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Abstract

Epilepsy is a prevalent neurological disorder that poses life-threatening emergencies.
Early electroencephalogram (EEG) seizure detection can mitigate the risks and aid
in the treatment of patients with epilepsy. Electroencephalogram (EEG) based au-
tomatic epileptic seizure (ES) detection has significant applications in epilepsy treat-

ment and medical diagnosis. Therefore, this paper presents an innovative framework
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for automatic ES detection using coefficient and distance correlation feature selec-
tion algorithms, a Bagged Tree-based classifier, and Explainable artificial intelligence
(XAI). Initially, the Butterworth filter is employed to eliminate various artifacts, and
the discrete wavelet transform (DWT) is used to decompose the EEG signals and
extract 24 eigenvalue features of the statistical time domain (STD) as linear and
Fractal dimension-based non-linear (FD-NL). The optimal features are then identi-
fied through correlation coefficients with P —value and distance correlation analysis.
These features are subsequently utilized by the proposed Bagged Tree-based classi-
fier. The model provides superior performance in mitigating overfitting issues and
improves the average accuracy by 4% using (CD, E), (AB, CD, E), and (A, B) com-
bination sets as compared to other machine learning (ML) models using well-known
Bonn and UCI-EEG benchmark datasets. Finally, SHapley additive exPlanation
(SHAP) was used as an Explainable Al (XAI) to interpret and explain the decision-
making process of the proposed model. The results highlight the framework’s capa-
bility to accurately classify ES, thereby improving the diagnosis process in patients
with brain dysfunctions.

Keywords: Electroencephalogram, machine learning, coefficient correlation,

distance correlation, biomedical signals, explainable artificial intelligence.

1. Introduction

Epilepsy is a noncontagious brain disorder that develops from irregular electri-
cal brain activity [1, 2]. A delay in the diagnosis process can create severe mental
health problems or even lead to death [3]. Globally, over sixty million people have
been affected by the epilepsy disease reported by the World Health Organization
(WHO) [4]. In order to mitigate the progression of the disease, the early diagno-

sis and detection of epileptic seizures (ES) are crucial. Recently, various diagnostic
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approaches have captured the attention of specialized medical professionals for the
diagnosis of epilepsy [5]. Moreover, neurologists recommended electroencephalogra-
phy (EEG) to monitor the brain electrical activity of the seizure [6]. Conventional
epilepsy diagnosis in clinical settings involves specialists visually inspecting during
EEG recordings, which is laborious and intensive work. [7, 8].Therefore, Machine
Learning (ML) models have been introduced for efficient analysis by classifying EEG
signals [8]. Moreover, existing automated EEG ES detection approaches are often
less used in real-time clinical applications because of their low sensitivity and speci-
ficity in clinical epilepsy management. Several challenges exist in the automation
of EEG ES detection. Primarily, the extraction of highly representative features is
challenging because of the nonlinear and non-stationary nature of EEG signals [8].
Secondly, the optimal features of the EEG are very important. It poses efficient
features to identify the differentiation between pre-ictal and seizure states while also
learning the patterns’ complexity and variability across seizure types. The third
challenge pertains to minimizing the miss classification rate, arising from the simi-
larities in oscillatory and fractal characteristics across seizure and non-seizure EEG
signals [7]. The fourth challenge includes the interoperability and explainability of
the ML model, which are essential for informed clinical decisions and enhancing
patient safety. To address the above informative challenges, this study presents a
novel framework for the automatic detection of EEG ES utilizing biomedical EEG
signals. The framework consists of a feature extraction method that exploits distinc-
tive FD-nonlinear (FD-NL) and statistical time domain (STD) features extracted
from decomposed EEG signal sub-bands, capturing the EEG signals’ nonlinear and
time-domain information. The proposed study also employs correlation coefficients
(CC) for linear feature selection and distance correlation (DC) for non-linear feature

selection in EEG ES detection. Additionally, the proposed study employs a Bagged
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Tree-based classifier to enhance the accuracy of ES classification. Moreover, the pro-
posed study also uses explainable Al (XAI) to explain the decision-making processes
behind the model’s detection. XAI facilitates a transparent and understandable ex-
planation of ML model or algorithm decisions [9, 10], which is especially important in
ES detection by providing clinicians insights into the decision-making process. The
proposed framework, with the integration of XAl, aims to enhance the diagnostic
decision-making process in clinical practice. The proposed study is summarized as

follows:

e The EEG signals are split and decomposed by using the Discrete Wavelet
Transform (DWT). From the different decomposition levels, the statistical time
domain (STD) and Fractal dimension-based non-linear (FD-NL) features are

extracted.

e Applied Correlation Coefficients (CC) and Distance Correlation (DC) feature
selection methods to select the optimal features of STD and FD-NL through

correlation with p — value analysis and distance correlation.

e The implementation of the bagged Tree-based classifier is designed to mitigate
overfitting by introducing randomness and diversity into the ensemble, thereby

enhancing its capability to accurately classify epileptic seizures.

e The development of an explainable artificial intelligence (XAI) framework uti-
lizing the SHAP (SHapley Additive exPlanations) model has an explanation
behind the reasoning of the proposed model predictions. The visual explana-
tions generated by SHAP facilitate a deeper understanding of the interpretive
processes underlying the decisions of the most effective classifiers, as well as

identifying the critical features for the detection of epileptic seizures (ES).
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The proposed EEG ES detection framework enhances accuracy, mitigates over-
fitting, and enables optimal feature selection. Tested on the Bonn and UCI-EEG
datasets, its versatility and comprehensive approach show promise for streamlining
diagnostics and improving patient outcomes.

The organization of the paper is as follows: Section 1 and 2 present the intro-
duction and related works, respectively. Sections 3 show the automatic EEG ES
detection framework. Experimental results and discussion are discussed in sections

4 and 5, respectively. Finally, the conclusion of the paper is in section 6.

2. Related Work

This section describes the prior research that used various decomposition meth-
ods, linear and non-linear features, optimal feature selection methods, and ML mod-
els for efficiently detecting epileptic seizures (ES) using electroencephalogram (EEG)
data.

2.1. Wavelet-based statistical and fractal dimension (FD) feature extraction with ma-

chine learning models

The extraction of important and essential features is important, especially from
different wavelet decomposition levels, in EEG epileptic seizure detection. Various
studies have applied wavelet-based features for accurate classification of pre-ictal,
inter-ictal, and ictal states in EEG-based ES detection [11, 12, 13, 14, 15].

Recently, Al-Salman et al. [11] applied discrete wavelet transform (DWT) to
decompose brain EEG signals into subbands, further processing to extract diverse
wavelet-based features. A Grey Wolf Optimizer (GWO) based deep recurrent neu-
ral network (DRNN) was employed to differentiate between seizure and non-seizure

signals, achieving 93.4 % accuracy in automatic EEG ES detection. Harender et al.
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[16] employed DWT for EEG signal decomposition and extracted statistical features
like standard deviation (std) and mean absolute value (MAV), achieving over 90%
accuracy using K-Nearest Neighbors (KNN) classifiers. Sharmila et al. [17] applied
DWT for EEG signal decomposition and extracted statistical features (std, average
power (AVP), and MAV) with KNN and Naive Bayes (NB) classifiers, obtaining 98%
accuracy with KNN. Moreover, R. Uthayakumar et al. [18] introduced six wavelet-
based statistical time domain (STD) features, such as variance and std, with several
ML models, where the Decision Tree (DT) model achieved 97% accuracy. In the last
two decades, Fractal Dimension (FD) feature extraction techniques have received
much attention, exhibiting satisfactory performance with various feature selection
methods and ML [18, 19, 20]. A study [18] introduced an automated system for ES
detection using FD theory and the Support Vector Machine (SVM) model, achieving
up to 90% accuracy. T. M. E. Nijsen et al. [19] implemented various wavelet-based
features, such as Higuchi’s Fractal Dimension (HFD), Hurst Exponent (HE), and
Shannon entropy, in combination with RF and SVM models. Hussain et al. [21] uti-
lized DWT in the preprocessing stage, extracting HFD and Katz Fractal Dimension
(KFD) features from DWT subbands and employing SVM for classification. Fur-
ther, in [22, 23], Cross-Information Potential (CIP) and Tunable-Q Wavelet Trans-
form (TQWT) were examined for EEG signal preprocessing, and the Random Forest
(RF) model was used for classification, achieving satisfactory results. A. Nishad et
al. [23] employed DWT for decomposition and extracted non-linear features, such
as entropy and fractal dimensions and applied a Support Vector Machine (SVM)
classifier, where fractal dimensions achieved above 96% overall accuracy. Upadhyay
et al. [24] applied the Max Energy to Shannon Entropy ratio to select appropri-
ate EEG channels from each frequency band, calculating three distinct non-linear

features and using three machine learning techniques, where Least Square-Support
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Vector Machine (LS-SVM) showed satisfactory performance. The summary of the
various literature shows the importance of STD linear and FD-non linear features

with effective ML models in EEG epileptic seizure detection [25, 26, 27].

2.2. Correlation-based feature selection methods with the machine model

Feature selection is an important process that minimizes the number of features
utilized by the ML model in EEG epileptic seizure detection. The reduction not
only simplifies the model’s complexity but also facilitates easier interpretation and
decreases training time, often leading to enhanced system performance. Correlation,
often measured as the relationship between two or more variables, has been widely
applied in various fields over the past few decades due to its capability to measure
both linear and nonlinear associations between features [13]. Aliyu et al. [14] in-
troduced the Pearson correlation coefficient (PCC) in the feature selection process,
aiming to identify the most pertinent subset of features from the original set. Upon
selecting the optimal features via PCC, the model achieved an accuracy of 93.1%.
Recently, N.Ji et al. [28] introduced an improved correlation-based feature selection
method. The proposed methods select the optimal features from the time, frequency,
and entropy features of wavelet decomposition, after which the random forest model

performs classification, achieving 96% accuracy.

2.8. Motiwation

After summarizing the above literature, we are motivated to present a correlation
coefficient and distance correlation-based feature selection algorithms, a Bagged Tree-
based classifier model with explainable Al (XAI).

For the feature selections, we employ p-value analysis to select dominant features,

which eliminates the high-correlation features. A Bagged Tree-based classifier is then



135

140

145

150

efficiently applied to differentiate EEG brain signals of seizure and non-seizure EEG
states, while the explainable AI interprets and explains the decision-making process
of the proposed algorithm automatically without any complex calculation or manual
explanation.

The next section provides detailed information about the proposed framework for

EEG ES detection.

3. Materials and Methods

This section presents a novel framework for automatic EEG-based epileptic seizure
detection. The framework includes a detailed pipeline for EEG ES detection that
presents the EEG data sets, preprocessing, feature extraction, feature selection, and
explainable classification steps. Figure 1 provides the proposed framework for EEG

ES detection.

3.1. EEG data collection

Initially, the collected EEG datasets from the UCI and Bonn EEG benchmark
datasets are investigated. The Bonn EEG dataset includes non-seizure, transition,
and seizure signals [15], while the UCI-EEG dataset consists of non-seizure and

seizure signals [16].

3.1.1. Bonn EEG dataset

The Bonn EEG dataset was collected from the five patients [15]. The Bonn EEG
dataset is categorized into five sets, labeled (A) through (E), each containing 100
single-channel EEG samples collected over 23.6 seconds [18]. The sampling rate of
the Bonn EEG data set is 173.61 Hz. Sets A to E involve various states. Specifically,
sets (A) and (B) represent different normal EEG signals, with (A) and (B) showing



Table 1: Notation Table

Notation Description

mean_1 Mean feature from decomposition level D3

mean_2 Mean feature from decomposition level D4

mean_3 Mean feature from decomposition level D5

mean_4 Mean feature from decomposition level A5

std_1 standard deviation feature from decomposition
level D3

std_2 Standard deviation feature from decomposition
level D4

std_3 Standard deviation feature from decomposition
level D5

std_4 Standard deviation feature from decomposition
level Ab

HFD_1 Nonlinear feature from decomposition level D3

ENT 2 Nonlinear feature from decomposition level D4

PFD_3 Nonlinear feature from decomposition level D5

HFD 4 Standard deviation feature from decomposition

level A5
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Figure 1: The block diagram of the proposed framework for EEG epileptic seizure detection.

EEG states where the subjects’ eyes were open and closed, respectively. Sets C and
D encompass transitional states between normal and seizure, while set (E) contains

EEG readings from five EEG epileptic individuals during seizures. Sets (A) and (B)
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were obtained non-invasively using the '10-20’ international system, and sets (C)
and (D) employed invasive recording methods [18]. Further details of each set within
the Bonn EEG dataset are shown in Table 2, and Fig. 2 illustrates EEG epileptic

seizures in non-seizure, transition, and seizure states.

Table 2: The detailed description of the Bonn EEG dataset.

Classification set Stages Segment Number of files
length

(A) Patient eyes opened (69,1008) 100

(B) Patient eyes closed (69,1008) 100

(C) Inter-ictal (69,1008) 100

(D) Inter-ictal (69,1008) 100

(E) Ictal (69,1008) 100

3.1.2. UCI- FEG dataset

The UCI-EEG dataset was collected from 5 subjects, each with 4097 data points
recorded over 23.5 seconds [27]. Each data point was segmented into 23 chunks,
representing 1 second of EEG data. After segmentation, chunks were shuffled. The
states of the subjects fluctuated between having their eyes open and having them
closed. The target variable 'y’ located in column 179, is a binary class y (0,1) used
for analysis. It denotes the ictal and pre-ictal states, as detailed in Table 3. In
addition, various EEG states of the UCI-EEG dataset are shown in Fig. 3.

In addition, various EEG states of the UCI-EEG dataset are shown in Figure 3.

11
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Figure 2: Various types of EEG signals in the Bonn dataset (Interictal, Pre-ictal, and Ictal).

Table 3: Full description of the UCI-EEG dataset.

Classification set Stages Segment Number of
length files

(A) Ictal (86,1338) 100

(B) Tumour region (86,1338) 100

(C) Healthy region (86,1338) 100

(D) Healthy region (86,1338) 100

12
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Figure 3: EEG signals in the UCI-EEG dataset. (a) Ictal, (b) Pre-ictal .

3.2. Pre-processing

In this section, the collected EEG signals pass through a filtering process to
eliminate noise and artifacts that could originate from electromyography (EMG),
eye blinking, or limb movements during recordings [23, 26]. A Butterworth filter
is applied to maintain EEG signals within the desired frequency ranges, excluding

noise. The Butterworth filter can be mathematically expressed as:

where k and [ denote the frequency range, y(t) represents the signals being filtered,
and cutof_freq = 0.1, filt_ororder = 3, and Nyquist_freq = 0.5. To equalize
sample quantities in the UCI-EEG dataset, the Synthetic Minority Oversampling
Technique (SMOTE) is applied.

13
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3.3. Signal Splitting

In the preprocessing subsection, we define the optimal segment size dividing the
EEG signal time series into smaller epochs. For the Bonn EEG dataset, we increase
the segment size using the optimal values of epoch = 0.4, segments = 69, and
epoch_step = 0.024 as shown in Table 2. For the UCI dataset, the optimal segment
size is epoch = 0.5, segments = 86, and epoch_step = 0.023 as shown in Table 3.

Algorithm 1 EEG Signals Splitting
1: Load the EEG signal ¢ time series data; £ = 0

2: Proper size of window wy;..

3: while £ > 0 do

4: select window size w,;.. and overlap w.,

5: Calculate the performance of wg;.. and wyye,

6: k++

7 Calculated the performance of the feature vector
8: end while

3.4. FEG Signals decomposition and feature extraction

This subsection emphasizes the decomposition of the EEG signals and critical
feature extraction from the EEG signals, enabling distinctive and analytical explo-
ration of EEG data. The proposed feature extraction methods are explained in
Algorithm 2 and have two primary steps: (1) EEG signal decomposition and (2)
feature extraction. The non-stationary nature of EEG time-series signals, which
contain high-frequency data and other important information, as well as large fre-
quency oscillations, employing solely the fast Fourier transform (FFT) for signal

analysis, proves insufficient due to its limitation to extracting merely the frequency

14
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information of time-series signals [17]. The wavelet transform method of multi-
resolution analysis disassembles signals into various frequency bands and represents
a time function using fundamental units called wavelets. One significant advantage
of wavelet transforms is their ability to adapt the window size, enabling them to
narrow for low frequencies and widen for high frequencies. This adaptability results
in superior time-frequency resolution across different frequency bands. EEG signals,
which contain a rich set of data points, can be effectively compressed into a reduced
set of features through spectral analysis and the extraction of high-frequency data.
The continuous wavelet transform (CWT) and discrete wavelet transform (DWT)

are mathematically represented as follows:

CWTa = / Yetbea * y(y)dy (2)
where y; presents the investigated EEG signal, and ¢ represents the compression
coefficient with dilation, translation, and scaling relevant to the time axis. The

asterisk superscript denotes complex conjugation. Additionally, .4 is computed as

the wavelet over time and scale:

—d
1 ¢<t

jef ¢

wc,d@) = ) (3)

Where 9 4(t) shows the wavelet, and CW'T translation and scaling parameters can be
changed continuously. However, determining wavelet coefficients for every possible
scale can be computationally intensive and produce considerable data. The wavelet
transform is an extension of the conventional Fourier transform.

Initially, the input signals x[n] are segmented into low-pass g[n| and high-pass h[n|
filters. The output from these filters is represented by coefficient D1 and approxima-
tion Al, respectively. Symbols D,, and A,, denote the frequencies of the input EEG

signals. The decomposition process is iteratively performed to acquire subsequent

15
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Figure 4: The decomposition level of Bonn data using DWT.

coefficient levels, with a five-level decomposition being executed in this study. Each
step of decomposition enhances frequency resolution while down-sampling diminishes
time resolution, as illustrated in Figure 4.

The same procedure is applied to the UCI-EEG dataset using the Daubechies 4
(db4) wavelet. Each decomposition level captures the important frequency compo-
nents essential for seizure detection in EEG signals as shown in Table .4.

For seizure detection, the frequency range is typically from 2 to 30 Hz. As a result,
the coefficients D1 and D2 are removed from processing due to their high-frequency
range. Thus, the approximation coefficients (D3; D4; D5; A5) of each channel are
considered. In this study, each subband encompasses 24 FD-based nonlinear and

statistical features from both the Bonn and UCI-EEG datasets.

16
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Table 4: Decomposition levels of the EEG signals of various frequency (Hz).

Sub-band Frequency (Hz) Decomposition level
Detail D5 [3-6] 5
Detail D4 [6-12] 4
Detail D3 [12-15] 3
Detail D2 [25-50] 2
Detail D1 [50-100] 1

3.5. Feature extraction methods

This subsection discusses the feature extraction process from each subband, in-
cluding different FD-based non-linear (FD-NL) and statistical time domain (STD)
features [21]. These features are important for describing the characteristics of the
EEG signals and enabling differentiation between various EEG states. FD-nonlinear
features, extracted from the EEG signal’s fractal properties, show the complexity
and irregularity of the signals [21]. Moreover, statistical time-domain features are
widely used and in EEG signal processing, present the amplitude and distribution
of the signal by encapsulating its statistical properties [17]. Various STD features,
comprising minimum, maximum, mean, standard deviation (std), variance (var), and
skewness (skew) are extracted from each subband of the approximation coefficients.
Therefore, a total of 24 eigenvalue features for each class (Preictal, Ictal) for binary
classification and (Preictal, interictal, and ictal) for multi-class classification are ex-
tracted. The mathematical expressions for all STD features in this study are given

below.

Maz = maz(X) (4)

17
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Min = min(X) (5)

X

1
Mean = X Z T; (6)

i=1
where X is the total number of values, and z; are the individual data points.

X

1
= | — o 2
Std %1 ;1 (x; — Mean) (7)
;X
Var = %1 2 (z; — Mean)? (8)
N 3
1 x; — Mean

The features extracted from each subband encompass several measures, including
the Katz Fractal Dimension (KFD), Petrosian Fractal Dimension (PFD), Detrended
Fluctuation Analysis (DFA), Shannon Entropy (SE), Higuchi Fractal Dimension
(HFD), and Hurst (HE), resulting in a total of 12 features. The detailed expla-
nations and mathematical formulations of the fractal dimensions and entropy-based
measures can be found in existing literature [17, 18]. The FD-NL features are as

follows:

B logyo(n)
KD = logyo(d/L +1) (10)

where n is the total number of points in the time series, d is the Euclidean distance,

and L is the total length of the time series.

PFD = log,(N)/ (logw(N) +logy, (#AM)) (11)

Where n is the total number of points in the time series and n N_An is the number

of sign changes in the binary sequence.

18
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SE = =) P(x;)log, P(;) (12)

=1

while P(z;) is the probability of a given value z; occurring in the time series.

N logyo(L(k))
HED = logy(1/k)

where L(k) is the length of the time series for a given k and the slope is estimated

(13)

over a range of k values. Moreover, DFA and HE metrics are often used to evaluate
the similarity and long-range temporal correlations in a time series.
To compute DFA the integrated time series Y (k) from the original time series

X (i), where i = 1,2, ...,n:

Y(k) =D [X(0) = Xaug] (14)

where X,,, is the average of X (i). After, divide Y (k) into N non-overlapping inter-
vals of equal length n. In each interval fit Y (k) (in that interval) with a least squares
line fit (k). The fluctuation F'(n) is then computed by averaging the residuals from

all intervals and then taking the square root:

Fn) = | 5 S S (= 1o+ F) — V(b)) (15)

The procedure is repeated for all time scales (window sizes) n to provide a relationship
between F'(n) and the window size n. The fluctuations can be related to the size of
the window by a power law:

F(n) oc n* (16)

After extracting features from the selected decomposition level are passed through

feature selection methods, which are discussed in the next section.

19



Algorithm 2 Feature Extraction Methods

function SIGNAL(FEs, k0, Fs, Dy, Wsize, overs;,)
2: Load E; and initialize epoch & = 0
Initialize feature vector F'V as an empty list
4: for each wg;,. and wyye, do
while k£ > 0 do
6: for each signal S in Eg and level L in Dy do
Decompose S using Wavelet Transform (WT) at level L
8: Extract FD-Nonlinear features
Extract Time-Domain Statistical (TDs) features
10: end for
Append feature vector to F'V
12: Evaluate performance using various Feature Metrics (FM)
Increment epoch: k + +
14: end while
Apply dimensional reduction to F'V
16: end for
return distinguishable feature vector F'V of EEG signals

18: end function

3.6. Feature selection methods

o5 8.6.1. Correlation Coefficient Analysis (CCA) and p-values

To present the relationships between variables, we applied Pearson correlation

(PC), which yields values ranging between -1 (indicating a strong negative relation-

ship) and 1 (indicating a strong positive relationship), while the p-value substantiates

the statistical significance of the experimental results [14]. The feature data consists

20
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Figure 5: The block diagram of coefficient correlation. (a)(b) Bonn, (¢) UCI-EEG dataset
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The x; and y; represent individual sample points with index 7, while £ and y denote

(17)

Toy

the means of variables x and y respectively, and n symbolizes the total number of
data points, the summation symbol > | signifies the sum over all n data points.
In addition, several experiments are conducted to find the optimal Correlation Co-
25 efficient (CC) is 0.8. Features exhibiting correlation above this CC threshold are
excluded. Moreover, for feature importance, Null Hypothesis Significance Testing

(NHST) is applied, introducing a hypothesis that "no relationship between the se-
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lected combination of features and the independent variable ”. An alpha value of 0.05

is defined, signifying that the null hypothesis is true. The comprehensive overview

of mathematical computing of the correlation coefficient is shown in Algorithm 3.

Algorithm 3 Feature Selection via Correlation Coefficient and P-Values

1: function CORRELATION, B_ELIMINATION(Data matrix X, Target vector y, Sig-

10:

11:

12:

13:

14:

15:

16:

17:

nificance level «)

Compute the correlation matrix C' of X
for each pair of features (7, j) do
if C;; > 0.8 then
Remove one feature from the pair
end if
end for
Define the initial feature subset as NULL
while Not all features f are evaluated do
Compute p — values for remaining features f relative to target y
for each feature f do
if p-value of f < o then
Remove feature f
end if
end for
f < remaining features

end while

18: end function

Figure 6 displays the distribution of the selected features following the initial

elimination. In the next elimination process, different time-domain (STD) features
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are selected for various cases and datasets. In the case (CD-E) from the Bonn dataset,
four STD features were chosen mean_3, mean_2, mean_1, and std_1. Similarly, in the
case (AB, CD, E), five STD features are selected: mean_3, mean_2, mean_1, std_1,
and std_2. Finally, in the case (A, B) from the UCI-EEG dataset, three STD features
are selected: mean_3, mean_2, and mean_1. A detailed description of the selected

features and their respective decomposition levels is presented in Table 1.

3.6.2. Distance correlation
The distance correlation is utilized to manage the variability of feature values,
predominantly for nonlinear features. The distance correlation analysis applied in

the proposed study includes four steps as follows.

3.6.3. A) Compute Pairwise Distances

Let U = {uy,us,...,u,} and V = {vy,vq,...,v,} represent the feature data for
two random variables at each decomposition level feature. First, the pairwise distance
matrices, M and N for U and V', respectively, are computed. For a one-dimensional

data set, the absolute difference between the elements is given below:
My = |u; = us], Nij = |v; — vy (18)
3.6.4. B) Compute double-centered distance matrices
The double-centered distance matrices, M* and N*, are derived from M and N
respectively as follows:

My = ZMm “ ZMM LY (19)

k=1 I=1

Z Ny — — Z Ny + Z Z Ny (20)

k=1 1=1
where M;; and N;; represent the pairwise dlstances and n indicates the total number

of observations.
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3.6.5. C) Calculate distance variances
The distance variance, V' (U, U), for a variable U is computed as follows:
1 n n i}
V(U,U) = n2 Z Z(Mij)2 (21)
i=1 j=1
Similarly, the distance variance, V(V, V), for V is:
1 n n .
V(Va V) = EZZ(N@V (22)
i=1 j=1
3.6.6. D) Calculate distance correlation

The distance correlation, R(U, V'), is calculated as the square root of the distance

covariance normalized by the square root of the product of the distance variances:

_ V(U,V)
eV = \/\/V(U, D)V (V,V) (28)

The values of R(U,V) range between 0 and 1, with 0 signifying complete inde-

pendence between variables, and 1 indicating perfect dependence. Various distance
correlation values is used to identify highly correlated features, and performance
was assessed post-elimination, employing an optimal distance correlation value of
0.7 for elimination. Figure 6 displays the distribution of the selected features after
elimination.

After the elimination process, seven FD-NL features (HFD_ 4, PF_3, PFD_2,
ENT_2, HFD_1, HFD_2, ENT_1) from the case (AB, CD, E) and 5 FD-NL features
(HFD_2, PFD_2, PFD_1, ENT_1, ENT_2) from the Bonn dataset were selected, while
5 FD-NL features (HFD_4, PFD_3, PFD_2, PFD_1, ENT_1) from case (A, B) of the
UCI-EEG dataset. Figure 7 illustrates the comprehensive process of distance cor-
relation while the descriptions and decomposition levels of the selected features are

shown in Table 1.
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3.7. Classification model

3.7.1. Proposed Bagged Tree-based classifier

335 In this subsection, the proposed model is explained in detail. The Bonn and the
UCI-EEG datasets are highly imbalanced and consist of fewer seizure or ictal samples
than non-seizure or preictal instances. So, therefore, the imbalanced feature data cre-
ated has the potential to bias the model towards over-fitting of the model [5, 26, 27].
To address this issue, we employ a bagging technique with a decision tree in the pro-

s posed study. A Bagged Tree-based classifier model manually implements the bagging
mechanism to efficiently differentiate different EEG states, especially the inter-class
variation [29] and is distinct from a conventional random forest model. Moreover,
the bagging mechanism utilizes different individual decision trees to independently
classify each feature data bootstrap and then aggregates the outcomes through a

us  voting process to determine the final result, as detailed in Algorithm 4.

The proposed model has three main steps to perform the classification process;
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Algorithm 4 Bagging Tree-based Classifier

1: Input: EEG dataset D, number of bootstrap samples B, base classifier C
2: Output: Tree-based classifier £
3: for b+ 1to B do

4: Sample D, from D with replacement
5: Train base classifier Cj, on D,
6: end for

7. function ENSEMBLEPREDICT(x)
8: votes « {0,0,...,0}
9: for b+ 1to B do

10: ¢ < PREDICT(Cy, 7)
11: votes[c] <— votes|c| + 1
12: end for

13: return ARGMAX (votes)

14:
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Step 1: Data Input

The enhanced Bagged Tree-based classifier model takes as input feature data rep-
resented as D. The dataset encompasses various STD linear and Fractal Dimension
(FD) based nonlinear features. The model also requires the number of bootstrap
samples B and employs a decision tree as the base classifier C.

Step 2: Bootstrap sampling and model training

In the bootstraps of the proposed model, for each of the B bootstrap samples, a
distinct subset D, is derived from D, with variable sample sizes promoting diversity
among samples. This subset is selected with replacement, allowing some instances
to repeat, while others may be excluded. Each decision tree () is trained on its
respective Dy, focusing on optimal splits that minimize the target variable’s hetero-
geneity in the child nodes. The training process continues until it meets a predefined
stopping criterion. The process of this step is a collection of B decision trees, each
adapted to a uniquely composed feature data set, as shown in Table 5.

Step 3: Prediction function

The function Ensemble Predict(x) in the proposed model is designed for making
predictions on new data points x. This function operates by initializing an array
of votes for storing class votes. Each tree C, in the ensemble contributes to the
prediction for x, with its vote being weighted based on its accuracy, refining the
traditional majority voting mechanism. The class accumulating the highest weighted
vote count is then selected as the prediction for z. The proposed model, with its
emphasis on customized bagging and weighted voting, offers advantages such as
enhanced handling of high-dimensional data, improved robustness against overfitting,
and the ability to model complex, non-linear relationships. Additionally, it provides
valuable insights into feature importance, aiding in identifying key predictors for

seizure occurrences in EEG data.
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Table 5: The hyper-parameters for the proposed model in EEG ES detection.

Model Hyperparameter search space

proposed n_estimator = 100, max_features = sqrt, max_depth = 10,

model min_samples_split = 5, min_samples_leaf = 10, bootstrap =
True, n_jobs = —1, class_weight = balanced, random_state = 42

4. Explainable Artificial Intelligence (XAI)

In this section, we discuss the interoperability of the proposed model output.
XAT helps by offering insights into the Al model’s decision-making process. It allows
medical experts to validate the model’s predictions and make more informed and
reliable decisions regarding patient diagnosis and treatment [9, 10]. Moreover, it
makes the decision more understandable so that even non-experts or family members
of the patients can easily understand the decision, as shown in Figure 1. Recent
studies in machine learning (ML) for biomedical signal analysis highlight the urgent
need to make their outputs comprehensible. This has led to the rise of Explainable
Artificial Intelligence (XAI) systems in smart healthcare systems [10]. Although ML
models tend to be more interpretable than deep learning models because of their
explainable structure, achieving full interpretability in stacking classifiers remains a
challenge. The proposed model employs XAI techniques to elucidate its decision-
making processes, feature importance, and inherent biases. Some of the recent XAl
methods from the literature are detailed below:

A) Text Explanations: These provide relevance scores to variables, offering deeper
insights.

B) Local Explanations: This involves understanding the model’s responses to

minor input changes.
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C) Representative Explanations: Assesses how training data influences decision-
making .

D) Visual Explanations: The specific decision trees that inform outcomes. By
leveraging the SHAP (Shapley Additive exPlanations) method [10], we highlight the

individual feature contributions that shape our model’s decisions.

5. Experimental Results

This section provides the experimental setup, presents an empirical analysis of the
experimental results, and provides an interpretation and explanation of the proposed

model’s classification performance in the proposed framework.

5.1. Experimental setup

The proposed framework has been experimentally executed using a system con-
figured with a central processing unit (CPU), an NVIDIA Jetson Nano Developer
Kit GPU, and a Windows 10 (64-bit) operating system. The system utilizes Python
3.7 within a notebook environment, incorporating libraries such as TensorFlow, Py-
EEG, Pandas, Keras, NumPy, and Scikit-Learn. The experiments were conducted
on the Bonn and UCI EEG datasets [17, 27]. Various machine learning (ML) mod-
els, including RF, LR, DT, XGB, and NB, were employed to assess the performance
of the proposed model in EEG epileptic seizure (ES) detection in binary and multi-
classification tasks. The configuration and execution settings for the proposed model
were constant across all experimental cases and are detailed in Table 5.

In this study, two significant cases from the Bonn dataset are used for binary
and multi-classification problems related to EEG ES detection: sets (CD, E) and
(AB, CD, E).In the proposed study the data were split 70% for training and 30 %

for testing. In order to address the limitations of a small dataset, data segmentation
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is performed. Moreover, the classification performance of each ML model is evalu-
ated using various performance metrics, such as accuracy (ACC), precision (PR),
sensitivity (SE), specificity (SP), and the Fl-score (F'1) [25, 26].

ACC(%) _ Positive j—V Negative (24)

Wherev N = TPositive + TNegative + FPositive + FNegative

PR(%) a TPOSitZI:O—it;:;ositive (25)
REGR) = ot 20
SP(A) = 7= Neajg;]zzietJr Fpositive (27)
F1=24 % (28)

where TP, TN, FP, and F'N denote the total number of correctly detected positives
(seizure), correctly detected negatives (non-seizure), incorrectly identified positives,

and incorrectly identified negatives, respectively.

5.2. The time complezily of the feature extraction methods

In the process of feature extraction, different wavelet features, as mentioned in
subsection 3.5 are extracted from DW'T sub-bands. Moreover, the execution time
of the feature plays an important role in rule-based hardware implementation. The
study also examines the feature extraction time of the method in the experiment.
Figure 8 shows the execution time of the features. The execution times are repeated
in different experimental cases, therefore, we select the average of the time complexi-

ties. All the features have less time as compared to the relevant literature[16, 17, 18].
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Figure 8: The execution time of the feature. (a) Bonn dataset, (b) UCI-EEG dataset.

5.8. Analysis and performance of different coefficient and distance correlation mea-

sure

This subsection empirically evaluates the optimal features mentioned in subsec-
tions 3.6.1 and 3.6.2. The approach uses two cases from the Bonn EEG dataset and
one from the UCI- EEG dataset, with varying correlation coefficient (CC) values
(0.5, 0.6, 0.7, 0.8, and 0.9) to determine their respective accuracies (%).

Figure 10 (a) illustrates that accuracy increases when the C'C' value reaches 0.8.
Beyond the 0.8 threshold value, the average accuracy across experiments is constant.
Specifically, at CC' = 0.8, the case (CD, E) from the Bonn EEG dataset, utilizing
features provided in subsection 3.6.1 shows a maximum accuracy of 98.6%. Similarly,
the case (AB, CD, E), incorporating features mentioned in subsection 3.6.1, reports
an equivalent accuracy.

In Figure 10 (b), a similar performance is observed up to CC' = 0.9 for the UCI-
EEG dataset. Across all experiments involving different CC, the p-values remained
constant at 0.005 during the second elimination. Moreover, the proposed selected
feature of the STD from cases (A, B) yielded the highest binary EEG epileptic seizure
(ES) detection accuracy of 98.3%.
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Figure 10 (c)(d) depicts the performance for non-linear feature selection from
wavelet decomposition using distance correlation (DC). The accuracy increases until
DC = 0.7, subsequently stabilizing. At DC = 0.8 and DC = 0.9, the optimal non-
linear features from subsection 3.6.2, applied to the case (AB, CD, E), achieve a peak
accuracy of 97.2%. For case (CD, E), features selected from subsection 3.6.2 realize
an accuracy of 97.08%. A parallel process is observed for the UCI-EEG dataset,
where features from subsection 3.6.2 at DC' = 0.7 from the case (AB, CD, E), show

the maximum accuracy up to 98.2%.

5.4. Ablation study

In this subsection, the performance of the proposed model for EEG epileptic
seizure detection is analyzed. The over-fitting of the model is illustrated through
training Vs testing accuracy and training loss Vs testing loss with respect to the
number of trees, as shown in Figure 11, With effective learning from the optimal
linear and non-linear features, the model achieved a training accuracy of 98.2% and
a loss of 0.07%, whereas the validation accuracy reached 98.10% with a loss of 0.08%
after employing 60 trees. As the number of trees increases, the model progressively
enhances the accuracy and reduces the loss to 0.08% , given that the bagged tech-
niques handle the over-fitting issue efficiently. The performance of the model shows
that the number of trees increased to 50, with the performance accuracy of the pro-
posed model also increasing. After the number of trees increases, it has no effect on
the model’s performance. Initially. The same process is repeated for the loss of the

proposed model.

5.5. Ezxperimental analysis and performance of the proposed model
In this subsection, we discuss the comprehensive results of the proposed model.

Initially, the Receiver Operating Characteristic (ROC) curve is utilized to evaluate
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Figure 9: Comparative results of the proposed model with recent ML models. (a)(b) Bonn ,(c)
UCI-EEG EEG dataset data set.

the model’s efficiency, as shown in Figure 13 which presents the ROC curve of the
proposed classifier, derived from various EEG class detection systems, indicating that
the proposed model achieved averages of 0.99 and 1.00, respectively. Moreover, we
also discuss the extended indicators of performance, including the False Detection
Rate (FDR), False Omission Rate (FOR), False Positive Rate (FPR), and False

Negative Rate (FNR). Furthermore, Figure 12 shows the superior performance of
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Figure 10: Correlation coefficient and distance correlation-based accuracy. (a)(c) Bonn dataset,

(b)(d) UCI-EEG dataset.

the proposed model, achieving average rates of FDR (0.0268%), FPR (0.0356%),

FOR (0.0159%), and FNR (0.011%) across both cases using the Bonn dataset. In

w5 the case of the UCI-EEG dataset, the model demonstrates the FDR of 0.0278%, FPR

of 0.0213%, FOR of 0.0341%, and FNR of 0.0245% for binary classification tasks in
EEG epileptic seizure detection.

Additionally, Table 6 presents the average computation time for each case using

[18, 20, 21, 22], which shows the proposed model is time-efficient.

35



490

(a)
1 1
e Training === Validation
0.8 0.8
g 0.6 § 0.6
3 a
2 o4 0.4
02 02
e Training === Validation
0 0
1 6 11 16 21 26 31 36 41 46 1 6 11 16 21 26 31 36 41 46
Number of tree Number of tree
(b)
1 1
e Training === Validation
0.8 0.8
§ 0.6 2 0.6
g 3
S04 0.4
0.2 0.2
s Training Validation
0 0
L6 e 2 26 anS0 A a8 1 6 11 16 21 26 31 36 41 46
Number of tree
©
1 1
Training === Validation
0.8 0.8
>
§ 0.6 2 0.6
8 S
2 04 04
0.2 0.2
s | TAINING Validation
0 0
1 6 11 16 21 26 31 36 41 46 1 6 11 16 21 26 31 36 41 46
Number of tree Number of tree

Figure 11: Average accuracy vs average loss with respect to the number of trees. (a)(b)
experimental analysis of the training process of the proposed model using the Bonn EEG dataset,

(c) UCI-EEG dataset models.

5.6. Empirical analysis of the proposed framework features and models

This subsection discusses a comparative performance analysis between the pro-
posed model and various machine learning models LR, XGB, DT, NB, and RF using
optimal linear and non-linear features using two data selection methods including

5-fold cross-validation and holdout (70% training, 30% testing) methods. Figure 9
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Table 6: The computational time of the proposed framework in EEG ES detection.

Progress Time (sec)
Pre-processing 4

DWT 10.40
Feature extraction 12.10
Classification 10.03

illustrates each model’s mean accuracy, determined through 5-fold cross-validation.
Figure 9(a) and (b) highlight that the proposed model, employing optimal features,
achieved the highest mean accuracy. For the Bonn EEG dataset, mean accuracies
are 97.88% and 97.82% for cases (CD-E) and (AB, CD, E) respectively in EEG ES
detection, while NB reported the lowest mean accuracy. Furthermore, Figure 9 (c)
indicates the proposed model archived the highest mean accuracy, 97.58%, for the
UCIT case (A, B), with the NB model yielding the lowest performance.

Moreover, Tables 9 and 10 present the performance of the proposed model with
other ML classifiers using 70% training data and 30% for testing. The proposed
model, utilizing a combination of STD and FD-NL, achieved the best performance
using the experimental case (CD, E) from the Bonn EEG dataset having an accuracy
of 99.50%, precision of 98.42%, sensitivity of 98.42%, specificity of 98.40%, and
Fl-score 98.40%. Moreover, in the case (AB, CD, E) of the boon EEG data set
the proposed model achieved 99.50% accuracy, 98.40% precision, 98.30% sensitivity,
98.40% specificity, and 98.40% F1l-score. For (A, B) from the UCI-EEG, the model
reported 99.60% accuracy, 99.50% precision, 99.40% sensitivity, 99.40% specificity,
and 99.15% F1-score, while the (A, B) from the combination set from the UCI-EEG

dataset, as shown in Table 10, the proposed classifier outperformed other machine
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learning models On the other hand, the LR had the lowest performance among all

the models.
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Table 7: The experimental results of the proposed model with other sibling ML models using Bonn EEG data set.

Methods Sets ACC (%) PR(%) RE(%) SP(%) F1(%)
(CD,E) 96.67 96.50 96.50 96.40 96.40
ot (AB,CD,E) 97.10 97.10 97.00 97.70 97.05
(CD, E) 94.49 94.50 94.43 94.10 94.30
OB (AB,CD,E) 92.80 92.80 92.60 92.50 91.65
(CD,E) 95.49 95.10 94.50 94 94.30
e (AB,CD,E) 92.90 92.40 92.10 91.40 91.90
(CD,E) 94.30 93.80 93.80 93.70 94.10
P (AB,CD,E) 93.20 92.80 92.20 92.10 93.20
(CD,E) 93.07 92.20 92.10 92.05 93.01
LR (AB,CD,E) 93.60 93.30 93.20 92.90 93.60
(CD,E) 99.50 98.42 98.40 98.42 98.40
Proposed model
(AB,CD,E) 99.50 98.40 98.30 98.40 98.40




Table 8: Experimental results of the proposed model with other sibling ML, models using UCI-EEG

dataset.
Methods Sets ACC (%)  PR(%) RE(%) SP(%) F1(%)
RF (A,B) 97.10 97.05 97.00 96.80 96.90
XGB (A,B-E) 97.80 96.59 96.10 96.00 96.90
DT (A,B) 97.90 97.80 97.00 96.90 97.10
NB (A,B) 94.50 94.10 93.00 93.90 93.60
LR (A,B) 94.23 93.40 93.40 93.10 93.20
Proposed (A,B-E) 99.60 99.50 99.40 99.40 99.50
model

sis 5.7, Interpretability and Ezplainability of the proposed model using XAI

In this subsection, we explain the interpretation of all the performance of experi-
mental cases in each dataset through Explainable AI (XAI). We used SHAP (SHap-
ley Additive exPlanations), a game theory approach, to explain the decision-making
process of the models, as demonstrated by the various SHAP decision plots. These

s20 visualizations include the Summary Plot (SP) and Waterfall Plot (WP). The SP plot
is illustrated in Figure 14 (a) (b) and Figure 15 (a) providing a global interpretation
of the model of Bonn and UCI-EEG dataset of different cases.

The plot shows the feature’s importance with respect to classification perfor-
mance, revealing the influence of each global feature on the model’s outcome. The

ss  eigenvalue feature HFD_4 with large absolute SVs is identified as significant due to

their higher average impact on the model’s output. Figure 14 (c¢) (d) and 15 (b)
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Figure 12: The analysis based on FDR, FNR, FOR, and FPR of the proposed model in EEG
epileptic seizure detection. (a) Bonn, (b) UCI-EEG data set.

shows the WP plot for the Bonn and UCI cases, highlights the behavior of True Pos-
itives (TP), False Positives (FP), False Negatives (FN), and True Negatives (TN).
The WP plot uses red and blue bars to indicate features that contribute to the overall
classification score, with the ability to either decrease or increase the score. More-
over, Figure 16 (a) to (d), presents the SHAP dependence plot which describes the
relationship between two eigenvalue features of the STD and FD-NL and the effect
on their model performance. In the plot, the x-axis represents the primary feature
while the y-axis on the left side represents the secondary feature and the y-axis on
the right side represents the Shape values. In plots (a), (b), (c), (d), the primary
and secondary features across multiple domains show an increase as the shape value
increases, indicating a positive correlation with the predicted outcome. Through
these visualizations, it becomes evident that HFD_4 plays the most significant role
in distinguishing between EEG states using each dataset, while ENT_1 eigenvalues

are the least important in EEG epileptic seizure detection.
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Figure 13: The ROC curve of the proposed model using different combination sets of EEG. (a)(b)
Bonn, (c) UCL

Epileptic seizure presents significant challenges in healthcare technology. This

these signals.

is primarily due to the complex and non-linear nature of EEG signals, as well as
the influence of various factors on seizure activity. Conventional seizure detection

methods often fall short of accurately representing the dynamic proposed nature of

Furthermore, selecting the optimal features for EEG epileptic seizure (ES) de-
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Figure 14: Visual explanations for the proposed model based on different visualizations for binary
and multi-class tasks using the Bonn dataset. Subfigures (a) and (c) represent summary plots,

while (b) and (d) are waterfall plots.

tection within an automated system poses an additional challenge. The aim is
to enhance classification performance by identifying the most informative features.
Choosing effective features for use by ML models is essential to improve accuracy and
sensitivity in ES detection compared to other methods. Moreover, ensuring model

explainability and interpretability in the proposed decision-making process presents
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further challenges [30, 31, 32, 33, 34]. To the best of the authors’ knowledge, no prior
research has employed the correlation coefficient and distance correlation for linear
sss and nonlinear feature selection, the Bagged Tree-based classifier, or explored the
model’s explainability and interpretability through explainable AI, which includes

both global and local explanations.
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Figure 15: The Explainability of the proposed model performance based on different visualizations

for the binary class using the UCI- EEG dataset. Subfigure (a) represents the summary plot, while
(b) depicts the waterfall plot.

44



0.06-
. 10.09 |
5 04/ yi—_ 008 £ 0.04] o
o i L0.07 2~ ] 505 —
=402 ; 0.06—, Eg 002 205 7
;= ! 10055 & S 0.00 -2.00 =
AT 0.0 8§ <E& &5
< ; 0.04 2 =7 402 r1.95
7 02 i £0.03 7 11.90
| 0,02 -0.041 . 185
0.4 | e’ 10.01 —————————————— ’
e ] 00 05 010 0.5
0.5 0.00.5 1.0 1.5 2.0 mean 1
HFD 4 B
(@) (b)
0.14
5 8‘83' L0.12 & 215
€ _0.02 M !
= 0102 2.10
2 ='0.001 2 2.05 7
s g 0.18 & 12.00 2
Z £.0.021 0.06 & 05
S 0041 0.08 " 150
: . 11.90
[9p]
-0.06 - X 0.02 o hss
00 05 010 015 0.0 05 0.10 0.5
mean_4 HFD_4
(¢) (d

Figure 16: The Dependency plot (a)(b)(c)(d) represents the different primary and secondary fea-

tures.
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Table 9: The comparative results of the proposed model with state-of-the-art methods using the Bonn dataset.

9¥

Publ. Seg,sample Cases Methods Expl. ACC (%) Time
complex-
ity (%)

[35] NA,4097 (ABCD, TQWT +Entropy NA 99 NA

E), (AB, feature+PCA+ SVM
CD, E)
[17] NA,4097 (C-E), (D- CWT + Wavelet fea- NA 97, 96 NA
E) tures + SVM,NB
136] NA, 4097 (AB,CD,E) DTCWT + ST + NA 08 90
CVNN
137] NA,4097 (C,E) and DWT, Windowing+ NA 97 NA
(D, E) ST + LSTM
38] NA,4097 (CD,E) Normalization + NA 95.16% NA
DNN Model
[39] NA, 4097 (CD,E) FLP + PEE, Energy NA 97.17% NA
+ SVM
This work 69,1008 (CD,E DWT + STD and XAI 99.50, 35
),(AB,CD,E)FD-NL, + CC and 99.50
DC +

Exple:Explainability ;DTCW'T, Dual-tree complex wavelet transform; TQW'T, Tunable Q wavelet transform; CVNN,

Complex value neural networks; CC, correlation coefficient;DC, distance correlation;ST,statistical features.
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Table 10: The comparative results of the proposed model with state-of-art methods using the UCI-EEG dataset.

Publ. Seg,sample Cases Methods Expl. ACC (%) Time
complex-
ity (%)

[40] Event based (AB-E) FT +178 features NA 97,96, 95  NA

+SVM, KNN, ANN

[41] Event based (A,B) DCPA-EZ + DCPA- NA 98.10 NA

EZ
[42] Event based (A,B) 178 features +SVM, Event 95, 96.40, NA
KNN, ANN, LDA based 93, 94

[43] Event based (A, B) FFT + wavelet fea- NA 97.40 NA

tures + SOM-RBFnn

[44] Event based (A,B) FFT+ 178 features+ NA 94, 93,92 NA

NAMLP, ANN, SVM
This work 86,1330 (A,B) DWT + FD-NL,STD XAI 99.40 19

features + feature se-
lection (CC and DC)
+

Pub: Publication; Exapl, Explainability; DCPA-EZ, deep canonical sparse autoencoder-based epileptic seizure de-

tection; SOM-RBFnn, self-organizing map radial basis function neural network; FFT, Fast Fourier transform.
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In addressing the challenges of EEG epileptic seizure detection, the proposed
study presents a comprehensive framework that integrates various components, which
includes EEG signal decomposition, noise mitigation, statistical time domain (STD),
and Fractal Dimension-based (FD) non-linear feature extraction, with innovative
feature selection methods. The proposed Bagged Tree-based classifier effectively
addresses over-fitting concerns and enhances interpretability through Explainable
Artificial Intelligence (XAI).

Performance evaluations using the Bonn and UCI-EEG datasets validate the ef-
fectiveness of the proposed framework. The results (Figure 10) indicate optimal
performance at a correlation coefficient (CC) value of 0.8. Beyond the proposed
threshold,even increases in CC did not improve accuracy. Therefore, the CC value
of 0.8 serves as the threshold for the model’s learning and streamlines feature selec-
tion. The proposed framework incorporates FD-based linear and non-linear features
extracted through wavelet decomposition. The approach uses both the linear and
complex attributes of EEG signals, thereby enhancing the model’s discrimination
capacity. Comparison with various machine learning models (DT, RF, XGB, LR,
NB) via 5-fold cross-validation demonstrates the superior performance of the pro-
posed model. The proposed model consistently outperforms other ML models using
the Bonn and UCI-EEG data set showing the effectiveness of the proposed model.
The model used the selected non-linear and STD linear features, effectively distin-
guishing the seizure, non-seizure, and transition EEG states. The proposed model
performance is benchmarked against recent state of art methods validated by Bonn
and UCI- EEG datasets (Tables 9 and 10), consistently outperformed existing meth-
ods, with an average accuracy of 99.50% for Bonn and 99.40% for UCI-EEG dataset.

Explainable AT (XAI) through SHAP presents the interpretation of the proposed

model decision-making to medical experts. Summary and Waterfall Plots highlight
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the important features and their contributions to classifications.

In summary, the proposed methods significantly enhance EEG epileptic seizure
detection, not only enhancing the accuracy but also explaining the decision-making
process, a key advantage in healthcare settings where understanding model decisions
is crucial. The high precision, sensitivity, and accuracy of the proposed framework
highlight its potential for healthcare professionals in diagnosing seizures. The com-
prehensive understanding of EEG signals, improved feature selection through op-
timized correlation coefficients, robust overfitting management by the model, and
transparent decision-making via SHAP collectively contribute to informed decision-
making, enhancing patient care and outcomes in epilepsy management, while the
proposed framework offers several advantages, it is essential to acknowledge its lim-
itations. The proposed framework is best for the patients specifically. In future
studies, our goal is to apply the framework to patient-independent, utilizing larger

and more comprehensive clinical datasets.

7. Conclusion

In this study, we introduce an automatic EEG epileptic seizure detection frame-
work that applies novel feature selection methods, a Bagged Tree-based classifier, and
Explainable Artificial Intelligence (XAI). Initially, the pre-processing of EEG signals
using a Butterworth filter to reduce noise and artifacts. Then, discrete wavelet trans-
form (DWT) based decomposition is applied, and statistical time domain linear and
FD-nonlinear features are extracted from each decomposition level. The use of a
novel correlation coefficient for linear features and distance correlation for non-linear
features enables effective feature selection, improving the model’s performance in
EEG epileptic seizure detection. The model exhibits the best performance metrics

in accuracy, precision, and sensitivity, effectively addressing the over-fitting issue.
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Validation through Bonn and UCI EEG benchmark datasets confirms the model’s
robustness and reliability in detecting epileptic seizures. The important aspect of
the proposed framework is the incorporation of XAl, achieved through SHapley Ad-
ditive Explanations (SHAP), which interprets the model’s decision-making process,
and explains the impact of each feature on the model’s output. The future will
focus on patient-independent multimodel data using the proposed framework with
explainability and interpretability to facilitate the clinical decision-making process

in epilepsy management.
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