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Abstract  

Purpose: 

The relevance and importance of load carriage in recreational and occupational tasks has stimulated a 

large body of research. Exercise protocols have been criticised for a lack of relevance to occupational 

activities; accordingly the aim of this study was to assess the reliability of a preloaded time-trial protocol 

for load carriage assessment. 

Methods:  

After full familiarisation, eight healthy males performed two trials separated by one week. Each trial 

comprised 60min walking at 6.5km·h-1 and 0% gradient (LC), 15 min seated recovery followed by a 

2.4km time-trial (LCTT). All trials were performed wearing a 25 kg backpack. 

Results:  

Performance time was 16.71 ± 1.82 min and 16.37 ± 1.78 min for LCTT one and two respectively; with a 

mean difference of -0.34 ± 0.89 min. Using log ratio limits of agreement the mean bias was 1.02 and 

random error component of the agreement ratio was 1.11. The intra-class correlation (ICC) was 0.85, 

coefficient of variation (CV) was 10.5% and Cohen’s d was 0.35. The protocol demonstrated a very good 

level of reliability. 

 

Conclusions:  

We present a novel and reliable pre-loaded time-trial protocol that more closely reflects operational 

activities and can be used to quantify load carriage performance. This protocol provides greater 

ecologically validity with respect to physical demands of load carriage activities than those adopted 

previously and provides an excellent tool for the strength and conditioning practitioner to assess 

individual load carriage performance.   
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A - INTRODUCTION  

Load carriage is defined as locomotion while bearing a mass upon the torso supported by shoulder straps 

and/or a hip belt and is a constituent element in some occupational settings such as the military or 

emergency services and also physical activities such as hiking (14). Carrying a backpack remains one of 

the most convenient and economical ways of transporting an external load (2) particularly in some 

military contexts where land vehicles may be restricted (15).  

 

Studies have previously investigated the physiological and performance consequences of load carriage 

however; protocols typically lack ecological validity for occupational load carriage activities. For 

example lab-based studies have utilised single trials (normally a time trial over a set distance ~2.4 to 20 

km), for various durations (up to 30 mins) and with varying external loads (15 – 46 kg) (12,15). In a 

military context soldiers will often exercise at submaximal levels (e.g. whilst on patrol) and also at high-

intensity levels (e.g. during engagement) (6). Although it is inherently difficult to devise a laboratory-

based protocol which precisely reflects operational requirement as the load, intensity, duration, terrain 

and environment vary with each scenario; protocols should more closely reflect the physiological 

characteristics of activities encountered in military situations such as during training or pre-deployment 

assessments. Therefore the practical question examined here is whether a laboratory-based protocol that 

incorporates more realistic occupational demands, i.e., a combination of constant speed low intensity and 

self-paced high intensity exercise, can demonstrate sufficiently low between session variability and be of 

use to the strength and conditioning coach. Accordingly, this protocol will improve the relevance of 

future studies that investigate load carriage performance, and also providing practitioners with a useful 

tool to measure load carriage specific fitness, readiness for deployments and responses to relevant 

interventions. However to date a protocol of this nature has yet to be designed with their reliability yet to 

be determined.  
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Therefore the aim of this study was to determine the reliability of a preloaded treadmill time-trial 

protocol (and also selected physiological parameters) by combining a period of sub-maximal exercise 

(pre-loaded phase), a rest period and a performance phase (time trial). We hypothesised that the protocol 

detailed will demonstrate very good between trial reliability and be of great benefit to the strength and 

conditioning practitioner. 
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B - METHODS 

 

Experimental Approach to the Problem 

The importance of load carriage was outlined in an excellent review within this journal (15), discussing at 

length the implications of load carriage assessment within an occupational context. This review suggested 

several areas of further study including the improvement of methodologies used to quantify performance, 

noting that previously adopted models were confounded on methodical issues (see introduction). The 

novel approach outlined here aims to establish a method suitable of quantifying load carriage 

performance which could be used by the Strength and Conditioning coach for baseline testing of 

performance, determining performance improvements following specific interventions and assessment of 

the individuals load carriage capability prior to periods of operational activity or training.  

 

Subjects 

Following ethics approval from the host university 8 healthy, non-smoking males with experience of load 

carriage through regular recreational load carriage activities, provided written informed consent to 

participate in this study. The physical characteristics of the participants are shown in Table 1. All 

participants were engaged in recreational physical training (strength and endurance) which was constant 

in the two months leading up to the study. A series of additional control measures were adopted prior to 

testing: participants did not engage in any strenuous exercise on the day preceding and the day of an 

exercise trial. Each participant also completed a 24h nutrition log, which was replicated for all subsequent 

trials. All trials were completed at identical times in the day and participants abstained from alcohol and 

caffeine in the 24h prior to testing and arrived at the laboratory 2h post-prandial. 

 

Procedures 

Preliminary Trials 

Participants were briefed individually on the experimental design; following this each completed three 

preliminary trials. The first preliminary trial consisted of a body composition assessment using dual 
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energy x-ray absorptiometry (Lunar iDXA, GE Healthcare, Hertfordshire, UK) followed by an 

incremental exercise test on a motorised treadmill (Desmo, Woodway, Germany) for the determination of 

V̇O2max. Following a 5 min warm-up at 8 km·h-1 and 1% gradient, the gradient was subsequently 

increased to 4% and speed increased by 1km·h-1·min-1 until the limit of volitional tolerance (11). Online 

breath by breath gas analysis (MetaLyser ll, Cortex Biophysik,  Birmingham, UK) was used to determine 

V̇O2max defined as the highest 30s V̇O2 recorded throughout the test. 

 

During the second preliminary trial, participants were familiarised and fitted with the 25 kg backpack 

(Web Tex, Bedford, UK) and completed  20 min exercise at 0% gradient and 6.5km·h-1. Following 15 

min of seated recovery participants then completed a self-paced 2.4 km time-trial. The mass of the load 

was evenly distributed within the backpack and worn in accordance with manufacturer’s guidelines. The 

backpack incorporated shoulder straps and a waist strap which were adjusted individually and recorded to 

the nearest mm for subsequent trials. The third and final preliminary trial provided a full familiarisation 

of the experimental trial detailed below.   

 

Experimental Trial 

Participants performed the experimental trial on two occasions separated by a minimum of seven days. 

Participants walked for 60 min, 0% gradient and 6.5km·h-1 carrying a 25 kg backpack (hereon referred to 

as LC) (5,13). Following 15 min of seated recovery participants then completed a 2.4 km time-trial whilst 

bearing the load (LCTT) where the speed of the treadmill was manually adjusted by the individual to 

complete the distance in the quickest time possible (13). The elapsed time was masked from the 

participant during all trials. The walking speed and duration, time-trial distance and absolute mass were 

selected to more closely reflect realistic occupational requirements in line with previous 

recommendations for laboratory based studies (18,19). Throughout LC physiological parameters were 

measured at 15min intervals, immediately prior to, after 1.2 and 2.4km of LCTT. Heart rate was measured 

using short-range telemetry (Polar T31, Kempele, Finland), expired pulmonary gases were assessed using 

Douglas bags (Cranlea and Co, Birmingham, UK), and blood lactate concentration ([lac-]B, Accu-Check, 
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Safe T-Pro, Birmingham, UK) was measured from arterialised-venous fingertip blood samples. Core 

body temperature was recorded using a tympanic thermometer (Braun, IRT 4520, Nottingham UK). 

Ratings of whole body perceived exertion (RPE) were measured using the Borg scale (8). Perceptions of 

effort were further separated for leg (RPElegs) and breathing (RPEbreathing) discomfort using a visual 

analogue scale: where 0 = no exertion and 10 = maximal exertion (24). In addition, participants 

performed a number of respiratory muscle strength and pulmonary function tests. Maximal inspiratory 

(PImax) and expiratory pressures (PEmax) were assessed using a hand-held mouth pressure meter 

(MicroRPM, Micro Medical, Kent, UK) to provide an index of inspiratory and expiratory muscle strength 

(13). Pulmonary function was also assessed using a pneumotachograph (MS03, Micro Medical, 

Buckinghamshire, UK). All manoeuvers were performed pre and post-LC and post-LCTT (13). 

 

Statistical Analyses 

Firstly mean differences between trials were calculated and paired t-tests were used to determine 

systematic bias between the experimental trials (a-priori α = 0.05) using SPSS for Windows (SPSS, 

Chicago, IL, USA). Secondly, the intra-class correlation coefficient (ICC), coefficient of variation (CV) 

and Cohen’s d were calculated as a general indicator of reliability between experimental trials. Following 

this absolute limits of agreement were calculated using methods detailed previously (7), however, due to 

the presence of heteroscedasticity in the data (a positive relationship between the absolute measurement 

differences and their mean) and in line with previous recommendations (1), 95% log ratio limits of 

agreement (LoA) were calculated for all variables using methods detailed previously (7) providing an 

average dimensionless measurement bias (e.g. general learning effect) and random measurement error 

(e.g. level of agreement) using Microsoft Excel (Microsoft Corporation, Redmond, WA, USA). In 

addition, standard error and 95% confidence intervals for the measurement bias and random error 

components of the limits of agreement were calculated. Finally the 95% ratio limits of agreement were 

used to estimate sample sizes required for 5%, 10%, 20%, and 30% effects for a repeated-measures 

methodological design. Sample size calculations were performed using Microsoft Excel according to 

published equations (25).  
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C - RESULTS  

Time trial performance 

Time trial performance was 16.71 ± 1.82 min in trial 1 and 16.37 ± 1.78 min in trial 2 (P>0.05) with a 

mean difference of 0.34 ± 0.89 min (Figure 1). Velocity was fixed during the pre-loaded phase at 1.8m∙s-1 

but during LCTT increased significantly to 2.42 ± 0.24 m∙s-1 in trial one and 2.46 ± 0.23 m∙s-1 in trial 2 

with no difference between trials in the magnitude of this increase (P>0.05). 

Physiological responses 

Physiological responses to both trials are shown in Table 3. All transient changes in physiological 

parameters both post-LC and post LCTT were similar between trials (P>0.05). Baseline HR was 96 ± 19 

beats·min-1 in trial 1 and 98 ± 21 beats·min-1 in trial 2. Post-LC, HR increased by 34 ± 19 beats·min-1 and 

39 ± 22 beats·min-1 in trials 1 and 2 respectively, which was similar between trials (P>0.05).  Relative to 

baseline HR increased post LCTT by 84 ± 28 beats·min-1 and 90 ± 24 beats·min-1, respectively (P<0.05).  

VO2 increased from 1.49 ± 0.18 L·min-1 and 1.37 ± 0.38 L·min-1 pre-LC by 0.54 ± 0.35 L·min-1 and 0.70 ± 

0.42 L·min-1 post-LC and a further 0.27 ± 0.48 L·min-1 and 0.28 ± 0.43 L·min-1 post LCTT (P<0.05). 

VCO2 increased from 1.27 ± 0.17 to 1.81 ± 0.35 L·min-1 (absolute increase: 0.54 ± 0.35 L·min-1) in trial 1 

and from 1.28 ± 0.23 to 1.98 ± 0.31 L·min-1 (absolute increase: 0.70 ± 0.42 L·min-1) in trial 2 post-LC 

(P>0.05). Post LCTT VCO2 increased a further 0.27 ± 0.48 L·min-1 and 0.57 ± 0.55 L·min-1 post LCTT 

(P>0.05). Baseline VE was 35.65 ± 4.36 L·min-1 in trial 1 and 35.80 ± 6.09 L·min-1 in trial 2. Post-LC, 

VE increased to 49.54 ± 7.42 L·min-1 and 52.94 ± 7.77 L·min-1 in trials 1 and 2, respectively (P<0.05) 

and post LCTT increased to 60.52 ± 8.93 L·min-1 and 64.08 ± 18.17 L·min-1 in trials 1 and 2, respectively 

(P<0.05). 
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Respiratory function 

Relative to baseline PImax was reduced by 13 ± 11 cmH2O (11%) and 18 ± 11 cmH2O (15%) post-LC 

(P<0.05) and reduced 20 ± 8 cmH2O (15%) and 21 ± 9 cmH2O (17%) post LCTT (Baseline to post-LCTT, 

P<0.05) in trials 1 and 2 respectively. Relative to baseline PEmax was reduced 14 ± 11 cmH2O and 1 ± 10 

cmH2O in trials 1 and 2 respectively; with further reductions of 1 ± 9 cmH2O (1%) and 3 ± 11 cmH2O 

(3%) in trials 1 and 2 respectively post LCTT (P<0.05). Baseline pulmonary was within normal limits 

(17). Relative to baseline; FVC was reduced by 0.35 ± 0.24 L in trial 1 and 0.42 ± 0.26 L in trial 2 (8% 

and 12%, respectively) post-LC and 0.31 ± 027 L in trial 1 and 0.46 ± 0.31 L in trial 2 (10% and 11%, 

respectively) post LCTT. FEV1 was reduced by 0.35 ± 0.24 L in trial 1 and 0.31 ± 0.20 L in trial 2 (9% and 

8%, respectively) post-LC; further similar differences were observed post LCTT, trial 1: 0.31 ± 0.27 L, 

trial 2: 0.46 ± 0.31 L (8% and 11%, respectively). Increases in FEV1/FVC were observed relative to 

baseline during both trials and to a similar magnitude. 

 

Reliability measurements 

The test-retest and mean difference data for time-trial performance and physiological measurements for 

LC and LCTT are shown in Table 2 and absolute 95% limits of agreement for the LCTT experimental trials 

one and two are shown in Figure 1. Correlation coefficients of the absolute differences vs. their mean in 

some variables between trials demonstrated heteroscedasticity therefore log ratio limits of agreement 

were calculated for all data sets in addition to ICC, CV and Cohen’s d. Tables 3 and 4 show the ratio 

limits of agreement for time trial performance and respiratory function tests post-LC and post-LCTT, 

respectively and Tables 5 and 6 shows the ratio limits of agreement for physiological and perceptual 

responses post-LC and post-LCTT, respectively. The estimated sample sizes are displayed in Table 7. 

Overall, for an alpha level of 0.05 and 10% effect, mean sample sizes for all variables were 20 and 22 for 

LC and LCTT respectively.   
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D - DISCUSSION  

Main Findings  

We are the first to present a reliable load carriage protocol which more closely reflects the intensity and 

physiological demands of some occupational activities (18). We also demonstrate that a range of 

physiological and perceptual responses can be assessed between trials, with acceptable between session 

variability (1).We calculated ratio LoA between each trial and the ICC , CV and Cohen’s d, for which 

combination of analyses provides empirical evidence supporting the inclusion of this performance 

assessment protocol within future studies and within future practice (1).  

 

Performance measures 

Time trial performance was similar to previous study using an identical protocol (13) and also similar to 

British Infantry recruits carrying the same mass in a backpack over the same distance however, without a 

60 min prior-constant intensity bout (9,10). In this study mean difference between efforts was 0.34 ± 0.89 

min demonstrating excellent agreement (measurement bias: 1.02; random error ×/÷ 1.11). This is 

supported by narrow confidence intervals as depicted in Table 3 and Figure 1. The ICC (0.85) and CV 

(10.5%) values demonstrated good reliability and Cohen’s d (0.36) suggests that differences between trial 

variance was moderate and inconsequential demonstrating that this protocol is suitable for the Strength 

and Conditioning coach to utilise in order to assess load carriage performance.  

 

Physiological responses  

Between session variability of physiological and perceptual parameters post-LC and LCTT are presented 

in Tables 5 and 6, illustrating good agreement and small error ratios. The variation between trials is 

greater during LCTT than LC, most likely explained by the nature of the time-trial which was self-paced 

and hence sensitive to changes in the adopted pace. However, the very good agreement should give 

confidence to the strength and conditioning practitioner that the physiological parameters presented 
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herein can be reliably performed between trials and used to quantify the physiological responses to steady 

state and time trial load carriage activity. Data represented here show similar temporal changes as 

existing literature investigating the physiological responses to treadmill marching at 6.5 5km/h-1 with 25 

kg followed by a 2.4 km time trial (4,13) which are also key determinants of load carriage performance 

(9). Accordingly the protocol presented presents a useful mode of exercise which reflects the 

physiological demands of some operational tasks.  

 

Respiratory muscle and pulmonary function 

Baseline and changes in PImax and PEmax were similar (P >0.05) between trials demonstrating excellent 

agreement (see Tables 3 and 4). There was low bias post-LC (PImax 1.08, PEmax 0.91) and post LCTT 

(PImax1.09, PEmax 0.91) and small random error ratios post-LC (x/÷ PImax 1.11, PEmax 1.24) and post-LCTT 

(x/÷ PImax 1.30, PEmax 1.37) (see Figures 4 and 5). The agreement ratio’s for PEmax are larger than 

anticipated, however the data in Tables 3 and 4 demonstrate narrow 95% confidence intervals for both the 

upper and lower bound limits. It is likely that greater variability was witnessed in the post-LCTT measures 

due to the individual differences in recovery rate post LC, adopted running speeds and time taken to 

complete the time trial since reductions in respiratory muscle pressures are inversely related to exercise 

intensity. However, excellent ICC values post-LC (PImax 0.93, PEmax 0.86) and post-LCTT (PImax 0.86, PEmax 

0.81); where >0.8 demonstrates a very good level of reliability (1) qualify their use in this protocol. We 

observed reductions in respiratory muscle pressure generation which is illustrative of respiratory muscle 

fatigue which are similar to reductions demonstrated recently from our laboratory where (13). The 

implications of this reduction are far reaching in an occupational context as respiratory muscle fatigue 

may exacerbate limb muscle fatigue and impair performance through a sympathetically-mediated reflex 

reduction in limb blood flow (13).  

 

 

Reductions in pulmonary function under load carriage conditions have been previously observed (16). 

Thoracic restriction modifies the normal breathing mechanics of the exercise hyperpnoea response and 
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consequently heightens the work of breathing (22). Measurements of pulmonary function were similar 

between trials at baseline, post LC and post LCTT (P>0.05; See Table 2) and demonstrated excellent 

agreement with narrow confidence intervals and trial bias (See Tables 3 and 4). Interestingly however, 

agreement of PEF was poor, probably due to the effort dependence of this parameter during the initial 

high flow-low volume phase of the manoeuvre. Large variations in PEF occur with only slight changes in 

the inspiratory muscle recruitment pattern during inspiration by the participants prior to expiration (20). If 

inspiration from functional residual capacity (FRC) to total lung capacity (TLC) occurs rapidly and is 

subsequently followed by a forceful exhalation a greater PEF will result compared with a controlled 

inspiration and longer time spent at TLC due to the elastic recoil properties of the thorax (23). Neither 

timing or inspiration strategy were controlled here and similar to existing research we offer this as a 

potential explanation for the heightened variability in PEF post-exercise (20). On this basis studies should 

control inspiratory flow rate and the time spent at TLC during initial phase of the manoeuvre when 

conducting this measurement within a load carriage setting.  

 

E – PRACTICAL APPLICATION 

We present a novel protocol that can assess load carriage performance through a pre-loaded time-trial and 

a host of physiological markers that are relevant to the analysis of load carriage performance. This 

protocol can be adopted in settings where it is necessary to quantify load carriage performance; prior to 

and following a training intervention where load carriage performance is the dependant variable and prior 

to an operational deployment where load carriage is considered to be a critical role-related task. Within 

physical selection tests, armed forces organisations do not currently employ a loaded time trial, rather, 

they employ unloaded running (typically 2.4 – 3.2 km distance). However, this is known to be a very 

poor predictor of occupational (i.e., load carriage) performance (3). The omission of a loaded time trial is 

likely to mitigate associated injury although our findings suggests that including this test would allow the 

strength and conditioning practitioner to reliably capture changes in military specific fitness. It is 

impossible to devise a laboratory-based protocol which precisely reflects operational requirements since 

the load, intensity, duration; terrain and environment vary with each deployment or training scenario. 
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However, the protocol we present here is similar to current British Army assessments used in pre-

deployment training and fitness assessments. For example, the 2.4 km loaded time trial has been used to 

determine the physical and physiological responses to acute changes in British Army infantry training 

programmes (9,10). In addition, we present a protocol that is similar to the Infantry Basic Combat Fitness 

Test where soldiers complete an eight mile course, carrying a load or 25 kg at 15 min∙mile-1 (6.4 km∙h-1) 

and the Advanced Combat Fitness Test 1 whereby following an 800 m warm up at 15 min∙mile-1, 

participants perform a 2.4 km time trial carrying a 20 kg load (21). Thus our protocol provides the 

strength and conditioning coach with a useful tool in assessing responses to training interventions and 

readiness for operations. In addition, as shown by the sample size calculations (Table 7), controlled trials 

can be performed effectively typically with a sample of 20 and 22 for the LC and LCTT trials respectively 

during a repeated measures design offering a large effect size (≥10%).  
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F - CONCLUSION 

The results from the this study suggest that the variability in parameters during LC and LCTT are 

negligible and the load carriage protocol presented provides a reliable measure for assessing the 

performance and physiological effects of bearing an external load upon the thorax; whilst also containing 

improved ecological validity on submaximal and high intensity load carriage activities compared with 

previous measures. To the authors knowledge this is the first study that has attempted to address the 

reliability of pre-loaded time-trial performance and has important implications for future research design 

and practice by strength and conditioning professionals.    
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Figure 1, Bland-Altman plot for LCTT data achieved during the two experimental trials. 

 

 


