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Introduction
Amidst the global climate change scenario, studying the car-
bon cycle process and carbon sequestration potential of terres-
trial ecosystems can shed light on the vegetation’s ability to 
absorb atmospheric carbon dioxide, and also provide insights 
into the quality of terrestrial ecology. Additionally, it holds 
immense significance for comprehending the state of terrestrial 
ecosystems’ carbon sinks and regional carbon balance (Baker 
et al., 2018; Friend et al., 2013; Schimel et al., 2014; Yan et al., 
2023). Grassland ecosystems constitute a vital element of the 
terrestrial biosphere and represent one of the most significant 
carbon reservoirs and absorbers on land (C. B. Chen; He et al., 
2015; Li & Peng, 2022; Vourlitis et al., 2022).

Net Ecosystem Productivity (NEP), calculated by sub-
tracting soil heterotrophic respiration (Rh) from Net Primary 
Productivity (NPP), is a reliable measure of carbon sequestra-
tion and emission capacity, and is often used to determine 
whether a region is a carbon source or sink (Fang et al., 2001). 
NEP can accurately depict the carbon sequestration capabil-
ity of the area. As a crucial factor in grassland health, this 
variable characterizes the activity of herbaceous plants and 
has a significant impact on the carbon sinks and ecological 
processes of grassland ecosystems. As the important indicator 

of grassland ecosystem growth and health, it also serves as an 
important ecological indicator for the sustainable develop-
ment of ecosystems (Liang et al., 2022; Lu et al., 2023; Peichl 
et al., 2013; Zhou et al., 2018). To estimate NEP, NPP and 
soil heterotrophic respiration must first be estimated. The 
advancement of remote sensing technology has led to the 
incorporation of remote sensing data in NPP estimation 
models. These models, namely climate productivity models 
(Veroustraete et al., 1994), light energy utilization models (C. 
B. Chen, Li, & Peng, 2022; Liang et  al., 2022; Zhu et  al., 
2007), and ecosystem process models (Field et al., 1995; He 
et al., 2015, Nkrumah et al., 2022), have effectively addressed 
the limitations of traditional NPP estimation methods, which 
were time-consuming and restricted to small-scale estimates. 
As such, they are now the primary approach to NPP estima-
tion. Among these models, the Carnegie-Ames-Stanford 
Approach (CASA) model has emerged as a leading approach 
for estimating NPP due to its notable advantages, including 
straightforward access to input data, simplicity of implemen-
tation, and rapid speed of large-scale NPP estimation. It has 
been extensively employed for both global and regional esti-
mation of NPP (Cramer et  al., 1999, Na et  al., 2013; Wu 
et al., 2022; M. L. Zhang et al., 2020).
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The Muri region is significant as the origin of the Datong 
River, which is a crucial tributary of the upper reaches of the 
Yellow River. Additionally, it forms an essential component of 
the water source and ecological security barrier of the Qilian 
Mountain region, holding a critical ecological status. In recent 
years, China has undertaken ecological restoration initiatives in 
nearby mining regions and established monitoring schemes for 
alpine grasslands (Qian et al., 2017, 2020). However, there is 
currently a lack of clarity regarding the health of the region’s 
grasslands in recent years, their capacity for carbon sequestra-
tion, and the relationship between climate and other influ-
ences. Furthermore, few studies have focused on the region. 
Accurately estimating NEP of grassland ecosystems in the 
region and analyzing their spatial and temporal changes and 
driving forces can enhance understanding of the carbon seques-
tration potential and quality status of local grassland ecosys-
tems. This information is of great theoretical and practical 
value for monitoring and replanting projects.

In this paper, Landsat remote sensing imagery and meteor-
ological data were used to estimate the NPP and NEP of the 
Muri region from 2000 to 2022 by coupling the CASA model 
and soil respiration estimation model. Then we utilized trend 
analysis and Geogdetector to observe the changes in NEP dur-
ing each growth period of the grassland, investigated the fea-
tures of temporal and spatial variations as well as the factors 
that stimulate these changes. The results aim to provide scien-
tific references for research concerned with the dynamics of 
grass ecosystem functioning and monitoring the health status 
of grasslands in the Muri region.

Materials and Methods
Study area

The Muri region is situated in Haixi Mongol and Tibetan 
Autonomous Prefecture, as well as Haibei Tibetan Autonomous 
Prefecture in Qinghai Province. It can be found at the headwa-
ters of the Datong River system, with an administrative area 
that spans the three counties of Tianjun, Gangcha, and Qilian. 
This region also includes the Muri Mining Area and a portion 
of the Qinghai Area located in the southern foothills of the 
Qilian Mountains. The total area covered by this region is 
2,453 km2. 56 km2, located between longitude 98°53′ to 99°47′ 
East and latitude 37°49′ to 38°19′ North.

As shown in Figure 1, the Muri region has typical alpine 
climatic characteristics, with an average altitude of 4,000 m, a 
high terrain distribution in the north-west and a low terrain 
distribution in the south-east, and is mainly dominated by the 
plateau ice-marginal landform type. A surface area of 9.8% in 
the Muri region comprises shrubland, while the remainder 
(89.6%) is grassland. Dominant in this latter category are 
plants that can withstand low temperatures and droughts, with 
low levels of vegetation, dense grasses and inconspicuous hier-
archical differentiation. However, the community structure is 
relatively simple, and the ability to resist disturbance is weak 
(Qian et al., 2020).

Data source

Acquisition of NDVI. As detailed in Table 1, the Landsat image 
dataset was used as the primary source of remote sensing 

Figure 1. Geography of the Muri region.
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imagery in this study. The Normalized Vegetation Index 
(NDVI) was calculated using the red and near-infrared bands. 
It is important to note that NDVI refers to the Normalized 
Vegetation Index throughout the study.

Meteorological data. The meteorological data include 
monthly mean temperature, monthly total precipitation 
and monthly total solar radiation for the period 2000 to 
2022, the monthly mean temperature and monthly total pre-
cipitation are from the National Oceanic and Atmospheric 
Administration (NOAA) National Centers for Environ-
mental Information (NCEI; https://www.ncei.noaa.gov/
maps/daily/), obtained by collating meteorological data, and 
the monthly total solar radiation is from the NOAA NCEP-
DOE Reanalysis 2 dataset (https://psl.noaa.gov/data/grid-
ded/data.ncep.reanalysis2.html).

Land cover data. The land cover data used in this study are 
from the 30 m China Land Cover dataset (http://www.ncdc.
ac.cn) and ESRI 10 m land cover data (https://livingatlas.arc-
gis.com/landcover/) for the time periods 2000 to 2020 and 
2021 to 2022, respectively. For the period 2000 to 2022, grass-
land distribution data for the Muri region were extracted year 
by year. The data was resampled for the years 2021 to 2022 
with a uniform spatial resolution of 30 m.

Data validation. In the absence of directly measured data, we 
validated our findings using cross-comparison of multiple data. 
The multiple data consisted of the MODIS NPP product 
(MOD17A3H v006), available at (http://ladsweb.modaps.eos-
dis.nasa.gov/), the actual NPP of the Tibetan Plateau grass-
lands, the Potential Net Primary Productivity and the Potential 
Aboveground Biomass datasets from 2000 to 2018, available at 
(https://doi.org/10.11888/Ecolo.tpdc.271204). MOD17A3H 
is an NPP data product made available by NASA EOS/
MODIS. It is chiefly used in NPP studies at different spatial 
levels and is only accessible on an annual basis (D. Li & Wang, 
2018). The second dataset was similarly calculated using the 

CASA model in order to obtain. In addition, the calculation 
results of other researchers were also taken into account.

Estimation of NPP

In this study, the improved CASA model was used to simulate 
the NPP in the Muri region. The model utilizes remote sens-
ing data as input data, combining environmental variables 
(temperature, moisture, and soil) and vegetation physiological 
parameters. It then represents NPP as the product of APAR 
and light energy utilization. The specific formula for the calcu-
lation is as follows:

                     NPP x t APAR x t x t, , ,( ) = ( )× ( )ε  (1)

Where the APAR(x,t) is the photosynthetically active radia-
tion absorbed by image x in month t (MJ/m2/month); ε(x,t) is 
the actual light energy use of image x in month t (gC/MJ). 
NPP(x,t) is the net primary productivity (NPP) of the vegeta-
tion at location x at time t (gC/m2/month).

APAR absorbed by vegetation can be expressed in terms of 
total solar radiation and the fraction of photosynthetically active 
radiation (FPAR). The expression of APAR is as follows:

             APAR x t SOL x t FPAR x t, , ,( ) = × ( )× ( )1

2
 (2)

Where: SOL(x,t) represents the overall solar radiation at pixel 
x during month t (MJ/m2 /month); FPAR(x,t) indicates the 
proportion of incident photosynthetically active radiation that 
the vegetation layer absorbs (unitless); and the fixed value of 
0.5 indicates the proportion of solar active radiation (with 
wavelengths varying between 0.38 and 0.71 µm) that can be 
used by vegetation in comparison to the total solar radiation.

ε x t,( ) represents the efficiency of green vegetation in 
absorbing light energy and converting it into organic carbon 
over a given time period. This value represents another crucial 
parameter for estimating NPP. It is influenced by a number of 
factors, including temperature, humidity and the maximum 
light energy utilization (εmax) in the actual environment. The 
expression of ε x t,( ) is as follows:

             ε εεx t T x t T x t W x t max, , , ,( ) = ( )× ( )× ( )×1 2  (3)

Where: ε x t,( ) denotes the actual light energy use efficiency of 
image x in month t (gC/MJ). Since the light energy use effi-
ciency is in reality affected by many external environmental 
factors, mainly temperature and precipitation, that is, the tem-
perature factors T x t1 ,( ) and T2 x t,( ) , the specific formula can 
be referred to the model established by other researchers (Field 
et al., 1995). W x tε ,( ) is the moisture stress factor. εmax (gC/MJ) 
is the maximum light energy use of vegetation in the ideal state. 
In this study, the maximum light energy efficiency of grassland 
was 0.542 gC/MJ.

Table 1. Landsat Image Time Series.

TIME DATA PRODUCTS SPATIAL 
RESOLUTIOn (M)

2000–2011 USGS Landsat 5 Level 2, 
Collection 2, Tier 1

30

2012 USGS Landsat 7 Level 2, 
Collection 2, Tier 1

30

2013–2022 HLS Operational Land Imager 
Surface Reflectance and TOA 
Brightness Daily Global

30

2020–2022 HLS Sentinel-2 Multi-spectral 
Instrument Surface 
Reflectance Daily Global

30

https://www.ncei.noaa.gov/maps/daily/
https://www.ncei.noaa.gov/maps/daily/
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
http://www.ncdc.ac.cn
http://www.ncdc.ac.cn
https://livingatlas.arcgis.com/landcover/
https://livingatlas.arcgis.com/landcover/
http://ladsweb.modaps.eosdis.nasa.gov/
http://ladsweb.modaps.eosdis.nasa.gov/
https://doi.org/10.11888/Ecolo.tpdc.271204
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Estimation of soil respiration

The soil respiration estimation model employed in this study 
was derived from the regression equation of temperature, pre-
cipitation, and carbon emission based on the relationship 
between carbon emission and environmental factors in the 
Wudaoliang experimental site in Qinghai Province. The model 
was applied in this paper to estimate the distribution of soil 
microbial respiration within the alpine steppe area of the Muri 
region. The following calculation formula was utilized:

   
R Exp T Ln Rh = × ×( ) + × +( )( )

× ×

0 22 0 0913 0 3145 1

30 46 5

. . .

. %
 (4)

Where Rh is the heterotrophic respiratory consumption 
(gC/m2/month); T is the average monthly air temperature 
(°C); and R is the total monthly precipitation (mm).

Estimation of NEP

NEP is the fraction of NPP minus the consumption of photo-
synthetic products by heterotrophic respiration (soil respira-
tion), that is:

                                 NEP NPP= −Rh  (5)

where NEP is net ecosystem productivity (gC/m2/month), 
NPP is net primary productivity (gC/m2/month), and Rh is 
heterotrophic respiration consumption (gC/m2/month).

Trend analysis

In this study, the trend analysis of annual NEP of grassland in 
Muri region from 2000 to 2022 was carried out by using the 
Theil-Sen Median method, which is computationally efficient, 
insensitive to measurement errors and leptokurtic data, and suit-
able for trend analysis of long time series data ( J. L. Chen, Shao, 
et al., 2022; Rong & Long, 2021). Its calculation formula is:

                     β =
−

−








∀ >Median

x x

j i
jj i i  (6)

In the formula, the function Median() represents the calcula-
tion of the median value. A value of β > 0 denotes an increasing 
trend in the data, while a value of β < 0 indicates a decreasing 
trend.

To assess the significance of the results, the Mann-Kendall 
(MK) test is employed. This non-parametric test allows the 
detection of trends in time series, irrespective of the distribu-
tion of the data and the presence of missing values or outliers. 
It is particularly suitable for the analysis of long-term trends 
(Kamali et al., 2020; Rong & Long, 2021). The formula for the 
MK test is shown below:
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where S and Z are test statistics, n is the amount of data in the 
sequence.

The significance test is also a bilateral trend test, where 
the critical value Z1 − α/2 is found in the normal distribution 
table at a given level of significance; when |Z| ⩽ Z1 − α/2, the 
original hypothesis is accepted, that is, the trend is not sig-
nificant; and if |Z| > Z1 − α/2, the original hypothesis is 
rejected, that is, the trend is considered to be significant. The 
trend is considered significant. In this paper, given the sig-
nificance level α = 0.05, the critical value Z1 − α/2 = ±1.96, 
when the absolute value of Z is greater than 1.65, 1.96, and 
2.58, it means that the trend passes the significance test with 
a confidence level of 90%, 95%, and 99%, respectively. The 
method of determining the significance of the trend is shown 
in Table 2.

Geogdetector

Geogdetector is a statistical method for studying the patterns 
of spatial differentiation of geographical elements and reveal-
ing the driving factors behind them (Wang et al., 2022). The 
Geogdetector consists of four parts: the factor probe, the inter-
action probe, the risk probe, and the ecological probe.

The factor detector is premised on the notion that if an 
independent variable x has a consequential impact on a depend-
ent variable y, then the spatial distributions of variables x and y 
will display a marked spatial similarity. The correlation between 
x and y may be quantified by the q statistic. The formula is as 
follows:

                              q
N

N
h

L

h h
= − =∑
1 1

2

2

σ

σ
 (11)
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Where: h = 1,2. . . L is the classification of the independent 
variable x; Nh and N are the sample sizes of the hth level and 
the whole, respectively. σ 2

h and σ 2 are the variance of the 
dependent variable y of the hth level and the whole, respec-
tively. q is in the range of 0 to 1, and the larger the value of q is, 
the greater the degree of explanation of the independent vari-
able x on the dependent variable y, and vice versa, the smaller 
the value of q is.

Interaction detectors can ascertain the extent to which two 
drivers’ explanatory power is influenced, increased, reduced, or 
unaffected by examining the q-statistics of the two independ-
ent factors, X1 (q(X1)), X2 (q(X2)), and the X1 and X2 interac-
tion (q (X1 ∩ X2)). Details of the interaction types are given in 
Table 3.

Results and Discussion
NPP estimation results and validation

In this study, the NPP values calculated for each month were 
further processed to give the annual average NPP and then 

compared with MOD17A3H. In order to enhance the reliabil-
ity of the results of this experiment, the results of this experi-
ment are compared and analyzed with the results of other 
scholars who have also adopted the improved CASA model, 
due to the remote sensing images are covered by clouds and 
other reasons, so the remote sensing images of the Muri region 
time series are some months, some areas of the missing data, in 
order to complete the comparison of annual data, the twelve 
months of data are complete and the entire region missing part 
of the year for the comparison of verification.

As shown in Table 4, this study’s calculations align with the 
MOD17A3H data product and findings from other scholars 
using the same model. The reasons for the discrepancy may be 
as follows:

(1) The spatial resolution of the MOD17A3H product is 
500 m, while the results of this study are 30 m. It is 
possible that the discrepancy between the two may be 
attributed to the spatial heterogeneity. Furthermore, 
the MOD17A3H is derived from the sum of all 8-day 
Net Photosynthesis (PSN) products (MOD17A2H) 
from the given year. The PSN value is the difference of 
the Gross Primary Productivity (GPP) and the Main-
tenance Respiration (MR). In contrast to the CASA 
model, which represents NPP directly, the fraction 
consumed to maintain respiration is already elimi-
nated in the inversion of maximum light energy uti-
lization. The calculation of the two results is distinct, 
the sources of uncertainty are disparate, and the results 
will be disparate as well.

(2) The CASA model is widely used because of its simple 
input parameters and easy access to data, but the dif-
ferent forms of input data also introduce uncertainty, 
which causes some differences between the calcula-
tion results of this study and the results obtained by 
other scholars using the same model.

Spatial distribution of annual NEP results

Due to the lack of NEP measurement data, it was not possible 
to verify NEP, but this experiment cross-checked the NPP 
estimation results and referred to other scholars’ estimation 
results of grassland productivity in Qinghai, for the grassland 
in this study, the NPP and NEP estimation results were in the 
range of reasonably similar values. In addition, the CASA 
model has been extensively applied in various regions and eco-
systems, demonstrating its effectiveness. Thus, the NEP esti-
mation results presented in this study are reliable in terms of 
spatial and temporal changes. The detection of significant fea-
tures and patterns of change enables an accurate reflection of 
the grassland situation in the Muri region. Figure 2 displays the 
annual NEP averages’ spatial distribution within the Murray 
region between 2000 and 2022.

Table 2. Mann-Kendall Test Trend Categories.

β Z TREnD 
TYPE

TREnD fEATURES

β > 0 2.58 < Z 4 Extremely significant 
increase

1.96< Z ⩽ 2.58 3 Significant increase

1.65< Z ⩽1.96 2 Slightly significant 
increase

Z ⩽ 1.65 1 Insignificant increase

β = 0 Z 0 no change

β  < 0 Z ⩽ 1.65 −1 Insignificant decrease

1.65 < Z ⩽1.96 −2 Slightly significant 
decrease

1.96 < Z⩽ 2.58 −3 Significant decrease

2.58 < Z −4 Extremely significant 
decrease

Table 3. Types of Driver Interactions.

TYPE Of InTERACTIOn InTERACTIvE RELATIOnSHIP

nonlinear weakening q(X1∩X2) < Min[q(X1), q(X2)]

Single-factor nonlinear 
weakening

Min[q(X1), 
q(X2)] < −q(X1∩X2) < Max[q(X1), 
q(X2)]

Bi-factor enhancement q(X1∩X2) > Max[q(X1), q(X2)]

Independent q(X1∩X2) = q(X1) + q(X2)

nonlinear enhancement q(X1∩X2) > q(X1) + q(X2)
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The Muri region is oriented in a northwest-southeast direc-
tion, and its NEP displays a spatial distribution pattern from 
south-east to north-west, from the center to both sides, from 
high values to low values. The spatial pattern is determined by 
the topography of the Muri region, as illustrated in Figure 1. 
The elevation of the Muri region is high in the north-west and 
low in the south-east. Furthermore, the elevation of the south-
eastern region is gradually decreasing from the two sides to the 
middle. The lower the elevation, the greater the temperature. 
As the temperature rises, the rate of grass photosynthesis and 

carbon fixation increases. This is particularly evident in the 
north-western region, where the elevation is high and the cli-
mate is characterized by low temperatures, prolonged periods 
of ice and snow cover, and high levels of cloud cover (Cano 
et al., 2023). These climatic conditions result in reduced rates 
of grass photosynthesis and carbon fixation. Between 2000 and 
2022, the overall average NEP of grassland in the study area 
was 138.23 gC/m2, indicating a better carbon sink status. 
However, areas with carbon source status are mainly located in 
high-elevation areas with perennial snow, bare ground areas 

Table 4. Comparison of Calculations Based on the Improved CASA Model.

YEARS IMPROvED CASA 
MODEL (GC/M2/YEAR)

MOD17A3H (GC/M2/
YEAR)

PERCEnTAGE 
DEvIATIOn (%)

OTHER DATA RESULTS 
(GC/M2/YEAR)

PERCEnTAGE 
DEvIATIOn (%)

2003 134.84 138.22 2.51 151.54 11.02

2004 205.13 151.38 11.08 175.15 2.80

2005 166.09 168.65 1.54 170.48 2.57

2006 149.15 172.65 15.76 166.28 10.30

2010 220.84 192.23 12.95 204.67 7.90

2011 135.86 158.43 16.61 161.45 15.85

2014 217.80 152.03 30.20 180.91 20.39

2015 108.32 145.72 3.22 165.26 8.89

2016 195.39 189.72 2.90 197.90 1.27

2017 160.50 173.80 8.28 191.51 16.19

Average 169.39 164.28 3.01 176.51 4.20

Figure 2. Spatial distribution of the 23-year average nEP in the Muri region.
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due to the destruction of grasslands, or river areas experiencing 
occasional droughts and broken streams.

Temporal changes in NEP

Figure 3 depicts the monthly fluctuations of the mean NEP 
in the Muri area, ranging between −0.18 and 25.28 gC/m2. 
The highest value (25.28 gC/m2) occurred in July. The May 
to October timeframe displayed greater variation, indicat-
ing a carbon sink. The remaining months demonstrated 
weaker carbon sources or carbon sinks, fluctuating above 
and below 0.

In order to objectively reflect temporal changes in the NEP 
of grassland, this study starts from the growing season of grass-
land, which is divided into three periods, the rejuvenation 
period (May–June), the flowering period ( July–August) and 
the yellowing period (September–October), to study the tem-
poral change rule. As illustrated in the Figure 4, from 2000 to 
2022, the NEP of grassland in the three periods showed a trend 
of slow growth, which means that the carbon sink capacity of 

grassland in the Muri region is slowly increasing. Among them, 
the rejuvenation and yellowing periods gradually changed from 
a state of fluctuating weak carbon sinks/sources to a clearly 
observable carbon sink state. Additionally, the carbon sink 
capacity during the flourishing period significantly increased. 
These changes indicate that the carbon absorption capacity of 
the grassland has been strengthened, resulting in an increase in 
the amount of carbon fixed.

Analysis of trends

The aforementioned results suggest that the grassland in the 
Muri region is developing positively. To demonstrate this 
change, the current study examined and performed a signifi-
cance test on the trend of the grassland’s annual NEP and the 
three growing periods from the year 2000 to 2022 in the Muri 
region. The results are presented in Figure 5.

As depicted in Figure 5(a), 91.58% of the grassland in Muri 
region show an increasing trend, of which 81.71% exhibit a 
non-significant increase, while the marginal, significant, and 
highly significant increases are 6.68%, 8.65%, and 2.96%, 
respectively. This suggests that the carbon absorption capabil-
ity of grassland in the region has slowly improved during the 
period of 2000 to 2022. Moreover, it reflects that the status of 
grassland growth is steadily improving over time. From Figure 
5(b)–(d), it is evident that the carbon sequestration capacity of 
grassland in the Muri region was enhanced to varying degrees 
in all growth periods. The geographical distribution of the 
areas showing a significant or highly significant increase dur-
ing the rejuvenation period closely matched the direction of 
the rivers in the Muri region, suggesting that moisture played 
a crucial role in the increase of the carbon sequestration capac-
ity of grassland during the rejuvenation period. Conversely, 
areas with less moisture exhibited a non-significant increase in 
the carbon sequestration capacity status. The trend of grass-
land in the Muri region during the period of flourishing and 
yellowing was similar, with most areas exhibiting a significant 
or highly significant upward trend, while some areas displayed 
a non-significant or significant or even highly significant 
downward trend during the three periods. Combined with 
past years’ land cover data, it can be observed that most of 
these areas are located on the periphery of bare land or have 
transformed into bare land. This indicates that the local grass-
land has suffered varying degrees of damage or degradation 
(Qian et al., 2017, 2020), resulting in a significant reduction in 
carbon sequestration capacity.

Driving factors for NEP

Factor detection. In this study, a unidirectional detection analy-
sis of NEP and five prospective determinants was carried out at 
different intervals of the grass growing season in the Muri 
locality. The results are shown in Figure 6.

Figure 3. Monthly average nEP change curve.

Figure 4. Changes in nEP of grassland by growth period in Muri region, 

2000–2022.
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The p-value for each factor was 0, thus signifying that the 
importance of each specific factor was significant. During vari-
ous periods throughout the grass growing season, the q-values 
of elevation attained maximum values of 0.60, 0.57, and 0.61, 
which clearly illustrates that the elevation distribution had the 
most influential role in explaining the differences in the spatial 
distribution of NEP. Direction of slope exhibited the lowest 
explanatory ability for variances in NEP’s spatial distribution, 
portraying q-values of 0.01, 0.01, and 0.02, respectively. During 
the rejuvenation period, the impact of various factors demon-
strated a hierarchy with elevation having the greatest influence, 
followed by mean temperature, slope, precipitation, and direc-
tion of slope. In contrast, the influence of variables during the 
flourishing period ranked elevation as the most impactful, fol-
lowed by slope and mean temperature, then precipitation and 
direction of slope. Finally, in the yellowing period, the hierar-
chy remained largely unchanged with elevation, mean temper-
ature, slope, precipitation, and direction of slope respectively 
demonstrating the greatest impact.

From merging the outcomes of the experiments and the dis-
coveries made by other researchers (X. J. Li et al., 2023; Mao 
et al., 2014; Yan et al., 2023; L. X. Zhang et al., 2019; M. L. 
Zhang et al., 2020; Zhou et al., 2018), the subsequent trends 
can be condensed. (1) During various stages of grass growth, 
both temperature and precipitation directly impact grass NEP 

Figure 5. (a) Trends in annual nEP, (b) trends in nEP during the rejuvenation period, (c) trends in nEP during the flourishing period, and (d) trends in 

nEP during the yellowing period.

Figure 6. Results of single-factor detection at different periods of the 

growing season.
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through their effect on photosynthetic activity, the length of 
the growing season, and the intensity of soil respiration. It is 
important to note the impact of external factors as they have a 
significant effect on the overall grass growth process. (2) Slope 
affects grass NEP differently by influencing water uptake, land 
fertility distribution, exposure to sunlight, and temperature. 
Moreover, as the altitude increases, the climate becomes colder 
and the high mountain areas are covered with snow and ice all 
year round, which limits the growth of grasses through severe 
soil erosion, mainly by freeze-thaw erosion.

Factor interaction analysis. Interaction detection of factors at 
different times through geodetector. As shown in Figure 7. The 
interaction between any two drivers had a greater impact on 
NEP than the independent effect of a singular factor. This 
reveals either a two-factor enhancement or a non-linear 
enhancement effect. During all three stages of the growing sea-
son, the q-values of the four-factor interactions, namely tem-
perature, precipitation, elevation, and slope, were consistently 
high. Furthermore, the interactions of elevation with each of 
the aforementioned factors were the highest among all three 
seasons, implying that elevation is the primary factor that 
influences NEP in grasslands. Temperature, precipitation, and 
slope are also important factors affecting NEP in grassland 
ecosystems. Furthermore, variations in elevation and slope 
result in fluctuations in temperature and precipitation, ulti-
mately influencing the NEP of grassland ecosystems. This 
influence is due to a combination of climatic and topographical 
factors.

Conclusions
In this study, we used remote sensing images, meteorological 
data and land cover data, combined with physiological and eco-
logical parameters of vegetation, to estimate NPP in Muri 
region using CASA model, coupled with heterotrophic respi-
ration model to further obtain NEP. It should be noted that the 
estimation results of this study are subject to some uncertainty. 
For instance, the maximum light energy utilization of grass-
land assumed by the model may not be applicable to alpine 
grassland. Additionally, there will be some uncertainty in the 

production process of the input data. Furthermore, the lack of 
universality of some empirical formulas will lead to some una-
voidable errors in the estimation results. Currently, the resolu-
tion of NPP standard products is up to 500 m. The spatial 
heterogeneity of different resolutions and the scarcity of ground 
stations make it challenging to obtain ground data, which in 
turn makes data validation difficult. Furthermore, it is even 
more challenging to directly validate NEP results.

We analyzed the spatial and temporal changes in NEP in 
the Muri region between 2000 and 2022. From 2000 to 2022, 
the mean annual NEP of grassland in the Muri region was 
138.23 gC/m², exhibiting a significant increasing trend 
(p < .01). Spatially, the NEP of grassland showed a pattern of 
distribution from south-east to north-west, from the center to 
either side and from high to low values, with 91.58% of grass-
land showing an increasing trend in all growth periods. Most of 
the areas that experienced a decreasing trend underwent a pro-
cess of changing from grassland to bare ground and back again 
during the period, like the mining process in the Muri coal 
field. The restoration of mining and grassland ecosystems will 
be the primary focus of future ecological protection in the Muri 
region. Concurrently, it is imperative to reduce the damage to 
alpine grassland ecosystems caused by human activities. (3) 
Climatic factors, altitude, and slope are important drivers of 
changes in the NEP of grassland, with altitude being the most 
important factor influencing the NEP of grassland in this 
region. This research serves as a benchmark for tracking grass-
land ecosystem carbon sequestration capability and health in 
the Muri area, the results demonstrated that the grassland eco-
systems in the region had exhibited a relatively healthy state 
over the past few decades. This was evidenced by a general 
trend of increasing carbon fixation in all periods of the growing 
season. This indicated that the amount of carbon fixed into the 
ecosystems eventually increases during the growing season of 
the grasslands.

Finally, it is recommended that further detailed and in-
depth studies be conducted in the future to elucidate the 
interconnections between photosynthesis and respiration in 
alpine grassland ecosystems and the influences of climate 
and topography. Such studies will facilitate a comprehensive 

Figure 7. (a) Interaction of factors during rejuvenation period, (b) interaction of factors during flourishing period, and (c) interaction of factors during 

yellowing period.
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understanding of these relationships, which will in turn 
assist in the elucidation of the processes of carbon cycling in 
these fragile ecosystems. Furthermore, these results will 
contribute to the management of ecosystem resources and 
their environment.
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