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Abstract

Epilepsy is a prevalent neurological disorder that poses life-threatening emergencies.

Early electroencephalogram (EEG) seizure detection can mitigate the risks and aid

in the treatment of patients with epilepsy. Electroencephalogram (EEG) based au-

tomatic epileptic seizure (ES) detection has significant applications in epilepsy treat-

ment and medical diagnosis. Therefore, this paper presents an innovative framework
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for automatic ES detection using coefficient and distance correlation feature selec-

tion algorithms, a Bagged Tree-based classifier, and Explainable artificial intelligence

(XAI). Initially, the Butterworth filter is employed to eliminate various artifacts, and

the discrete wavelet transform (DWT) is used to decompose the EEG signals and

extract 24 eigenvalue features of the statistical time domain (STD) as linear and

Fractal dimension-based non-linear (FD-NL). The optimal features are then identi-

fied through correlation coefficients with P −value and distance correlation analysis.

These features are subsequently utilized by the proposed Bagged Tree-based classi-

fier. The model provides superior performance in mitigating overfitting issues and

improves the average accuracy by 4% using (CD, E), (AB, CD, E), and (A, B) com-

bination sets as compared to other machine learning (ML) models using well-known

Bonn and UCI-EEG benchmark datasets. Finally, SHapley additive exPlanation

(SHAP) was used as an Explainable AI (XAI) to interpret and explain the decision-

making process of the proposed model. The results highlight the framework’s capa-

bility to accurately classify ES, thereby improving the diagnosis process in patients

with brain dysfunctions.

Keywords: Electroencephalogram, machine learning, coefficient correlation,

distance correlation, biomedical signals, explainable artificial intelligence.

1. Introduction

Epilepsy is a noncontagious brain disorder that develops from irregular electri-

cal brain activity [1, 2]. A delay in the diagnosis process can create severe mental

health problems or even lead to death [3]. Globally, over sixty million people have

been affected by the epilepsy disease reported by the World Health Organization5

(WHO) [4]. In order to mitigate the progression of the disease, the early diagno-

sis and detection of epileptic seizures (ES) are crucial. Recently, various diagnostic
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approaches have captured the attention of specialized medical professionals for the

diagnosis of epilepsy [5]. Moreover, neurologists recommended electroencephalogra-

phy (EEG) to monitor the brain electrical activity of the seizure [6]. Conventional10

epilepsy diagnosis in clinical settings involves specialists visually inspecting during

EEG recordings, which is laborious and intensive work. [7, 8].Therefore, Machine

Learning (ML) models have been introduced for efficient analysis by classifying EEG

signals [8]. Moreover, existing automated EEG ES detection approaches are often

less used in real-time clinical applications because of their low sensitivity and speci-15

ficity in clinical epilepsy management. Several challenges exist in the automation

of EEG ES detection. Primarily, the extraction of highly representative features is

challenging because of the nonlinear and non-stationary nature of EEG signals [8].

Secondly, the optimal features of the EEG are very important. It poses efficient

features to identify the differentiation between pre-ictal and seizure states while also20

learning the patterns’ complexity and variability across seizure types. The third

challenge pertains to minimizing the miss classification rate, arising from the simi-

larities in oscillatory and fractal characteristics across seizure and non-seizure EEG

signals [7]. The fourth challenge includes the interoperability and explainability of

the ML model, which are essential for informed clinical decisions and enhancing25

patient safety. To address the above informative challenges, this study presents a

novel framework for the automatic detection of EEG ES utilizing biomedical EEG

signals. The framework consists of a feature extraction method that exploits distinc-

tive FD-nonlinear (FD-NL) and statistical time domain (STD) features extracted

from decomposed EEG signal sub-bands, capturing the EEG signals’ nonlinear and30

time-domain information. The proposed study also employs correlation coefficients

(CC) for linear feature selection and distance correlation (DC) for non-linear feature

selection in EEG ES detection. Additionally, the proposed study employs a Bagged
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Tree-based classifier to enhance the accuracy of ES classification. Moreover, the pro-

posed study also uses explainable AI (XAI) to explain the decision-making processes35

behind the model’s detection. XAI facilitates a transparent and understandable ex-

planation of ML model or algorithm decisions [9, 10], which is especially important in

ES detection by providing clinicians insights into the decision-making process. The

proposed framework, with the integration of XAI, aims to enhance the diagnostic

decision-making process in clinical practice. The proposed study is summarized as40

follows:

• The EEG signals are split and decomposed by using the Discrete Wavelet

Transform (DWT). From the different decomposition levels, the statistical time

domain (STD) and Fractal dimension-based non-linear (FD-NL) features are

extracted.45

• Applied Correlation Coefficients (CC) and Distance Correlation (DC) feature

selection methods to select the optimal features of STD and FD-NL through

correlation with p− value analysis and distance correlation.

• The implementation of the bagged Tree-based classifier is designed to mitigate

overfitting by introducing randomness and diversity into the ensemble, thereby50

enhancing its capability to accurately classify epileptic seizures.

• The development of an explainable artificial intelligence (XAI) framework uti-

lizing the SHAP (SHapley Additive exPlanations) model has an explanation

behind the reasoning of the proposed model predictions. The visual explana-

tions generated by SHAP facilitate a deeper understanding of the interpretive55

processes underlying the decisions of the most effective classifiers, as well as

identifying the critical features for the detection of epileptic seizures (ES).
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The proposed EEG ES detection framework enhances accuracy, mitigates over-

fitting, and enables optimal feature selection. Tested on the Bonn and UCI-EEG

datasets, its versatility and comprehensive approach show promise for streamlining60

diagnostics and improving patient outcomes.

The organization of the paper is as follows: Section 1 and 2 present the intro-

duction and related works, respectively. Sections 3 show the automatic EEG ES

detection framework. Experimental results and discussion are discussed in sections

4 and 5, respectively. Finally, the conclusion of the paper is in section 6.65

2. Related Work

This section describes the prior research that used various decomposition meth-

ods, linear and non-linear features, optimal feature selection methods, and ML mod-

els for efficiently detecting epileptic seizures (ES) using electroencephalogram (EEG)

data.70

2.1. Wavelet-based statistical and fractal dimension (FD) feature extraction with ma-

chine learning models

The extraction of important and essential features is important, especially from

different wavelet decomposition levels, in EEG epileptic seizure detection. Various

studies have applied wavelet-based features for accurate classification of pre-ictal,75

inter-ictal, and ictal states in EEG-based ES detection [11, 12, 13, 14, 15].

Recently, Al-Salman et al. [11] applied discrete wavelet transform (DWT) to

decompose brain EEG signals into subbands, further processing to extract diverse

wavelet-based features. A Grey Wolf Optimizer (GWO) based deep recurrent neu-

ral network (DRNN) was employed to differentiate between seizure and non-seizure80

signals, achieving 93.4 % accuracy in automatic EEG ES detection. Harender et al.
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[16] employed DWT for EEG signal decomposition and extracted statistical features

like standard deviation (std) and mean absolute value (MAV), achieving over 90%

accuracy using K-Nearest Neighbors (KNN) classifiers. Sharmila et al. [17] applied

DWT for EEG signal decomposition and extracted statistical features (std, average85

power (AVP), and MAV) with KNN and Naive Bayes (NB) classifiers, obtaining 98%

accuracy with KNN. Moreover, R. Uthayakumar et al. [18] introduced six wavelet-

based statistical time domain (STD) features, such as variance and std, with several

ML models, where the Decision Tree (DT) model achieved 97% accuracy. In the last

two decades, Fractal Dimension (FD) feature extraction techniques have received90

much attention, exhibiting satisfactory performance with various feature selection

methods and ML [18, 19, 20]. A study [18] introduced an automated system for ES

detection using FD theory and the Support Vector Machine (SVM) model, achieving

up to 90% accuracy. T. M. E. Nijsen et al. [19] implemented various wavelet-based

features, such as Higuchi’s Fractal Dimension (HFD), Hurst Exponent (HE), and95

Shannon entropy, in combination with RF and SVM models. Hussain et al. [21] uti-

lized DWT in the preprocessing stage, extracting HFD and Katz Fractal Dimension

(KFD) features from DWT subbands and employing SVM for classification. Fur-

ther, in [22, 23], Cross-Information Potential (CIP) and Tunable-Q Wavelet Trans-

form (TQWT) were examined for EEG signal preprocessing, and the Random Forest100

(RF) model was used for classification, achieving satisfactory results. A. Nishad et

al. [23] employed DWT for decomposition and extracted non-linear features, such

as entropy and fractal dimensions and applied a Support Vector Machine (SVM)

classifier, where fractal dimensions achieved above 96% overall accuracy. Upadhyay

et al. [24] applied the Max Energy to Shannon Entropy ratio to select appropri-105

ate EEG channels from each frequency band, calculating three distinct non-linear

features and using three machine learning techniques, where Least Square-Support
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Vector Machine (LS-SVM) showed satisfactory performance. The summary of the

various literature shows the importance of STD linear and FD-non linear features

with effective ML models in EEG epileptic seizure detection [25, 26, 27].110

2.2. Correlation-based feature selection methods with the machine model

Feature selection is an important process that minimizes the number of features

utilized by the ML model in EEG epileptic seizure detection. The reduction not

only simplifies the model’s complexity but also facilitates easier interpretation and

decreases training time, often leading to enhanced system performance. Correlation,115

often measured as the relationship between two or more variables, has been widely

applied in various fields over the past few decades due to its capability to measure

both linear and nonlinear associations between features [13]. Aliyu et al. [14] in-

troduced the Pearson correlation coefficient (PCC) in the feature selection process,

aiming to identify the most pertinent subset of features from the original set. Upon120

selecting the optimal features via PCC, the model achieved an accuracy of 93.1%.

Recently, N.Ji et al. [28] introduced an improved correlation-based feature selection

method. The proposed methods select the optimal features from the time, frequency,

and entropy features of wavelet decomposition, after which the random forest model

performs classification, achieving 96% accuracy.125

2.3. Motivation

After summarizing the above literature, we are motivated to present a correlation

coefficient and distance correlation-based feature selection algorithms, a Bagged Tree-

based classifier model with explainable AI (XAI).

For the feature selections, we employ p-value analysis to select dominant features,130

which eliminates the high-correlation features. A Bagged Tree-based classifier is then
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efficiently applied to differentiate EEG brain signals of seizure and non-seizure EEG

states, while the explainable AI interprets and explains the decision-making process

of the proposed algorithm automatically without any complex calculation or manual

explanation.135

The next section provides detailed information about the proposed framework for

EEG ES detection.

3. Materials and Methods

This section presents a novel framework for automatic EEG-based epileptic seizure

detection. The framework includes a detailed pipeline for EEG ES detection that140

presents the EEG data sets, preprocessing, feature extraction, feature selection, and

explainable classification steps. Figure 1 provides the proposed framework for EEG

ES detection.

3.1. EEG data collection

Initially, the collected EEG datasets from the UCI and Bonn EEG benchmark145

datasets are investigated. The Bonn EEG dataset includes non-seizure, transition,

and seizure signals [15], while the UCI-EEG dataset consists of non-seizure and

seizure signals [16].

3.1.1. Bonn EEG dataset

The Bonn EEG dataset was collected from the five patients [15]. The Bonn EEG150

dataset is categorized into five sets, labeled (A) through (E), each containing 100

single-channel EEG samples collected over 23.6 seconds [18]. The sampling rate of

the Bonn EEG data set is 173.61 Hz. Sets A to E involve various states. Specifically,

sets (A) and (B) represent different normal EEG signals, with (A) and (B) showing
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Table 1: Notation Table

Notation Description

mean 1 Mean feature from decomposition level D3

mean 2 Mean feature from decomposition level D4

mean 3 Mean feature from decomposition level D5

mean 4 Mean feature from decomposition level A5

std 1 standard deviation feature from decomposition

level D3

std 2 Standard deviation feature from decomposition

level D4

std 3 Standard deviation feature from decomposition

level D5

std 4 Standard deviation feature from decomposition

level A5

HFD 1 Nonlinear feature from decomposition level D3

ENT 2 Nonlinear feature from decomposition level D4

PFD 3 Nonlinear feature from decomposition level D5

HFD 4 Standard deviation feature from decomposition

level A5
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Figure 1: The block diagram of the proposed framework for EEG epileptic seizure detection.

EEG states where the subjects’ eyes were open and closed, respectively. Sets C and155

D encompass transitional states between normal and seizure, while set (E) contains

EEG readings from five EEG epileptic individuals during seizures. Sets (A) and (B)
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were obtained non-invasively using the ’10-20’ international system, and sets (C)

and (D) employed invasive recording methods [18]. Further details of each set within

the Bonn EEG dataset are shown in Table 2, and Fig. 2 illustrates EEG epileptic160

seizures in non-seizure, transition, and seizure states.

Table 2: The detailed description of the Bonn EEG dataset.

Classification set Stages Segment

length

Number of files

(A) Patient eyes opened (69,1008) 100

(B) Patient eyes closed (69,1008) 100

(C) Inter-ictal (69,1008) 100

(D) Inter-ictal (69,1008) 100

(E) Ictal (69,1008) 100

3.1.2. UCI- EEG dataset

The UCI-EEG dataset was collected from 5 subjects, each with 4097 data points

recorded over 23.5 seconds [27]. Each data point was segmented into 23 chunks,

representing 1 second of EEG data. After segmentation, chunks were shuffled. The165

states of the subjects fluctuated between having their eyes open and having them

closed. The target variable ’y’, located in column 179, is a binary class y (0,1) used

for analysis. It denotes the ictal and pre-ictal states, as detailed in Table 3. In

addition, various EEG states of the UCI-EEG dataset are shown in Fig. 3.

In addition, various EEG states of the UCI-EEG dataset are shown in Figure 3.170
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Figure 2: Various types of EEG signals in the Bonn dataset (Interictal, Pre-ictal, and Ictal).

Table 3: Full description of the UCI-EEG dataset.

Classification set Stages Segment

length

Number of

files

(A) Ictal (86,1338) 100

(B) Tumour region (86,1338) 100

(C) Healthy region (86,1338) 100

(D) Healthy region (86,1338) 100
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Figure 3: EEG signals in the UCI-EEG dataset. (a) Ictal, (b) Pre-ictal .

3.2. Pre-processing

In this section, the collected EEG signals pass through a filtering process to

eliminate noise and artifacts that could originate from electromyography (EMG),

eye blinking, or limb movements during recordings [23, 26]. A Butterworth filter

is applied to maintain EEG signals within the desired frequency ranges, excluding175

noise. The Butterworth filter can be mathematically expressed as:

X(t)k−l = BWF (y(t), k, l), k = 0, l = 100 (1)

where k and l denote the frequency range, y(t) represents the signals being filtered,

and cutof freq = 0.1, filt ororder = 3, and Nyquist freq = 0.5. To equalize

sample quantities in the UCI-EEG dataset, the Synthetic Minority Oversampling

Technique (SMOTE) is applied.180
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3.3. Signal Splitting

In the preprocessing subsection, we define the optimal segment size dividing the

EEG signal time series into smaller epochs. For the Bonn EEG dataset, we increase

the segment size using the optimal values of epoch = 0.4, segments = 69, and

epoch step = 0.024 as shown in Table 2. For the UCI dataset, the optimal segment185

size is epoch = 0.5, segments = 86, and epoch step = 0.023 as shown in Table 3.

Algorithm 1 EEG Signals Splitting

1: Load the EEG signal t time series data; k = 0

2: Proper size of window wsize

3: while k > 0 do

4: select window size wsize and overlap wover

5: Calculate the performance of wsize and wover

6: k++

7: Calculated the performance of the feature vector

8: end while

3.4. EEG Signals decomposition and feature extraction

This subsection emphasizes the decomposition of the EEG signals and critical

feature extraction from the EEG signals, enabling distinctive and analytical explo-

ration of EEG data. The proposed feature extraction methods are explained in190

Algorithm 2 and have two primary steps: (1) EEG signal decomposition and (2)

feature extraction. The non-stationary nature of EEG time-series signals, which

contain high-frequency data and other important information, as well as large fre-

quency oscillations, employing solely the fast Fourier transform (FFT) for signal

analysis, proves insufficient due to its limitation to extracting merely the frequency195
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information of time-series signals [17]. The wavelet transform method of multi-

resolution analysis disassembles signals into various frequency bands and represents

a time function using fundamental units called wavelets. One significant advantage

of wavelet transforms is their ability to adapt the window size, enabling them to

narrow for low frequencies and widen for high frequencies. This adaptability results200

in superior time-frequency resolution across different frequency bands. EEG signals,

which contain a rich set of data points, can be effectively compressed into a reduced

set of features through spectral analysis and the extraction of high-frequency data.

The continuous wavelet transform (CWT) and discrete wavelet transform (DWT)

are mathematically represented as follows:205

CWT(c,d) =

∫ ∞

−∞
ytψc,d ∗ y(y)dy (2)

where yt presents the investigated EEG signal, and c represents the compression

coefficient with dilation, translation, and scaling relevant to the time axis. The

asterisk superscript denotes complex conjugation. Additionally, ψc,d is computed as

the wavelet over time and scale:

ψc,d(t) =
1√
|c|
ψ(
t− d
c

) (3)

Where ψc,d(t) shows the wavelet, and CWT translation and scaling parameters can be210

changed continuously. However, determining wavelet coefficients for every possible

scale can be computationally intensive and produce considerable data. The wavelet

transform is an extension of the conventional Fourier transform.

Initially, the input signals x[n] are segmented into low-pass g[n] and high-pass h[n]

filters. The output from these filters is represented by coefficient D1 and approxima-215

tion A1, respectively. Symbols Dn and An denote the frequencies of the input EEG

signals. The decomposition process is iteratively performed to acquire subsequent
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Figure 4: The decomposition level of Bonn data using DWT.

coefficient levels, with a five-level decomposition being executed in this study. Each

step of decomposition enhances frequency resolution while down-sampling diminishes

time resolution, as illustrated in Figure 4.220

The same procedure is applied to the UCI-EEG dataset using the Daubechies 4

(db4) wavelet. Each decomposition level captures the important frequency compo-

nents essential for seizure detection in EEG signals as shown in Table .4.

For seizure detection, the frequency range is typically from 2 to 30 Hz. As a result,

the coefficients D1 and D2 are removed from processing due to their high-frequency225

range. Thus, the approximation coefficients (D3;D4;D5;A5) of each channel are

considered. In this study, each subband encompasses 24 FD-based nonlinear and

statistical features from both the Bonn and UCI-EEG datasets.
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Table 4: Decomposition levels of the EEG signals of various frequency (Hz).

Sub-band Frequency (Hz) Decomposition level

Detail D5 [3-6] 5

Detail D4 [6-12] 4

Detail D3 [12-15] 3

Detail D2 [25-50] 2

Detail D1 [50-100] 1

3.5. Feature extraction methods

This subsection discusses the feature extraction process from each subband, in-230

cluding different FD-based non-linear (FD-NL) and statistical time domain (STD)

features [21]. These features are important for describing the characteristics of the

EEG signals and enabling differentiation between various EEG states. FD-nonlinear

features, extracted from the EEG signal’s fractal properties, show the complexity

and irregularity of the signals [21]. Moreover, statistical time-domain features are235

widely used and in EEG signal processing, present the amplitude and distribution

of the signal by encapsulating its statistical properties [17]. Various STD features,

comprising minimum, maximum, mean, standard deviation (std), variance (var), and

skewness (skew) are extracted from each subband of the approximation coefficients.

Therefore, a total of 24 eigenvalue features for each class (Preictal, Ictal) for binary240

classification and (Preictal, interictal, and ictal) for multi-class classification are ex-

tracted. The mathematical expressions for all STD features in this study are given

below.

Max = max(X) (4)
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Min = min(X) (5)

Mean =
1

X

X∑
i=1

xi (6)

where X is the total number of values, and xi are the individual data points.245

Std =

√√√√ 1

X − 1

X∑
i=1

(xi −Mean)2 (7)

Var =
1

X − 1

X∑
i=1

(xi −Mean)2 (8)

Skew =
1

N

N∑
i=1

(
xi −Mean

Std

)3

(9)

The features extracted from each subband encompass several measures, including

the Katz Fractal Dimension (KFD), Petrosian Fractal Dimension (PFD), Detrended

Fluctuation Analysis (DFA), Shannon Entropy (SE), Higuchi Fractal Dimension250

(HFD), and Hurst (HE), resulting in a total of 12 features. The detailed expla-

nations and mathematical formulations of the fractal dimensions and entropy-based

measures can be found in existing literature [17, 18]. The FD-NL features are as

follows:

KFD =
log10(n)

log10(d/L+ 1)
(10)

where n is the total number of points in the time series, d is the Euclidean distance,255

and L is the total length of the time series.

PFD = log10(N)/

(
log10(N) + log10

(
N

N + 0.4N∆

))
(11)

Where n is the total number of points in the time series and n N ∆n is the number

of sign changes in the binary sequence.
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SE = −
N∑
i=1

P (xi) log2 P (xi) (12)

while P (xi) is the probability of a given value xi occurring in the time series.

HFD =
log10(L(k))

log10(1/k)
(13)

where L(k) is the length of the time series for a given k and the slope is estimated260

over a range of k values. Moreover, DFA and HE metrics are often used to evaluate

the similarity and long-range temporal correlations in a time series.

To compute DFA the integrated time series Y (k) from the original time series

X(i), where i = 1, 2, ..., n:

Y (k) =
k∑

i=1

[X(i)−Xavg] (14)

where Xavg is the average of X(i). After, divide Y (k) into N non-overlapping inter-265

vals of equal length n. In each interval fit Y (k) (in that interval) with a least squares

line fit (k). The fluctuation F (n) is then computed by averaging the residuals from

all intervals and then taking the square root:

F (n) =

√√√√ 1

N

N∑
ν=1

n∑
k=1

[Y ((ν − 1)n+ k)− Yν(k)]2 (15)

The procedure is repeated for all time scales (window sizes) n to provide a relationship

between F (n) and the window size n. The fluctuations can be related to the size of270

the window by a power law:

F (n) ∝ nH (16)

After extracting features from the selected decomposition level are passed through

feature selection methods, which are discussed in the next section.
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Algorithm 2 Feature Extraction Methods

function Signal(Es, k0, FS, DL, wsize, oversiz)

2: Load Es and initialize epoch k = 0

Initialize feature vector FV as an empty list

4: for each wsize and wover do

while k ≥ 0 do

6: for each signal S in ES and level L in DL do

Decompose S using Wavelet Transform (WT) at level L

8: Extract FD-Nonlinear features

Extract Time-Domain Statistical (TDs) features

10: end for

Append feature vector to FV

12: Evaluate performance using various Feature Metrics (FM)

Increment epoch: k ++

14: end while

Apply dimensional reduction to FV

16: end for

return distinguishable feature vector FV of EEG signals

18: end function

3.6. Feature selection methods

3.6.1. Correlation Coefficient Analysis (CCA) and p-values275

To present the relationships between variables, we applied Pearson correlation

(PC), which yields values ranging between -1 (indicating a strong negative relation-

ship) and 1 (indicating a strong positive relationship), while the p-value substantiates

the statistical significance of the experimental results [14]. The feature data consists
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of n paired data points, and the PC, denoted as rxy given below:280

Figure 5: The block diagram of coefficient correlation. (a)(b) Bonn, (c) UCI-EEG dataset

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(17)

The xi and yi represent individual sample points with index i, while x̄ and ȳ denote

the means of variables x and y respectively, and n symbolizes the total number of

data points, the summation symbol
∑n

i=1 signifies the sum over all n data points.

In addition, several experiments are conducted to find the optimal Correlation Co-

efficient (CC) is 0.8. Features exhibiting correlation above this CC threshold are285

excluded. Moreover, for feature importance, Null Hypothesis Significance Testing

(NHST) is applied, introducing a hypothesis that ”no relationship between the se-
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lected combination of features and the independent variable ”. An alpha value of 0.05

is defined, signifying that the null hypothesis is true. The comprehensive overview

of mathematical computing of the correlation coefficient is shown in Algorithm 3.290

Algorithm 3 Feature Selection via Correlation Coefficient and P-Values

1: function Correlation, B Elimination(Data matrixX, Target vector y, Sig-

nificance level α)

2: Compute the correlation matrix C of X

3: for each pair of features (i, j) do

4: if Ci,j ≥ 0.8 then

5: Remove one feature from the pair

6: end if

7: end for

8: Define the initial feature subset as NULL

9: while Not all features f are evaluated do

10: Compute p− values for remaining features f relative to target y

11: for each feature f do

12: if p-value of f < α then

13: Remove feature f

14: end if

15: end for

16: f ← remaining features

17: end while

18: end function

Figure 6 displays the distribution of the selected features following the initial

elimination. In the next elimination process, different time-domain (STD) features
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are selected for various cases and datasets. In the case (CD-E) from the Bonn dataset,

four STD features were chosen mean 3, mean 2, mean 1, and std 1. Similarly, in the

case (AB, CD, E), five STD features are selected: mean 3, mean 2, mean 1, std 1,295

and std 2. Finally, in the case (A, B) from the UCI-EEG dataset, three STD features

are selected: mean 3, mean 2, and mean 1. A detailed description of the selected

features and their respective decomposition levels is presented in Table 1.

3.6.2. Distance correlation

The distance correlation is utilized to manage the variability of feature values,300

predominantly for nonlinear features. The distance correlation analysis applied in

the proposed study includes four steps as follows.

3.6.3. A) Compute Pairwise Distances

Let U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn} represent the feature data for

two random variables at each decomposition level feature. First, the pairwise distance305

matrices, M and N for U and V , respectively, are computed. For a one-dimensional

data set, the absolute difference between the elements is given below:

Mij = |ui − uj|, Nij = |vi − vj| (18)

3.6.4. B) Compute double-centered distance matrices

The double-centered distance matrices, M∗ and N∗, are derived from M and N

respectively as follows:310

M∗
ij =Mij −

1

n

n∑
k=1

Mik −
1

n

n∑
k=1

Mkj +
1

n2

n∑
k=1

n∑
l=1

Mkl, (19)

N∗
ij = Nij −

1

n

n∑
k=1

Nik −
1

n

n∑
k=1

Nkj +
1

n2

n∑
k=1

n∑
l=1

Nkl (20)

whereMij and Nij represent the pairwise distances and n indicates the total number

of observations.
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Figure 6: The Correlation coefficient and distance correlation matrix after elimination of highly

correlated features. (a)(b)(d)(e) Bonn ,(c)(f) UCI- EEG dataset
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3.6.5. C) Calculate distance variances

The distance variance, V (U,U), for a variable U is computed as follows:

V (U,U) =
1

n2

n∑
i=1

n∑
j=1

(M∗
ij)

2 (21)

Similarly, the distance variance, V (V, V ), for V is:315

V (V, V ) =
1

n2

n∑
i=1

n∑
j=1

(N∗
ij)

2 (22)

3.6.6. D) Calculate distance correlation

The distance correlation, R(U, V ), is calculated as the square root of the distance

covariance normalized by the square root of the product of the distance variances:

R(U, V ) =

√
V (U, V )√

V (U,U)V (V, V )
(23)

The values of R(U, V ) range between 0 and 1, with 0 signifying complete inde-

pendence between variables, and 1 indicating perfect dependence. Various distance320

correlation values is used to identify highly correlated features, and performance

was assessed post-elimination, employing an optimal distance correlation value of

0.7 for elimination. Figure 6 displays the distribution of the selected features after

elimination.

After the elimination process, seven FD-NL features (HFD 4, PF 3, PFD 2,325

ENT 2, HFD 1, HFD 2, ENT 1) from the case (AB, CD, E) and 5 FD-NL features

(HFD 2, PFD 2, PFD 1, ENT 1, ENT 2) from the Bonn dataset were selected, while

5 FD-NL features (HFD 4, PFD 3, PFD 2, PFD 1, ENT 1) from case (A, B) of the

UCI-EEG dataset. Figure 7 illustrates the comprehensive process of distance cor-

relation while the descriptions and decomposition levels of the selected features are330

shown in Table 1.
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Figure 7: The block diagram of distance correlation.

3.7. Classification model

3.7.1. Proposed Bagged Tree-based classifier

In this subsection, the proposed model is explained in detail. The Bonn and the335

UCI-EEG datasets are highly imbalanced and consist of fewer seizure or ictal samples

than non-seizure or preictal instances. So, therefore, the imbalanced feature data cre-

ated has the potential to bias the model towards over-fitting of the model [5, 26, 27].

To address this issue, we employ a bagging technique with a decision tree in the pro-

posed study. A Bagged Tree-based classifier model manually implements the bagging340

mechanism to efficiently differentiate different EEG states, especially the inter-class

variation [29] and is distinct from a conventional random forest model. Moreover,

the bagging mechanism utilizes different individual decision trees to independently

classify each feature data bootstrap and then aggregates the outcomes through a

voting process to determine the final result, as detailed in Algorithm 4.345

The proposed model has three main steps to perform the classification process;
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Algorithm 4 Bagging Tree-based Classifier

1: Input: EEG dataset D, number of bootstrap samples B, base classifier C

2: Output: Tree-based classifier E

3: for b← 1 to B do

4: Sample Db from D with replacement

5: Train base classifier Cb on Db

6: end for

7: function EnsemblePredict(x)

8: votes← {0, 0, ..., 0}

9: for b← 1 to B do

10: c← Predict(Cb, x)

11: votes[c]← votes[c] + 1

12: end for

13: return argmax(votes)

14:

27



Step 1: Data Input

The enhanced Bagged Tree-based classifier model takes as input feature data rep-

resented as D. The dataset encompasses various STD linear and Fractal Dimension

(FD) based nonlinear features. The model also requires the number of bootstrap350

samples B and employs a decision tree as the base classifier C.

Step 2: Bootstrap sampling and model training

In the bootstraps of the proposed model, for each of the B bootstrap samples, a

distinct subset Db is derived from D, with variable sample sizes promoting diversity

among samples. This subset is selected with replacement, allowing some instances355

to repeat, while others may be excluded. Each decision tree Cb is trained on its

respective Db, focusing on optimal splits that minimize the target variable’s hetero-

geneity in the child nodes. The training process continues until it meets a predefined

stopping criterion. The process of this step is a collection of B decision trees, each

adapted to a uniquely composed feature data set, as shown in Table 5.360

Step 3: Prediction function

The function EnsemblePredict(x) in the proposed model is designed for making

predictions on new data points x. This function operates by initializing an array

of votes for storing class votes. Each tree Cb in the ensemble contributes to the

prediction for x, with its vote being weighted based on its accuracy, refining the365

traditional majority voting mechanism. The class accumulating the highest weighted

vote count is then selected as the prediction for x. The proposed model, with its

emphasis on customized bagging and weighted voting, offers advantages such as

enhanced handling of high-dimensional data, improved robustness against overfitting,

and the ability to model complex, non-linear relationships. Additionally, it provides370

valuable insights into feature importance, aiding in identifying key predictors for

seizure occurrences in EEG data.
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Table 5: The hyper-parameters for the proposed model in EEG ES detection.

Model Hyperparameter search space

proposed

model

n estimator = 100, max features = sqrt, max depth = 10,

min samples split = 5, min samples leaf = 10, bootstrap =

True, n jobs = −1, class weight = balanced, random state = 42

4. Explainable Artificial Intelligence (XAI)

In this section, we discuss the interoperability of the proposed model output.

XAI helps by offering insights into the AI model’s decision-making process. It allows375

medical experts to validate the model’s predictions and make more informed and

reliable decisions regarding patient diagnosis and treatment [9, 10]. Moreover, it

makes the decision more understandable so that even non-experts or family members

of the patients can easily understand the decision, as shown in Figure 1. Recent

studies in machine learning (ML) for biomedical signal analysis highlight the urgent380

need to make their outputs comprehensible. This has led to the rise of Explainable

Artificial Intelligence (XAI) systems in smart healthcare systems [10]. Although ML

models tend to be more interpretable than deep learning models because of their

explainable structure, achieving full interpretability in stacking classifiers remains a

challenge. The proposed model employs XAI techniques to elucidate its decision-385

making processes, feature importance, and inherent biases. Some of the recent XAI

methods from the literature are detailed below:

A) Text Explanations: These provide relevance scores to variables, offering deeper

insights.

B) Local Explanations: This involves understanding the model’s responses to390

minor input changes.
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C) Representative Explanations: Assesses how training data influences decision-

making .

D) Visual Explanations: The specific decision trees that inform outcomes. By

leveraging the SHAP (Shapley Additive exPlanations) method [10], we highlight the395

individual feature contributions that shape our model’s decisions.

5. Experimental Results

This section provides the experimental setup, presents an empirical analysis of the

experimental results, and provides an interpretation and explanation of the proposed

model’s classification performance in the proposed framework.400

5.1. Experimental setup

The proposed framework has been experimentally executed using a system con-

figured with a central processing unit (CPU), an NVIDIA Jetson Nano Developer

Kit GPU, and a Windows 10 (64-bit) operating system. The system utilizes Python

3.7 within a notebook environment, incorporating libraries such as TensorFlow, Py-405

EEG, Pandas, Keras, NumPy, and Scikit-Learn. The experiments were conducted

on the Bonn and UCI EEG datasets [17, 27]. Various machine learning (ML) mod-

els, including RF, LR, DT, XGB, and NB, were employed to assess the performance

of the proposed model in EEG epileptic seizure (ES) detection in binary and multi-

classification tasks. The configuration and execution settings for the proposed model410

were constant across all experimental cases and are detailed in Table 5.

In this study, two significant cases from the Bonn dataset are used for binary

and multi-classification problems related to EEG ES detection: sets (CD, E) and

(AB, CD, E).In the proposed study the data were split 70% for training and 30 %

for testing. In order to address the limitations of a small dataset, data segmentation415
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is performed. Moreover, the classification performance of each ML model is evalu-

ated using various performance metrics, such as accuracy (ACC), precision (PR),

sensitivity (SE), specificity (SP ), and the F1-score (F1) [25, 26].

ACC(%) =
TPositive + TNegative

N
(24)

Where, N = TPositive + TNegative + FPositive + FNegative

PR(%) =
TPositive

TPositive + FPositive

(25)

420

RE(%) =
TPositive

TPositive + FNegative

(26)

SP (%) =
TNegative

T −Neagtive+ FPositive

(27)

F1 = 2 ∗ RE ∗ PR
RE + PR

(28)

where TP , TN , FP , and FN denote the total number of correctly detected positives

(seizure), correctly detected negatives (non-seizure), incorrectly identified positives,

and incorrectly identified negatives, respectively.425

5.2. The time complexity of the feature extraction methods

In the process of feature extraction, different wavelet features, as mentioned in

subsection 3.5 are extracted from DWT sub-bands. Moreover, the execution time

of the feature plays an important role in rule-based hardware implementation. The

study also examines the feature extraction time of the method in the experiment.430

Figure 8 shows the execution time of the features. The execution times are repeated

in different experimental cases, therefore, we select the average of the time complexi-

ties. All the features have less time as compared to the relevant literature[16, 17, 18].
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Figure 8: The execution time of the feature. (a) Bonn dataset, (b) UCI-EEG dataset.

5.3. Analysis and performance of different coefficient and distance correlation mea-435

sure

This subsection empirically evaluates the optimal features mentioned in subsec-

tions 3.6.1 and 3.6.2. The approach uses two cases from the Bonn EEG dataset and

one from the UCI- EEG dataset, with varying correlation coefficient (CC) values

(0.5, 0.6, 0.7, 0.8, and 0.9) to determine their respective accuracies (%).440

Figure 10 (a) illustrates that accuracy increases when the CC value reaches 0.8.

Beyond the 0.8 threshold value, the average accuracy across experiments is constant.

Specifically, at CC = 0.8, the case (CD, E) from the Bonn EEG dataset, utilizing

features provided in subsection 3.6.1 shows a maximum accuracy of 98.6%. Similarly,

the case (AB, CD, E), incorporating features mentioned in subsection 3.6.1, reports445

an equivalent accuracy.

In Figure 10 (b), a similar performance is observed up to CC = 0.9 for the UCI-

EEG dataset. Across all experiments involving different CC, the p-values remained

constant at 0.005 during the second elimination. Moreover, the proposed selected

feature of the STD from cases (A, B) yielded the highest binary EEG epileptic seizure450

(ES) detection accuracy of 98.3%.

32



Figure 10 (c)(d) depicts the performance for non-linear feature selection from

wavelet decomposition using distance correlation (DC). The accuracy increases until

DC = 0.7, subsequently stabilizing. At DC = 0.8 and DC = 0.9, the optimal non-

linear features from subsection 3.6.2, applied to the case (AB, CD, E), achieve a peak455

accuracy of 97.2%. For case (CD, E), features selected from subsection 3.6.2 realize

an accuracy of 97.08%. A parallel process is observed for the UCI-EEG dataset,

where features from subsection 3.6.2 at DC = 0.7 from the case (AB, CD, E), show

the maximum accuracy up to 98.2%.

5.4. Ablation study460

In this subsection, the performance of the proposed model for EEG epileptic

seizure detection is analyzed. The over-fitting of the model is illustrated through

training Vs testing accuracy and training loss Vs testing loss with respect to the

number of trees, as shown in Figure 11, With effective learning from the optimal

linear and non-linear features, the model achieved a training accuracy of 98.2% and465

a loss of 0.07%, whereas the validation accuracy reached 98.10% with a loss of 0.08%

after employing 60 trees. As the number of trees increases, the model progressively

enhances the accuracy and reduces the loss to 0.08% , given that the bagged tech-

niques handle the over-fitting issue efficiently. The performance of the model shows

that the number of trees increased to 50, with the performance accuracy of the pro-470

posed model also increasing. After the number of trees increases, it has no effect on

the model’s performance. Initially. The same process is repeated for the loss of the

proposed model.

5.5. Experimental analysis and performance of the proposed model

In this subsection, we discuss the comprehensive results of the proposed model.475

Initially, the Receiver Operating Characteristic (ROC) curve is utilized to evaluate
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Figure 9: Comparative results of the proposed model with recent ML models. (a)(b) Bonn ,(c)

UCI-EEG EEG dataset data set.

the model’s efficiency, as shown in Figure 13 which presents the ROC curve of the

proposed classifier, derived from various EEG class detection systems, indicating that

the proposed model achieved averages of 0.99 and 1.00, respectively. Moreover, we

also discuss the extended indicators of performance, including the False Detection480

Rate (FDR), False Omission Rate (FOR), False Positive Rate (FPR), and False

Negative Rate (FNR). Furthermore, Figure 12 shows the superior performance of
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Figure 10: Correlation coefficient and distance correlation-based accuracy. (a)(c) Bonn dataset,

(b)(d) UCI-EEG dataset.

the proposed model, achieving average rates of FDR (0.0268%), FPR (0.0356%),

FOR (0.0159%), and FNR (0.011%) across both cases using the Bonn dataset. In

the case of the UCI-EEG dataset, the model demonstrates the FDR of 0.0278%, FPR485

of 0.0213%, FOR of 0.0341%, and FNR of 0.0245% for binary classification tasks in

EEG epileptic seizure detection.

Additionally, Table 6 presents the average computation time for each case using

[18, 20, 21, 22], which shows the proposed model is time-efficient.
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Figure 11: Average accuracy vs average loss with respect to the number of trees. (a)(b)

experimental analysis of the training process of the proposed model using the Bonn EEG dataset,

(c) UCI-EEG dataset models.

5.6. Empirical analysis of the proposed framework features and models490

This subsection discusses a comparative performance analysis between the pro-

posed model and various machine learning models LR, XGB, DT, NB, and RF using

optimal linear and non-linear features using two data selection methods including

5-fold cross-validation and holdout (70% training, 30% testing) methods. Figure 9
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Table 6: The computational time of the proposed framework in EEG ES detection.

Progress Time (sec)

Pre-processing 4

DWT 10.40

Feature extraction 12.10

Classification 10.03

illustrates each model’s mean accuracy, determined through 5-fold cross-validation.495

Figure 9(a) and (b) highlight that the proposed model, employing optimal features,

achieved the highest mean accuracy. For the Bonn EEG dataset, mean accuracies

are 97.88% and 97.82% for cases (CD-E) and (AB, CD, E) respectively in EEG ES

detection, while NB reported the lowest mean accuracy. Furthermore, Figure 9 (c)

indicates the proposed model archived the highest mean accuracy, 97.58%, for the500

UCI case (A, B), with the NB model yielding the lowest performance.

Moreover, Tables 9 and 10 present the performance of the proposed model with

other ML classifiers using 70% training data and 30% for testing. The proposed

model, utilizing a combination of STD and FD-NL, achieved the best performance

using the experimental case (CD, E) from the Bonn EEG dataset having an accuracy505

of 99.50%, precision of 98.42%, sensitivity of 98.42%, specificity of 98.40%, and

F1-score 98.40%. Moreover, in the case (AB, CD, E) of the boon EEG data set

the proposed model achieved 99.50% accuracy, 98.40% precision, 98.30% sensitivity,

98.40% specificity, and 98.40% F1-score. For (A, B) from the UCI-EEG, the model

reported 99.60% accuracy, 99.50% precision, 99.40% sensitivity, 99.40% specificity,510

and 99.15% F1-score, while the (A, B) from the combination set from the UCI-EEG

dataset, as shown in Table 10, the proposed classifier outperformed other machine
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learning models On the other hand, the LR had the lowest performance among all

the models.
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Table 7: The experimental results of the proposed model with other sibling ML models using Bonn EEG data set.

Methods Sets ACC (%) PR(%) RE(%) SP(%) F1(%)

DT
(CD,E) 96.67 96.50 96.50 96.40 96.40

(AB,CD,E) 97.10 97.10 97.00 97.70 97.05

XGB
(CD, E) 94.49 94.50 94.43 94.10 94.30

(AB,CD,E) 92.80 92.80 92.60 92.50 91.65

RF
(CD,E) 95.49 95.10 94.50 94 94.30

(AB,CD,E) 92.90 92.40 92.10 91.40 91.90

NB
(CD,E) 94.30 93.80 93.80 93.70 94.10

(AB,CD,E) 93.20 92.80 92.20 92.10 93.20

LR
(CD,E) 93.07 92.20 92.10 92.05 93.01

(AB,CD,E) 93.60 93.30 93.20 92.90 93.60

Proposed model
(CD,E) 99.50 98.42 98.40 98.42 98.40

(AB,CD,E) 99.50 98.40 98.30 98.40 98.40
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Table 8: Experimental results of the proposed model with other sibling ML models using UCI-EEG

dataset.

Methods Sets ACC (%) PR(%) RE(%) SP(%) F1(%)

RF (A,B) 97.10 97.05 97.00 96.80 96.90

XGB (A,B-E) 97.80 96.59 96.10 96.00 96.90

DT (A,B) 97.90 97.80 97.00 96.90 97.10

NB (A,B) 94.50 94.10 93.00 93.90 93.60

LR (A,B) 94.23 93.40 93.40 93.10 93.20

Proposed

model

(A,B-E) 99.60 99.50 99.40 99.40 99.50

5.7. Interpretability and Explainability of the proposed model using XAI515

In this subsection, we explain the interpretation of all the performance of experi-

mental cases in each dataset through Explainable AI (XAI). We used SHAP (SHap-

ley Additive exPlanations), a game theory approach, to explain the decision-making

process of the models, as demonstrated by the various SHAP decision plots. These

visualizations include the Summary Plot (SP) and Waterfall Plot (WP). The SP plot520

is illustrated in Figure 14 (a) (b) and Figure 15 (a) providing a global interpretation

of the model of Bonn and UCI-EEG dataset of different cases.

The plot shows the feature’s importance with respect to classification perfor-

mance, revealing the influence of each global feature on the model’s outcome. The

eigenvalue feature HFD 4 with large absolute SVs is identified as significant due to525

their higher average impact on the model’s output. Figure 14 (c) (d) and 15 (b)
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Figure 12: The analysis based on FDR, FNR, FOR, and FPR of the proposed model in EEG

epileptic seizure detection. (a) Bonn, (b) UCI-EEG data set.

shows the WP plot for the Bonn and UCI cases, highlights the behavior of True Pos-

itives (TP), False Positives (FP), False Negatives (FN), and True Negatives (TN).

The WP plot uses red and blue bars to indicate features that contribute to the overall

classification score, with the ability to either decrease or increase the score. More-530

over, Figure 16 (a) to (d), presents the SHAP dependence plot which describes the

relationship between two eigenvalue features of the STD and FD-NL and the effect

on their model performance. In the plot, the x-axis represents the primary feature

while the y-axis on the left side represents the secondary feature and the y-axis on

the right side represents the Shape values. In plots (a), (b), (c), (d), the primary535

and secondary features across multiple domains show an increase as the shape value

increases, indicating a positive correlation with the predicted outcome. Through

these visualizations, it becomes evident that HFD 4 plays the most significant role

in distinguishing between EEG states using each dataset, while ENT 1 eigenvalues

are the least important in EEG epileptic seizure detection.540
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Figure 13: The ROC curve of the proposed model using different combination sets of EEG. (a)(b)

Bonn, (c) UCI.

6. Discussion

Epileptic seizure presents significant challenges in healthcare technology. This

is primarily due to the complex and non-linear nature of EEG signals, as well as

the influence of various factors on seizure activity. Conventional seizure detection

methods often fall short of accurately representing the dynamic proposed nature of545

these signals.

Furthermore, selecting the optimal features for EEG epileptic seizure (ES) de-
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Figure 14: Visual explanations for the proposed model based on different visualizations for binary

and multi-class tasks using the Bonn dataset. Subfigures (a) and (c) represent summary plots,

while (b) and (d) are waterfall plots.

tection within an automated system poses an additional challenge. The aim is

to enhance classification performance by identifying the most informative features.

Choosing effective features for use by ML models is essential to improve accuracy and550

sensitivity in ES detection compared to other methods. Moreover, ensuring model

explainability and interpretability in the proposed decision-making process presents
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further challenges [30, 31, 32, 33, 34]. To the best of the authors’ knowledge, no prior

research has employed the correlation coefficient and distance correlation for linear

and nonlinear feature selection, the Bagged Tree-based classifier, or explored the555

model’s explainability and interpretability through explainable AI, which includes

both global and local explanations.

Figure 15: The Explainability of the proposed model performance based on different visualizations

for the binary class using the UCI- EEG dataset. Subfigure (a) represents the summary plot, while

(b) depicts the waterfall plot.
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Figure 16: The Dependency plot (a)(b)(c)(d) represents the different primary and secondary fea-

tures.
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Table 9: The comparative results of the proposed model with state-of-the-art methods using the Bonn dataset.

Publ. Seg,sample Cases Methods Expl. ACC (%) Time

complex-

ity (%)

[35] NA,4097 (ABCD,

E), (AB,

CD, E)

TQWT +Entropy

feature+PCA+ SVM

NA 99 NA

[17] NA,4097 (C-E) , (D-

E)

CWT + Wavelet fea-

tures + SVM,NB

NA 97, 96 NA

[36] NA, 4097 (AB,CD,E) DTCWT + ST +

CVNN

NA 98 90

[37] NA,4097 (C, E) and

(D, E)

DWT, Windowing+

ST + LSTM

NA 97 NA

[38] NA,4097 (CD,E) Normalization +

DNN Model

NA 95.16% NA

[39] NA, 4097 (CD,E) FLP + PEE, Energy

+ SVM

NA 97.17% NA

This work 69,1008 (CD,E

),(AB,CD,E)

DWT + STD and

FD-NL, + CC and

DC +

XAI 99.50,

99.50

35

Exple:Explainability ;DTCWT, Dual-tree complex wavelet transform; TQWT, Tunable Q wavelet transform; CVNN,

Complex value neural networks; CC, correlation coefficient;DC, distance correlation;ST,statistical features.
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Table 10: The comparative results of the proposed model with state-of-art methods using the UCI-EEG dataset.

Publ. Seg,sample Cases Methods Expl. ACC (%) Time

complex-

ity (%)

[40] Event based (A,B-E) FT +178 features

+SVM, KNN, ANN

NA 97,96, 95 NA

[41] Event based (A,B) DCPA-EZ + DCPA-

EZ

NA 98.10 NA

[42] Event based (A,B) 178 features +SVM,

KNN, ANN, LDA

Event

based

95, 96.40,

93, 94

NA

[43] Event based (A, B) FFT + wavelet fea-

tures + SOM-RBFnn

NA 97.40 NA

[44] Event based (A,B) FFT+ 178 features+

NAMLP, ANN, SVM

NA 94, 93, 92 NA

This work 86,1330 (A,B) DWT + FD-NL,STD

features + feature se-

lection (CC and DC)

+

XAI 99.40 19

Pub: Publication; Exapl, Explainability; DCPA-EZ, deep canonical sparse autoencoder-based epileptic seizure de-

tection; SOM-RBFnn, self-organizing map radial basis function neural network; FFT, Fast Fourier transform.
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In addressing the challenges of EEG epileptic seizure detection, the proposed

study presents a comprehensive framework that integrates various components, which

includes EEG signal decomposition, noise mitigation, statistical time domain (STD),560

and Fractal Dimension-based (FD) non-linear feature extraction, with innovative

feature selection methods. The proposed Bagged Tree-based classifier effectively

addresses over-fitting concerns and enhances interpretability through Explainable

Artificial Intelligence (XAI).

Performance evaluations using the Bonn and UCI-EEG datasets validate the ef-565

fectiveness of the proposed framework. The results (Figure 10) indicate optimal

performance at a correlation coefficient (CC) value of 0.8. Beyond the proposed

threshold,even increases in CC did not improve accuracy. Therefore, the CC value

of 0.8 serves as the threshold for the model’s learning and streamlines feature selec-

tion. The proposed framework incorporates FD-based linear and non-linear features570

extracted through wavelet decomposition. The approach uses both the linear and

complex attributes of EEG signals, thereby enhancing the model’s discrimination

capacity. Comparison with various machine learning models (DT, RF, XGB, LR,

NB) via 5-fold cross-validation demonstrates the superior performance of the pro-

posed model. The proposed model consistently outperforms other ML models using575

the Bonn and UCI-EEG data set showing the effectiveness of the proposed model.

The model used the selected non-linear and STD linear features, effectively distin-

guishing the seizure, non-seizure, and transition EEG states. The proposed model

performance is benchmarked against recent state of art methods validated by Bonn

and UCI- EEG datasets (Tables 9 and 10), consistently outperformed existing meth-580

ods, with an average accuracy of 99.50% for Bonn and 99.40% for UCI-EEG dataset.

Explainable AI (XAI) through SHAP presents the interpretation of the proposed

model decision-making to medical experts. Summary and Waterfall Plots highlight
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the important features and their contributions to classifications.

In summary, the proposed methods significantly enhance EEG epileptic seizure585

detection, not only enhancing the accuracy but also explaining the decision-making

process, a key advantage in healthcare settings where understanding model decisions

is crucial. The high precision, sensitivity, and accuracy of the proposed framework

highlight its potential for healthcare professionals in diagnosing seizures. The com-

prehensive understanding of EEG signals, improved feature selection through op-590

timized correlation coefficients, robust overfitting management by the model, and

transparent decision-making via SHAP collectively contribute to informed decision-

making, enhancing patient care and outcomes in epilepsy management, while the

proposed framework offers several advantages, it is essential to acknowledge its lim-

itations. The proposed framework is best for the patients specifically. In future595

studies, our goal is to apply the framework to patient-independent, utilizing larger

and more comprehensive clinical datasets.

7. Conclusion

In this study, we introduce an automatic EEG epileptic seizure detection frame-

work that applies novel feature selection methods, a Bagged Tree-based classifier, and600

Explainable Artificial Intelligence (XAI). Initially, the pre-processing of EEG signals

using a Butterworth filter to reduce noise and artifacts. Then, discrete wavelet trans-

form (DWT) based decomposition is applied, and statistical time domain linear and

FD-nonlinear features are extracted from each decomposition level. The use of a

novel correlation coefficient for linear features and distance correlation for non-linear605

features enables effective feature selection, improving the model’s performance in

EEG epileptic seizure detection. The model exhibits the best performance metrics

in accuracy, precision, and sensitivity, effectively addressing the over-fitting issue.
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Validation through Bonn and UCI EEG benchmark datasets confirms the model’s

robustness and reliability in detecting epileptic seizures. The important aspect of610

the proposed framework is the incorporation of XAI, achieved through SHapley Ad-

ditive Explanations (SHAP), which interprets the model’s decision-making process,

and explains the impact of each feature on the model’s output. The future will

focus on patient-independent multimodel data using the proposed framework with

explainability and interpretability to facilitate the clinical decision-making process615

in epilepsy management.
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