospitals should retain their costs
and the quality of their services at a reasonable level to ensure financial sta-
bility and performance sustainability. Various measures could be consid-
ered as inputs or outputs of hospital performance according to these two
vantage points. Table 1 provides a summary of some selective studies that
have proposed several inputs and outputs for hospital efficiency measure-
ment. These measures, inputs, and outputs have been investigated and con-
firmed by various authors (e.g. Alatawi et al. 2019; Kohl et al. 2019;
Yousefi, Saen, and Hosseininia 2019) through their systematic literature
review-based research.
The set of inputs and outputs presented in Table 1 are extracted by the

literature review. Additionally, Boussofiane, Dyson, and Thanassoulis
(1991) argued that receiving a good discriminatory power out of the CCR
and BCC models requires the lower bound on the number of DMUs to be
equal or larger than the multiple of the numbers of inputs and outputs (i.e.
in this case 160 DMUs). Bowlin (1998) asserted the number of DMUs to
be three times the number of input and output variables. However, the
number of inputs and outputs is often different from this assumption. To
overcome this issue, the three-stage DEA model is designed and imple-
mented in this paper. Different methods have been proposed for variable
selection and reduction in the context of DEA. Nataraja and Johnson
(2011) reviewed different methods of variable reduction, including the effi-
ciency contribution measure (ECM), principal component analysis (PCA-
DEA), a regression-based test (RB), and bootstrapping. They compared
these methods using Monte Carlo simulation. As a result, their study indi-
cated that the PCA-DEA method, which is used in this study, performed
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well with a small sample size and low run time, while bootstrapping-based
techniques required a heavy computational effort and still resulted in poor
performance. They proposed using the PCA-DEA approach for a smaller
sample size (suitable for this research according to the number of decision-
making units) while ECM and RB were proposed for larger sample sizes.
Hence, the PCA-DEA-based method was considered the best alternative to
conduct the current study. The stages of the proposed method are illus-
trated in Figure 1.

The Three-Staged Data Envelopment Analysis

DEA is a non-parametric performance evaluation tool that measures the
relative efficiency of a set of n DMUs that use a set of m inputs to produce
a set of s outputs (Charnes, Cooper, and Rhodes 1978). Generally, the effi-
ciency of a DMU in the presence of multiple inputs and outputs is defined
as the ratio of its weighted sum of outputs to the weighted sum of inputs.
Considering DMU j, j ¼ 1, . . . , n, with an input vector of x1j, x2j, . . . , xmj

and output vector of y1j, y2j, . . . , ysj, the CCR model for DMU0 can be for-
mulated as follows (Hajiagha et al. 2013, 2015; Moncayo–Mart�ınez,
Ram�ırez–Nafarrate, and Hern�andez–Balderrama 2020). Model (1) is trans-
formed into an equivalent linear programming formulation. A comprehen-
sive review of DEA foundations and their models can be found in Cooper
et al. (2007) and other recent literature review articles (e.g. Contreras 2020;
Mardani et al. 2017)

max

Ps
r¼1 uryr0Pm
i¼1 vixi0

S:T:Ps
r¼1 uryrjPm
i¼1 vixij

� 1, j ¼ 1, 2, :::, n

ur � 0, r ¼ 1, 2, :::, s

vi � 0, i ¼ 1, 2, :::,m

(1)

As discussed earlier, the main concern in the context of hospital effi-
ciency is that the numbers of inputs or outputs exceed the limits of the
mentioned bounds; therefore, the discrimination power of DEA is substan-
tially reduced (Limleamthong and Guill�en-Gos�albez 2018). This would put
a curb on the inclusion of some indicators and culminates in a dramatic
change in the numerical outcomes (Chen and Yan 2017; See, Hamzah, and
Yu 2021). Various attempts have been made to eliminate this problem
(Adler and Yazhemsky 2010; da Silva, Marins, and Dias 2020;
Ebrahimnejad and Ziari 2019). Other statistical methods including a
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variable reduction (VR), built upon partial covariance, have been identified
to be less pragmatic than PCA to this end (Adler and Yazhemsky 2010).
Furthermore, the common set of weights, target settings, uncertain
approaches, and bi-level and multi-level DEA have been developed and
implemented in real-world cases (Hajiagha et al. 2015, 2018, Hajiagha,
Mahdiraji, and Tavana 2019; _Ilg€un et al. 2021). There are some cases in
which discriminatory improved DEA methods do not apply to problems
with numerous outputs and inputs; in this scenario, using a different tech-
nique is advised. A guide to the notations used in the following formulas is
provided in Table 2.

Stage 1. Applying PCA on Hospital Inputs and Outputs

Adler and Yazhemsky (2010) transformed the initial output-oriented BCC
formulation into the PCA-DEA form as follows.

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

Figure 1. The methodology flowchart.
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maxhþ et Sþ þ S�ð Þ þ etL�1S�Pc þ etL0�1SþPc (2)

S:T:XOkþ S�O ¼ Xa
O (3)

XPckþ S�Pc ¼ Xa
Pc (4)

YOk�SþO ¼ hYa
O (5)

YPck�SþPc ¼ hYa
Pc (6)

L�1S�Pc � 0 (7)

L0�1SþPc � 0 (8)

etk ¼ 1 (9)

kj � 0, Sþ � 0, S� � 0, SþPc � 0, S�Pc � 0, j ¼ 1, 2, :::, n (10)

Equations (2-10) divide each set of inputs or outputs into two main cate-
gories of inputs with original values ðXOÞ, inputs transformed by PCA
ðXPcÞ, outputs with original values ðYOÞ, and outputs transformed by PCA
ðYPcÞ respectively. XPc and YPc represent groups of correlated inputs and
outputs. Hence, equations (2-10) constitute a typical output-oriented BCC
formulation, except for the presence of PCs illustrated in equations (4) and
(6-8). Accordingly, the values for XPc and YPc are transformed through the
input ðL�1Þ and output ðL0�1Þ matrices of coefficients. This leads to a sys-
tematic reduction in the total number of inputs and outputs and thus to an
improvement in the discriminatory power of PCA-DEA.
As the first step of the proposed methodology and to reduce the number

of inputs and outputs, in this section a PCA analysis is carried out on
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Table 2. Notations used in model formulation.
h Constant

et Vector of ones
Sþ The slack variable of outputs with original values
S� The slack variable of inputs with original values
S�Pc The slack variable of outputs transformed through PCA
SþPc The slack variable of inputs transformed through PCA
L�1 PCA inverse matrix of input linear coefficients
L0�1 PCA inverse matrix of output linear coefficients
K Vector of DMU weights
XO Inputs with original values
XaO Column vector for inputs with original values
YO Outputs with original values
YaO Column vector for outputs with original values
XPc Inputs transformed through PCA
XaPc Column vector for inputs transformed through PCA
YPc Outputs transformed through PCA
YaPc Column vector for outputs transformed through PCA
AO Matrix of weights for inputs with original values
APc Matrix of weights for inputs transformed through PCA
BO Matrix of weights for outputs with original values
BPc Matrix of weights for outputs transformed through PCA
IPCkj The score of principal component k of input for the j th hospital
WPcIk Weight of principal component k of the input
OPCpj The score of principal component p of output for the j th hospital
WPcOp Weight of principal component p of the output
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inputs and outputs presented in Table 1. Using this method, the original
observations X are imaged in Y ¼ dTX (H€ardle and Simar 2012).

Stage 2. Applying FA on Input and Output Principal Components

By implementing the PCA method, the number of evaluation criteria was
reduced; however, this attempt was not sufficient since the total number
still exceeded the standard amount (as discussed previously). Consequently,
the hybrid FA-TLDEA was applied to the PCA-DEA to overcome this
issue. According to the results of PCA (see Tables 4 and 5 for the studied
case), there were two sets of values for running a factor analysis. The first
set was to input principal components (PCIs), assuming that K principal
components were extracted, taken from transforming the original inputs to
principal components as follows:

PCIkj ¼
Xm
i¼1

lPCkixij, i ¼ 1, 2, :::,m; k ¼ 1, 2, :::,K; j ¼ 1, 2, :::, n (11)

Where PCIkj is the kth input principal component of DMU j, lPCki is the
coefficient of ith original input in kth principal component (Table 4), and
xij is the value of ith input in jth DMU. These transformations are carried
out similarly for outputs, assuming P principal components are extracted
on outputs, applying coefficient values.

PCOpj ¼
Xs

r¼1

lPCpryrj, r ¼ 1, 2, :::, s; p ¼ 1, 2, :::, P; j ¼ 1, 2, :::, n (12)

In Eq. (12), PCOpj is the p
th output principal component of DMU j, lPCpr is

the coefficient of rth original output in pth principal component (Table 5),
and yrj is the value of r

th output in jth DMU. The coefficients of lPCki and lPCpr

are obtained by applying PCA on original data. These weights were used to
transform original data into principal components. This is the first step for
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Table 3. inputs and outputs of hospital efficiency measurement.
Inputs/Outputs I/O Inputs/Outputs I/O

Number of beds I1 Number of surgeries O1

Number of doctors I2 Number of emergency operations O2

Number of nurses I3 Number of outpatients O3

Number of administrative staff I4 Length of stay O4

Expenses I5 Consultation cases O5

Buildings I6 Total revenue O6

Number of ancillary services I7 Admissions O7

Number of support services I8 Deliveries O8

Number of medical services I9 Number of inpatients O9

Number of technical employees I10 Discharged patients O10

Drugs I11 Number of inpatients who died during hospitalization I14
Food-rations I12 Laboratory technicians I15
Total assets I13 Hospital Area I16
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reducing DMUs dimensions regarding inputs and outputs. These weights
were extracted using the IBM-SPSS 28.0 package. After extracting the values
for PCIkj and PCOpj, they have been inserted in the FA to categorize m inputs
and s outputs to form a hierarchical structure. It is worth noting here that if
any negative value in the vector of the PCs exists, all values should be
increased by the most negative value plus one (Adler and Yazhemsky 2010).
Thus, the use of negative values in FA would be eliminated.

Stage 3. Efficiency Evaluation of Hospitals Using TLDEA

The main advantage behind TLDEA (Chen et al. 2017) is that it classifies
and sorts inputs and outputs and assigns weights to the groups at lower
levels. Thus, using this technique, equations (2-10) are transformed into
equations (13-21) as follows:

maxhþ et Sþ þ S�ð Þ þ etL�1S�Pc þ etL0�1SþPc (13)

S:T: A0X0ð Þkþ S�O ¼ A0X
a
O (14)

APcXPcð Þkþ S�Pc ¼ APcX
a
Pc (15)

BOYOð Þk�SþO ¼ hYa
O (16)

BPcYPcð Þk�SþPc ¼ h BPcY
a
Pc

� �
(17)

L�1S�Pc � 0 (18)

L0�1SþPc � 0 (19)

etk ¼ 1 (20)

kj � 0, Sþ � 0, S� � 0, SþPc � 0, S�Pc � 0, j ¼ 1, 2, :::, n (21)
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Table 5. PCA on input measures.
PCI1 PCI2 PCI3 PCI4 PCI5 PCI6

I1 0.314 0.052 �0.128 �0.010 0.029 0.306
I2 0.342 0.002 0.205 �0.080 �0.031 �0.091
I3 0.309 �0.279 0.073 �0.024 �0.230 �0.150
I4 0.270 �0.117 �0.053 0.028 �0.031 �0.016
I5 0.219 0.260 �0.302 �0.027 �0.512 0.273
I6 0.358 �0.043 �0.094 0.001 0.159 �0.015
I7 0.102 0.396 �0.148 �0.184 0.614 �0.052
I8 0.145 �0.474 0.042 0.178 0.327 0.342
I9 0.111 �0.136 0.685 0.106 �0.151 �0.020
I10 �0.038 �0.004 �0.338 0.666 �0.153 �0.236
I11 0.054 0.509 0.312 �0.183 �0.212 0.074
I12 0.366 �0.001 0.028 �0.053 0.050 0.049
I13 0.324 �0.085 �0.092 �0.181 0.109 �0.344
I14 0.058 0.291 0.267 0.527 0.223 0.405
I15 0.216 0.281 0.124 0.344 0.077 �0.543
I16 0.321 0.079 �0.180 0.078 �0.109 0.199

Proportion 0.455 0.166 0.107 0.103 0.059 0.040

Component meaning Necessities Complementary services Main services Undesirables Besides Accessories
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These two sets of equations are differentiated by the pre-assigned weights
to inputs and outputs that are illustrated in equations (14-17) as matrices
of weights (AO, APc, BO and BPc). To formulate a TLDEA model, it was
assumed that inputs and outputs were categorized in a hierarchical struc-
ture and some weights were assigned to these groups. According to Eqs.
(14-17), inputs were classified as (i) their original form, i.e. Xa

O, and (ii) by
methods like PCA, i.e. Xa

Pc: A similar categorization was applied for the
outputs. These weights are calculated through the analytical hierarchy pro-
cess (AHP) (Meng et al. 2008). However, there have been debates that have
proved that AHP suffers from some limitations to accurately extracting the
hierarchical weights (Ramanathan and Ramanathan 2010). To overcome
this limitation, the authors initially applied the values for XPc and YPc in
FA to categorize the larger groups of criteria to construct a hierarchical
structure. To this aim, an exploratory factor analysis (EFA) was applied to
the over-extracted input and output principal components. Using PCA, the
original inputs and outputs were transformed into principal components.
Then, to formulate a TLDEA, a categorization of the extracted principal
components was required, i.e., PCIs and PCOs. Therefore, EFA was
employed to identify the underlying and unknown common factors behind
the PCIs and PCOs and to extract the hierarchy of these principal compo-
nents (Fabrigar and Wegener 2012; Watkins 2021). The EFA results
revealed the categorization of PCIs and PCOs in a hierarchy and the
weights associated with these categories. The EFA was applied also by using
the IBM-SPSS 28.0 package.
Beyond appraising the efficiency of hospitals using the PCA-FA-TLDEA

method, a valuable outcome of DEA evaluations is to recognize the roots
of inefficiency. Cooper et al. (2007) introduced the following decomposition
of technical efficiency.

TE ¼ PTE� SE (22)

While TE stands for technical efficiency obtained from the CCR model,
PTE illustrates the pure technical efficiency from the BCC model which
presents the managerial efficiency of DMU, and SE is defined as scale effi-
ciency which demonstrates the inefficiency resulting from the environment
and is defined as the ratio of CCR efficiency to BCC efficiency.
A further decomposition will be obtained using a slack-based measure

(SBM) efficiency (Cooper et al. 2007). In this case, MIX efficiency is
defined as the ratio of SBM efficiency to CCR efficiency.

MIX ¼ SBM
TE

(23)

The MIX efficiency illustrates the decomposition of the non-radial effi-
ciency into radial and mixes efficiencies as follows.
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SBM ¼ PTE� SE�MIX (24)

Case Study

In Section 3, a hybrid three-stage approach consisting of PCA-FA-TLDEA
was developed. In this section, the results are discussed. As previously men-
tioned, the developed approach was implemented in eleven public hospitals
in Iran. The results emanated from each stage are illustrated in the follow-
ing sections. The set of inputs and outputs presented in Table 1 was used
to compare the efficiency levels of 11 public hospitals in Tehran province
(see Table 3).
The identified criteria in the literature review were considered as input

and output to measure selected hospitals’ efficiency. According to the
numerous outputs and inputs, this case study does not comply with the
aforementioned limitations on the number of DMUs. Furthermore, dis-
criminatory improved DEA methods were not applicable for this research
with the total number of 26 inputs/outputs and only 11 public hospitals.
Therefore, a significantly improved DEA in terms of discrimination power
using PCA, factor analysis (FA), and two-level DEA (TLDEA) was devel-
oped to enhance the accuracy of the DEA model to distinct efficient and
inefficient DMUs (i.e. hospitals).
Given the total number of inputs and outputs (i.e. 26), the rule of thumb

proposed by Golany and Roll (1989) for applying classical DEA models to
solve this problem requires at least twice this amount (i.e. 52) DMUs for
the DEA model to yield a reasonable outcome. The archival data for this
study (see Table 4) was collected by accessing databases of hospitals either
directly onsite or indirectly through the official websites affiliated with the
relevant Iranian health authorities. These data show the average daily per-
formance of the 11 public hospitals.

Stage 1. (PCA-DEA)

The PCA analysis was performed separately for inputs and outputs using
MINITAB 19.0 software. The PCA analysis of inputs revealed the principal
components of inputs. Since the scales of inputs were different, the correl-
ation matrix was used to compute the principal components. To select the
number of principal components, the Scree plot of inputs was used as
shown in Figure 2. According to Figure 2, six components that explain
roughly 93% of data variances of input measures were chosen.
Moreover, Table 5 illustrates PCA coefficients for six selected components.
Since PCA extracts the linear combination of inputs and outputs separ-

ately, each output and input had a coefficient in these combinations that
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indicated the element was close to which principal component. According
to Table 5, comparisons of coefficients for each of the inputs on the princi-
pal components helped to categorize the most similar inputs under a spe-
cific principal component. For instance, I1, I2, I3, I4, I6, I12, I13, and I16 in
Table 4 show a relatively higher value of coefficients on PCI1 compared to
other principal components; meaning that the number of beds, doctors,
nurses, administrative staff, buildings, food-rations, total assets, and hos-
pital area has more relevance to PCI1, renamed in Table 4 as ‘Necessities’.
Similarly, the number of support services (I8) and drugs (I11) were catego-
rized under PCI2, entitled ‘Complementary services’. PCI3 mainly considers
medical services (I9) and this component can be treated as ‘Main services’
of hospitals. Coefficients related to the number of technical employees (I10)
and inpatients who died during hospitalization (I14) were more remarkable
in PCI4, renamed as ‘Undesirables’. Finally, expenses (I5) and the number
of ancillary services (I7) were grouped in PCI5, entitled as ‘Besides’ and the
number of laboratory technicians (I15) was categorized within PCI6, identi-
fied here as ‘Accessories’. Bold numbers in columns of PCIs in Table 4 are
related to the inputs that were categorized under the specific principal
component. The proportion row in Table 5 represents the contribution of
each principal component in describing the total variance of the data.
Similarly, using PCA on outputs data, 5 components were identified which
described 92% of variances of data. The five selected principal component
coefficients of outputs are illustrated in Table 6.
Similarly, admissions, deliveries, the number of inpatients, and dis-

charged patients were the most important outputs in PCO1. This compo-
nent was the “Main results” expected from a hospital. Total revenue was
the main purpose of PCO2; thus, this component was named “Revenue”.
On this account, the length of stay and number of outpatients were more
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Figure 2. Scree plot of inputs.
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effective in PCO3, a component which showed the “Treatment process”,
and the number of surgeries can define the issue of PCO4 that represents
the “Risky events”. In the end, "the number of emergency operations" and
"conclusion cases" were the most important criteria in PCO5 that indicated
the “Additional services” in hospitals. The last rows in both Tables 5 and 6,
titled as proportion, illustrate the contribution of each principal component
in explaining the total variance of data.

Stage 2. (FA)

By implementing the PCA-DEA approach, the number of inputs and out-
puts (i.e. evaluation criteria for hospitals) was reduced from 26 to 11 (as
explored in the previous section). After extracting the values for PCIkj and
PCOpj, they were inserted in the FA to categorize 6 inputs and 5 outputs
to form a hierarchical structure.
However, this attempt was not sufficient since the total number still

exceeded the standard amount (as discussed previously). Thus, the FA-
TLDEA combination was scheduled to solve this problem. Table 6 denotes
the results of FA on PCIkj and PCOpj values.
According to the above tables, 7 input components were organized into

two factors, while 5 output components were organized into three factors. On
the input side, three components of “complementary services, main services
and besides”, constructed the factor of services. While the second factor,
including “necessities, undesirables, and accessories”, showed the infrastruc-
tural aspects of a hospital. On the other hand, outputs were composed of
three factors. The first output factor was the main results consisting of the
same components, while the second factor of “revenue” similarly included a
unique component of the same name. The last output factor of medical treat-
ments included the “treatment process, risky and additional services”.
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Table 6. PCA on output measures.
PCO1 PCO2 PCO3 PCO4 PCO5

O1 0.235 �0.426 0.109 0.444 �0.036
O2 �0.171 0.414 0.392 0.057 -0.636
O3 0.209 �0.237 0.594 �0.378 0.138
O4 0.201 0.314 0.537 0.292 0.029
O5 �0.088 �0.526 �0.070 0.033 -0.634
O6 0.227 0.455 �0.375 0.032 �0.157
O7 0.461 0.060 �0.204 0.131 �0.115
O8 0.457 �0.069 �0.016 0.325 �0.143
O9 0.489 0.030 0.029 �0.143 0.135
O10 0.334 �0.009 �0.073 �0.652 �0.311

Proportion 0.398 0.235 0.134 0.104 0.049

Component meaning Main results Revenue Treatment process Risky events Additional services
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Stage 3 (FA-TLDEA)

Figure 3 illustrates the hierarchy of inputs and outputs in the correspond-
ing hospital efficiency evaluation case. To complete this hierarchy, a set of
weights must be assigned to components corresponding to each factor. In
this paper, these weights were extracted from the contribution of each com-
ponent in describing the total variability of data. The proportion of each com-
ponent in Table 5 (inputs) and Table 6 (outputs) was normalized by dividing
them by the total sum of proportions. These weights are shown in Figure 3
above the connecting arrows of components and their associated factors.
Figure 4 illustrates the efficiency scores of hospitals using the output-ori-

ented BCC model. These analyses were performed over three sets of data.
The DEA line shows the results of running DEA over the original data in
Table 4. The PCA-DEA graph presents the results of running DEA over PCA
data of Tables 5 and 6 by replacing negative principal components. Finally,
the PCA-FA-TLDEA figure presents the results of efficiency evaluations on
constructed factors by assigned weights in Figure 2. By comparing the
obtained efficiency scores of three different methodologies, it is clear that the
original DEA method does not determine any discrimination between hospi-
tals. However, the status improves a little in PCA-DEA by determining the
8th hospital as an inefficient unit. However, the PCA-FA-TLDEA method-
ology determines 5 hospitals as inefficient in the output-oriented BCC model.
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Figure 3. Inputs and outputs hierarchy in hospitals efficiency evaluation.
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Considering the results of Figure 4, the improvement of the discriminatory
power of DEA in the applied PCA-FA-TLDEA methodology is apparent.
Considering the different decompositions discussed in Section 3, a decom-

position of the inefficiency roots of hospitals is illustrated in Figure 5.
According to Figure 5, the following conclusions are considerable.

� Hospitals 3, 4, 5, and 10 were determined as strongly efficient hospitals.
� While hospitals 1 and 11 were pure technical efficient units, they had

the scale and mix inefficiencies. Even though these units’ managerial
performances were efficient, their environment and resource mix per-
formed inefficiently.

� Other hospitals incurred all types of pure, mix, and scale inefficiencies.
These units must improve their managerial procedures and
resource usage.

Practical Implications

One of the main challenges of public institutions, e.g. public hospitals, is to
effectively and efficiently manage their allocated resources in a way in
which they can provide more and better services. This paper proposes an
approach to address this challenge by proposing a hybrid multi-stage
method based on data envelopment analysis. From the conducted imple-
mentation of the method to evaluate the efficiency of 11 hospitals in Iran,
several practical implications can be considered. One of the main manager-
ial findings of the current study refers to the elaboration of the problem of
identifying evaluation criteria. While data envelopment analysis, as a non-
parametric efficiency evaluation method, is considered as a less sensitive
method, its dependency on evaluation criteria, i.e. inputs and outputs, can
affect the results of the evaluation (Aibing et al. 2015). An unsuitable
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Figure 4. Efficiency evaluation of hospitals comparison of centers.
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measure list can dramatically reduce the applications of the efficiency
evaluation for managerial applications due to contradictions with reality
(Table 7).
The proposed method can be used by policymakers and resource owners

to make better decisions regarding the allocation of hospital resources and
justification of such decisions. For example, considering Figure 4, the
obtained efficiency scores of hospitals can be used as a measure to deter-
mine the number of resources allocated to them. For hospitals with effi-
ciency scores of less than 1, it may suggest that their resources can be
reduced by a proportionate magnitude according to their efficiency.
Implying the usual inflation rate to increase the cost of inputs, the effi-
ciency measures derived from the proposed approach can be used to deter-
mine the number of allocated resources. For instance, considering an
inflation rate it and an obtained efficiency score htj , for a given time period
t, the amount of monetary budget allocated to the considered hospital at
the next time period t þ 1, i.e. Xtþ1, can be adjusted as Xtþ1 ¼ htj þ it

� �
Xt

to compensate for the effects of inflation and simultaneously consider the
hospital’s efficiency in the allocated resources.
Another guiding fact from the results that can be considered by manag-

ers is the decomposition of efficiency scores to their constructing elements.
One of the appealing results that can be inferred regarding the obtained
results is to use them as an illustration of hospital managerial performance.
According to the results, pure technical efficiency (PTE) can be considered
as the contribution of managerial procedures inefficiency of hospitals. First
of all, it seems that hospital internal management practices performed well
since the lowest PTE was 77% while 9 out of 11 hospitals reached a PTE of
more than 90%. However, it seems hospitals 8 and 9 are required to
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Figure 5. Decomposition of technical efficiency.
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improve their internal management practices using benchmarking or ena-
bling the internal managerial practices using mentoring or coaching. The
effectiveness of these enabling approaches can be assessed using a similar
method after a given period.
On the other hand, it seems that the scale efficiency of hospitals, mean-

ing the effect of their scale and environment, is required to be improved. A
scale efficiency of 49% in the 7th hospitals means a required decision to
change its location or enhance its performance scale by investing in its
facilities, types of equipment, etc. A similar proposition can be made about
other hospitals with low-scale efficiency.

Conclusions

Data envelopment analysis is a well-developed and widely accepted method
in appraising the efficiency of a set of homogeneous units. This method
has been applied in various areas like banking, insurance, educational sys-
tems, etc. One of its application fields is evaluating the efficiency of health
systems, especially in hospitals. The importance of healthcare and the
necessity of proper resource usage in this sector has made efficiency a vital
parameter of good healthcare management. In this paper, a three-stage
PCA-FA-TLDEA methodology was proposed and applied in a set of public
hospitals in Iran.
Theoretically, the motivation for adopting this methodology was to

improve the discrimination power of the original DEA method. While the
numbers of inputs and outputs increase in classic DEA methods, more and
more decision-making units are classified as efficient which will decrease the
discrimination between evaluated units. To overcome this shortcoming of the
original DEA, a combination of statistical methods of principal component
analysis and factor analysis was applied in the context of two-level DEA. first,
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Table 7. Rotated component matrix for PCIkj s and PCOpj s.Q13
Principal component (PCI) Factor 1 Factor 2

Necessities �0.383 0.475
Complimentary services 0.510 0.086
Main services 0.618 0.215
Undesirables �0.686 0.243
Besides 0.661 �0.177
Accessories 0.174 0.839
Factor name Services Infrastructural aspects

Principal component (PCO) Factor 1 Factor 2 Factor 3

Main results 0.238 0.777 �0.040
Revenue 0.027 0.017 0.985
Treatment process 0.700 0.109 �0.098
Risks/ critical events 0.590 �0.105 0.120
Additional services 0.327 �0.612 �0.61
Factor name Medical treatments Main results revenue
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the original inputs and outputs were combined to form a set of principal
components that explain a wide portion of data variation. Afterward, the con-
stituted principal components were applied in a factor analysis to construct a
hierarchy of principal components, according to the two-level DEA method-
ology. Eventually, the constructed hierarchy was used to form a set of
weighted factors. These factors were then used in DEA models to appraise
the efficiency of hospitals. The main novelty of the proposed method can be
considered its ability to handle real-world problems where decision-makers
prefer to appraise a set of units with a wide set of measures while classic DEA
models are not capable of discriminating in these situations.
As demonstrated in the evaluated hospitals, the PCA-FA-TLDEA meth-

odology improved the discrimination from 0% in the original DEA to 45%.
Also, a further analysis was performed to identify the sources of inefficien-
cies. This study illustrated that only 4 of 11 hospitals had performed effi-
ciently while other hospitals were incurred from at least one type of purely
technical, mix, or scale inefficiencies. The proposed approach can be used
in the case when the number of DMUs is small compared to the number
of inputs and outputs.
One of the main limitations of this research is that the efficiency of pub-

lic hospitals has been investigated at a specific point time. Thus, this
approach has not considered dynamic and multi-period analysis. As a clue
for future studies, researchers can focus on developing the proposed
method in dynamic and multi-period environments where some measures
might be eliminated or added in different periods (e.g. Mozaffari et al.
2021). Moreover, the relationship of healthcare processes has not been con-
sidered in this research. Hence, the situation studied in this paper and the
proposed structure can be extended to network structures (e.g. Yazdi et al.
2018). Application of machine learning feature selection methods to reduce
the dimensionality of inputs and outputs in big data environments can also
be considered in future research.
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