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Abstract

Electronics are fundamental to most engineering systems. Despite increasing demand

driven by rapid digitalization, the Internet of Things, and autonomous vehicles,

Prognostics and Health Management (PHM) for electronic systems, particularly

those with safety-critical functions, remains limited. While interest in applying

machine learning to PHM is growing, its adoption in electronic systems is still

in its early stages. This thesis presents a data-driven real-time PHM framework

for condition monitoring, fault diagnosis, and multi-step ahead forecasting, all

integrated into an unified data pipeline and deployed directly on the edge device.

An optimal model is first developed by reducing system measurement noise through

exponentially weighted moving average (EWMA) and exponentially weighted moving

standard deviation (EWMS). This is followed by feature selection using SHAP

(SHapley Additive Explanations), an additive feature attribution method. Finally,

hyperparameter optimization is performed using a well-defined search space, and the

model’s performance is validated through cross-validation. The optimized model,

an adapted multivariate bidirectional LSTM (Bidi-LSTM), is then deployed on the

target embedded system for real-time inference and multi-step ahead forecasting.

The proposed PHM methodology was evaluated in two real-world case studies: (1)

an electronic control unit (ECU) used in industrial applications and (2) battery

state-of-charge (SOC) estimation for lithium-ion batteries. The data-driven PHM

framework outperformed state-of-the-art model-based methods, including Kalman

filter-based estimators. It achieved an overall classification accuracy exceeding

99.98% in the ECU experiment and demonstrated superior performance in SOC

estimation, with a lower mean absolute error (MAE) and improved forecasting

accuracy. The optimal models were deployed on two hardware testbeds to evaluate

execution time and resource consumption, yielding positive results for both case

studies. The results confirm the generalization capability of the proposed PHM

framework, demonstrating its adaptability to different embedded systems with
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minimal adjustments. By integrating real-time inference and multi-step-ahead

forecasting, this approach provides actionable insights for predictive maintenance,

enhancing system reliability and operational efficiency.
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Chapter 1

Introduction

This thesis evaluates the practical feasibility of using data-driven methods, based

on input-output measurements, as an alternative to model-based approaches for

Prognostics and Health Management (PHM) in real-time embedded systems. It

explores and implements various machine learning algorithms on real datasets,

proposing an optimal method for the analysed systems. Additionally, the thesis

emphasizes generalisation and real-time performance, ensuring the proposed methods

are applicable across different embedded system scenarios.

The focus of this research is on system-level electronics, including subsystems and

system-of-systems levels, rather than individual devices, components, or lower-

level implementations. A comprehensive comparison with model-based methods,

thoroughly tested and validated, is also presented.

This chapter begins by introducing the research background, followed by the problem

statement and research motivation. It then defines the main objectives and research

questions. Additionally, the chapter outlines the key contributions of the thesis and

provides an overview of the subsequent chapters.
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1.1 Background Information

1.1 Background Information

Electronics are crucial building blocks of most engineering systems. The demand

for electronics is at an all-time high due to rapid digitalization, the Internet of

Things and autonomous vehicles. Miniaturization of electronics, reduction of time

to market and new functionalities, especially in the context of autonomous driving,

electrification, and connectivity, are bringing about new reliability challenges [1].

Malfunctioning, failure, or miscommunication will likely cause catastrophic acci-

dents, and therefore must be avoided through effective monitoring systems capable of

predicting failures and providing timely warnings. Prognostics and Health Monitor-

ing (PHM) for electronics primarily involves data acquisition, diagnosis, prognosis,

and maintenance. Functional safety is a key motivation for the development of

PHM, and it has been widely implemented in sectors such as avionics and large

mechanical systems. During the diagnostic stage, the root cause of faults or the

nature of failures is identified. This enables the estimation of the Remaining Useful

Lifetime (RUL) of the component in focus, which may need to be supplemented

with additional experimental data [2]. Prognosis of RUL is performed based on

knowledge of the processes causing degradation and leading to system failure [3].

The ultimate goal of the PHM framework is to predict the system’s lifespan and issue

a warning before any catastrophic consequences occur. To achieve this, monitored

precursors should be used efficiently and quickly for prediction. However, most ex-

isting PHM methodologies involve a series of data processing algorithms, which can

be resource-intensive, consume high power, and be computationally demanding [1].

The ability to monitor the current state of the systems and predict their behaviour

becomes essential. Therefore, techniques for establishing fault tolerance and fault

prediction are necessary [4].

A PHM Functional Model for electronics is defined in [5] as the reference or frame-

work for performing engineering design analysis at the device, component, assembly,

system, or system-of-systems level. This classification is based on failure modes

and precursors, events that signify impending failure [2]. Embedded systems are

examples of dependable systems, which are required to be dependable from failures,

mishaps and attacks [6]. The study of various types of embedded systems shows that

they share four common requirements: dependability, real-time constraints, resource

consumption and a long operational life-cycle. Real-time embedded systems are used
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in several safety-critical domains, including aerospace, automotive and industrial

applications. In these domains, ensuring high dependability is essential [7].

Three approaches to PHM are: data-driven, model-based, and fusion (also called

hybrid), which combines the first two approaches [1], [2], [8], [9]. However, the fusion

approach is less commonly discussed in the literature, as developing an effective

hybrid model remains a challenge [2], [10]. A model-based approach assumes that

the system internal states are accessible whilst the data-driven assumes the state-

space inaccessibility [1], [11]. The challenge of modelling a process lies in finding a

mathematical model that can describe its dynamic input-output behavior, given

input-output measurements and prior knowledge about the process [12]. Data-driven

approaches are often considered “black box” methods for PHM because they do

not require system models or specific system knowledge to begin prognostics [3].

Furthermore, data-driven approaches can be applied to complex and nonlinear

systems, as they can model correlations between parameters, interactions between

subsystems, and the effects of environmental factors using in situ data from the

system. These methods can model degradation characteristics based on historical

sensor data, revealing underlying correlations and causalities, and enabling the

estimation of system information such as RUL [13].

1.2 Problem Statement and Motivation

A number of publications emphasize that Prognostics and Health Monitoring (PHM)

is not yet well developed for electronic systems, especially those with safety-critical

functionality [1], [3], [10], [14], [15], [16]. Literature reviews on techniques for

implementing PHM in safety-critical embedded electronics suggest that machine

learning techniques hold promise for achieving the required levels of prognostics and

performance, offering solutions to complex problems that traditional approaches

could not solve, or improving the performance of existing systems [17], [18]. The

concept of PHM is not new, but its application to electronic systems is relatively

recent. PHM for electronics is still an emerging field, and much work remains to

be done. While PHM has been applied to other fields for some time, it has only

recently been considered for electronics. Extensive research has been conducted on

PHM for mechanical systems, but much less attention has been given to PHM in
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the context of electronic systems [2], [3], [19]. According to [1], there are no review

papers that provide a simple, intuitive overview of the application of intelligent

algorithms in PHM for electronics. The authors also found that the number of

machine learning applications at the system level is still limited, which reflects

the difficulty of achieving comprehensive system monitoring. Most of the research

on failure diagnostics and prognostics in the literature focuses on component-level

health assessments. However, complex engineering systems are composed of multiple

interacting components, and the failure of any component can significantly impact

overall system performance. Based on the current knowledge about PHM available

in the literature, it is identified that achieving high-level prognostics accuracy in an

integrated and automated system is still an issue [15], where development of PHM

methodologies for system-level monitoring is just as important as component-level

PHM [16], [20].

A limitation of data-driven approaches is their reliance on training data. These

methods depend on historical system data to determine correlations, establish

patterns, and evaluate trends that lead to failure [13]. Data-driven approaches use

statistical pattern recognition and machine learning to detect changes in parameter

data, enabling diagnostic and prognostic calculations. While data-driven techniques

in PHM were initially based on statistical methods, advances in sensor technology

and signal processing have made artificial intelligence (AI) techniques increasingly

popular [8]. Today, AI and machine learning (ML) algorithms are integrated into

PHM approaches, allowing for more complex fault diagnoses [1]. Additionally, the

use of machine learning for PHM of safety-critical embedded systems has gained

significant interest [21]. While machine learning has been widely applied in many

fields, its use for embedded systems, particularly those with safety-critical functions,

is still emerging. Machine learning is expected to help solve complex PHM and

RUL challenges that are difficult to address with traditional methods [4].

From a generalisation perspective, it would be interesting to explore whether, in

the context of Big Data and deep learning, a single algorithm could be employed

to address all levels of prognostics, depending on input size and data quality.

Nevertheless, the ongoing advancements in AI will play a key role in the development

of future PHM systems across various fields [1], [18]. The use of a fusion (or

hybrid) approach remains a challenge from an implementation perspective. The

hybrid approach aims to combine the strengths of both model-based and data-
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driven methods while minimizing their weaknesses. The fusion of data-driven

and model-based approaches is critical for the performance of PHM systems [2].

However, a significant challenge remains in developing a suitable mathematical

model that can accurately describe the system dynamics and its processes [12].

Combining physical models with advanced data-driven techniques like deep learning

remains particularly difficult [13]. There are also many other challenges to be

addressed in the development of system-level PHM methodologies. These challenges

include model structure and parameter uncertainties, nonlinearity in system models,

environmental effects, measurement noise, and interactions between component

degradation processes [16], [20].

Another important aspect for the PHM of embedded systems is the ability to antici-

pate a potential failure and prevent catastrophic failures, especially for safety-critical

systems. In this context, multi-step ahead (MSA) forecasting provides significant

benefits by allowing for longer-term predictions, better system management and

predictive maintenance. Several publications related to multi-step ahead forecasting

for real-world applications have been identified [22]: these models include those for

predicting critical levels of abnormality in physiological signals, flood forecasting

using RNNs, nitrogen oxide emissions forecasting, electric power load forecasting,

and even earthquake and seismic response prediction. However, to the best of our

knowledge, there are relatively few studies on MSA forecasting for embedded elec-

tronics, highlighting its scarcity as an area worthy of further research. In addition,

multi-step forecasting is very challenging and there are a lack of studies available

that consist of machine learning algorithms and methodologies for multi-step ahead

forecasting [23]. Similarly, there is limited research on MSA prediction for the

State of Charge (SOC) of Lithium-ion batteries. In [24], a statistical model is pro-

posed for predicting SOC under high charging/discharging rates (C-rates). Machine

learning-based MSA estimation for the long-term prognosis of Lithium-ion battery

conditions is explored in [25], [26], and [27].
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1.3 Research Objectives

This thesis addresses real-time condition monitoring and prognostics for microcon-

trolled embedded systems, enabling real-time inference and forecasting at system-

level using data-driven methods.

The objectives of this thesis are to:

• Evaluate the use of machine learning-based data-driven modelling for the

prognostics and health management of embedded systems to prevent potential

catastrophic failures. The results obtained through these approaches shall

meet well established performance criteria to demonstrate the feasibility of

using data-driven models instead of other approaches, such as model-driven

modelling.

• Selected appropriate machine learning models, particularly deep learning

techniques such as long short-term memory (LSTM) with higher model signif-

icance, able to cope with long datasets where past data is as important as

recent ones for fault classification.

• Test the selected models on a real-world dataset to verify the model’s accuracy

and significance, validate the proposed framework and measure the overall

system classification.

• Provide, with the selected model, a real-time inference for the system’s health

condition monitoring as well as multi-step ahead forecasting for long-terms

predictions.

• Propose a comprehensive framework encompassing a thorough offline schema

to determine an optimized model significance and accuracy.

• Test the proposed framework on a different system to verify its potential for

generalisation.

• Test the proposed framework against a model-based state-of-the-art imple-

mentation of the new system.

• Test the proposed framework for inference and multi-step ahead real-time

performance on selected embedded platforms.

29



1.4 Scope and Research Questions

1.4 Scope and Research Questions

The primary Research Questions (RQ) that guide this work and provide a framework

for the research are as follows [4]:

I. RQ1: Can data-driven machine learning algorithms, particularly those based

on recurrent neural networks, be effectively utilised and trusted for the PHM

of electronic systems to predict catastrophic failures?

II. RQ2: Are the results obtained from data-driven machine learning algorithms

sufficiently explainable to be trusted and understood, particularly for reliability

assessments and root cause analysis?

III. RQ3: What are the most suitable machine learning techniques for the

Prognostics and Health Management (PHM) of real-time embedded systems.

These research questions are explored in detail in the subsequent chapters.
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1.5 Thesis Contributions

In this thesis, we propose a novel data-driven, system-level PHM (Prognostics

and Health Management) methodology for real-time embedded systems. The

proposed methodology emphasizes generalisation [28] and real-time performance [29].

Additionally, the novel method is compared with state-of-the-art model-based

implementations to evaluate their accuracy and suitability for the proposed datasets.

The key contributions of this thesis can be summarised as follows:

1. A novel real-time PHM methodology for a system-level approach,

based on recurrent neural networks, used by embedded systems.

This efficient methodology includes three stages: an offline processing schema

that identifies cause-and-effect relationships between outputs and relevant

inputs; provides noise immunity to handle various system signals; optimises the

mapping of complex nonlinearities and time-variability through an automated

process; and establishes the estimator with the lowest risk across all candidate

models. The online processing is divided into two stages: real-time data

processing for online inference and multi-step ahead forecasting for providing

an operational advisory window.

2. A large real-world dataset with over 2,000 hours of continuous data.

The dataset was collected from an electronic control unit located at an remote

access industrial environment and data was retrieved every minute performing

over 130,000 datapoints. This valuable dataset was used to test and validate

the novel real-time PHM methodology, with results that exceeded a model

precision score > 99.97% for the real-time inference.

3. A multi-step ahead forecasting estimator for embedded systems to

provide an operational advisory window to prevent catastrophic fail-

ures. The multi-step ahead (MSA) forecasting estimator is a hybrid approach

combining statistical regression methods (ARIMA) to forecast explanatory

variables in real-time with optimised machine learning models based on an

adapted multivariate bidirectional long short-term memory (LSTM) algorithm.

This estimator forecasts future values of interest according to the specified

horizon (H). For a horizon of 30 future timesteps, the model achieved a

precision score of > 80% for the real-time implementation.
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4. A thorough comparison of the proposed novel data-driven real-time

PHM method with a state-of-the-art model-based approach. A state-

space model for a nonlinear dynamic system is proposed, and online state

estimators based on Kalman filters are implemented. Two variants of Kalman

filters were used: the extended Kalman filter (EKF) and the unscented Kalman

filter (UKF). These models were applied to the battery dataset in Chapter 6,

and the results were compared with those of the proposed novel data-driven

PHM method.

5. A complete framework for battery state of charge (SOC) determina-

tion using the novel data-driven PHM method, including multi-step

ahead forecasting. The data-driven PHM method, built upon extensive

offline training and feature selection, allowed for more accurate SOC determina-

tion compared to model-based methods. The PHM-based SOC determination

outperformed state-of-the-art methods in the literature in terms of mean

absolute error (MAE) for all drive cycles tested. The results were consistently

kept below the 1% threshold, which is considerably better than the 2% found

in the literature. Additionally, the maximum absolute error (MaxAE) was

lower than those computed for both EKF and UKF. The MSA forecasting

estimator was also tested on two different hardware platforms, achieving

results within two seconds on one platform and four seconds on the other,

demonstrating its feasibility for deployment in real-time environments
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1.6 Thesis Organisation

The contents of the remainder of the thesis are structured as follows:

Chapter 2 reviews related work, providing a comprehensive investigation of the

state-of-the-art in Prognostics and Health Management (PHM) for electronic sys-

tems, establishing the foundation for the remainder of this thesis. The chapter

presents a detailed review of machine learning techniques and their application in

PHM, offering insights into current advancements and emerging trends. Finally, it

explores multi-step ahead (MSA) forecasting in PHM, emphasizing its benefits, key

application areas, and the growing role of data-driven methodologies in predictive

maintenance.

Chapter 3 discusses both model-based and data-driven approaches for nonlinear

discrete systems. To enable a comparison between the proposed data-driven method

and state-of-the-art model-based algorithms, two implementations of Kalman filters

are presented: the Iterated Extended Kalman Filter and the Unscented Kalman

Filter. The mathematics and underlying assumptions of these approaches are

discussed in detail. Additionally, a deep learning method of interest is introduced:

Recurrent Neural Networks (RNNs) and their use as universal approximators. The

chapter further examines Long Short-Term Memory (LSTM) networks, a specialised

type of RNN, for their inherent advantages, particularly their use of memory blocks.

A bidirectional LSTM architecture is proposed as the candidate for the novel PHM

methodology.

Chapter 4 details the novel data-driven PHM methodology, which comprises

three main stages: offline processing, real-time inference, and multi-step ahead

forecasting. A method overview is provided, along with a data flow diagram

outlining the stages. In the offline processing section, a method for handling

noisy measurements using Exponentially Weighted Moving Average (EWMA) and

Exponentially Weighted Moving Standard Deviation (EWMS) is proposed. Feature

extraction is discussed as a means of identifying important system information

indicative of health state transitions in system degradation. SHAP (SHapley

Additive exPlanations) is introduced for model explainability, focusing on feature

attributions. The chapter also covers automated hyperparameter optimization

and model selection. It concludes with a detailed explanation of real-time data
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processing and multi-step ahead forecasting strategies.

Chapter 5 focuses on the first experiment of the thesis, which involves a real-world

dataset from an electronic control unit, operating remotely. The real-time data,

gathered from multiple sensors and actuators, is pushed to a cloud server where it

is processed for condition monitoring and historical data analysis. The proposed

PHM methodology is applied to assess a faulty state that led to system downtime.

Nine different machine learning models are implemented and compared based on

their deviation from the true state, particularly during faulty conditions. Both

real-time state estimators and multi-step ahead forecasting are evaluated, and the

results are discussed in detail.

Chapter 6 presents the second experiment, which involves the real-time estimation

of the State of Charge (SOC) of a Lithium-ion battery system. The novel PHM

method is compared with a model-based approach that uses a Second-Order RC

Thevenin Battery Model. The system equations and state-space modelling are

described. A rich, publicly available dataset is used for comparison. The model-

based SOC estimation is performed using the Kalman filter techniques discussed in

Chapter 3, while the data-driven PHM method relies solely on input-output (I/O)

data and their intrinsic correlation. The results are compared and discussed for

both real-time inference and multi-step ahead forecasting.

Finally, Chapter 7 discusses the potential for generalisation achieved in this thesis,

summarizes its conclusions and key achievements, and outlines directions for future

research.
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Chapter 2

Related Works

This chapter reviews related work on Prognostics and Health Management (PHM)

for electronic systems, defining the appropriate taxonomy, capabilities, and current

approaches. The discussion focuses on embedded systems, providing a detailed

analysis of dependability in the context of PHM. After establishing the terminology

and scope, the chapter presents a comprehensive review of machine learning appli-

cations in PHM, offering insights into the current state of research and emerging

trends. Finally, the chapter explores multi-step-ahead (MSA) forecasting in PHM,

highlighting its advantages, key applications, and the growing role of data-driven

methodologies in predictive maintenance.

2.1 Prognostics and Health Management

Prognostics and Health Management (PHM) and Condition-Based Maintenance

(CBM) have emerged in recent years as significant technologies that are having a

substantial impact on both military and commercial maintenance practices [30].

There are several definitions for PHM of electronic systems in the literature, includ-

ing those provided in [1], [3], [5], [31] and many others.

The definitions presented in [32], [33] and [34] offer a comprehensive coverage:

Prognostics and Health Management is an approach to system life-cycle support

that aims to reduce or eliminate inspections and time-based maintenance. This is
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achieved through accurate monitoring, incipient fault detection, and the prediction

of impending faults. Prognostics (P) involves using appropriate models to assess the

degree of performance degradation and predict the Remaining Useful Life (RUL) of

the system.

Health Management (HM) integrates outputs from monitoring, diagnosis, and prog-

nosis to make optimal maintenance and logistical decisions, considering factors such

as economic costs and available resources. Overall, PHM significantly enhances

operational safety, system reliability and maintainability, while simultaneously re-

ducing lifecycle costs [33]. And yet, [35] defines PHM in the IEEE standard as a

maintenance and asset management approach that utilizes signals, measurements,

models, and algorithms to detect, assess, and track system degradation, as well as

predict failure progression. The goal is to protect the integrity of the equipment and

avoid unanticipated operational issues that could lead to performance deficiencies,

degradation, or adverse effects on mission safety [5].

Some of the key functional capabilities of PHM systems, as outlined in [30] and [36]

are listed in the table below:

Table 2.1: PHM Capabilities

PHM Functions

Fault Detection

Fault Isolation

Condition Monitoring

Performance Degradation

Trending Tracking

Fault Prediction

Predictive Prognostics

Remaining Useful Life

Information Management

Decision Making Support

2.1.1 Taxonomy of Related Terms

There have been many attempts to correlate PHM with other approaches and tech-

niques such as anomaly detection, condition based maintenance, health management
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and others [33], [37], [38], [39]. After a careful review process, the taxonomy of the

related terms can be accurately defined:

• Condition Monitoring (CM): This refers to the application of the ap-

propriate sensors (data), analysis (knowledge), and reasoning (context) to

estimate the health and track the degradation of equipment. Usually assumes

human-in-the-loop processing [30], [40].

• Condition Based Monitoring (CbM): This approach uses of machinery

run-time data to determine the machinery condition and hence its current

fault/failure condition, which can be used to schedule required repair and

maintenance prior to breakdown [30], [40].

• Remaining Useful Life (RUL): This refers to the remaining time before

system health falls below a defined failure threshold [40], [41]. RUL is the

remaining time-cycles before requiring maintenance [42], the left-over opera-

tional time of an asset before failure [43]; or the prediction of future failure

time or the remaining time to maintain regular operation [44].

While CM focuses on the present status of the system, PHM extends this to the

future [19]. PHM not only monitors the current condition but also predicts future

damage progression and estimates the Remaining Useful Life (RUL). Figure 2.1

shows the relationship of CM, PHM and RUL.

Prognostics and Health Management (PHM)

Fault

Detection
Condition

Monitoring
Diagnosis

CbM

Prognosis

PM

RUL

Figure 2.1: Relationship of CM, PHM and RUL
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2.1.2 PHM Approaches

Three approaches to PHM are presented in the literature [2], [3], [8], [9], [19], [40]:

data-driven, model-driven and fusion (or hybrid) approaches.

The model-based approach to PHM uses mathematical representations to incor-

porate a physical understanding of the system, including both system modelling

and physics-of-failure (PoF) modelling. Prognosis of RUL is performed based on

knowledge of the processes that cause degradation and lead to system failure [3].

Data-driven techniques leverage data to provide intelligent decision-making infor-

mation. Anomalies, trends, and patterns are detected in data collected by in-situ

monitoring to assess the health status of the system. These trends are subsequently

used to estimate the time to failure [3]. As explained in [16] and [20], the data-driven

approach can predict RUL through statistical and probabilistic methods. This

approach identifies a suitable damage propagation model by analyzing collected

data on degradation paths and relevant operating conditions. Once the model is de-

veloped, future system states can be predicted using mathematical models, weighted

parameters, and other derived factors based on training data under various usage

conditions. The data-driven approach focuses on identifying system characteristics

and future behaviors based on trends in the data and indicative parameters of the

system’s health.

Statistical and machine learning techniques are commonly used to detect changes in

component performance and degradation. Supervised machine learning, in particu-

lar, addresses the issue of extracting a model from labeled training data, which can

then be used to make predictions on new data from the same underlying distribution,

while minimizing error.

The data fusion (hybrid) approach combines the strengths of both data-driven and

model-based methods to provide an optimised, accurate prognostics solution. This

approach first detects failure mechanisms, critical components, and monitoring

parameters using the data-driven method. Then, the model-based approach is

employed to assess product damage. The RUL of the product is estimated by com-

bining the results from the model with anomaly trends identified by the data-driven

method.

A further classification of PHM approaches and the technologies they use is provided

in [45], as shown in Fig. 2.2.

38



2.1 Prognostics and Health Management

PHM Approaches

Data-Driven Model-Driven Fusion

Statistical
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Figure 2.2: Classification of PHM approaches

2.1.3 PHM for Electronic Systems

Embedded systems are classified as dependable systems, meaning they must be

resilient to failures, mishaps, and attacks [6]. A comprehensive review of dependable

systems is provided in Section 2.2.

Although prognostics and health management (PHM) have been widely used in other

areas, their application to electronic systems has only emerged recently [1], [2], [3]

and [4]. According to [1], no review papers provide a simple and intuitive overview

of the application of intelligent algorithms in PHM for electronics.The challenges

are diverse, including scale and complexity, varying load cases, failure modes,

computational costs, and efficient data acquisition.

Therefore, defining prognostics levels for electronics becomes very relevant. Six

prognostics levels for electronics have been defined in the literature [1], [5] and [46].

A “PHM Functional Model” is outlined in [5] as a reference framework for performing

engineering design analysis at the device, component, assembly, subsystem, system,

or system-of-systems level. This model aims to characterize existing foundational

layers, design integration strategies, and identify necessary, and potentially missing,

functions required to implement PHM. Further details about these levels are provided

in Table 2.2.
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Table 2.2: Electronic Levels Description

Level Prognostic Level Description

0 Device Basic level of any electronic system, i.e. chip and

on-chip areas. Circuits and metallization failures come

under this level.

1 Component Components that are not expected to function

individually if they are disassembled. Passive

components such as resistors, capacitors, IGBTs,

MOSFETs, wirebond, lead-frames belong to this level.

2 Assembly Interconnections such as solder balls, leads along with

circuit board. Key sites on the circuit boards like vias,

traces, through hole, and pads are also included in this

level.

3 Subsystem This level includes an individual component like video

cards, hard drives and power supply systems. This also

covers connections for PCBs, enclosure elements, and

supportive chassis.

4 System An entire, modular electronic product, for example,

electronic control units, computers, high-level controllers

and others belong to this category

5 System-of-

systems

It is a system of electronic systems. It consists of several

level 4 products connected by physical or digital

communication system. Connections between systems

are also labelled as level 5 in this study.

2.1.4 System-Level Approach

As industrial systems become more complex, consisting of multiple interconnected

components, system-level prognostics is gaining increasing attention from both

industry and academia [47]. Machines equipped with sensors and actuators are

essential for executing physical processes [48]. The distinction between component-

level and system-level prognostics is summarised in [47]. Examples of system-level

prognostics include systems such as aircraft engines, robotic arms, and rotating

machinery. These systems require multiple sensors for operation and typically

present limited failure data from the field. Since model-based methods are often

unavailable, data-driven methods are preferred. These approaches use data collected

from installed sensors to build mathematical models for estimating RUL [47].

40



2.1 Prognostics and Health Management

There is a limited number of machine learning applications for system-level PHM

of electronic systems, according to [1]. This highlights the challenges of applying

PHM at the system level for comprehensive monitoring. Most regression-based

algorithms in use are related to level “2” and level “1” prognostics. Filter-based

methods are also quite popular in both of these levels.

Generally, much of the research in failure diagnostics and prognostics of assets focuses

on component-level health assessment. However, complex engineering systems

consist of multiple interacting components, and the failure of one component can

significantly impact the system’s overall performance. Therefore, developing PHM

methodologies for system-level monitoring is just as important as for component-

level systems.

Although some papers address system-level PHM, many issues and challenges

remain in developing adequate methodologies. Challenges for system-level PHM

include model structure and parameter uncertainties, nonlinearity of system models,

environmental effects, measurement noise, and interactions between component

degradations [16], [20].

Based on current knowledge in the literature [8], [47], [49], it is noted that achieving

high-level prognostic accuracy in integrated and automated systems remains a

challenge.

Despite significant progress in PHM over recent years, many challenges persist,

especially in automotive electronics. For instance, computational techniques need

to be improved to handle large volumes of data more efficiently and accurately.

Another challenge is dealing with unexpected new faults in automotive electronic

components, which complicates predicting the RUL. Future research is expected to

focus on developing comprehensive PHM systems that ensure accuracy, rather than

merely detecting faults [3], [47].

PHM implementation levels in electronics are defined in [5]. Proper classification of

an electronic system is essential to help manufacturers or users select the appropriate

methodology for implementing PHM capabilities.

According to [5], subsystem-level PHM for electronics can be defined based on the

functionality of a group of assemblies, such as printed circuit board assemblies

(PCBAs), which are grouped together in a specific geographical location. Examples

of subsystems include electronic control units (ECUs), transmitters, receivers, and

power supplies. Yet, system of systems (SoS) refers to a set of independent and use-

ful systems that, when integrated, deliver unique capabilities. Examples of systems
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of systems include aircraft, trains, automobiles, seagoing vessels, and integrated

communication, navigation, and identification systems. A review of system-level

prognostics approaches is presented in [47].

At the component level, a single or a set of sensors — such as vibration, acoustic

emission, and temperature sensors — can be used to monitor degradation. Since

components are easier to test, a large amount of failure data can be collected from

a testbed for algorithm development. Furthermore, dedicated algorithms can be

developed for feature extraction specific to the target component.

On the contrary, system-level prognostics involve multiple sensors from various

components, making it more complex. Dedicated algorithms may not function

effectively across the entire system. Additionally, due to the complexity of the

system, models are rarely available, meaning that data-driven methods may be

the only viable option. Real operational failure data may be scarce or nonexistent,

which further complicates system-level prognostics.
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2.2 Dependable Systems

Dependability is defined as the ability of a system to deliver a service that can be

justifiably trusted, or more specifically, as the ability of a system to avoid failures

that are more severe or frequent than acceptable to users. It can also be understood

as a system property that prevents failure in unexpected or catastrophic ways [50].

Embedded systems are examples of dependable systems, which shall be dependable

from failures, mishaps and attacks [6]. The study of various types of embedded

systems reveals that they share four common requirements: dependability, real-time

constraints, resource consumption and long operational life-cycle.

Safety-critical systems are another category of dependable systems [51]. Safety-

critical systems are those whose failure could result in loss of life, significant property

damage, or harm to the environment [52], [53].

According to [54] dependability is an integrating concept that encompasses the

following attributes:

Table 2.3: Dependability Attributes

Attributes Definition

Availability Readiness for correct service

Reliability Continuity of correct service

Maintainability Ability to undergo modifications and repairs

Safety Absence of catastrophic consequences on the user(s)

and the environment

Integrity Absence of improper system alterations

For various types of systems, dependability, according to [54], has the five attributes

defined above, threats (that may affect a system during its entire life) and means

(to attain the envisaged dependability). Threats to dependability are classified as

failures, errors or faults. A service failure, or simply ”failure”, is an event that

occurs when the delivered service deviates from correct service. Since a service is a

sequence of the system’s external states, a service failure means that at least one

(or more) external states of the system deviates from the correct service state.

The deviation is called an error. The adjudged or hypothesised cause of an error

is called a fault. Faults can be internal or external of a system. Means have been

developed to attain the various attributes of dependability. They are grouped in
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four major categories, namely fault prevention, fault tolerance, fault removal and

fault prediction (forecasting). Means are further described below:

• Fault Prevention: means to prevent the occurrence or introduction of faults.

It is considered to be part of general engineering practices. Fault prevention

schemes are usually implemented during specification, design, implementation

and tests.

• Fault Tolerance: means to avoid service failures in the presence of faults.

Fault tolerance which is aimed at failure avoidance, is carried out via error

detection and system recovery.

• Fault Removal: means to reduce the number and severity of faults. Fault

removal is considered in two phases, during system development and during

system use. Fault removal during the development phase of a system lifecycle

consists of three steps: verification, diagnosis, and correction. These three

steps are related to V&V (verification & validation) of the system, prior to

its use. Fault removal during use of a system is corrective or preventive main-

tenance. Corrective maintenance aims to remove faults that have produced

one or more errors and have been reported, while preventive maintenance

is aimed at uncovering and removing faults before they might cause errors

during normal operation.

• Fault Prediction (or Forecasting): means to estimate the present number,

the future incidence, and the likely consequences of faults. Fault forecasting is

conducted by performing an evaluation of the system behaviour with respect

to fault occurrence or activation.

Fig. 2.3 shows the dependability tree with its attributes, threats and means.
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Embedded Systems

(Dependability)

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Security

Fault

Error

Failures

Development Faults

Physical Faults

Interaction Faults

Service Failures

Development Failures

Dependability Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Prediction

Error Detection

Recovery

Verification

Diagnosis

Correction

Non-regression Verification

Qualitative Evaluation

Quantitative Evaluation

Figure 2.3: Dependability Tree (with Attributes, Threats and Means)

2.3 Taxonomy of Faults

At this point, it is important to define and differentiate terms that are misused

throughout the literature. Definitions below are taken from [55], IEC standard area

192 - Dependability.

• Fault: is the event of an item characterised by its inability to perform a

required function. This excludes the deliberate disabling of the item to
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accommodate planned activities, such as planned maintenance, or due to a

lack of external resources. [IEC 192-04-01]. After fault, the item may have a

failure. Fault is an event and is distinguished from a failure which is a state.

• Failure: is defined as the cessation of the ability of an item to perform its

intended function to a defined accuracy [IEC 192-03-01].

• Error: Discrepancy between a computed, observed, or measured value or

condition and the true, specified, or theoretically correct value or condition.

[IEC 192-03-02].

• Anomaly: Any deviation from required, expected, or desired performance of

the object system [5].

Fig. 2.4 depicts the relationship between the terms within this subsection.

Failure

Fault

Error Anomaly

May 

cause

Is 

possibly

May 

cause

Figure 2.4: Failure, Fault, Error and Anomaly and their Relationship
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2.4 Machine Learning Techniques Review

Machine learning (ML) is the scientific study of algorithms and statistical models

that computer systems use to perform a specific task without being explicitly

programmed [56].

Many studies have sought to review and categorize machine learning algorithms for

various applications. A non-exhaustive list of such works which provides insights

into the classification and suitability of different ML approaches across multiple

domains can be found in [1], [8], [56], [57], [58], [59], [60], [61].

The majority of the literature classifies machine learning algorithms into four main

categories: supervised learning, unsupervised learning, semi-supervised learning,

and reinforcement learning. Each category encompasses different approaches and

techniques tailored to specific types of tasks and data availability. Fig. 2.5 shows

the machine learning algorithms with their categories and relevant methods.

Supervised learning is a machine learning paradigm that involves learning a function

that maps an input to an output based on sample input-output pairs. It relies on

labeled training data, where each input example is paired with the correct output,

allowing the model to infer patterns and relationships. This approach is widely used

in tasks such as classification and regression, where the goal is to predict outcomes

for new, unseen data [58].

Unsupervised learning analyzes unlabeled datasets without requiring human supervi-

sion. It is commonly used to uncover hidden patterns, structures, and relationships

within data. This makes it useful for extracting generative features, identifying

trends, and exploring data distributions [56]. Key applications of unsupervised

learning include:

• Clustering: for grouping similar data points.

• Density estimation: to understand data distribution.

• Feature learning: to identify important characteristics.

• Dimensionality reduction: to simplify datasets.

• Association rule mining: for discovering relationships between variables.

• Anomaly detection: to identify unusual patterns in data.

Semi-supervised learning is a hybrid approach that combines elements of both

supervised and unsupervised learning by utilizing both labeled and unlabeled data.
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Figure 2.5: Machine Learning Algorithms

It serves as a middle ground between purely supervised and unsupervised learning,

making it particularly useful when labeled data is scarce but unlabeled data is
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abundant [58], [56]. Key applications of semi- supervised learning include machine

translation, fraud detection, data labeling and text classification.

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns

to make decisions by interacting with an environment. The agent takes actions and

receives feedback in the form of rewards or penalties, allowing it to optimize its

strategy over time. Unlike supervised learning, RL does not rely on labeled datasets

but learns through trial and error. Applications of reinforcement learning include:

• Robotics: for training robots to perform complex tasks autonomously.

• Autonomous Vehicles: helps self-driving cars make navigation and control

decisions.

• Manufacturing & Supply Chain: optimizes warehouse automation and

logistics.

• Finance and Trading: optimizes portfolio management and automated

trading strategies.

Supervised machine learning is the most widely used paradigm in Prognostics and

Health Management (PHM) due to its ability to learn patterns from historical

labeled data and make accurate predictions about system health and failures [1].

Among various supervised learning approaches, deep learning algorithms have

gained the most popularity, ranking as the top AI method in PHM research. Neural

network-based techniques, such as Artificial Neural Networks (ANNs) and Recurrent

Neural Networks (RNNs), are frequently employed in PHM applications due to

their ability to model complex, nonlinear relationships in time-series data [8].

The success of deep learning in PHM is largely attributed to its ability to handle

large volumes of sensor data, extract hidden patterns, and adaptively improve fault

detection and failure prediction models.
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2.5 Machine Learning in PHM

Data-driven techniques in PHM have traditionally relied on statistical methods.

However, with advancements in sensor technology and signal processing, artificial

intelligence (AI) techniques have gained increasing popularity [8]. Today, AI and ma-

chine learning (ML) algorithms are integrated into PHM approaches, enabling more

complex fault diagnosis [1], and gradually ML is becoming a cornerstone in PHM

reflecting the potential for innovative advancements in future PHM development [62].

The availability of abundant data and exponentially increasing computational power

provide significant opportunities to develop advanced data-driven frameworks to

determine the patterns, classify faults and assess system degradation trends [63].

A review of machine learning algorithms adopted for the PHM of electronic systems

is presented in [1]. The authors were not able to find significant number of ML

applications in the system level - it partially shows the difficulty of entire system

monitoring. Regression-based methods are used for levels 1 (component) and 2

(assembly) electronics’ PHM: a Gaussian Process (GP) regression is used to estimate

RUL of a power MOSFET (level 1) under thermal load and to evaluate time to

failure in solder joints (level 2) using radio-frequency (RF) impedance. The paper

covers deep learning methods, including multi-layer perceptron (MLP), convolutional

neural networks (CNN), recurrent neural networks (RNN), and long short-term

memory (LSTM), under the artificial neural network (ANN) category. This broad

classification makes it challenging to accurately attribute the most suitable method

for each reviewed application. The paper cites a number of applications using

ANN-category to monitor capacitors, IGBTs and other components as well as ANN

to predict creep strain accumulation in solder joints.

A comprehensive review of state-of-the-art machine learning techniques adopted

for PHM in engineering systems is presented in [8]. The review highlights deep

learning architectures as particularly attractive compared to traditional machine

learning algorithms, as deep learning eliminates the need for hand-crafted features.

Instead, the network learns features directly from the input data. The authors

rank deep learning algorithms as the most commonly used AI methods in PHM

research, followed by hybrid/fusion approaches, ensemble techniques, and support

vector machines (SVM) in that order. The deep learning algorithms that have

been used for PHM include Autoencoder, Restricted Boltzmann Machine (RBM),
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Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and

Gated Recurrent Units (GRU). A combination of these algorithms has also been

used to solve PHM problems, such as CNN-LSTM for wind turbines blade icing

monitoring. For the hybrid/fusion model, the paper cites a hybrid PHM approach

for bearing degradation monitoring, obtained from training an adaptive predictive

model on the available data and then adopting a regression-based approach to

predict the RUL. Finally, examples of SVM is used to estimate the RUL of bearings

utilising feature reduction technique and to predict RUL for turbofan engines where

a number of points in the data were missing.

A systematic literature review (SLR) on machine leaning in the field of PHM of

industrial mechanical systems and equipment is presented in [34]. According to the

authors, machine learning is arising as one of the major approaches for PHM and

RUL estimates. The main research question proposed was what are the most used

ML algorithms for PHM of industrial systems. The results obtained throughout a

consolidated methodology showed that 82% of 50 analysed papers used deep learning

for the PHM of the mentioned systems. Deep learning in the paper are based on

neural networks with multiple hidden layers: deep neural networks (DNN), RNNs

and its variants, CNNs, autoencoders, RBMs and hybrids, which is a combination

of these algorithms. Moreover, among the deep learning techniques, CNN and RNN

resulted as to be the most applied. The study still covers the main performance

metrics of ML algorithms adopted in PHM of these industrial systems. The study

outcome showed that for classification tasks, accuracy is the most used KPI, whereas

for regression, RMSE, MAE and MAPE are more balanced used.

A comprehensive overview of the current state-ofthe-art machine learning approaches

for diagnostics and prognostics (PHM) of industrial systems is presented in [62]. It

emphasizes the momentum for implementing ML in industrial settings, leveraged

by the advent of the Industry 4.0 and Internet of things (IoT), for a strategic shift

towards ML-based enhanced predictive maintenance.

An in-depth quantitative analysis of the development trends of PHM methods in

general and their AI-based approaches is reported by [61]. The paper also proposes

insightful AI-based implementation guidelines for different applications and datasets

available. One guideline for selecting heath indicators is proposed: it basically takes

the data dimensionality, amount of data and need to integrate expert knowledge

to recommend between different approaches - statistical, deep learning, genetic

programming or mathematical model. A very useful guideline for selecting neural
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networks based fault detection and diagnostics methods is also presented, where a

high amount of labeled data is basically classified between three main characteristics:

sequential data, very high dimensional data, highly nonlinear and complex dynamic

systems. For sequential data, the guideline recommends LSTM to be used, for very

high dimensional data, CNN and for nonlinear complex systems neuro-fuzzy.

Data-driven approaches depend on historical system data [3]. The data is normally

expected in the form of time series. A time series is a time-oriented or chronological

sequence of observations on a variable of interest [64]. Time series data are the

data collected sequentially in chronological order and at regular time intervals,

and when this order or sequence of elements matter, it is called sequential data.

This is the case for the electronic systems envisaged in this thesis, where data is

collected as they are made available on a sequential and timely order. For the

modern deep learning algorithms just mentioned, CNN is mainly used for images or

video data [61], therefore, LSTM appears as a good candidate for the type of data

handled in this thesis.

LSTM has been used in multiple applications for fault prediction and diagnosis and

RUL estimation [57]. As a representative deep learning structure, LSTM is very

powerful in discovering the changing patterns behind time series and is often used to

deal with the long-term dependence of time series data [65]. LSTM networks possess

feedback connections, hence classifying them as a variant of recurrent neural network

(RNN). The utilization of LSTM enables the processing of not just individual data

points, but also full sequences of data. PHM plays a vital role in ensuring the safety

and reliability of aircraft systems. Within the field of aviation prognosis, LSTM

networks have demonstrated considerable efficacy in the analysis and prediction

of aircraft trajectory data [66]. A study evaluated various prognostic models for

estimating the RUL of aviation engines. The models effectiveness were compared

against an LSTM-based approach. Using the C-MAPSS (Commercial Modular

Aero-Propulsion System Simulation) simulation dataset, the study demonstrated

that a modified LSTM with an attention mechanism outperformed the other models,

improving predictive accuracy, leading to superior RUL estimation.

A PHM dynamic predictive maintenance framework based on a real application

case, with multiple sensor measurements of a turbofan engine to determine RUL,

using LSTM with promising abilities for industry applications is presented in [67].

A key advantage of LSTM is its ability to learn from long time sequences and retain

memory. This makes it particularly useful for system prognostics, as it can analyze
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the history of degradation processes and effectively track system states for accurate

RUL prediction.

Bidirectional LSTM (Bidi-LSTM) is used to determine probabilistic forecasts for

short-term scheduling in electricity power markets for one day-ahead operational

planning [68]. Two different models for characterizing the uncertainty are compared.

In this way, the Bidi-LSTM network is trained to either generate a Gaussian or a

non-parametric predictive distribution of the dependent variables. It enables to

confront the Gaussian assumption of prediction errors with an empirical approach

that makes no assumption on the underlying probability distribution of variables.

A LSTM network with two bidirectional layers is used for the fault diagnosis of

a hydraulic pump in [69]. Initially, feature engineering is used over 11 available

measurements, such as pressure, flow, temperature and vibration. Statistical

values, as mean, variance, autocorrelation and others are synthetically added to the

dataset, and then a process called fault sensitivity analysis is carried out, which

utilises an additive feature attribution method called SHAP (SHapley Additive

exPlanation) [70], [71] to extract the features really meaningful to the task. Finally,

the outcome of the LSTM is combined with transfer learning [72], [73] for an

improved result.

A new bidirectional LSTM architecture, called bidirectional handshaking LSTM, is

also proposed by [44] for predicting the RUL when given short sequences of monitored

observations with random initial wear. The handshake is done by interconnecting

the forward and backward states. This enables the LSTM network to gain deeper

insights when identifying sequence trends in both directions. Additionally, the

handshaking mechanism facilitates collaboration between forward and backward

units, enhancing the learning process and improving results.

As cited above in [69], fault sensitivity analysis, causality and explainability are

important aspects for machine learning algorithms application and justification, es-

pecially for critical operations. Complex ML models have become less interpretable,

often functioning as black boxes. This lack of transparency can pose challenges for

predictions in various systems where safety and reliability are essential, including

autonomous driving, aeronautics and nuclear generation for instance. In nuclear

power, strict regulatory oversight requires clear explanations of predictive model

outputs. Providing these explanations fosters stakeholder trust, meets regulatory

requirements, and supports more informed operational decisions [74].

Explainable AI (xAI) tackles these challenges by developing machine learning (ML)
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techniques that either provide insights into black box models or design inherently

more transparent models [75]. xAI aims to make AI methods more transparent,

explainable, and understandable to end users, stakeholders, and non-experts, foster-

ing trust in AI systems [76]. And yet, xAI refers to the development of AI systems

and algorithms designed to provide clear and understandable explanations for their

decisions and predictions [77].

Two xAI approaches are found in the literature, intrinsic and extrinsic (or post-hoc)

models. Intrinsic approach use algorithms that produce interpretable models - in-

herently transparent and understandable by design, while post-hoc methods, which

are independent of the underlying predictive model, are applied after training to

interpret and explain the predictions of complex, opaque models. Examples of in-

trinsic models are linear regression, logistic regression, tree-based models and others.

Post-hoc explainable approaches can be used to interpret more complex nonlinear

models, black box models where it is not possible to understand the underlying

decision-making process. Examples of post-hoc explainability techniques found in

the literature are functional decomposition, individual conditional expectation (ICE),

partial dependence plot (PDP), global surrogate, local surrogate (LIME), Shapley

values and its derivative SHAP (SHapley Additive exPlanations) [75], [77], [78].

LIME and SHAP emerge for xAI of regression time series. LIME (Local Interpretable

Model-agnostic Explanations) generates local explanations by approximating a com-

plex model’s decision boundaries with a simpler, more interpretable model near

a specific data instance. It is model-agnostic and can be applied to any machine

learning model, regardless of its algorithm or architecture [77]. SHAP determines

feature importance by measuring each feature’s contribution to the model’s output.

Based on coalitional game theory, it treats features as players in a coalition. SHAP

enhances transparency by generating SHAP values for each data instance [74]. A

further review of SHAP method is provided in Chapter 4, subsection 4.2.2. A

further review of related works on explainable Artificial Intelligence (xAI) applied

to PHM presented in the aforementioned literature, especially in [75], [76] and [78].
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2.6 Multi-Step Ahead Forecasting

The ultimate goal in time series analysis is the prediction of future values by

comprehending the sequence of past observations, accumulated in historical data [79].

Time series forecasting is a growing field of interest playing an important role in

nearly all fields of science and engineering [80]. One area where time series forecasting

has proven to be particularly beneficial is in the energy sector [81], [82], [83], [84].

For these applications, deep learning algorithms based on back-propagation through

time (BPTT) such as recurrent neural networks (RNN) have been proven very

efficient to deal with the temporal features of energy datasets with variable sequence

lengths over different time horizons [81].

Energy Load Forecasting (ELF) is critical for the operation and design of power

systems. It enables utility providers to model electricity consumption and prepare

for future power loads. It also assists Distribution System Operators (DSOs) in

managing and matching future energy generation with consumption. Various types

of ELF are vital for the continuous and efficient operation of power systems. Short-

Term Load Forecasting (STLF) ensures operational security and power system

savings, Medium-Term Load Forecasting (MTLF) supports planning and operation,

and Long-Term Load Forecasting (LTLF) aids in planning future investments in

power system infrastructure. In [83], one-step ahead (OSA) forecasting, regardless

of the timestep (15 minutes, one hour, one day, etc.), is demonstrated with high

accuracy, offering applicability across various forecasting scenarios. The study

compares five forecasting models (MLP, LSTM, XGBoost, SVR, and LR) along

with three ensemble models (EAP, EWA, and EPE).

While most literature on power forecasting focuses on one-step ahead predictions,

these are insufficient for long-term planning applications like generation scheduling,

where bids are submitted a day in advance [81]. Moreover, with predictions for

multiple timesteps, the variability and potential anomalies in the grid can be

analysed more effectively to detect faults. However, forecasting longer time horizons

with multi-step ahead predictions presents significant challenges.
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2.6.1 Multi-Step Ahead Strategies

Unlike one-step ahead forecasting, multi-step ahead forecasting involves more com-

plexities, such as error accumulation, reduced accuracy, and increased uncertainty.

This subsection explores the strategies for MSA forecasting and the associated

challenges.

Multi-step ahead (MSA) forecasting has a wide range of real-world applications [22],

including models for predicting abnormal physiological signal levels, flood forecasting

using RNNs, nitrogen oxide emission forecasting, electric power load forecasting, and

even earthquake and seismic response predictions. In the context of electrical power

dispatching, a Bidi-LSTM was used to schedule power demand and dispatching with

a one-day ahead window in [68], while wind power forecasting was proposed using

LSTM in [82]. According to [80], there are five primary strategies for performing

MSA forecasting tasks: Recursive, Direct, Multi-Input Multi-Output (MIMO), and

the derived DirRec and DirMO strategies:

• Recursive: This method is also called iterated, because it iterates H (horizon)

times a one-step ahead forecasting model to obtain the H forecasts. After

estimating the future series values, it is fed back as an input for the following

forecast.

• Direct: The Direct strategy, however estimates a set of H forecasting models,

each returning a forecast for the ith value.

• Multi-Input Multi-Output (MIMO): The MIMO strategy returns a

vector of future values in a single step, in order to preserve, between the

predicted values, the stochastic dependency characterizing the time series.

This approach replaces the H models of the direct approach by one multiple-

output model [85].

• DirRec: It is a combination of the direct and recursive strategies. A different

model is used at each step but the approximations from previous steps are

introduced into the input set.

• DirMO: It is a combination of the direct and miMO strategies. This strategy

aims to find a trade-off between the property of preserving the stochastic

dependency between the forecasted values and the flexibility of the modelling

procedure.

In this thesis, the Recursive and the MIMO strategies were implemented and
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tested. The reason being is that the Recursive strategy is widely used and a single

model is trained, which performs a one-step ahead forecast and then recursively

sweeps the entire forecasting horizon. The MIMO strategy, likewise uses a single

model, but returns a vector of the future values in a single step. It also takes into

account the stochastic dependence between variables and their future values, which

affects the forecast accuracy [86]. Finally, these strategies are executed in real-time

environments and have to comply with the system dynamics and run cycles.

Conventional approaches to MSA prediction, like iterated and direct methods,

belong to the family called Single-Output prediction strategy, since they both

model from data a multiple-input single-output mapping. A MIMO method belong,

however to a Multiple-output prediction strategy, where the returned prediction is

not a scalar but a time series itself. A review of single-output versus multiple-output

approaches in [85] showed multiple-output approaches as a promising alternative

to conventional single-output strategies. A study of the properties of iterated and

direct multi-step forecasting techniques in the presence of in-sample location shifts

(breaks in the mean) is performed in [87]. For this particular case, the work shows

that direct strategy provides prediction values that are relatively robust and the

benefits increases with the prediction horizon.

A multi-output (MIMO) RNN forecasting architecture, where explicit temporal

dependencies between outputs capture the relationship between the predictions is

proposed in [88]. This work introduces and differentiates two forecasting methods,

the recursive and the multi-output. Recursive forecasting is the primary form of

multi-step forecasting [80], where forecasting is done by the factorization of previous

values, amplifying potential errors and leading to lower quality predictions as the

time horizon increases. The MIMO forecasting aims to estimate the future values

in one step. Multi-output approaches sidestep the issue of error feedback by jointly

estimating over the prediction window [88].

2.6.2 Data-Driven Methods for MSA Forecasting

Several models and architectures have been proposed for time series forecasting.

From state-space model to neural networks, many approaches have been used.

Seasonal ARIMA (SARIMA) is used as a state-space model to compare with deep

learning methods in [89]. Sequence-to-sequence RNNs and LSTMs have become
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popular due to their ability to learn temporal patterns and long range memory.

Multi-step time series predictions based on pure LSTM have been investigated

by [27], [90] and [91]. In [90], a multi-step input method is used with a stacked-

LSTM network. The future n-steps are predicted by the parallel input of m-steps of

the time series. In [27], a standard LSTM model is implemented and tested on three

different datasets. The results are compared with ARIMA and RNN models. The

conclusion is that the LSTM model can fit a wider range of data patterns compared

to the traditional models and no additional time is spent on the modelling process,

usually required by the statistical models, such as stability checking, autocorrelation

and partial autocorrelation function checking. The downside is that LSTM requires

more resources for the forecast process.

In [91], a comprehensive survey of anomaly detection for system-level anomalies

using LSTM networks is presented. The same type of anomaly found in the dataset

of Chapter 5 is defined as collective anomaly. According to the screening, a number

of LSTM architectures have been used, but not especifically the Bidi-LSTM.

Further MSA forecasting using machine learning techniques in the energy sector

are found in [68], [81], [82], [92] and [93]. A long-term forecasting strategy for

multi-step ahead (MSA) predictions with no prior knowledge is proposed in [81].

This method incorporates a Bayesian probabilistic approach with bidirectional

LSTM (Bidi-LSTM) for renewable generation forecasting, using solar generation

data. The results show the effectiveness of point and probabilistic predictions,

with lower error values. A MSA forecasting for electric power load using different

models for comparison, such as ARIMA and others not investigated herein, such as

Prophet and its variations [94] can be found in [92]. LSTM still features amongst

the best results, considering the MAPE (mean absolute percentage error) of the

models. In [82], MSA wind power forecasting is done based on LSTM or GRU

(gated recurrent unit), which is relatively simpler variant of LSTM. Results are

compared with ARIMA and SVM methods, with predominance of the former ones.

A MSA forecasting strategy is presented in [82] using LSTM and GRU on a recursive

mechanism. The study estimates wind power forecasts up to four steps ahead,

comparing results with ARIMA (Autoregressive Integrated Moving Average) and

SVM methods. The LSTM and GRU models show superior performance.

Multi-step forecasting with deep learning is used for short-term load forecasting

for energy and distribution management in power grid in [93], which proposes a

TCMS-CNN (multi-scale CNN with time-cognition) model to integrate multi-scale
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convolutions and periodical coding into an end to end trainable neural network,

which optimises the structure of CNN and extracts more relationships with periodical

characters raising the accuracy of multi-step load forecasting. Bidi-LSTM is used

to determine probabilistic forecasts for short-term scheduling in electricity power

markets for one day-ahead operational planning [68]. Then, two different models for

characterizing the uncertainty are compared. In this way, the Bidi-LSTM network

is trained to either generate a Gaussian or a non-parametric predictive distribution

of the dependent variables. It enables to confront the Gaussian assumption of

prediction errors with an empirical approach (that makes no assumption on the

underlying probability distribution of variables).

Considering the implementation of a PHM framework for batteries’ state of charge

estimation, it was noted that not many works have been found for a MSA prediction

of the Li-ion batteries state of charge (SOC) though. An ARIMA-NARX model,

which is capable of predicting SOC for higher charging/discharging rates (C-rates) is

proposed in [24]. NARX stands for nonlinear autoregressive network with exogenous

inputs. The use of different multi-step prediction techniques for long-term prognosis

of the Lithium-ion batteries condition is presented in [25]. The paper proposed the

use of adaptive neuro-fuzzy inference systems, random forest, and group method

of data handling, along with various MSA strategies: iterative, direct and DirRec

(which is a combination of the former ones). These methods were then evaluated

for prediction of capacity over the long horizon. A novel machine learning enabled

method to perform real-time multi-forward-step SOC prediction for battery systems

using a recurrent neural network with LSTM is presented in [26].

Most of the SOC predictions in published studies are basically single-step predic-

tions (estimates) based on experimental data. By using a multi-forward-step SOC

prediction for battery systems, battery anomalies/faults caused by SOC anomalies

(such as low SOC, SOC jumping, etc.) can also be diagnosed in advance, thereby

avoiding more serious battery faults/failures or even battery thermal runaways.
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2.7 Chapter Summary

This chapter focuses on the current state of Prognostics and Health Management

(PHM) for electronic systems, highlighting that this field is not fully developed

yet. While traditional statistical methods have been commonly used, the chapter

discusses how machine learning (ML), particularly deep learning techniques, is

emerging as a promising alternative. However, there are few reported applications

of ML at the system level, which presents an opportunity for further research and

exploration. The growing availability of data is further driving the shift towards

supervised ML algorithms. This context sets the foundation for the research question

[RQ1], which will be explored in detail throughout this thesis.

Recent studies on fault sensitivity analysis, causality, and explainability have

been published to support the application and justification of machine learning

algorithms, particularly in critical operations. Explainable AI (xAI) helps to address

the black-box nature of machine learning by making AI methods more transparent,

understandable, and interpretable to end users, stakeholders, and non-experts,

thereby fostering trust in AI systems. For time-series regression, explainability

techniques such as LIME (Local Interpretable Model-agnostic Explanations) and

SHAP (SHapley Additive exPlanations) have gained prominence, with SHAP being

the most widely cited method in the literature. Explainability is also an important

topic of this research, particularly in relation to research question [RQ2], which

aims to apply the developed machine learning algorithms in applications requiring

high dependability and reliability.

This thesis introduces a novel approach to multi-step-ahead (MSA) forecasting for

embedded systems. This chapter begins with a general literature review of MSA

forecasting applications, followed by an overview of foundational methods and data-

driven techniques used for MSA estimation. Current approaches predominantly

rely on statistical methods, with machine learning techniques—especially deep

learning—becoming increasingly prevalent for MSA forecasting. Furthermore, the

research on MSA prediction of the state-of-charge (SOC) of Li-ion batteries is

limited, a gap that will be comprehensively addressed in Chapter 6.

The next chapter provides the mathematical foundation for this thesis, exploring

both model-based and data-driven approaches in detail. For the model-based
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approach, a state-space representation is selected and Kalman filters are used to

estimate the system states at real-time. For data-driven approach, a bidirectional

LSTM, as a representative of the recursive neural networks, is selected to estimate

the same system states, but purely based in the input/output mapping.
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Chapter 3

Theoretical Background

This chapter provides the theoretical foundation for the subsequent chapters, intro-

ducing two modelling approaches: model-based and data-driven. The model-based

approach is formulated using state-space notation, with the Kalman filter selected

as the state estimator in two variations: iterated and unscented. The data-driven

approach leverages recurrent neural networks (RNNs) and explores their theoretical

basis as universal approximators for both linear and complex nonlinear systems.

Finally, long short-term memory (LSTM) networks and their variant, bidirectional

LSTM (Bidi-LSTM), are introduced as specialized RNN architectures designed

to handle sequential data and mitigate the vanishing gradient problem affecting

traditional methods.

3.1 Model-Based and Data-Driven Approaches

Process modelling is based on a mathematical framework that characterizes the

dynamic behaviour of a system, assuming input and output measurements are

available and supplemented by prior knowledge of the process [12]. There are

two primary types of models commonly used in control and identification theory:

state-space models and input-output models. The state of a dynamic system refers

to a set of variables, known as state variables, which are the minimum set essential

in determining the system’s behavior. These variables, when combined with the
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knowledge of the system’s input for a given time t ≥ t0, allow to fully understand

and predict the system’s behaviour for any time t ≥ t0 [95]. The state-space

approach assumes full or partial accessibility of the system’s states, enabling the

derivation of a mathematical model, which can also incorporate uncertainties in

both the model and measurements. A well-established state estimator to determine

the system’s current state is the Kalman Filter, further detailed in this chapter.

This thesis focuses on complex nonlinear systems, for which accurate modelling

remains a significant challenge in practical applications [96]. In contrast to model-

based approaches, data-driven methods assume that the state space is inaccessible

and use the input-output measurements available [1], [11]. Additionally, unlike

model-based models, data-driven methods are often regarded as black-box ap-

proaches due to the absence of explicit equations. These black-box systems map

input features to a target output without revealing the underlying reasoning, leaving

little room for interpretability [3], [97].

Data-driven approaches are well-suited for complex nonlinear systems, as they can

capture correlations between parameters, interactions among subsystems, and the

effects of environmental factors using in situ system data. These methods can model

degradation characteristics based on historical sensor data, uncovering underlying

relationships and causalities while enabling the estimation of system information

such as remaining useful life (RUL) [13]. Recently, there has been increasing interest

in developing mathematical models based solely on observed data. Neural models,

in particular, play diverse roles, serving as simulators for fault detection, models for

controllers, and more [12].

In the previous chapter, several authors proposed the use of deep learning algorithms

to address complex nonlinear dynamic systems, as discussed in [8], [34], [61], and

others. Therefore, this chapter provides a further review of deep learning algorithms,

with a particular focus on recurrent neural networks (RNNs) and their variants.
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3.2 Model-Based Approach

Notation:

It shall be noted that the following notation is generally referred in this thesis when

representing dynamic systems, such as batteries in Chapter 6.

• u(t) or uk as system input

• x(t) or xk as system internal states

• h(t) or hk as hidden states, applicable for neural networks

• y(t) or yk as system output

• t as timestep in a continuous-time system

• k as timestep in a discrete-time system

A state-space representation of a particular dynamic system can be given by a

differential equation as seen in [11, eq. (1)] and also discussed in [95]:

ẋ = f [x(t), u(t)] (3.1)

y(t) = g[x(t), u(t)] (3.2)

where, x(t) ∈ Rm represents the system state vector at time t ∈ R+, the vector

u(t) ∈ Rl is the input and y(t) ∈ Rn is the output.

The function f(·) is a mapping from Rm × Rl to Rm, and g(·) is also a mapping

from Rm × Rl to Rn.

Both f(·) and g(·) can be either linear or nonlinear; multiple-input/multiple-output

(MIMO) and/or time invariant or time varying systems.

The continuous-time system introduced in (3.1) and (3.2) can be represented as a

discrete-time system by the following equations, as seen in [11, eq. (2)] :

xk+1 = f [xk, uk] (3.3)

yk = g[xk, uk] (3.4)

where, k ∈ Z+ and the inputs, internal states and outputs are discrete sequences.
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Nonlinear discrete system dynamic model resolution involving f(·) and g(·) are

not trivial, even when these functions are known. Consider the following nonlinear

system, described by the differential equation and the observation model with

additive noise, as seen in [98, eq. (3.13) and (3.14)]:

xk+1 = f(xk, uk) + wk (3.5)

yk = g(xk, uk) + vk (3.6)

where xk ∈ Rm is the system state vector at time index k.

The nonlinear system is also depicted in the block diagram of Fig. 3.1, as illustrated

in [99, Fig. 4].

Unit 
Delay

State Equation Measurement Equation

+ +

Figure 3.1: Nonlinear Discrete-Time System Block Diagram

The initial state x0 is a random vector with known mean µ0 = E[x0] and the state

error covariance is given by P0 = E[(x0 − µ0)(x0 − µ0)T ], as stated in [98].

The input, uk ∈ Rl and the measured output yk ∈ Rn, also called observation vector

are known variables of the system.

The vectors wk and vk represent uncertainties in the model and the measurement

noise, respectively. It is further assumed that the vectors wk and vk consist of zero-

mean white Gaussian distributed noise, stochastic processes temporally uncorrelated,

with known covariances, as seen in [98, eq. (3.3) and (3.4)]:

Qk = E[wkw
T
k ] (3.7)

Rk = E[vkv
T
k ] (3.8)

The system depicted above, whose hidden states can be modelled and estimated,

is subjected to a number of estimation algorithms. An example very diffused in
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the literature is the Kalman Filter (KF). Kalman filters are used to estimate states

based on linear dynamical systems in state-space format. The Kalman Filter uses a

set of differential equations to model and predict the state of a physical system. It

minimizes the error between the measured and predicted outputs of a linear system

by adjusting the state variables [98]. The following subsections detail two different

types of KF, the Iterated and the Unscented versions.

3.2.1 Iterated Extended Kalman Filter

According to [99], the Kalman filter problem is to use the entire observable system,

consisting of the data {u0, u1 . . . uk} and {y0, y1 . . . yk} to find the minimum mean

squared error estimate x̂k of the true state xk. Therefore, the objective function is:

x̂k = arg min
x̂∈Rn

E[(xk − x̂)(xk − x̂)T ]
∣∣∣{u0 u1 . . . uk

y0 y1 . . . yk

}
(3.9)

Assuming the nonlinearities in the dynamic and the observation models are smooth,

the functions f(·) and g(·) are differentiable and can be expanded in Taylor Series.

If the time deviation of these two functions is small, they can be approximated by

the first order Taylor expansion. Hence, the Extended Kalman Filter (EKF) is also

called First Order Filter.

At each timestep, f(·) and g(·) are linearised by a first order Taylor-series expansion.

EKF assumes that, at all operating points of xk and uk, these functions are

differentiable. Then, as seen in [99, eq. (5) and (6)]:

f(xk, uk) ≈ f(x̂k, uk) +
∂f(xk, uk)

∂xk

∣∣∣
xk=x̂k

(xk − x̂k) (3.10)

g(xk, uk) ≈ g(x̂k, uk) +
∂g(xk, uk)

∂xk

∣∣∣
xk=x̂k

(xk − x̂k) (3.11)

The partial derivatives of ∂f(·)/∂x and ∂g(·)/∂x in (3.10) and (3.11) are the

Jacobian matrices, called herein Ak and Hk, respectively.

Combining these equations with (3.5) and (3.6), it comes the linearised equations
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describing the true system state as a function of itself, known inputs and states uk,

x̂k and unmeasurable noise inputs wk and vk:

xk+1 ≈ Âkxk + f(x̂k, uk)− Âkx̂k + wk (3.12)

yk ≈ Ĥkxk + g(x̂k, uk)− Ĥkx̂k + vk (3.13)

In the EKF, g(·) is linearised about the predicted state estimate x̂k. The Iterated

EKF tries to linearise it about the most recent estimate, improving therefore its

accuracy.

EKF uses a two-step prediction-correction algorithm: The discrete-time EKF

computes two different estimates of the state and covariance matrix each sampling

interval. The first estimate, x̂−k , is based on the prior state estimate (also called

a priori estimate) as computed in the previous iteration, x̂+
k−1. At this stage, the

state covariance matrix, P̂−k is also computed. The a priori estimate is calculated

before the up-to-dated measurement to be made.

The second step estimate, x̂+
k (also called a posteriori estimate) fine tunes the first

estimate after measuring the system input uk and the measured output yk. At this

stage the Kalman gain K is computed and the new prediction for x̂+
k and P̂+

k is

provided.

This is achieved at each iteration by the following calculation sequence, as presented

in [99, Tab. 5]:

Initialisation:

For k = 0, set

x̂+
0 = E[x0] (3.14)

P0 = E[(x0 − x̂+
0 )(x0 − x̂+

0 )T ] (3.15)

Now, for k = 1, 2, . . . , compute
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Prediction (a priori estimate):

x̂−k = Ak−1x̂
+
k−1 + Bk−1uk−1 (3.16)

P−k = Ak−1P
+
k−1A

T
k−1 + Q (3.17)

Correction Gain:

yk = Hkx̂
−
k + Dkuk (3.18)

Kk = P−k HT
k (HkP

−
k HT

k + R)−1 (3.19)

Correction (a posteriori estimate):

x̂+
k = x̂−k + Kk(Uk − yk) (3.20)

P+
k = Ak−1P

+
k−1A

T
k−1 + Q (3.21)

3.2.2 The Unscented Kalman Filter

The usage of the Extended Kalman Filter (EKF) may lead to inaccuracies and

divergence of the filter due to errors in linearization and the neglect of higher-order

derivatives in the Taylor approximation. To address these issues, the Sigma Point

Kalman filter (SPKF) has been developed. Unlike the EKF, the SPKF does not

require derivatives and approximates linearization using a set of sigma points [98].

The SPKF offers an alternative approach for state estimation in nonlinear systems.

Instead of using Taylor series expansions to approximate covariance matrices, the

SPKF performs multiple function evaluations to compute an estimated covariance

matrix [100]. The unscented Kalman filter(UKF) is a typical type of SPKF. The

Unscented Transformation (UT) is a technique used to compute the statistics of a

random variable that goes through a nonlinear transformation. [101], [102], [103].

Equations (3.5) and (3.6) also apply to more general cases where the system is

nonlinear, the state is not Gaussian-distributed, and the noise influence is nonlinear

as well.
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The process and measurement noise can be added to the unscented transformation

to provide an augmented state, as seen in [103, eq. (3)]:

xaugk = [xTk wT
k−1 vTk ]T (3.22)

Considering the propagation of a random variable x (dimension n) through the

nonlinear function in (3.5) and x̄ and Px the mean and covariance of x, respectively.

Then, to compute the statistics of yk in (3.6), a matrix X of 2n+ 1 sigma vectors

(with corresponding weights Wi) is used, according to the reasoning below.

Consider Xk−1 as a set of 2n+ 1 sigma points, where n represents the dimension of

the state-space, with their associated weights given by [103, eq. (4)]:

Xk−1 = {(xjk−1,W
j)|j = 0 . . . 2n} (3.23)

A selection that incorporates higher order information in the selected points is then

considered for the sigma points, as seen in [103, eq. (5) to (10)]:

X0 = x̄ (3.24)

−1 < W 0 < 1 (3.25)

xik−1 = x̄k−1 +
(√ n

1−W 0
Pk−1

)
i
i = 1, · · · , n (3.26)

xi+nk−1 = x̄k−1 −
(√ n

1−W 0
Pk−1

)
i
i = n+ 1, · · · , 2n (3.27)

W j =
1−W0

2n
j = 1, · · · , 2n (3.28)

2n∑
j=0

W j = 1 (3.29)

W 0 controls the position of sigma points around the mean x̄: W 0 > 0 points tend

to move further from the origin, W 0 6 0 points tend to be closer to the origin.

The nonlinear propagation of the sigma point is [103, eq. (11)]:
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x̂jk = f(xjk−1) (3.30)

The transformed points are used to compute the mean and covariance of the forecast

value of xk, as seen in [103, eq. (12) and (13)]:

x̂k =
2n∑
j=0

W jx̂jk (3.31)

P̂k =
2n∑
j=0

W j{x̂jk − x̄k}{x̂jk − x̄k}T + Qk−1 (3.32)

The sigma points are then propagated through the nonlinear observation model

[103, eq. (14)]:

ŷjk−1 = g(xjk−1) (3.33)

And then calculate the target values mean and variance [103, eq. (15) and (16)]:

ȳk−1 =
2n∑
j=0

W j ŷjk−1 (3.34)

Cov(ỹk−1) =
2n∑
j=0

W j(ŷjk−1 − ȳk−1)(ŷjk−1 − ȳk−1)T + Rk (3.35)

And then cross-covariance between x̂k and ŷk−1 is [103, eq. (17)]:

Cov(x̃k, ỹk−1) =
2n∑
j=0

W j(x̂jk − x̂k)(ŷ
j
k−1 − ŷk−1)T (3.36)

The estimate update has the following form, with updates of x̄k, Kk and Pk [103,

eq. (18)]:

x̄k = x̂k + Kk(yk − ŷk−1) (3.37)
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The gain Kk is given by [103, eq. (19)]:

Kk = Cov(x̃fk , ỹ
f
k−1)Cov−1(ỹk−1) (3.38)

The posterior covariance is updated after the following formula [103, eq. (20)]:

Pk = P̂f
k −KkCov(ỹk−1)KT

k (3.39)

For model-based prognostics and health management at the system level of multiple

engineered systems using the Kalman Filter, several references can be found in the

literature, including applications in fault detection and diagnosis [104], [105] and

remaining useful life (RUL) prediction [106], [107].

It is worth noting that when using a model-based approach for PHM with Kalman

filter estimation, Section 3.2 remains fully applicable. A state-space model must be

established for the system under evaluation. Therefore, equations in the form of

(3.5) and (3.6) must be defined, explicitly specifying the system states.

Then, equations (3.14) to (3.21) have to be established, for the iterative Kalman

fiter, for instance. This will cover the four main steps of the KF recursive process:

initialisation, a priori estimate, correction gain and a posteriori estimate. Evaluation

metrics are those typically used for a regression model, such as root mean square

error (RMSE) and mean absolute error (MAE) [104].
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3.3 The Data-Driven Approach

The classic machine learning problem involves determining a nonlinear mapping,

(3.40) as in [102, eq. (3)], where G(·) is the nonlinear mapping between input and

output and is parameterised by the vector w.

yk(x) = G(xk,w) (3.40)

The vector w herein represents the weights of the input-output nonlinear connections.

The equation (3.40) can be graphically represented by Fig. 3.2, where xk represent

a matrix or vector containing real values each variable contained in x.

Σ

b1

x1

x2

x3

g
Activation

ŷ1

ω1,1

ω1,2

ω1,3

Figure 3.2: An Abstract Neuron - Input-Output Nonlinear Mapping

The nonlinear mapping can take the form either of a feedforward neural network

(FNN) or recurrent neural network (RNN), where the weights w represent the

connections. Fig. 3.3, based on [12, Fig. 6.1], depicts examples of the feedforward

network (also called multiple layer perceptron). If there are more than one hidden

layer in a neural network, the neural network is a deep neural network (DNN).

Multiple layer perceptron (MLP) networks are loop-free and fully connected. Unlike

MLPs, the recurrent neural networks (RNN) have feeback loops at the hidden

states, which allows the RNNs to keep longer sequences in memory to process at

the current time.

This type of map has a wide range of applications in classification, regression and

dynamic modelling. Learning refers to the process of estimating the parameters

involved. Typically, a training set is provided, consisting of known input-output

pairs. The machine’s error is defined as the difference between the measured and the
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Figure 3.3: Feedforward Network (also called Multiple Layer Perceptron)

estimated output. The objective of learning is to find the values of the parameters w

that minimize the expected squared error, and this can be achieved by a number of

optimization approaches, including gradient descent using back-propagation [102].

It shall be noted that on feedforward neural networks, data flows in a single

direction, resulting in loss of information from previous layers. There is no internal

state or memory, preventing therefore, the network from retaining knowledge.

However, in recurrent neural networks, data traverses a loop, allowing it to not

only incorporate new information but also remember past data. RNNs are dynamic

systems, having an internal state at each timestep. This is achieved through circular

connections between neurons in higher and lower layers, as well as optional self-

feedback connections. By utilizing these feedback connections, RNNs are able to

carry information from earlier events to current processing steps. As a result, RNNs

are capable of creating a memory of time series events.

Herein, Recurrent Neural Networks (RNNs) are the preferred architecture due to

their superior capability to process sequential data and effectively learn from long

time-series datasets

3.3.1 The RNN as an Universal Approximator

A neural network can be applied to both linear and nonlinear systems and do not

require modelling neither an intrinsic knowledge of the system-of-interest [108].
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According to [109], a multilayer neural network can approximate continuous functions

(or systems) provided the number of the hidden nodes is sufficiently large.

However, this approach has also some disadvantages. Neural networks require a

labor-intensive and computationally demanding training process, necessitating a

large amount of data from the system of interest. Additionally, the trained model

is typically specific to the system it was designed for.

Consequently, if the system’s dynamics, internal states, or input-output data

profiles change, the network will likely need to be retrained to produce accurate

parameters [108].

Neural networks are widely used nowadays as an alternative for system identification

and modelling, allowing to treat the system as a black box [11], [110].

Two works were conclusive to demonstrate that standard multilayer feedforward

networks are capable of approximating any continuous function of n real variables

from one finite dimension space to another one, to any desired degree of accuracy,

provided sufficiently many hidden units are available [111], [112]. The sets of theo-

rems and corollaries established in these works, led to the universal approximation

theorem, as below:

Definition 3.1. An activation function is defined as sigmoidal (σ) if

σ(k)→

1 as k → +∞

0 as k → −∞
(3.41)

Theorem 3.1. The Universal Approximation Theorem by Superposition of Sig-

moidal Function [111]

Let σ(k) be a nonlinear, bounded and monotonically increasing continuous function.

Let In indicate the n-dimensional unit cube which represents the cartesian product

of unit intervals [0, 1]n. The space of continuous functions on In is referred as C(In).

Then, for every continuous function f ∈ (In) and ε > 0, there exists a sum, y(x)
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such that ‖ y − f ‖< ε for all x ∈ In:

y(x) =
N∑
i=1

αiσ(wT
i x + bi) (3.42)

where i = 1, . . . , N ; σ is a sigmoidal function, wi and x ∈ Rn. In mathematical

words, functions of form y(x) are dense in the function space C(In).

In summary, the Universal Approximation Theorem [112], [113], [114] states that

there is a neural network capable of approximating any continuous function on

In = [0, 1]n with great accuracy. To achieve this, the number of hidden nodes,

learning iterations, weight parameters, and biases must be adjusted specifically for

the function being approximated.

Other results followed, like [115], where the Universal Approximation Theorem was

introduced for width-bounded ReLU networks.

Neural networks are commonly described by their architecture, which is determined

by the network’s width and depth. The depth h of a network refers to the number of

layers it has, including the output layer but excluding the input layer. On the other

hand, the width dm of a network is defined as the maximum number of nodes in

any given layer. The input dimension, or the number of input nodes, is represented

by the symbol n.

Instead of using a sigmoidal activation function, it is proposed in [115] the use of a

ReLU (Rectifier Linear Unit) activation function.

Definition 3.2. An activation function is defined as Rectifier Linear Unit (ReLU :

R→ R) if

ReLU(k)→

k as k > 0

0 as k ≤ 0

(3.43)

Theorem 3.2. Width-bounded ReLU Networks as Universal Approximator

For any Lebesgue-integrable function f : Rn → R and any ε > 0, there is a fully

connected ReLU neural network A with width dm ≤ n+ 4, such that the function
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FA which represents this network satisfies

∫
Rn

|f(x)− FA(x)|dx < ε (3.44)

In summary, the theorem states that there is a deep ReLU neural network capable

of approximating any continuous function f : Rn → R with great accuracy, for any

width ≤ n+ 4.

3.3.2 Recurrent Neural Network Selection

A recurrent neural network (RNN) is a neural network that is capable of simulating

a discrete-time dynamical system that has an input uk, an output yk and a hidden

state hk, where k ∈ Z+ represents the timesteps in a discrete-time system [116]. It

also uses feedback loops to store past input information, hence reduce the complexity

and number of layers in its structure [11].

The discrete-time dynamical system is defined by, as in [116, eq. (1) and (2)]:

hk = g1(uk, hk−1) (3.45)

yk = g2(hk) (3.46)

g1(·) and g2(·) are nonlinear activation functions. Fig. 3.4, as illustrated in [11, Fig.

1], shows a simple RNN graphical structure.

Therefore, the RNN can be expanded to a general mathematical representation, as

in [117, eq. (1) and (2)]:

h(k) = g1(
∑
j

w(u)ijuk +
∑
j

w(h)ijhk−1 + bk) (3.47)

ŷ(k) = g2(
∑
j

w(ŷ)ijhk + by) (3.48)

where w(h), w(u) and w(y) are the respectively the hidden states, input and output

weights. Finally, (3.47) and (3.48) can also be presented in a matrix form, as in
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Figure 3.4: RNN Structure for a Discrete-Time Dynamical System

[117, eq. (1) and (2)]:

hk = H(Wuh · xk + Whh · hk−1 + bh) (3.49)

ŷk = σy(Why · hk + by) (3.50)

where H is a nonlinear activation function, usually an element-wise application of

a sigmoid function, Wuh, Whh and Why are respectively the input-hidden layer,

hidden-hidden layers and hidden-output layer weight matrices; bh and by are the

hidden and output layers bias vectors.

The activation function of the output layer is a sigmoid σy. It can be depicted that

the output of a RNN y(k) depends only on two parameters, its prior values y and

the feedback internal hidden state h(k).

3.3.3 Back-propagation and Vanishing Gradient Issue

The error back-propagation algorithm is the most commonly used technique for

training neural networks. It employs gradient descent to adjust the weights in

multilayer networks. This learning process occurs in small iterative steps, moving

from the output layer back to the input layer. However, it is essential for the
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activation function of the neuron to be differentiable in order for this algorithm to

work effectively [118].

Back-propagation through time (BPTT) RNN algorithm uses both current and prior

inputs each timestep as a new input for the network [119]. The back-propagation

algorithm is used to find a local minimum of the error function of the network. The

error function, or training loss for a set S = (uk, yk)
n
k=1 is denoted by LS(θ). The

selected loss function is the mean square error (MSE), also known as L2 loss, as

seen in [17, eq. (2)]:

E = LS(y, ŷ) =
1

m

m∑
k=1

‖yk − ŷk‖2 (3.51)

where m is the entire observable system’s data points, y are the observed (or true)

values and ŷ the predicted ones.

The network is initialised with randomly chosen weights. The gradient of the error

function is computed and used to correct the initial weights recursively [120].

The weights in the network are the only parameters that can be modified to make

the quadratic error E as low as possible. Gradient descent is used to minimize E:

∇E = (
∂E

∂w1

,
∂E

∂w2

, · · · , ∂E
∂wl

) (3.52)

Each weight w is updated using the increment:

∆wi = −η ∂E
∂wi

for i = 1, · · · , l (3.53)

where η is the learning rate. Ultimately, the learning problem is reduced to the

calculation of the network function gradient with respect to its weights to find a

minimum of the error function where ∇E = 0.

Standard RNN are limited to look-back in time for approximately ten timesteps [118].

Over many timesteps the error therefore typically explodes or vanishes. When it

vanishes, it prevents the network from learning within an acceptable time period.

Full theoretical background is provided in [121].

Herein, this issue is addressed with the use of Long Short-Term Memory Recurrent

Neural Networks (LSTM-RNN). LSTMs are well-suited for capturing nonlinear

dynamics in time-series sensory data and learning effective representations of
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machine conditions. Their ability to model long-term dependencies makes them

superior to traditional RNNs. Due to this capability, LSTMs have been successfully

applied in various fields, including speech recognition, image captioning, handwriting

recognition, genomic analysis, and natural language processing.

A comprehensive review of machine learning algorithms, particularly deep learning

(including LSTM) is provided in Chapter 2, Section 2.5.

LSTM and its relevance to this thesis, along with its applications in Prognostics

and Health Management (PHM), are discussed in the following chapters. Chapter 4

details the proposed data-driven method and its adaptability to other PHM applica-

tions. Chapter 5 presents the first experimental implementation of the data-driven

framework, with a full discussion of the methods and results.
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3.4 Adapted Long Short-Term Memory (LSTM)

A solution that addresses the vanishing gradients issue for time-dependent and

sequential data series described above is a method called long short-term memory

(LSTM) [118]. Unlike traditional neural networks, the recurrent neural networks

LSTM is an extremely efficient tool when the information is sequential [109]. This

model replaces the traditional neuron of the perceptron with a memory block [122].

As stated in [118] and well difused in the literature, LSTM can learn how to bridge

minimal time lags of more than 1,000 discrete timesteps.

LSTM demonstrates its effectiveness in tasks requiring the retention of a limited

amount of data over a long period. That is thanks to the use of memory blocks,

which have access control in the form of input and output gates, ensuring that only

relevant information enters or exits the block. They also have a forget gate that

assess the significance of the information stored within the cells. When certain cells

no longer require previous information, the forget gate resets the state of those cells

within the block. Moreover, forget gates enable continuous prediction, as cells can

completely disregard their prior state, thus mitigating biases in prediction [118].

The LSTM structure calculation process, shown in Fig. 3.5 based on [109, Fig. 1],

is such that at each time iteration k, the hidden layer maintains a hidden state hk,

and updates it based on the layer input uk, and previous hidden state hk−1.

In Fig. 3.5, u(k) and y(k) are measurable scalar input and output, respectively.

LSTM has three gates to protect and control the cell state: forget gate F (k), input

gate I(k), and output gate O(k). Additionally, x̃(k) and I(k) are considered inner

states.

Below are the governing equations referring to the gates, states and output [109]:

Gates:

f(k) = σ(Whf · h(k − 1) + Wuf · u(k) + bf ) (3.54)

i(k) = σ(Whi · h(k − 1) + Wui · u(k) + bi) (3.55)

o(k) = σ(Who · h(k − 1) + Wuo · u(k) + bo) (3.56)

80



3.4 Adapted Long Short-Term Memory (LSTM)

States:

x̃(k) = tanh(Whx · h(k − 1) + Wux · u(k) + bx) (3.57)

x(k) = f(k)x(k − 1) + i(k)x̃(k) (3.58)

Output:

y(k) = h(k) = o(k) tanh(x(k)) (3.59)

LSTM cell

+

+

+

+

Figure 3.5: Long Short-Term Memory Cell
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3.4.1 Multivariate Bidirectional Adapted LSTM

Traditional RNNs including unidirectional LSTM (also called forward-pass) are

suitable for processing sequential data but are trained only in the forward path.

Bidirectional learning trains on both forward and reverse paths with two separate

hidden layers [123] and uses the output for prediction as well. Bidi-LSTM uses the

information by independently calculating both the forward path and the reverse

path [124]. The output, which results from the flow of information, is also used for

learning so that features are better extracted and have higher accuracy than the

existing LSTM.

Bidirectional LSTM removes the one-step truncation originally present in LSTM,

and implements a full error gradient calculation. This full error gradient approach

eased the implementation of bidirectional LSTM, and allowed it to be trained using

standard BPTT [118].

As stated in (3.49), a RNN computes only the forward hidden sequence
−→
h . By

implementing the backward hidden sequence,
←−
h , the output sequence y is obtained

by iterating layers from k = {1 . . . n} in the forward direction and k = {n . . . 1}
in the reverse direction [125], [117]. The formulation of the bidirectional LSTM

backward direction is given in (3.60) and the output function is finally achieved in

(3.61), as in [117, eq. (9) and (10)]:

←−
h k = H(W

x
←−
h
· xk + W←−

h
←−
h
·
←−
h k−1 + b←−

h
) (3.60)

ŷk = σy(W−→
h y
·
−→
h k + W←−

h y
·
←−
h k + by) (3.61)

Fig. 3.6 shows an example of Bidi-LSTM architecture, containing a forward LSTM

layer and a backward LSTM layer.
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Figure 3.6: Bidirectional LSTM Architecture

For data-driven prognostics and health management at the system level of multiple

engineered systems, including embedded ones, bidirectional LSTMs remain under-

explored in the literature. Some references found during the literature review cover

fault diagnosis applications [69], remaining useful life (RUL) prediction [13], [44], ma-

chine wear monitoring [126] and other applications such as speech recognition [117],

traffic speed prediction [123].

The proposed Bidi-LSTM implementation for PHM in embedded systems employs

multiple bidirectional LSTM fully connected layers. Deep architectures enable the

network to learn higher-level representations of raw input data and are widely used

due to their strong performance [13]. The implementation is discussed in more

detail in the following chapters. As depicted in Fig. 3.6, the LSTM archicteture

benefits from using N-timesteps as input, therefore for a time sequence series, a

sliding window can be specified to meet the required performance criteria. An

example of how the sliding window is implemented is given in [69] and further

explored in the subsequent chapters of this thesis.
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3.5 Chapter Summary

This chapter focuses on developing mathematical models for two distinct Prognostics

and Health Management (PHM) approaches: model-driven and data-driven. As

one of the objectives of this thesis is to assess whether data-driven machine learning

algorithms can be applied to the PHM of electronic systems [RQ1], we propose

testing our PHM framework on a system and comparing the results with a model-

based approach to evaluate the consistency of the outcomes.

Aiming at generalisation, the proposed system is modelled as a nonlinear, multiple-

input, multiple-output dynamic system, which represents the complexity of many

real-world applications. A state-space representation was chosen, as it effectively

models these systems using differential equations, accounts for uncertainties in both

the model and measurement noise, and reveals the system’s internal states, which are

not directly observable as inputs or outputs. Kalman filtering techniques, specifically

the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), were

employed to estimate the system’s states in real-time, based on the sequence of

measurements observed over time. The theoretical foundations of both the EKF

and UKF are thoroughly explained, with the relevant equations provided for their

application in the second experiment in Chapter 6.

Next, the data-driven approach is discussed, aiming to model the same nonlinear

systems addressed in the model-based approach. While a variety of machine

learning algorithms were implemented and tested in this thesis, the focus was

placed on supervised methods, particularly Recurrent Neural Networks (RNNs),

which were identified in the literature review of Chapter 2 as promising techniques

for PHM applications. A detailed justification for the preference of RNNs for

the selected systems is provided, along with a discussion of the Long Short-Term

Memory (LSTM) version of RNNs. LSTMs were introduced to address the vanishing

gradient problem that affects standard RNNs when dealing with time-dependent and

sequential data. Additionally, LSTMs demonstrate effectiveness in tasks that require

retaining limited data over extended periods. Finally, a multivariate bidirectional

LSTM is proposed for implementation in the subsequent chapters, owing to its

enhanced ability to learn from both forward and reverse sequences, resulting in

higher accuracy compared to traditional LSTMs.
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This algorithm is implemented in both Chapter 5 and Chapter 6, serving as a

candidate machine learning technique for the real-time PHM of embedded systems,

as addressed in [RQ3].

The next Chapter 4 details the novel data-driven system-level PHM (Prognostics and

Health Management) framework for real-time condition monitoring and prognostics

of embedded systems.
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Chapter 4

Novel Data-Driven PHM

Methodology

This chapter introduces a novel data-driven Prognostics and Health Management

(PHM) methodology based on bidirectional Long Short-Term Memory (LSTM)

networks for embedded electronic systems. The proposed PHM technique enables

real-time condition monitoring, fault diagnosis, and multi-step-ahead forecasting

within a unified data pipeline, deployed directly on the edge device. Additionally,

the framework is designed to manage noisy measurements, a common challenge

in real-time systems due to sensor limitations. Feature engineering is applied to

multivariate systems to extract the most relevant and impactful features, enhancing

predictive performance.

The remainder of this chapter is structured as follows: first, the overall methodology

is introduced, followed by a detailed review of the offline processing framework, which

consists of four key steps—noise handling, feature engineering, model optimization,

and cross-validation. Next, real-time inference is discussed, outlining the steps

for deploying the optimized model on the target embedded hardware. Finally,

multi-step-ahead forecasting is examined, considering real-time constraints and

modeling approaches.
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4.1 Method Overall Approach

Data-driven estimation methods have emerged with advancements in big data and

computational power. As discussed in the previous chapter, these methods rely

primarily on data without requiring prior knowledge of the underlying processes

[127].

A stepwise approach is proposed, consisting of three main stages:

I. Offline Processing: This step involves deriving the optimal machine learning

model for the system-of-interest.

II. Real-Time Inference: This step deploys the model on real-time data to

determine the appropriate health indicator.

III. Multi-Step Ahead Estimator: This estimator provides a forecasted advi-

sory window for the system’s status, enabling condition-based maintenance.

Fig. 4.1 shows the proposed data-driven PHM methodology data flow diagram with

its three main processes, which will be further detailed in the subsequent sections.

The proposed framework is a machine learning-based methodology for the PHM of

embedded systems, aiming at generalisation and real-time performance.

This methodology is designed to be applied to a variety of systems with minimal or

no modifications, regardless of the case study or dataset, as demonstrated in [17]

and [124].

A robust machine learning model training process, performed offline, is proposed

to ensure an optimized model is developed to fit the available system data. Once

deployed, this model serves a dual purpose in real-time: a) system inference and b)

system forecasting.

Considering a dataset as a collection of samples, as in [17], let (4.1) be a represen-

tative set at a given present time k. Defining the array u as a subset of U which

represents a set of signal or sensors’ measurements, also called data variables or

independent features.

(u,y) = [(u0, y0), (u1, y1) . . . (uk, yk)] ∈ Rm×n (4.1)

Similarly, the vector y is a subset of Y and represents the class-of-interest, also

called target or dependent variable. The goal of the proposed data-driven model is
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Figure 4.1: Data Flow Diagram for Data-driven PHM Method

to estimate a set of parameters, θ, from a given set S = {(u,y)}, so an accurate

predictor (or estimator) F̂ : Rm → Rn can be found such that ŷ := F̂θ(u).

The offline processing, thoroughly explored here, consists of four main stages:

measurements’ noise reduction, additive features attribution, automated model’s

hyperparameter optimization and models cross-validation.

Initially, the raw data obtained from the system’s measurements is filtered to reduce

inherent measurement noise [128]. This thesis proposes smoothing the signals using

the exponentially weighted moving average (EWMA) and the exponentially weighted

moving standard deviation (EWMS) of the original measurements. A further review
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of noise reduction techniques in machine learning, particularly EWMA and EWMS

is presented in subsection 4.2.1.

Subsequently, the original dataset is augmented with both EWMA and EWMS

values. A detailed feature selection process is then performed using SHAP (SHapley

Additive exPlanation), an additive feature attribution method. This method quanti-

fies the contribution of each individual feature to the model’s overall performance on

the dataset [129], [74]. The result of the SHAP method is a subset of the augmented

dataset, containing only the most impactful features (also referred to as explanatory

variables) for the model’s output.

SHAP has attracted a lot of attention due to its benefits, solid theoretical back-

ground and for providing local and global explainability to the model [74]. A further

review of features selection, with focus on SHAP and its implementation in the

proposed data pipeline is presented in subsection 4.2.2.

Once the relevant features are selected, the next step is to optimise the hyperpa-

rameters for the proposed model. The chosen model is a bidirectional LSTM, as

described in [124], due to its inherent ability to address the vanishing gradient

problem in time-dependent and sequential data series. A random search process

is employed to optimise the hyperparameters for the Bidi-LSTM model. The key

hyperparameters considered include the number of hidden layers, neurons per layer,

learning rate and timesteps, which define the time interval the network will buffer

during each processing step.

For practical reasons, following [130], the number of layers in the network is limited

to between one and six. This selection is based on factors such as training time and

model complexity, particularly considering the constraints of deploying the model

on an embedded system.

Secondly, the number of neurons per layer is selected based on a tradeoff: while more

neurons enable the model to learn complex nonlinear patterns, they also increase

the risk of overfitting and add computational cost. To ensure broad coverage, the

number of neurons per layer is set in the interval between 32 and 256.

Learning rate is another important parameter for the network to reduce the local

error during the stochastic gradient descent (SGD) model training [131]. Learning

rates can be chosen to be constant or to adapt as training loss decreases. In this

thesis, the learning rate selection was automated to values between 0.01 and 0.001.

Finally, the dropout rate is also included as a key hyperparameter in the selection

process. Dropout is a regularization technique that randomly deactivates neurons
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during training with a specified probability. This helps prevent overfitting by making

the network less sensitive to specific neuron weights. The recommended dropout

rate is typically recommended to be between 20% and 50%. Here, the dropout rate

selection was automated to values between 0% and 50%.

Finally, the model is generated and trained using cross-validation techniques until

it achieves an acceptable mean square error (MSE) loss value. The model is then

validated by demonstrating the smallest estimated risk [132]. Once validated, the

model is saved for future use, completing the offline processing stage.

The derived model will then be deployed on the target system for real-time inference.

Real-time inference is crucial for enabling a variety of latency-critical intelligent

services, such as autonomous vehicles, power plants, and augmented reality [14].

The target system must meet the minimum requirements to load the saved model

into memory, allowing the real-time process to be executed.

The systems envisaged in this thesis are primarily the mixed-criticality systems,

which shall address varying requirements related to safety, security, determinism,

availability and performance [21].

Mixed-criticality systems (MCSs) are classified based on the tasks they perform

and the consequences of failing to meet their requirements. A modern vehicle is an

example of an MCS, where tasks vary in criticality. High-criticality tasks, such as

the antilock braking system (ABS), require meeting strict timing and operational

requirements to ensure safety. In contrast, tasks like infotainment and system

connectivity are considered low-criticality. Navigation systems typically fall into

the medium-criticality category [133].

Additionally, these systems are equipped with heterogeneous embedded systems [14],

whose architecture consists of a diversified number of computing devices, such as

CPU, GPU, FPGAs and others. Once the optimised model is deployed to the target

system, the system can be monitored and its status determined in real-time through

the online inference.

Machine learning algorithm performance can vary significantly based multiple

factors, as further explained in Section 4.3. There is no one-size-fits-all approach —

an algorithm that performs well in one domain may be inefficient or less effective in

another, therefore optimizing efficiency becomes increasingly crucial for the success

of real-time machine learning solutions [134]. Many machine learning algorithms,

particularly deep learning models, require intensive computation for both training
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and inference. This computational burden can delay real-time processing, making

them less suitable for fast-paced environments [135].

For real-time applications, algorithms with high computational complexity may

be impractical for large-scale or real-time applications due to excessive processing

time and resource demands. The advantage of combining the hyperparameters

optimization with real-time applications requirements is that the model complexity

can be reduced as much as the performance criteria allows, in terms of accuracy,

precision and also computational complexity. A compromise between performance

criteria and model complexity can be reached using the offline processing schema

proposed by this thesis.

Finally, a system status forecast is generated. By defining a window of interest,

determined by the horizon H, which represents the number of future steps to be

forecasted, the model can predict the system’s future behaviour with a certain

level of accuracy. This is particularly important for safety-critical systems, where

abnormal states could lead to catastrophic failures.

Multiple multi-step ahead models have been tested and optimised as part of this

thesis. The proposal herein, is to forecast the multivariate independent variables,

considered they can be predicted through the knowledge of the selected recent past

timesteps.

4.2 Offline Processing Modelling

The purpose of the offline processing stage is to derive the best possible model for

the system-of-interest. The approach proposed herein focuses on four main steps

during offline processing:

a) measurement noises handling

b) additive features attribution

c) automated model’s hyperparameters optimization

d) model cross-validation

91



4.2 Offline Processing Modelling

The complete flowchart of the offline processing derived from Section 4.2 is shown

in Fig. 4.2 below.
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4.2.1 Handling Noisy Measurements

There are two types of measurement errors: bias error and random error. Bias

error is the difference between the actual value of the measured variable and the

mean of multiple individual measurements. It is often referred to as accuracy —

a measurement with high accuracy has a small bias error. Random error is the

deviation of each individual measurement from the average value. It is associated

with precision — a measurement with high precision has low random error. Measure-

ment devices have limited precision and are also subject to drift, a gradual shift in

measured values over time. This introduces uncertainty into the system, primarily

associated with random errors in measurements. Therefore, the uncertainty in

the measurements should be evaluated and removed from the system in order to

make them more robust. The random error in measurements can be filtered before

taken as the input of the system model [136]. According to [126], recursive neural

networks models, such as long short-term memory, built on top of noisy raw sensory

data may not be robust, therefore a noise reduction strategy would benefit the

features mapping.

Two main approaches for noise reduction are found: real-time processing and offline

post-processing. For the latter, principal component analysis (PCA), also used for

feature selection is the most popular. For real-time algorithms, Fourier Transform,

wavelet transform and bandpass filters (which includes EWMA) are used [137].

Recent works have addressed the issue of dealing with uncertainties in the measure-

ments due to unmodelled noises using the exponentially weighted moving average

(EWMA) of past data [128], [136], [138].

In the field of signal processing, EWMA serves as a window function application:

a low-pass filter, effectively eliminating high frequency noise from a given signal.

Moving averages are closely connected to the notion of rolling window estimation.

This involves fitting models repeatedly to a fixed-sized window comprising past

data. Rolling window models are extensively employed in various domains such as

time series analysis, as well as in the fields of economics, finance, and engineering

for the purpose of forecasting [139].

The EWMA, represented by µk, of a time series represented by u = (u0, u1 . . . uk) ∈
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Rm is a vector represented by, as seen in [128, eq. (7)]:

µk =

∑k
i=0wiuk−i∑k
i=0wi

(4.2)

where wi = (1−α)i with α = 2/(s+ 1) and s is an arbitrary span, where α ∈ {0, 1}.
The parameter α controls how closely the model will follow the original time series.

It can be demonstrated that µk in (4.2) can be approximated by a linear regression

of the historical input data, which is more computationally efficient form, denoted

in (4.3). This representation is highly relevant especially for applications where

embedded systems run on cost-optimised hardware, as seen in [128, eq. (8)]:

µk ≈ (1− α)µk−1 + αuk (4.3)

In the equation, α represents the importance of the previous value, which signifies

the trend, and (1− α) determines the importance of the current value.

The concept of the exponentially weighted moving standard deviation (EWMS) of

past data is also introduced in [140]. The EWMS represented by σ, of every input

signal in uk at a discrete time k is given by, as seen in [140, eq. (2)]:

σ =

∑k
i=0wi(uk − µk)2∑k

i=0wi
(4.4)

Multiple, differently spanned EWMAs and EWMSs lead to various smoothed

versions of all time series and their standard deviation, which are then added to

the original dataset to provide noise reduction data to the dataset. Naturally, the

number of additional variables to be added is limited by the selected span “s”, and

shall be carefully selected to limit the system’s memory demand.

It is important to emphasize that, although EWMA is widely used to reduce noise

in time series data, it can influence the signal distribution. EWMA functions as a

low-pass filter, attenuating high-frequency components, which are often associated

with noise. Sharp spikes, such as outliers, may also be smoothed; however, sporadic

outliers in continuous time series data may not significantly impact the network’s

learning process. The degree of impact on the original data can be controlled by
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the smoothing factor α. A higher α (with values near to 1) retains more of the

original dataset structure.

The method proposed in this thesis adds both EWMA and potentially EWMS to

the original dataset, not changing the original features. In the next stage then —

feature selection using an additive feature attribution method — the algorithm will

identify and retain the most relevant features for the studied dataset, ensuring that

the noise reduction strategy minimizes any unintended alterations to the original

data structure.

4.2.2 Additive Features Attribution

In machine learning, dimensionality refers to the total number of explanatory

features in a dataset. When the number of features is too high relative to the

number of observations, some algorithms may struggle to produce effective models.

Dimensionality reduction techniques aim to select or extract features, creating

lower-dimensional spaces while preserving as much useful information as possible.

This helps improve model simplicity and performance. Common techniques include

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and

t-Distributed Stochastic Neighbor Embedding (t-SNE), with PCA being the most

widely used.

Given a set of observations u with dimension M, u = (u0, u1, . . . , uM) ∈ U , PCA

is the standard technique for finding the single best (in the sense of least-square

error) subspace of a given dimension, m. This algorithm is based on the search of

orthogonal directions explaining as much variance of the data as possible [141].

Feature selection is a crucial process for identifying the relevant features for the

system or process under analysis [142]. Feature selection is widely used for model

explainability (xAI) [75], [77], [78]. In the proposed framework, the feature selection

process is used to retain only the relevant features for training the model, while

disregarding those with little or no impact on the final algorithm. Features may

also be eliminated if they are redundant [143].

Another important contribution of feature selection is to determine causality [144].

Causal relationships are increasingly seen as the next logical step in building

robust solutions. They emphasize that predicting an outcome is not the same as

understanding its underlying causes. Causal models can help identify the precise
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cause-and-effect relationships by pinpointing the root causes of outcomes [70], while

also enabling the modelling of interventions [145].

Recently, feature selection has been used to enhance the explainability of machine

learning data-driven models [76], in the context of xAI. This approach involves

determining the contribution of each feature to the model’s performance, helping to

identify an optimal subset of features.

It is crucial to accurately understand the output of a prediction model [146]. One

effective way to explain models is through feature attributions. In this approach,

each feature is assigned a score (attribution) based on its contribution to the

prediction [147]. The definition of additive feature attributions is as follows:

Definition 4.1. Additive feature attributions

Suppose f : U → R is a explanation model mapping an M-dimensional feature

space X to real-valued predictions. Additive feature attributions for f(u) at input

u = (u0, u1, . . . , uM ) ∈ U comprise of a baseline reference attribution φ0 and feature

attributions φ = (φ0, φ1, . . . , φM) corresponding to the M features such that

f(u′) = φ0 +
M∑
k=i

φiu
′
i (4.5)

where M is the number of simplified input features, u′i ∈ {0, 1}M , and φi ∈ R.

Methods that employ explanation models matching Definition 4.1 attribute an effect

to each feature. By summing the effects of all feature attributions, these methods

approximate the output f(u) of the original model.

An attribute of the class of additive feature attribution methods is the presence of

a single unique solution in this class with three desirable properties: local accuracy,

missingness and consistency [146].

Several methods align with Definition 4.1, as discussed in Section 2.5. Among them,

SHAP has gained significant attention due to its strong theoretical foundation

and ability to provide both local and global model explainability [74]. Given its

advantages and widespread adoption in the AI community, this thesis employs the

classic Shapley value estimation as the chosen explainability method.
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SHAP (SHapley Additive exPlanation), a solution based on cooperative game theory,

stands out as one of the most prominent explainable AI (xAI) techniques [148].

The Shapley values of features quantify the contribution of individual features to

the model’s performance on a set of data points. Shapley values are used to measure

the contributions of input features to the output of a model at the instance level.

Given a specific data point, the goal is to decompose the model’s prediction and

assign Shapley values to the individual features of that instance [129].

A simple sampling approximation relies on the fact that the Shapley value can be

expressed as the expected marginal contribution a player has when players are added

to a coalition in a random order [147]. Let π(M) be the ordered set of permutations

of M , and O be an ordering randomly sampled from π(M). Let prei(O) be the set

of players that precede player i in O. The Shapley value of player i is the expected

marginal contribution of the player under all possible orderings of players, as seen

in [147, eq. (2)]:

φi(υ) = EOvπ(M)[υ(prei(O) ∪ (i))− υ(prei(O)] (4.6)

By sampling a number of permutations and averaging the marginal contributions of

each player, one can estimate this expected value for each player and approximate

each player’s Shapley value.

In this thesis, a Shapley tree-based model is used to obtain and interpret the

features with highest impact on the target calculation, as in [149]. According

to [150], as oppose to several inconsistent common feature attribution methods for

tree ensembles, SHAP values consistently attribute feature importance, better align

with human intuition, and better recover influential features.

A Tree SHAP algorithm, a high-speed algorithm for estimating SHAP values of tree

ensembles, then extend this to SHAP interaction values [150] in order to narrow

down the relevant features for the case study.

4.2.3 Automated Hyperparameters Optimization

The objective of supervised machine learning is to train a model using a dataset of

n observations, drawn from an unknown distribution Pxy, so that a labeled dataset

D ∼ (Pxy) in order to ensure that it can effectively generalize to new observations
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that arise from the same underlying data generation process.

Typically, a machine learning algorithm transforms a problem that needs to be

solved into an optimization problem, using various methods to find a solution. The

goal, before the training phase, is to identify a set of hyperparameter values that

achieve the best performance on the data within a reasonable amount of time. This

process is known as hyperparameter optimization (HPO) or tuning. It plays a

critical role in the prediction accuracy of machine learning algorithms [151]. HPO

involves optimizing a loss function over a graph-structured configuration space [152].

Automated HPO has several important use cases, as highlighted by [130]: reducing

the human effort required to apply machine learning, improving the performance

of algorithms, and enhancing the reproducibility and fairness of scientific studies.

Automated HPO is clearly more reproducible than manual search. It enables fair

comparisons, as different methods can only be compared fairly if they receive the

same level of tuning for the given problem [131]. Hyperparameters that have a

stronger effect on weights during training are more influential for neural network

training. Currently, the most commonly adopted optimizer for training deep neural

networks is stochastic gradient descent, as shown in (3.52), along with its variants.

In addition to the choice of optimizer, the corresponding hyperparameters are

critical for certain networks [153]. Let D = (U ,Y) be a given dataset, with a vector

of hyperparameters denoted by the objective function, as seen in [17, eq. (1)]:

λ∗ = arg min
λ∈Λ

E(Dtrain,Dtest)∼DV (L, F̂λ, Dtrain, Dtest) (4.7)

where Λ represents the overall hyperparameter configuration space.

V (L, F̂λ, Dtrain, Dtest) measures the loss of a model generated by algorithm F̂ with a

vector of hyperparameters λ ∈ Λ on training data Dtrain and evaluated on validation

data Dtest, where (Dtrain, Dtest) ⊂ D.

A review of the HPO algorithms and hyperparameters search space and their

applications is presented in [153]. It introduces and explains three main search

algorithms, Grid Search, Random Search and Bayesian Optimization. Another

optimization method with increasing interest in the literature is called Neural

Architecture Search (NAS), which differs from the HPO algorithms by focusing on

finding an optimal architecture for neural network-based systems [154].
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Grid search is a basic method for HPO. It performs an exhaustive search on the

hyperparameter set specified by users. Users must have some preliminary knowledge

on these hyperparameters because it is they who generate all candidates. Grid

search is suitable for optimizing several hyperparameters with a limited search

space. Random search is a basic improvement over grid search, as it randomly

explores hyperparameters from specific distributions of possible parameter values.

The search continues until the predetermined budget is exhausted or the desired

accuracy is achieved. Bayesian optimization (BO) is a sequential, model-based

method designed to find the global optimum with the fewest trials. It balances

exploration and exploitation to avoid getting stuck in local optima. Grid search and

manual search are the most widely used strategies for hyperparameter optimization.

However, it has been demonstrated that random search is able to find models that

are as good or better within a fraction of the computation time [155].

In this thesis, random search was selected as the hyperparameter optimization

method for all evaluated models. Although more advanced techniques like Bayesian

Optimization and Neural Architecture Search (NAS) could have been employed,

random search yielded highly satisfactory results for the tested datasets. Therefore,

it was deemed an effective and appropriate choice for this research.

Table 4.1 shows a list of typical hyperparameters subjected to optimization for the al-

gorithms used in the subsequent chapters. The list in agreement with [130] and [152].
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Table 4.1: Typical Hyperparameters for Optimization in Chapter 5

Algorithms Hyperparameters Possible Values

Decision

Tree

criterion {‘gini’, ‘entropy’, ‘log loss’}
max leaf nodes int

min samples split int or float

max depth int

splitter {‘best’ or ‘random’}

Support Vector

Regression

kernel
{‘linear’, ‘poly’, ‘rbf ’,

‘sigmoid’, ‘precomputed’}
“C” float

gamma {‘scale’, ‘auto’} or float

degree int

coef0 float

Logistic

Regression

penalty {‘l1’, ‘l2’, ‘elasticnet’} or none

“C” float

class weight {‘dict’, ‘balanced’} or none

solver
{‘lbfgs’, ‘liblinear’, ‘newton-cg’,

‘newton-cholesky’, ‘sag’, ‘saga’}
multi class {‘auto’, ‘ovr’, ‘multinomial’}

Artificial

Neural Network

nbr layers int

nbr neurons int

nbr epochs int

batch size int

learning rate float

dropout rate float

Long Short-Term

Memory

nbr layers int

nbr neurons int

nbr epochs int

batch size int

learning rate float

dropout rate float

4.2.4 Cross-Validation for Model Selection

Cross-validation (CV) is used to estimate the risk of an estimator and to facilitate

model selection. It is also employed to prevent overfitting, which occurs when a
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model fits too closely to a particular training dataset, thereby reducing its accuracy

on new, unseen data. The main idea behind CV is to split the data, either once or

multiple times, to estimate the risk of each algorithm. A portion of the data, known

as the training sample Dtrain, is used to train each algorithm while the remaining

portion, the validation sample Dtest, is used to estimate the algorithm’s risk. CV

then selects the algorithm with the smallest estimated risk [132].

Two groups of CV techniques are organised in [156], subject-wise and record-

wise. Subject-wise division ensures that the subjects in the training and holdout

(validation) sets are independent. In other words, the records from each subject are

assigned to either the training or the holdout set. Contrarily, record-wise division

splits the dataset randomly, without taking into account that the training set and

the holdout set could share records from the same subjects.

In this thesis, a k-fold CV technique (record-wise) is used, where the dataset is

divided into k blocks (folds). One of the k blocks is designated as the validation

set, while the remaining {k − 1} blocks serve as the training set. In k-fold CV,

there is no overlap between test sets due to the use of a random sampling technique.

The learning algorithm is applied to each training set, and the resulting model is

evaluated on the corresponding test set. This process is repeated k times, where

k = n, and the performance is estimated as the average over all k blocks (test

sets) [156].

To ensure the reliability of the research, all experiments conducted in this study

used a 10-fold cross-validation on the training set. This allows for a fair evaluation

of models obtained using different machine learning algorithms.

To reduce the variance of cross-validation (CV) results, CV is performed with random

splits. Generally, increasing k reduces bias but comes at a higher computational cost

and may increase variance. Given that the datasets used in the subsequent chapters

are sufficiently large, a 10-fold CV provides a statistically sound distribution and

represents a good compromise based on the experimental results in this work.

For the scoring metrics in this thesis, it is selected the R2 (R-squared), given by

(4.8), since the objective is to minimize the variance of the regression model. In

the equation, SSres is the residual sum of squared error of the regression model,

whereas SStot is the total sum of squared errors, as seen in [17, eq. (3)]:

R2 = 1− SSres
SStot

= 1−
∑n

k=1(yk − ŷk)2∑n
i=k(yk − ȳk)2

(4.8)
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As a result, each run of the cross-validation produces an array of k-scores for the

estimator. These scores are analysed from a statistical perspective to assess the

model’s adherence to the available data, considering metrics such as mean, standard

deviation, variance, and bias. This provides a solid guideline for model selection,

ensuring its suitability for the specified system.
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4.3 Real-Time Inference

A key aspect of mixed-criticality systems (MCS) is that system parameters, such

as tasks’ worst-case execution times (WCETs), depend on the criticality level of

the tasks. The demand for real-time deep learning inference is steadily increasing

to support latency-critical intelligent services, such as autonomous driving, remote

unit control, power plants, and more. Meeting the deadlines for real-time inference

workloads is crucial for these services to prevent hazardous or catastrophic situations

and to ensure optimal user experiences [14].

Online inference addresses real-time requirements in the present moment. It utilizes

the optimized model generated during the previous stage and processes real-time

data obtained from measurements at the current time k, as described in (4.1).

The objective of real-time inference is to identify suitable models for real-time

prediction, Prognostics and Health Management (PHM), and Remaining Useful

Life (RUL) estimation. This enables the algorithm to provide failure predictions,

supporting preventive maintenance and system reliability. The system is expected

to be trained on a powerful platform, like a GPU, for instance, and to be deployed

to prediction either on cloud based applications or at the edge, like embedded

systems, FPGAs and others. Therefore, for the real-time prediction, those models

shall be able to run within the specific required system dynamics. For example,

as exemplified by [29], some systems require a polling frequency of one (1 Hz)

(one reading per second). Other systems, like motor-pumps assemblies can reach

up to 6,000 rpm at 50/60 Hz. For most of the mechanical variables, 1 kHz data

sampling would suffice, whereas to the electrical monitoring a higher data sampling is

required, around 4 to 5 kHz. Yet, for motor-compressors systems, similar monitoring

is applicable with the addition of magnetic bearings which require a higher sampling

rate, from 10 to 20 kHz.

Hence, any PHM system based on machine learning techniques shall cater for the

system dynamics to which it has been designed. Naturally, the system performance

is strictly linked to the hardware/topology/architecture/system in use. Many studies

have been conducted in this direction. For example, an evaluation of the feasibility

of training some deep learning models for a mobile device is provided in [157].

The paper concludes that choosing an appropriate batch size has a big impact on

whether training a deep learning model is feasible. The paper also asserts that
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balancing workloads on CPU and GPU to maximize system throughput is a good

strategy. A survey of hardware platforms for deep neural networks is provided

in [158], covering CPU, GPU, FPGA and ASIC (Application-Specific Integrated

Circuit); and different hardware devices (multi-core, SIMD, GPU, and FPGA) are

presented and compared in [159] against a specific algorithm and concludes that

best performance is obtained by using GPU, under large dataset and FPGA for

small dataset because of its lower power, especially for some embedded applications.

Machine learning algorithm performance can vary significantly based on factors such

as data characteristics, computational resources, and task-specific requirements.

As mentioned before, there is no one-size-fits-all approach — an algorithm that

performs well in one domain may be inefficient or less effective in another, therefore

optimizing efficiency including computational time, memory usage, and scalability

becomes increasingly crucial for the success of real-time machine learning solu-

tions [134]. Many machine learning algorithms, particularly deep learning models,

require intensive computation for both training and inference. This computational

burden can delay real-time processing, making them less suitable for fast-paced

environments [135].

For real-time applications, computational complexity refers to the amount of re-

sources - time, memory, processing power - required by an algorithm to train

and deploy. Algorithms with high computational complexity may be impractical

for large-scale or real-time ML applications due to excessive processing time and

resource demands. In [134], computational complexity is assessed by measuring the

training and testing times required for each algorithm, and concludes observing

that while deep learning, including neural networks, often achieve top performance,

selecting the most efficient algorithm should account for the specific needs of the

application, including available computational resources, memory usage, and energy

consumption.

The advantage of combining the hyperparameters optimization with real-time appli-

cations requirements is that the model complexity can be reduced as much as the

performance criteria allows, in terms of accuracy, precision and also computational

complexity. A compromise between performance criteria and model complexity can

be reached using the offline processing schema proposed by this thesis.
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4.3.1 Real-Time Data Processing

The complete flowchart of the real-time data processing is depicted in Fig. 4.3

below.
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Figure 4.3: Novel PHM Real-Time Processing Flowchart

At the system startup, the optimised network model is loaded onto the system’s

memory as the most accurate predictor (or estimator).

At every k-interval, a new set of real-time data S = {(u,y)} is read and loaded

onto the embedded system’s memory.

LSTM can use lagged observations of a time series as timesteps to improve its
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prediction performance, as stated in Section 3.4. Herein, a careful selection of the

past data timesteps n-timesteps is made as a trade off between the predictor model

accuracy and real-time constraints. The model to be loaded is the one trained

and optimised for the selected n-timesteps, otherwise the prediction will fail. In

case the system estimates multi-step ahead, the value of the window with future

values, horion H, to be forecasted is also required. This is part of data sequencing

in Fig. 4.3.

4.3.2 Real-Time Noise Reduction

The raw data obtained from the system’s measurements is augmented with the

relevant Exponentially Weighted Moving Average (EWMA) and, potentially, the

Exponentially Weighted Moving Standard Deviation (EWMS) of the original mea-

surements. In real-time applications, this augmentation is applied only to the

features identified during the feature selection process, ensuring an optimized set of

features that retains the most relevant information for the process. This approach

is proposed to mitigate inherent measurement noise [128], improving the robustness

of the data while maintaining the integrity of the original signal.

The EWMA sequence will be recursively calculated according to (4.3). In addition

to the computational efficiency, the recursive implementation allows the algorithm

to compute µk without the need to store multiple past values of it, then only keeping

track of the previous state µk−1.

The EWMS will be derived from (4.4), which takes the current µk, uk and the span

s as inputs. If demonstrated during the offline processing that the added variables

related to the EWMS are not relevant for the real-time processing, these ones shall

not be included to avoid a higher computational cost.

4.3.3 Real-Time Prediction

After augmentation, the data undergoes standard scaling to normalize the feature

distributions, ensuring consistency across different magnitudes. Following this, the

data is reshaped into the appropriate format required by the model. Once these

preprocessing steps are completed, the dataset is ready to be processed by the
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online inference estimator for real-time predictions.

At every k-interval then, the optimised model predicts the k + 1 system status,

F̂ : Rm → Rn such that ŷk+1 := F̂θ(uk).

This prediction serves as a key indicator for condition monitoring, enabling immedi-

ate actions when necessary. Based on these indicators, system controls—such as

alarms, automated warnings, or even shutdown protocols—are triggered to prevent

failures and ensure operational safety.

The system is also designed to provide an advisory window through multi-step ahead

forecasting, allowing operators to anticipate potential failures and take preventive

actions. This aspect is further explored in the next section.
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4.4 Multi-step Ahead Forecasting

A multi-step ahead (also called long-term) time series forecasting task consists of

predicting the next H values of (x,y) as in (4.9), as seen in [160, eq. (1)], of a

historical time series [(x, y)1 . . . (x, y)N ] composed of N observations, where H > 1

denotes the forecasting horizon [80],

(x,y) = [(xk+1, yk+1) . . . (xk+H , yk+H)] ∈ Rm×n (4.9)

According to [80] and [161] there are several strategies for multi-step ahead forecast-

ing, which the most used are Recursive (also known as Iterated), Direct and MIMO.

Recursive forecasting is the primary form of multi-step forecasting [80], where

forecasting is done by the factorization of previous values, amplifying potential

errors and leading to lower quality predictions as the time horizon increases. The

MIMO forecasting aims to estimate the future values in one step. Multi-output ap-

proaches sidestep the issue of error feedback by jointly estimating over the prediction

window [88].

4.4.1 Real-Time MSA Strategy Selection

Initially, from the MSA strategies described in the Section 2.6 of the literature

review, the Recursive and the MIMO ones were selected and compared to forecast

the multivariate independent features X ′s.

Combined with the MSA strategies above, in this thesis, two different statistical

regression methods are used to forecast, in real-time, the individual X ′s for the

determined horizons: autoregressive (AR) model and ARIMA (autoregressive inte-

grated moving average). The first one, AR, only takes into consideration the lagged

values, whereas ARIMA also considers the stationarity and moving average. AR

can be seen as a subset of ARIMA, however both were considered to verify their

performance on dataset fitness and real-time scenarios.

The most well-known method is univariate “Autoregressive Moving Average (ARMA)”

for a single time series data in which Autoregressive (AR) and Moving Average

(MA) models are combined. Univariate “Autoregressive Integrated Moving Average

(ARIMA)” is a special type of ARMA where differencing is taken into account in
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the model [162]. ARIMA is also a well-used approach for time series forecasting [23]

and is the model considered herein.

The next step is to use the forecasted X ′s as inputs for the selected pre-trained and

optimised machine learning models. These models will then provide the multi-step-

ahead forecast for the future Y ′s, based on the defined horizon (H) of interest.

This thesis proposes a novel hybrid approach for real-time multi-step-ahead (MSA)

forecasting. In this method, autoregressive models operate in real-time at every

k-interval, utilizing available data within the permitted processing window. Sub-

sequently, an offline pre-trained model is employed to infer target values for the

specified forecasting horizon H.

As highlighted in Section 2.6 of the literature review, LSTM models are widely used

for MSA forecasting applications. In this thesis, the three most frequently cited

variants of LSTM models for MSA forecasting were implemented and tested:

• Stacked LSTM (stacked-LSTM) as the one in [90].

• Bidirectional LSTM (Bidi-LSTM) as in [68] and [123].

• CNN-LSTM as in [79].

One method of particular interest is the Multivariate Multi-step Bidirectional

LSTM (Bidi-LSTM), which is notable for its ability to adapt to multiple time-series

sequential datasets, as mentioned in the previous chapter.

4.4.2 Multivariate Multi-step Bidirectional LSTM

A multivariate multi-step bidirectional LSTM architecture has been implemented,

containing forward and backward LSTM layers. This architecture was trained to

provide at each time the forecast of next H values of (y) = (yk+1, . . . , yk+H), using

N past timesteps of the input (x) = (xk−N , . . . , xk).

Fig. 4.4 illustrates an example of MSA Bidi-LSTM architecture, which includes

both a forward LSTM layer and a backward LSTM layer. Unlike the architecture

depicted in Fig. 3.6, this model is capable of forecasting the next H values of the

series in a single pass.

Two models for the Bidi-LSTM are generated: one that considers a standard

LSTM output for one-step ahead forecasting, and another, as shown in Fig. 4.4,
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for multi-steps ahead forecasting. The models are different from each other by one

reason: besides the look-back window, the MSA also requires the definition of the

forecast window. The dense output layer for one-step ahead is “1” (one) and for

the multi-step ahead is the horizon “H”.
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Figure 4.4: Multi-Step Ahead Bidirectional LSTM Architecture

The adapted multivariate bidirectional LSTM model, designed for hyperparameter

optimization, is illustrated in Fig. 4.5. This model is highly configurable, with

key hyperparameters, including the number of layers, LSTM cells, dropout rate,

learning rate, batch size, and number of epochs, being optimized for performance.

Notably, the entire architecture, including various LSTM layer configurations, can

be adapted and optimized for the specific dynamic system of interest. A full

implementation of the proposed architecture is provided in Appendix A for MSA

computation in the first experiment. The results demonstrate that the system

is well-optimized for the dataset under study, highlighting the accuracy of the

proposed model.
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Figure 4.5: MSA Bidi-LSTM Proposal with Hyperparameters Optimization

4.4.3 Autoregressive Integrated Moving Average (ARIMA)

In this thesis, ARIMA is selected for comparison with both the stacked-LSTM and

Bidi-LSTM models. ARIMA is a widely used approach for time series forecasting [23].

It is particularly effective for addressing non-stationarity in datasets.
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Non-stationarity refers to time series data where the mean, variance, and covariances

change over time. Non-stationary behaviors can include trends, cycles, random

walks, or combinations of these. Such data are generally unpredictable and cannot

be effectively modeled or forecasted. Using non-stationary time series data may lead

to spurious relationships between variables that do not actually exist. To obtain

reliable results, it is necessary to transform non-stationary data into stationary

data [139].

ARIMA holds a relationship between the current observation and past observations

(Autoregression - AR) with a capability of differencing of actual observations in

order to make the time series stationary (Integrated - I) with lags of the forecast

errors of the moving average mode (Moving Average - MA).

These components are included in an ARIMA model as a set of parameters. The

standard notation for the ARIMA model is usually given as ARIMA(p, d, q); where

p is the number of lag observations, d is the degree of differencing and q is the size

(or span) of the moving average window.

Initially the system shall be assessed for non-stationarity, so the measured values

x(k) are replaced by the results of a recursive differencing process ∇dx, where d

is the number of times the differencing process has been applied. The first order

differencing is shown in (4.10) [160, eq. (2)]:

∇dx∗(k) = ∇d−1x(k)−∇d−1x(k − 1) (4.10)

Finally, the ARIMA model to estimate x̂ is given below [160, eq. (3)]:

x∗(k) = µ+

p∑
i=1

φix
∗(k − i) +

q∑
i=1

θiε(k − i) + ε(k) (4.11)

Where x∗(k) is the current estimated value at time sequence k, µ is the mean of

the series, ε(k) is the random error at time k; φ and θ are parameters for the AR

and MA addends; and p and q are the autoregressive and moving average specific

parameters respectively.
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4.5 Chapter Summary

This chapter presents the main contribution of this thesis: a novel data-driven

Prognostics and Health Management (PHM) methodology for system-level embedded

electronics. The proposed approach consists of three main stages: a robust offline

processing modelling, real-time inference and multi-step ahead forecasting.

As an initial processing step, a noise reduction strategy is proposed by introducing

two computed values for each field measurement: its Exponentially Weighted

Moving Average (EWMA) and Exponentially Weighted Moving Standard Deviation

(EWMS). To preserve the original data structure, the dataset is augmented with

these values rather than modifying existing features. A classic Shapley additive

feature attribution model is then applied to identify the most relevant features

for the system of interest, which may or may not include the newly introduced

features. This strategy aligns with [RQ2], which focuses on maintaining predictor

explainability and reliability.

Following this, a rigorous hyperparameter optimization (HPO) process is conducted

using random search within a well-defined parameter space. Although alternative

HPO techniques were available, random search yielded highly satisfactory results

for both systems tested in this thesis.

The proposed PHM framework utilizes a specialized bidirectional LSTM architecture

for the experiments, designed to handle structured time series data with high

predictive accuracy requirements. This chapter establishes a comprehensive data

pipeline for real-time processing, serving a dual purpose: real-time inference and

multi-step forecasting.

For multi-step-ahead forecasting, we propose a hybrid approach that combines

the reliability of the Autoregressive Integrated Moving Average (ARIMA) model

for forecasting explanatory features within a defined horizon and the specialized

bidirectional LSTM (Bidi-LSTM) for accurately predicting the system’s operational

state. During the assessment of machine learning algorithms, particularly in Chap-

ter 5, various multivariate LSTM implementations were explored, with Bidi-LSTM

emerging as the predominant choice. This approach forms the foundation of the

novel PHM framework for real-time inference and multi-step-ahead forecasting

in embedded systems, addressing [RQ3] by providing a robust machine learning
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framework for PHM in real-time embedded applications.

The next two chapters present a complete implementation of the proposed method-

ology on two different real-world systems, with results compared to state-of-the-art

methods. Specifically, the battery dataset is used, and the outcomes are compre-

hensively compared with two model-based estimators: the Extended Kalman Filter

and the Unscented Kalman Filter.
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Chapter 5

Experiment 1:

Electronic Control Unit

This chapter implements the novel PHM framework proposed in Chapter 4 using

a real-world industrial dataset to predict both the current and future operational

states in real time. First, the case study, its environment, and its application

are described, followed by feature selection to analyze the 47 available features

and the target operational state, reducing the number of variables for improved

interpretability. To evaluate machine learning performance on the dataset, seven

supervised learning methods are proposed, implemented, and optimized according

to the PHM framework. The optimized models undergo cross-validation and are

then compared using well-established performance criteria, including execution

time to assess feasibility on the target hardware. The chapter concludes with a

multi-step-ahead forecasting assessment, where various strategies and models are

tested. The most promising approaches are implemented on a standard test bed to

evaluate real-time performance.

Many works have proposed an integrated edge-to-cloud architecture to deal with

the multiple challenges of real-time systems, such as managing low latency, minimal

bandwidth, and fault-tolerant applications, as well as for an architecture able

to train large-scale real-world industrial applications data offline and deploy it

effectively on the target system. These systems address the requirements for
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edge computing, internet of things (IoT), increase of data volume, variety and

velocity [163], [164]. The seamless integration between the end (or edge) devices and

the cloud for intelligent management is also contemplated [165]. Big data analytics

and AI service will be fully integrated to mine insights or knowledge about trends

(predictive maintenance), bottlenecks, and how to set the parameters, processing

algorithms/rules or coordination mechanisms of gateways and the cloud for data

processing [166].

AUTOMATED SYSTEMS

SENSORS

 

ACTUATORS

M

Apps
Data Lake

Dashboards

Cloud

Server
w/ VMs

Offline 
Training

Micro
controller

Online
Inference

Figure 5.1: Edge to Cloud Automated System
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The case study in this experiment is based on a real-world system that is part of

an industrial asset. It involves a control module with a microcontroller-embedded

system that receives data from field sensors and operates valves, motors, and pumps

according to a predefined cause-and-effect automated system.

Fig. 5.1 shows a general edge-to-cloud automated system, exemplifying different

industrial systems, like a wind turbine, a spacecraft, a robotic arm and a factory

utility. The system described here processes a large volume of data and stores it

on a local (edge) server, which hosts multiple virtual machines (VMs) dedicated to

different subsystems and tasks.

One key task is to transmit data to a cloud-based server, where various applications

run simultaneously, including apps, dashboards, and machine learning training

for the edge system. On the cloud, new data is continuously added every minute,

enabling the development of an optimized machine learning model through intensive

offline training, as detailed in the previous chapter.

The model is then loaded onto the target embedded system for real-time inference

and provides an advisory window of 30-minute, ie, 30 steps ahead forecasting.
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5.1 ECU - PHM Assessment

The valuable real-world dataset used in this study was obtained from an electronic

control unit (ECU), similar to the one described by [29]. The ECU manages various

process devices and actuators while receiving data from field sensors. Additionally,

the ECU itself provides a comprehensive set of housekeeping data. In this applica-

tion, real-time data is collected by the ECU from multiple sensors and actuators

and then transmitted to a cloud server. In the cloud, instant data is processed for

condition monitoring, while historical data is analysed for trending and performance

evaluation purposes.

For the case study, the ECU began exhibiting multiple faults, causing it to inter-

mittently reset. During these unintended resets, which configured fault events, the

ECU transitions through a predefined set of states, denoted as s, referred to as

operational modes.

For the system in case, the possible operational modes are:

Table 5.1: List of all Operational Modes and Description

Operational Modes Mode Description

0 Unknown

1 Reset

2 Started

3 Initializing

4 Programming

5 Operational

States “0”, “1” and “2” are transitory states, however they are expected to be

presented in long datasets. State “0” may be related to loss of communication and

consequent loss of record rather than a real problem with the controller.

State “5” is the normal operational mode, expected to keep the dependable system

attributes availability, reliability and integrity, according to Table 2.3 at an accept-

able level.

The real-world system includes a built-in reset function: whenever a fault occurs,

the master controller instructs the ECU to restart and execute the necessary steps

to return to an operational state. However, such resets are not expected to happen

frequently, as the system is located in a remote area, and redundancy is implemented
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to ensure fault tolerance, high reliability, and availability.

Therefore, the ECU is specifically designed to maximize its operational state, s = 5,

while minimizing reset events, s = 1. Consequently, the PHM system uses s as the

target variable, with a higher prediction accuracy requirement for the critical state

s = 1.

Fig. 5.2 depicts the state diagram of the system operational modes. When the ECU

is initially powered on, it briefly remains in the unknown state (s = 0) during the

boot-up process. Once the bootloader process is complete and all ECU services

become available, the system transitions to the started state (s = 2). At the started

state, services are available, but the ECU remains in a pre-operational mode. If the

operator decides to actively use the ECU, a command is issued, and the system

temporarily enters the initialization state, transitioning as (s = 2 → s = 3).

Once the ECU becomes fully operational, it reports a valid transition, either

(s = 2→ s = 5) or (s = 3→ s = 4), as illustrated in the machine state diagram.

The states s = 0, s = 2 and s = 3 are considered transitory and are not expected

to be frequently observed in the dataset.

If maintenance, a firmware update, or a software upgrade is required, the system

can transition from started to programming (s = 2→ s = 4).

At a full operational status, the ECU assumes operational state, (s = 5) and is

expected to remain in this state unless scheduled maintenance or other anticipated

events occur. As a dependable system, the ECU is designed to maintain high

availability and reliability. Finally, the remaining operational state is described

as reset (s = 1). Contrary to intuition, a reset in this context is associated with

an unexpected and often undesirable condition. When a reset occurs, the system

controller attempts to restore services by forcing the system through the predefined

machine state transitions. Consequently, if a reset happens, the system will actively

attempt to reestablish its operational state.

During a certain period, the ECU resets were noticed on a much higher threshold

than expected, reaching nearly 4% of all events. As described, the system attempted

to reestablish the operational state each time a new reset occurred, leading to a

disruptive operational condition where production had to be halted, and equipment

replacement became necessary. This situation could have been prevented if the

proposed PHM framework had been in place, providing early notifications to the

operator at the onset of resets, or even before the issue escalated to a critical failure.
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Figure 5.2: System Operational Modes and Transitions

Table 5.2 shows the main characteristics of the available dataset. Additional

information about the dataset used in this experiment is found in the Appendix A:

full dataset statistical description, including its 47 independent features and the

operational mode, is presented in. Table A.1.

Additionally, the 17 features selected during the additive feature attribution process

have their density distribution shown in Fig. A.1.

Table 5.2: Real-Case Dataset Description

Dataset Characteristics Value

Description System Housekeeping and Process

Data

Datapoints (timesteps) 131,040

Pooling Interval (min.) 1

Features (independent variables) 47

Target (dependent variables) 1

% of Resets 4%

% Training Set Split 80%

% Test Set Split 20%
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5.1.1 Features Selection Outcomes

The initial step involves feature scaling of the independent variables, which stan-

dardizes the features by removing the mean and scaling them to unit variance —

resulting in a mean of zero and a standard deviation of one. Herein, the standard

scaler technique is applied.

Then, the training and validation sets are defined and split according to Table 5.2.

The tree SHAP algorithm is initially applied, as described in [150], using the full set

of 47 (forty seven) available features. This algorithm identifies the contributions of

each feature and aids in interpreting their impact on the target calculation. Analysis

revealed that, out of the total available features, only 13 (thirteen) demonstrated a

significant average impact on the model output magnitude.

Fig. 5.3 shows the selected features and their average contribution to the target

estimation. It is worthy noting that the sum of the SHAP value for all relevant

features shall equal ”1”. It was verified that the target estimation using the reduced

set of 13 features is identical to the estimation obtained using the full features set.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
SHAP value (mean)

Feature 9
Feature 10
Feature 5

Feature 13
Feature 16
Feature 0

Feature 14
Feature 1

Feature 12
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Feature 15
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Feature 8

Features Contribution to the Model

Figure 5.3: SHAP value for Features Impact on the Model

At this point, domain knowledge [142] combined with a human-in-the-loop ap-
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proach [167], is utilized. Expert opinion and judgment enter into the practice of

statistical inference and decision-making in myriad ways across many domains. A

subject-matter expert (SME) reviews the SHAP-identified features and incorporates

additional features as needed. In this case, for the current dataset, four additional

features were included due to system redundancy requirements, as many variables

are polled from two independent controllers, A and B, therefore valuable information

can be lost if only one controller is considered. However, the framework proposed in

this thesis aims to minimize the number of added features to enable higher process

automation. As a result, with the inclusion of four additional features, the final

number of independent features retained for analysis was 17.

A preliminary comparison of the main algorithms used in this chapter was conducted

on two datasets: the original dataset with 47 features and the optimized dataset

with 17 features, refined using the SHAP method. The results are presented in

Table 5.3.

The algorithms were not optimized for their hyperparameters, as the primary goal

was to assess whether reducing the number of features would result in a significant

loss of information that could negatively impact the model’s classification accuracy.

For reproducibility, training set and test set are split according to Table 5.2. Statis-

tical learning methods such as decision tree (DT), support vector regressor (SVR)

and logistic regressor (LR) were executed using their default parameters. Neu-

ral network-based methods, artificial neural network (ANN) and long short-term

memory (LSTM), were trained as follows:

• ANN: hidden layers: 2, neurons by layer: 6, activation function: ReLu,

optimizer: Adam, loss algorithm: MSE, metrics: accuracy, batch size: 32 and

epochs: 100

• LSTM: hidden layers: 4, neurons by layer: 50, optimizer: Adam

optimizer: Adam, loss algorithm: MSE, metrics: accuracy, batch size: 32 and

epochs: 50

The results indicate that reducing the number of features to 17 does not significantly

deteriorate the model’s performance compared to the original dataset. While

statistical learning methods DT, SVR and LR show a slight decrease in their ability

to classify resets, neural network-based methods maintain the same level of predictive

performance. This holds true even with static model configurations, without

considering further improvements that may be achieved during the optimization.
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Table 5.3: Comparison between Original and Modified Datasets

Metrics RMSE Accuracy % Resets FP FN

No. Features 47 17 47 17 47 17 47 17 47 17

DT 4.1e−2 5.1e−2 99.98 99.96 4 5 3 3 1 2

SVR 4.0e−2 4.9e−2 99.98 99.97 4 5 3 3 1 2

LR 4.0e−2 5.4e−2 99.98 99.95 4 5 3 3 1 2

ANN 5.1e−2 4.3e−2 99.97 99.98 5 5 2 2 3 3

LSTM 3.6e−2 3.3e−2 99.97 99.99 2 2 2 2 0 0

5.1.2 Models and Optimization

For this experiment, seven different supervised machine learning models were

implemented to evaluate their accuracy and determine if any could serve as a

candidate for generalisation. Several of the most common and widely used machine

learning algorithms, as identified in [8], [58] and [77] were selected for implementation

and testing using the real-world dataset available in this chapter.

As reviewed in Section 2.4, supervised learning is the most prevalent paradigm in

Prognostics and Health Management (PHM). Therefore, based on Fig. 2.5, the

following popular supervised learning methods were chosen:

• Decision Tree (DT) Regressor

• Support Vector Regression (SVR)

• Logistic Regression (LR)

• Artificial Neural Network (ANN)

• Long Short-Term Memory (LSTM)

• Stack-1: DT + LR

• Stack-2: {DT+SVR} + LR

The Stack-1 and Stack-2 ensembled models are stacked regressors formed by 1) a

decision tree regressor and a linear regressor and 2) decision tree regressor together

with support vector regressor as base estimator, stacked to a linear regressor.

Ensemble methods are covered in [145] which states that the PHM community
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has been using a portfolio of models with ensembles. Ensemble learning helps

improve ML results by combining several models. Typically, an ensemble model

is a supervised learning technique for combining multiple weak models to produce

a stronger one for data sampling. This approach allows the production of better

predictive performance compared to a single model and aims to decrease variance,

bias and improve predictions [168], [169].

Now that the relevant features are selected, the next step is to optimise the

hyperparameters for all the models. Table 5.4 shows each model tested for the

dataset, the HPO method used as well as the hyperparameters affected and the

resulted model accuracy. It can be noted the very high accuracy obtained on all

models fitted to the dataset.

The values in Table 5.4 are respectively the mean and the standard deviation of

the 10-folds cross-validation executions for each algorithm. A higher average score

across the folds indicates better generalization of the model. Additionally, the

standard deviation is considered to assess the variance of the scores across folds.

A lower standard deviation signifies lower variance, which is desirable for model

robustness and helps prevent overfitting.

Fig. 5.4 depicts a Box and Whisker plot of the 7 models, DT, SVR, LR, LSTM,

ANN and the 2 stacked ensemble models. The figure represents the scores for the

k-fold=10 cross-validation.

The graphic shows the minimum and maximum values, limited by the whiskers, the

lower and upper quartiles, denoted by the boxes, the median marked by the orange

line and some outliers, for the DT and ANN, when they happen.

All models demonstrate very high accuracy in predicting the different states in

y ∈ {0, 5}. Based on the results shown in Fig. 5.4 and Table 5.4, it is evident that

the two stacked models deliver the best overall accuracy.

As mentioned above, both Stacks have been implemented with their default pa-

rameters, without optimization. Stack-1 uses a decision tree regressor as a base

model, that fits on the training data, and a linear regressor as a meta-model (or

final estimator), which learns to combine the predictions of the base model. Stack-2,

in its turn, uses two regressors as base models, decision tree regressor with support

vector regressor and a linear regressor stacked as a final estimator.

With all models optimized and baselined, a performance comparison can now be

conducted to assess their suitability for real-time applications.
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Table 5.4: Hyperparameter Optimization for Different Models

MODEL

HPO

Method

Hyperparameters

Optimised

Model Accuracy

Mean Std Dev

DT
Grid

Search

max leaf nodes,

min samples split,

max depth, splitter

0.99204 1.391E-03

SVR
Grid

Search

kernel, ”C”, gamma,

degree, coef0
0.99765 7.573E-04

LR
Grid

Search

penalty, ”C”,

class weight,

solver, multi class

0.99841 9.313E-04

LSTM
Random

Search

layers, neurons,

dropout rate,

learning rate,

batch size and epoch

0.99897 2.288E-04

ANN
Random

Search

layers, neurons,

dropout rate,

learning rate,

batch size and epoch

0.99918 1.025E-03

Stack-1 None Default 0.99922 5.543E-04

Stack-2 None Default 0.99931 5.812E-04

5.1.3 Performance Comparison

If Ŷ = F̂θ(X) is an estimator of Y , then the bias of Ŷ is the difference between its

expectation and the ’true’ value: i.e.

bias(ŷ) = Eθ(ŷ)− y (5.1)

The estimator F̂ is a function of the data, and hence is a random quantity. The

main objective is that the estimates are as close as possible of the target true value

of “y”, whatever that value might be. The mean square error (MSE) represents
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Figure 5.4: BoxPlot for Different Models Accuracy

how close the estimator is of the true value [170], by the expression Eθ[(ŷ − y)2],

which leads to the relationship between MSE, variance (var) and bias, as shown in

eq. 5.2.

MSE = Eθ[(ŷ − y)2] = varθ(ŷ) + bias2(ŷ) (5.2)

Table 5.5 presents the quantitative evaluation of the prediction performance for each

proposed model, using four indicators, along with the test results for the selected

case study. The metrics include the MSE, variance, bias of the estimator, and R2

(R-squared). The objective was to minimize the variance of the regression model.

A lower MSE, variance, and bias, along with a higher R2 indicate a better fit of

the model to the data.

The results from Table 5.5, when analyzed alongside Table 5.4 and Fig. 5.4, highlight

the relative significance of each model. Stack-1 emerges as the most significant model

for the dataset, having the lowest bias, variance, and MSE, along with the highest R2

score. However, stack-2 performs similarly across these metrics, with only a slightly

higher bias (on the order of e−4) but demonstrates better classification performance

for reset states. At the other end of the spectrum, the decision tree regressor

exhibits the highest error metrics (100 times larger) than those of the stack models,

resulting in the poorest state classification performance among the tested algorithms.
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Table 5.5: Metrics and Prediction Screening for Different Models

MODEL

Metrics Inaccurate Predictions (Test Set)

MSE VAR Bias R2 All States Resets FP FN

DT 1.5e−2 1.5e−2 4.7e−3 0.9910 43 1 1 0

SVR 1.8e−3 1.8e−3 4.9e−3 0.9989 7 4 2 2

LR 3.3e−3 3.3e−3 5.3e−4 0.9980 7 4 4 0

ANN 1.7e−3 1.7e−3 6.2e−3 0.9989 8 2 1 1

LSTM 1.0e−3 1.0e−3 2.3e−4 0.9994 4 2 2 0

STACK-1 5.9e−4 5.9e−4 1.9e−5 0.9996 4 3 1 2

STACK-2 5.9e−4 5.9e−4 1.1e−4 0.9996 2 1 1 0

For the test results, as design and acceptance criteria, it was selected the total

number of inaccurate predictions, for all states and particularly for the resets, and

the inaccurate resets where classified between false positives (FP) and false negatives

(FN).

In the context of this experiment, a false positive (FP) refers to a prediction outcome

that differs from the operational mode Reset (s = 1), but the predictor incorrectly

classifies it as Reset.

Conversely, a false negative (FN) in this experiment refers to a prediction outcome

where the actual operational mode is Reset, but the predictor fails to classify it as

Reset.

True positive (TP) and true negative (TN) refer to correctly classified instances

of the Reset state in all circumstances. A TP occurs when the predictor correctly

identifies the Reset state s = 1, while a TN occurs when it correctly identifies a

non-Reset state (s 6= 1).

The dataset is obtained from a real-world case, a private dataset with consent of

usage, with 131,040 data points, as stated in Table 5.2 recorded every minute.

The dataset was split in 80% for training and 20% for test, performing 26,208 data

points for testing. In the training set, the number of resets was 1,139, close to the
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4% seen in the test set.

The objective is to accurately predict the fault state, {y = 1}, while minimizing

false positives. The overall prediction performance for the other states is also of

interest. A random seed was fixed across the different runs and models to ensure

reproducibility and facilitate comparison of results.

5.1.4 Execution Times

The results presented in this chapter demonstrate the proposed framework ability to

accurately determine the current operational state of the ECU. For benchmarking

purposes, the seven models listed above are compared based on their fit execution

time and prediction execution time, as proposed in . The target function is defined

as (y ∈ {0, 5}) for each data point in X.

The computational complexity is assessed by measuring the training and testing

times required for each algorithm, as proposed in [134], therefore, two results are

provided in this section: Fig. 5.5 presents the time spent to fit the model to datasets

of different sizes, representing the model’s offline training; and Fig. 5.6 presents the

time spent to predict the target value for the same datasets, which is the real-time,

or online prediction. All models tested have been optimized according to Table 5.5.

The experimental environment of the whole test is described in details in [17].

There is a significant discrepancy between the execution times of different models

in both training (fit) and inference (prediction) phases. This is particularly relevant

for real-time applications and impacts hardware selection, as discussed earlier.

For example, for the training (fit) phase:

• SVR vs LSTM: Training SVR is about 100 times faster than LSTM on smaller

datasets and 10 times faster on larger ones.

• Stack-2 vs LSTM: Training Stack-2 is 10 times faster on smaller datasets and

roughly equivalent on larger datasets.

These insights emphasize the importance of selecting a model that balances accuracy

and computational efficiency, especially for embedded real-time applications.

However, when considering prediction times, Stack-2 performs well on smaller

datasets, making it a promising candidate for real-time applications. For larger
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Figure 5.6: Model Predict Time for Different Dataset Sizes

datasets, other models, particularly Stack-1, demonstrate better efficiency.

Interestingly, for real-time prediction on very small datasets (below 100 datapoints),

all models except ANN and LSTM can achieve frequencies around 2 kHz (2,000
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predictions per second) on the current CPU setup. This suggests that lighter models

may be more suitable for ultra-fast, real-time state prediction, whereas ANN and

LSTM might be better suited for batch processing or larger-scale PHM applications.

Notwithstanding, depending on the hardware platform choice and the system

dynamics real-time requirements, neural network-based methods can be perfectly

used, subjected to the mentioned constraints. Additionally, as demonstrated in

Theorem 3.1 and preliminarily verified in Table 5.3, neural network-based methods

are capable to accomodate any continuous function better than other methods.

5.1.5 Results Analysis

It can be observed that the metrics in Table 5.5 closely align with the boxplot in

Fig. 5.4, further confirming the consistency and reliability of the model performance.

Overall, the two best models based on the metrics are stack-1 and stack-2, as they

have the lowest MSE, variance, and bias, and the highest R2. Regarding the

determination of the output states, stack-2 outperforms all other models, missing

only two state classifications, one of which is a reset incorrectly attributed by the

model. The only model that, after hyperparameter optimization (HPO), produced

inaccurate overall predictions on the test set higher than 10 (ten) data points

was the decision tree (DT). This can be correlated with the lower model accuracy

observed in Fig. 5.4.

Throughout the development of the case study, the potential and benefits of using

machine learning (ML) for the regression of complex systems became evident. Most

of the models tested on the real dataset less than 8 inaccurate predictions on a test

set of 26, 208 data points, resulting in a model precision score of over 99.97%. This

is a very positive outcome, particularly for safety-critical applications, where it is

crucial to detect faults accurately, as false positives could trigger unnecessary safety

protection measures. It is also worth mentioning that using techniques of xAI, the

relevant features can be selected and for the fault diagnosis and root cause analysis,

the main contributor for the system faults can be narrowed down and eventually

uncovered.

It was also noted that, as stated by [145], the two best models for the metrics
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and accuracy were the ensemble models, stack-1 and stack-2. These models were

stacked regressors formed by 1) a DT and a linear regressor and 2) DT together

with SVR as base estimator, stacked to a linear regressor. By combining 2 or more

weak models, it was possible to achieve a robust estimator for the case study. Also

regarding execution times, both stack-1 and stack-2 demonstrated implementation

feasibility.

Despite its higher computational cost, LSTM showed promising results in reset

classification. Given its flexibility and configurability, it remains a model worth

further investigation. One of LSTM’s key advantages is its ability to leverage an

N-timestep sliding window as input, allowing it to be fine-tuned to meet specific

performance criteria. Additionally, LSTM can simultaneously predict a future

horizon H, making it highly valuable for multi-step ahead forecasting, which is

further explored in the next section.
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5.2 Multi-step Ahead Forecast

For the multi-step ahead forecasting using this experiment’s dataset, a large number

of models combining MSA strategies with different machine learning models have

been implemented and tested herein and reported in [124].

The implementation of the method described in Section 4.4 is done in three steps,

exploring different strategies and models:

• MSA Strategies: Recursive and MIMO.

• MSA Statistical Models: Autoregression (AR) and ARIMA.

• Predictor Models: One-Step Ahead (OSA) and Multi-Step Ahead (MSA)

versions of Stacked-LSTM, Bidi-LSTM and CNN-LSTM.

This thesis compares the Recursive and MIMO strategies, and the statistical models

AR and ARIMA, as presented in Section 4.4 used to forecast the multivariate

independent features X ′s. Subsequently, the forecasted X ′s, as described in (4.9),

are used as input data for the pre-trained predictor models mentioned above, both

in OSA and MSA implementations. These models will then provide the operational

state of the system as their target value.

The results are compared to determine which method offers higher accuracy and a

better fit for the target trends, particularly in cases of interest where an anomaly

occurs, leading to a change in the system’s operational state.

Fig. 5.7 depicts the multi-step ahead forecasting strategies that were implemented

and tested in this study, while Table 5.6 presents the resulting combination of

strategies and models.
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Figure 5.7: Multi-Step Ahead Forecasting Strategies and Models Tested

In real-time, we propose to use the last n-readings of each selected individual feature

as input for the statistical model to predict its immediate horizon H. Therefore,

each individual feature will generate an array of data that can be represented by

the vector in eq. (5.3).

Xt+H = [xt−n xt−n−1 . . . xt−1 xt xt+1 . . . xt+H−1] (5.3)

Where the set X i = {xit+1, x
i
t+2 . . . xit+H−1} is the MSA forecast of the specific

feature in X. The collection of all N features will be represented then by the matrix

given in (5.4).

X0...N
t+H =



X0
t+H

X1
t+H

...

XN
t+H


=



x0
t−n x0

t−n−1 . . . x0
t+H

x1
t−n x1

t−n−1 . . . x1
t+H

...
...

. . .
...

xNt−n xNt−n−1 . . . xNt+H


(5.4)
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Table 5.6: Real-Case Dataset Description

Method Description

#1 {MSA} {Stacked-LSTM}

#2 {MSA} {Bidirectional-LSTM}

#3 {MSA} {CNN-LSTM}

#4 {Recursive} {Autogression} {Stacked-LSTM}

#5 {Recursive} {Autogression} {Bidirectional-LSTM}

#6 {Recursive} {Autogression} {CNN-LSTM}

#7 {Recursive} {ARIMA} {Stacked-LSTM}

#8 {Recursive} {ARIMA} {Bidirectional-LSTM}

#9 {Recursive} {ARIMA} {CNN-LSTM}

#10 {MIMO} {Autogression} {Stacked-LSTM}

#11 {MIMO} {Autogression} {Bidirectional-LSTM}

#12 {MIMO} {Autogression} {CNN-LSTM}

#13 {MIMO} {ARIMA} {Stacked-LSTM}

#14 {MIMO} {ARIMA} {Bidirectional-LSTM}

#15 {MIMO} {ARIMA} {CNN-LSTM}

5.2.1 Forecast Evaluation

Several performance metrics have been proposed for the evaluation of multi-step

forecasting models, as discussed in [89], [171], [172], and [173]. The use of scaled

errors, which are independent of the data scale, is recommended in [89].

Two metrics are used: the mean absolute scaled error (MASE) and the root mean

squared scaled error (RMSSE). MASE and RMSSE are respectively, scaled metrics

of the mean absolute error (MAE) and the root mean squared error (RMSE), by

dividing them by the naive multi-step method for the dataset.

The dataset presented a challenge of non-uniformity in the state (target) values,

particularly during transition periods, as shown in Fig. 5.8. Depending on the
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system’s state transition, this variation could lead to different metric values when

absolute numbers are used.

To address this, we propose using a selection of scaled and normalized metrics,

which will produce results within the range of {0, 1}, allowing for comparisons

regardless of the specific transition step considered.

Three metrics are selected, which are the scaled mean absolute error (sMAE), the

normalised root mean squared error (NRMSE), as in [173] and the symmetric mean

absolute percentage error (sMAPE) as in [89].

Operational Mode
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at
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Figure 5.8: Operational Modes in the Dataset

The equations are as follows:

sMAE =
1

n

n∑
t=1

|et|
1
T

∑T
t=1 yt

(5.5)

where n is the number of data points, yt are the observed (or true) values and ŷt

the predicted ones. The scale-dependent error et is defined as:

et = yt − ŷt (5.6)
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We used the NRMSE, as defined in [173]:

NRMSE =

√
1
n

∑n
t=1(e2

t )∑n
t=1(|yt|)

(5.7)

Equally, sMAPE definition is given below:

sMAPE =
1

n

n∑
t=1

(
200|et|
|yt|+ |ŷt|

) (5.8)

sMAPE fixes the type of asymmetry seen with MAPE that the penalisation is

different if yt and ŷ are exchanged [173]. sMAPE is more resilient to outliers

compared to metrics without error bounds [89]. One of SMAPE advantages is

that it makes it easier to analyze the output in a statistical way. According to

its mathematical definition, SMAPE is non-dependent on the scale of the data

since it enforces symmetry and properties that showcase diminishing high levels of

biases [83].

For the sMAE, the error at timestep t in the forecast horizon is scaled by the mean

of the actual values in the whole training region of the series, where error measures

are scaled by a scaling factor dependent on the time series to make them scale-free.

The NRMSE is the normalised RMSE, which relates the RMSE to the observed

range of the variable.

These metrics were chosen because the target has discrete values and depending on

the current state, the difference between states is not the same.

Similarly to [173], where a win-loss ranking is proposed based on MASE and RMSSE,

we propose a KPI (key performance indicator) which combines the effects of the

tested models accuracy and the proposed metrics, sMAE, NRMSE and sMAPE.

This KPI searches for the models with the lowest prediction error, both relative

and absolute, while privileging the higher accuracy. The proposed KPI is given in

(5.9). Since we are looking for lowest prediction errors and highest accuracy, the

smaller the KPI, the better the proposed model will fit into the dataset.

KPI =
sMAE ∗NRMSE ∗ sMAPE

Accuracy
(5.9)
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5.2.2 Case Study Elicitation

Fig. 5.8 depicts the states throughout the whole dataset. The x-axis refers to a

time period, with measurements taken every minute, therefore 120k means 120,000

minutes.

During a certain period, as highlighted in Fig. 5.8, the ECU resets and fails to

recover as expected. This behaviour is exactly what the proposed framework is

designed to detect at the earliest possible opportunity.

In real-time, it is proposed to use the last N readings of each selected individual

feature as input for the statistical model to predict its immediate horizon H.

For the implemented case herein, N = 30 (called as look-back window) is selected as a

good compromise between module accuracy and real-time performance requirements.

It can be seen in Fig. 5.9 that for N = 30 the model presents a median similar to

N = 60 and N = 120 and the distance between the first quartile (Q1) and the third

quartile (Q2) is less spread than the other look-back windows. Therefore, selecting

N = 30 does not degrade the model prediction and enables real-time performance.

lstm N=10 lstm N=30 lstm N=60 lstm N=120
0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

1.0005

Figure 5.9: Look-Back Comparison for Real-Time LSTM Implementation

Similarly, after conducting multiple simulations, it was observed that a forecast

horizon of H = 30 provides the best results for multi-step ahead (MSA) forecasting.
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This horizon of H = 30 corresponds to an advisory window of 30 minutes, meaning

the model forecasts 30 steps ahead.

All LSTM models were trained offline using the same dataset, with the operational

data depicted in Fig. 5.8 being used for real-time inference. It can be observed that

the system remains in its operational state, s = 5, for the majority of the time, as

expected. However, during a period centered around 60k on the x-axis, the system

transitioned to different states, indicating a system failure.

The models were run over the whole range of the data as unseen data for the purpose

to analyse the performance and rank the models for selection to test on embedded

devices. The state transitions A→B, B→C, C→D, D→E are of particular interest

to verify whether the proposed models can predict a state change, or in practical

terms, predict an imminent failure.

It can also be noted in Fig. 5.8, a collective anomaly type, as described in [91], [174]

and [175], which is a collection of related data instances anomalous with respect

to the entire data set. The individual data instances in a collective anomaly may

not be anomalies by themselves, but their occurrence together as a collection is

anomalous.

According to Fig. 5.7 and Table 5.6, the different methods implemented and tested

are arranged in the following order:

A. three MSA LSTM models, as shown in Fig. 4.4, trained offline and deployed

in real-time straight over the current data (a moving look-back window of

N = 30 registers), with no intermediate steps or assessment of the features of

the system; and

B. the one-step ahead LSTM models that, once deployed on the target device,

run over a range of features data (a moving window of N + H = 60 registers),

where N are the last look-back readings and H are forecasted by either AR

or ARIMA. A new 60 registers set is provided every timestep (minute) for

the LSTM model to compute the predicted target value. As shown, two

different forecast strategies are used, Recursive and MIMO [176]; two different

real-time features forecast are also used, Autoregression and ARIMA; and the

pre-trained OSA LSTM models are stacked, bidirectional and CNN-LSTM,

as mentioned before.

All combinations, 15 in total were implemented and tested.
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5.2.3 Models and Optimization

The hyperparameters for the implementation of the three different LSTM models:

stacked, bidirectional and ensembled CNN-LSTM are shown in Table 5.7. The

hyperparameters have been optimised according to subsection 4.2.3 and were kept

the same both for OSA and MSA outputs.

Table 5.7: Hyperparameters for all Models

Symbols Parameter Stacked-LSTM Bidi-LSTM CNN-LSTM

HL Hidden Layers 3 3 3

N Neurons/Layer 50 64 64

t Timesteps 30 30 30

d Dropout Rate 0.0 0.5 0.5

DL Dense Layers {1,30} {1,30} {1,30}

b Batch Size 32 32 64

φ Nonlinearity ReLU ReLU ReLU

opt Optimiser Adam Adam Adam

{LS(θ)} Loss Function MSE MSE MSE

{-} Metrics Accuracy Accuracy Accuracy

η Learning Rate 0.001 0.001 0.001

ε Epsilon 1.00E-07 1.00E-07 1.00E-07

CNN-LSTM Only

− Filter Size - 64 -

K Kernel Size - 1x1 -

MP Pool Size - 2x2 -
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5.2.4 Models Ranking

With the algorithm, metrics and models establish it is possible to evaluate the

named methods and rank them. Table 5.8 shows the overall accuracy, metrics and

ranking, according to the proposed KPI for each one of the 15 methods.

Table 5.8: Overall Accuracy and Ranking for all Models

Method Accuracy % sMAE NRMSE sMAPE KPI Ranking

#1 70.77 0.45 0.51 0.48 0.46 5

#2 66.92 0.38 0.42 0.40 0.46 7

#3 68.97 0.46 0.53 0.48 0.61 9

#4 77.69 0.59 0.71 0.57 0.57 8

#5 75.90 0.88 0.97 0.68 1.55 13

#6 69.74 0.98 1.05 0.65 3.12 15

#7 78.21 0.55 0.64 0.57 0.46 6

#8 79.23 0.49 0.55 0.54 0.31 1

#9 70.00 0.58 0.65 0.49 0.85 10

#10 77.95 0.86 0.97 0.65 1.26 11

#11 79.49 0.49 0.56 0.59 0.35 3

#12 71.03 1.09 1.17 0.71 3.08 14

#13 78.21 0.54 0.63 0.56 0.44 4

#14 78.97 0.49 0.55 0.54 0.32 2

#15 69.49 0.71 0.79 0.53 1.44 12

It can be observed that an overall accuracy of nearly 80% can be achieved in

real-time for some of these methods. The lower the KPI, the better the proposed

model fits the dataset, including during the collective anomaly period.

The best five methods are highlighted in bold in Table 5.8 and were implemented

in the proposed hardware platforms. One should note that the Bidi-LSTM is

absolutely predominant in the results. The strategies MIMO and ARIMA also
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indicate a prevalence of these models. The ranking only take into consideration the

model fitness to the data, not considering the execution times which are looked at

the next subsection.

5.2.5 Real-time Inference

The five best ranked methods were implemented in two hardware platforms, standard

testbeds available:

• Raspberry Pi 4 (RP4): using a Broadcom BCM2711 SoC with a 1.5 GHz

64-bit quad-core ARM Cortex-A72 processor, with 1 MB shared L2 cache.

• Ultra96-V2 (U96): running a quad-core 1.5 GHz ARM Cortex-A53, with

1MB L2 cache.

ARM processors are the most widely used architecture for embedded systems due

to their low power consumption, high performance, and cost-effectiveness. The

Ultra96-V2 (U96) is a MPSoC (multiprocessor SoC) and has a wealthy set of proces-

sors and a FPGA. The MPSoC is a good candidate to fulfill the requirements of a

mixed-criticality system, as implemented in [21]. The algorithms were executed on

the referred ARM processors. Fig. 5.10 shows the results for the selected methods,

#1, #8, #11, #13 and #14. It can be depicted by the chart that the method #8

takes around 270 s to run on RP4 and 192 s on U96.
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Figure 5.10: Execution times for the selected Methods. [Method #8 refers to
the y-axis on the right]

5.2.6 The Novel Framework Algorithm

Besides method #8 ranks as first in Table 5.8, its implementation in real-time is

not feasible, as shown in the Fig. 5.10, which would take nearly 200 s for each new

estimate which exceeds by far the new data acquisition time of 60 s. The second best

ranked method is then #14, which is a combination of {MIMO}{ARIMA}{Bidi-

LSTM}.

Algorithm 1 shows then the preferred method implementation for real-time applica-

tions.

The method implements a {MIMO}{ARIMA} model that utilises the most recent

N = 30 registers to forecast the horizon of the next H = 30 X’s.

Once the new features set is available, a Bidi-LSTM network, with parameters and

hyperparameters according to Table 5.7 predicts the target values of the next 30

operational states, providing therefore an advisory window.

It has also been demonstrated empirically that during the state transitions, the

moving average of the target value changes towards the new status. Thereby, this

measurement is used in conjunction with ŷk to determine the system status.
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Algorithm 1: Algorithm for real-time multi-step forecasting of embedded
system operational state

Input : Load the Bidi-LSTM model F̂θ, read the last N = timesteps X ′s

available datapoints

1 Forecast the Horizon (H) of the Features (X0...N );

2 for i = 1 to n do

3 model ← ARIMA(p, d, q).fit

4 X̂ ← model.predict(N = timesteps)

5 end

6 X.append(X̂) #Adds X̂ ′s to the datapoints

7 ŷ ← F̂θ(X) #Calculates ypred for the measured values and estimate it for X̂ ′s

8 Calculate the weighted moving average (WMA) of last 10 cycles of ŷavg;

9 if |WMA(ŷavg)| <> yt then

10 return “faulty” status;

11 else

12 return “operational” status;

13 end

Output : status

5.2.7 Results Analysis

The proposed framework is a multi-step ahead forecasting system that can be imple-

mented on most embedded systems, where the system’s status can be interpreted

from the data collected by sensors and actuators. The main limitations are related

to data availability and execution times.

The results in this thesis show that the bidirectional LSTM outperforms the other

models, stacked LSTM and the ensemble CNN-LSTM. This finding is consistent

with the results reported in [22], [123], [125] and [177].

The ARIMA method showed to be more suitable for the features real-time forecasting

as well, as in Methods #8, #14 and #13, given its capacity to differencing of actual

observations in order to make the time series stationary and lags of the forecast

errors of the moving average to consider the trends [23], [162], instead of relying

only on a relationship between the current observation and past observations, as

the autoregressive method does.

For the MSA forecasting strategies, MIMO can be selected over Recursive for being

much less computationally intensive, as shown by Fig. 5.10. Additionally, it learns

one multiple-output F model from the time series {xt−n, xt−n−1 . . . xt} where the
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forecasts are returned in one step by a multiple-output model F̂ and it preserves

between the predicted values, the stochastic dependency characterizing the time

series [80]. Finally, it avoids the accumulation of errors found in the Recursive

strategy.

The proposed algorithm aims not only to determine the correct system status

during steady-state operation but also to flag any operational status changes as

early as possible, providing an advisory window for the operator. It was empirically

demonstrated that by calculating the weighted moving average of the last 10 cycles of

the predictor, the algorithm can effectively determine the system status — whether

faulty or operational — since the moving average of the target value shifts toward

the new status.

For the execution times, among the short-listed methods, only Method #8 exhibits

significantly higher runtime compared to the other methods, as shown in Fig. 5.10.

As a result, it cannot be considered for implementation in real-time.
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5.3 Chapter Summary

A valuable real-world case dataset was used in this chapter to implement the novel

PHM framework proposed. The dataset spans over 2,000 hours of data collection,

equivalent to more than 90 days. It was collected from an operational ECU that

began experiencing multiple faults, leading to intermittent resets that prevented

it from performing its expected functions. The novel PHM method was therefore

employed to determine the ECU’s operational state in real-time and to forecast its

future state.

The data-driven PHM methodology proposed in Chapter 4 was applied to determine

the ECU’s operational state, incorporating feature selection and the optimization

of seven supervised machine learning models: Decision Tree (DT), Support Vector

Regression (SVR), Logistic Regression (LR), Long Short-Term Memory (LSTM),

Artificial Neural Networks (ANN), and two stacked ensemble models. Overall, a

model precision score exceeding 99.97% was achieved, demonstrating highly positive

results, particularly for safety-critical applications. These findings confirm that, for

this dataset, data-driven machine learning algorithms can be effectively utilized

and trusted for PHM in high-criticality systems, addressing [RQ1].

It is also worth noting that explainable AI (xAI) techniques enable, the relevant

features can be uncovered, favouringe fault diagnosis and root cause analysis, by

shortlisting the main contributor for the system faults, addressing [RQ2].

For the multi-step-ahead (MSA) forecasting evaluation, 15 different strategy combi-

nations were tested to determine the best fit for the dataset. To account for data

non-uniformity caused by sudden state transitions, a set of scaled and normalized

metrics was introduced. A combination of these metrics was proposed as a key

performance indicator (KPI) for evaluating model performance. The most effective

MSA hybrid approaches were selected to assess whether an advisory window could

predict an impending reset event. Results showed that a forecasting horizon of 30

future timesteps could be achieved with nearly 80% accuracy.

Real-time requirements were also evaluated by measuring the execution times of

all seven models across datasets of varying sizes. While neural network-based

algorithms had the highest execution times, they remained viable with appropriate

hardware selection. The top-performing multi-step ahead forecasting methods
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were implemented on two embedded system platforms: Raspberry Pi 4 (RP4) and

Ultra96-V2 (U96), both equipped with ARM processors. Most strategies met the

real-time constraints, with the best performance achieved by a hybrid MSA model.

This approach combined statistical methods — MIMO and ARIMA — to forecast

explanatory variables, followed by an optimized bidirectional LSTM (Bidi-LSTM)

for predicting the next 30 operational states.
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Chapter 6

Experiment 2:

Battery State-of-Charge

Estimation

This chapter evaluates the novel PHM framework proposed in Chapter 4, validating

and extending the results obtained in the previous experiment in Chapter 5, using

a new dataset consisting of Lithium-ion (Li-ion) batteries.

The experiment follows the same PHM framework, incorporating noise reduction,

feature selection and model optimization to enable real-time inference and multi-

step ahead forecasting. This serves to validate and generalize the findings from

the previous chapter, confirming that the Bidi-LSTM architecture, offline schema

and real-time deployment are suitable for implementation on the same hardware

platform. Additionally, it ensures that the results are reliable and can be reproduced

effectively.

Initially, in this chapter, the battery is modelled using a second-order 2RC Thevenin

model, and model-based state of charge estimators are proposed, Extended Kalman

Filter (EKF) and Unscented Kalman Filter (UKF), as described in Section 3.2.1

and Section 3.2.2. Then, the novel PHM framework is employed to develop an

alternative data-driven battery SOC estimator. This approach involves: applying

noise reduction techniques to the original dataset, performing feature selection to
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refine the dataset and utilising a specialized bidirectional long short-term memory

(Bidi-LSTM) network for state-of-charge (SOC) estimation. A thorough comparison

between the two model-based methods, EKF and UKF, and the novel PHM data-

driven approach is conducted across ten (10) different datasets, each representing a

distinct drive cycle that the battery set has been subjected to.

Finally, using the same Bidi-LSTM algorithm, optimized with the same hyperpa-

rameters, a battery SOC multi-step ahead forecast estimator is proposed. This

estimator is capable of predicting future SOC values, supporting failure prediction

and predictive maintenance. The chapter concludes with a summary of the main

findings.

Electric vehicles (EVs) have been widely introduced into the transportation sector

aiming to accelerate decarbonization and reduce its emissions. Most of EVs nowadays

use lithium-ion (Li-ion) batteries, with their different chemistries [178].

Li-ion batteries state of charge (SOC) estimation accuracy is critical for the battery

cells lifetime and its safe operation for EV applications [179].

Modelling a battery is a difficult task due to the complex nonlinearity and time-

variability of the system and various factors that may affect the battery performance.

Different models have been proposed: electrochemical model (EM) used mainly for

life prediction and cell degradation purposes; equivalent circuit model (ECM) used

for battery management systems (BMS); and electrochemical impedance model

(EIM) mainly used as a non-destructive characterization technique to determine

the electrical response of chemical systems [127].

In many works, the model-based methods, such as ECM, are used in association with

adaptive filters and state estimation algorithms. The most well-known algorithms

for battery’ state estimation include Kalman filters and its variants [127].

Other methods include particle filter [180], H∞ filter [138], [181], sliding-mode

observer [182], [183] and others.

An in-depth feasibility study of using Kalman filters (KF) for the state estimation

of Li-ion batteries is presented in [98]. It implements a wide variety of KFs for a

total number of 224 Panasonic NCR18650PF NCA cells with a nominal capacity

(Cnom) of 2.85 Ah used to construct two battery modules.

A ternary Li-ion battery SOC was estimated using the unscented Kalman filter

(UKF) in [101] with the maximum absolute errors below 3%.

A method using Fractional Unscented Kalman Filter (FUKF) algorithm is used
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by [184] to estimate the battery SOC. This method was employed in both static

and dynamic battery discharging experiments. The researchers took into account

the fractional properties inherent in nonlinear systems. Fractional-order systems

employ dynamic models with non-integer orders, which are based on fractional

calculus involving differentiation or integration of non-integer order. The paper

proposed a second-order RC model for the battery and then applied the unscented

transformation technique, which approximates the probability distribution of the

variable using sigma points. The results show an SOC estimate mean error below

3% for the FUKF.

Conversely, the emergence of big data and powerful computers has paved the way for

the development of relatively new approaches in data-driven SOC estimation. These

methods, also referred to as black box models, rely on empirical observations rather

than extensive knowledge of the underlying processes [127]. One of this methods is

the long short-term memory network (LSTM), which exhibits faster convergence to

the true SOC compared to the unscented Kalman filter (UKF) when the initial SOC

is inaccurate. The LSTM achieves a root mean square error (RMSE) and mean

absolute error (MAE) of less than 2% and 1% respectively [185]. Moreover, the

LSTM can accurately assess SOC by solely monitoring battery measurements such

as current, voltage, and temperature. It does not rely on information regarding

battery internal chemistry, complex reactions, or model parameter estimation [186].

The novel data-driven PHM method proposed in Chapter 4 is used herein for the

batteries SOC estimation, combining a robust offline trained machine learning

model, based on a bidirectional LSTM, with an online inference deployment, to

forecast the SOC in real-time.
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6.1 Battery Modelling

The SOC is the ratio between the battery available capacity Qavailable and its rated

capacity Qn:

SOCk =
Qk
available

Qk
n

(6.1)

Despite of the apparent simplicity of the equation above, Qavailable and Qn are not

trivial to quantify at every timestep k.

The widely used SOC estimation method is the Ah (Ampere/hour) Coulomb-

counting method, as used in [184], and shown in (6.2).

SOCk = SOCk−1 +
η

Qn

∫ k

k−1

Ik dk (6.2)

where η is the charge-discharge efficiency, which is related to the battery working

temperature, charge and discharge rate and other aspects. The instant current

drawn from the battery at every timestep k is represented by Ik.

The Thevenin model is used as typical battery equivalent circuit model (ECM),

which is designed using one or multiple RC (resistance-capacitance) groups, another

resistance and a voltage source [127], as depicted in Fig. 6.1.

Compared with the first order 1RC model (with a single RC branch in the electrical

circuit), the estimation error in the second-order 2RC model is smaller. This

means that the 2RC model has better accuracy, stability, and robustness. The

2RC model outperforms the 1RC and the third-order 3RC models and reduces the

computational cost [187].

Another battery ECM has been presented and compared to the second-order 2RC

Thevenin model in [188]. For that model, developed by the National Renewable

Energy Laboratory (NREL), the equivalent circuit has the components Rb, Rs, Cb, Cs

and Rt. The terminal resistance Rt models the voltage drop when the battery has

a load connected, Rs and Cs model the diffusion effects of the battery, and the bulk

resistance Rb and bulk capacitor Cb represents the battery storage capacity.

The conclusion of the study in [188] is that the 2RC Thevenin model used herein

offers a better performance.

150



6.1 Battery Modelling

Therefore the second-order 2RC is selected herein to model the battery.

I
→

R2R1

R0

C1 C2Voc(SoC) Vt

+

−

Figure 6.1: Second-Order RC Thevenin Battery Model

In the 2RC Thevenin model, R0 represents the ohmic resistance, which includes

the resistance of contacts, electrodes, as well as electrolytes. The double pair RC

captures the transient battery dynamics such as the charge transfer kinetics, the

Lithium-ion diffusion, and solid/electrolyte interface (SEI) dynamics. The voltage

source VOC represents the OCV (open circuit voltage), which mainly depends on

the battery SOC.

Considering Kirchhoff’s voltage law across the full loop, and defining τn = RnCn as

the RC circuit time constant, where n ⊂ [1, 2], it comes:

V tk = OCVk −R0Ik − V 1k − V 2k (6.3)

V 1k = V 1k−1e
−∆t/τ1 +R1(1− e−∆t/τ1)Ik (6.4)

V 2k = V 2k−1e
−∆t/τ2 +R2(1− e−∆t/τ2)Ik (6.5)

Combining (6.2) to (6.5), it provides the matrix in the form of state-space (6.6):

SoCkV 1k
V 2k

 =

1 0 0
0 e−∆t/τ1 0
0 0 e−∆t/τ2

 ∗
SoCk−1

V 1k−1

V 2k−1

+

 η∗k
Qn

R1(1− e−∆t/τ1)
R2(1− e−∆t/τ2)

 ∗ Ik (6.6)

The state vector x contains the overpotentials of the RC terms and the SOC:

xk = [SOCk V 1k V 2k]
T (6.7)
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6.2 Experimental Setup

A comprehensive review of publicly available batteries datasets is presented in [189].

The dataset selected herein is the one available in [190] (under ‘CC BY 4.0’), which

has been cited in multiple publications, such as in [191], [192] and [193].

This battery testing dataset covers four typical driving cycles, US06, HWFET,

UDDS and LA92 and a mix of other cycles. It contains data from a single 2.9 Ah

NCA (Lithium Nickel Cobalt Aluminium Oxide) Panasonic 18650PF cell. A brand

new 2.9 Ah Panasonic 18650PF cell was tested in an 8 cu.ft. thermal chamber with

a 25 A, 18 V Digatron Firing Circuits Universal Battery Tester channel. The cell

was cycled according to the above driving cycles and an additional “neural network

driving cycle” systematically through a range of temperatures (25 °C, 10 °C, 0 °C,

-10 °C, and -20 °C, in that order).

The dataset includes characterisation data from Hybrid Power Pulse Characterisa-

tion (HPPC) and Electrochemical impedance spectroscopy (EIS) tests, and in-cycle

measurements from the driving cycles including voltage, current, capacity, energy

and temperature. The data is presented in ‘.mat’ and ‘.csv’ files with a well struc-

tured format sorted by temperature, test type and drive cycle.

The HPPC profile is made of pulses of 10 s equivalent to 0.5C, 1C, 2C, 4C, 6C,

where C is the battery nominal capacity, each pulse followed by a rest period of 20

minutes. A total of five pulse discharge HPPC tests were performed at 100, 95, 90,

80, 70,..., 30, 25, 20, 15, 10, 5, 0 % of SOC.

A series of nine drive cycles were performed in the following order: Cycle 1, Cycle 2,

Cycle 3, Cycle 4, US06, HWFET, UDDS, LA92, Neural Network (NN). Cycles 1-4

consist of random mix of US06, HWFET, UDDS, LA92, and Neural Network drive

cycles (these been emission test cycles regulated by American authorities [194]).

Neural Network drive cycle consists of combination of portions of US06 and LA92

drive cycle, and was designed to have some additional dynamics which may be

useful for training neural networks.

The drive cycle power profile is calculated for an electric Ford F150 truck with a 35

kWh battery pack scaled down for a single 18650PF cell. The drive cycle tests are

terminated when voltage first hits 2.5 V for 25 °C.
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Additional information about the dataset used in this Chapter is found in the

Appendix B.

6.2.1 Battery Model Estimation

The Hybrid Pulse Power Characterization (HPPC) test dataset at 25 °C provided

in [190] was utilised to estimate the parameters of a second-order 2RC model. A

second-order model has two RC networks, R1 ‖ C1 and R2 ‖ C2, according to

Fig. 6.1.

The HPPC test consists of pulses separated by a rest period that allows the battery

to reach a stable state and is used to obtain the Battery OCV versus SOC curve

and the circuit components’ values R1 ‖ C1 and R2 ‖ C2.

6.2.2 Battery SOC Estimation

Herein, the nine drive cycles test datasets at 25 °C only, provided in [190] were

used to estimate the SOC of the proposed battery both for the model-based or

data-driven approaches.

Each drive cycle has the SOC computed via EKF and UKF for the model-based

system. In addition, the ECM terminal voltage Vt is also computed, since it is one

of the states of the space-state modelling. For the data-driven PHM calculation,

the SOC is computed from the dataset without any prior modelling of the system.

For the SOC, four estimations are made using:

• Coulomb-counting method according to (6.2), used as a benchmark for the

proposed methods.

• Extended Kalman Filter (EKF) method as elucidated in Section 3.2.1.

• Unscented Kalman Filter (UKF) method as elucidated in Section 3.2.2.

• Data-driven PHM, as described in Chapter 4.
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6.2.3 Hardware and Software

The SOC estimator using EFK and UKF is computed using Matlab and Simulink

R2023b. For the battery model estimation, the Parameter Estimator toolbox [195]

is used.

The offline training for the data-driven PHM was performed on a 1xQuadro RTX8000

- 48GB GDDR6 GPU (graphical card).

The data-driven PHM SOC estimator is computed using Keras [196] with a

Tensorflow-backend, with Python version 3.9.7.
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6.3 Model-Based Battery Parameters Estimation

This section provides initially the battery modelling established by an optimization

process on the battery ECM. The parameters obtained then will be used in the

SOC estimations can be compared across the different methods.

6.3.1 Battery Parameters Estimation

The parametrization is done using the HPPC dataset at 25 °C. Initial values are

assigned for the parameters, Voc, R0, R1, τ1, R2, τ2 for each SOC = [0 : 0.1 : 1],

being 1 equivalent to a battery 100% charged.

The HPPC dataset is then loaded into the parameter estimator tool [195]. The

used software formulates the parameter estimation as an optimization problem,

aiming at minimizing a sum-squared error (SSE) cost function. It is a long and

laborious process, since the dataset contains over 30 hours of data. Table 6.1 shows

the results for the parameters for the SOC = [0 : 0.1 : 1].

The results for the battery parameters optimization is depicted in Fig. 6.2.

The first plot shows the current (A) as detailed in the previous section, that is,

pulses of 10 s equivalent to 0.5C, 1C, 2C, 4C, 6C, with each pulse set apart by 20

minutes rest. A total of five pulse discharge HPPC tests were performed at each

SOC = [100% : 5% : 0%].

Both the terminal voltage and the SOC without the parameters optimization are

shown in the two subsequent plots: it can be seen that the model running with

non-optimised parameters does not reach the target values.

The voltage (ECM), modelled with non-optimised parameters: R0, R1, τ1, R2, τ2

does not fit the Voltage (Actual) profile.

Similarly, the SOC (EKF), computed according to Section 3.2.1 does not follow the

SOC (Coulomb) reported by the battery intrinsec modelling.

However, when the battery ECM is loaded with the values shown in Table 6.1, both

the terminal voltage and the SOC meet the accuracy required and track the target

values.

155



6.4 Data-Driven PHM Battery SOC Estimation

Table 6.1: Battery ECM Parameters Optimization for Different SOC levels

SOC

(V )

V OC

(V )

R0

(Ω)

R1

(Ω)

τ1

(s)

R2

(Ω)

τ2

(s)

0.10 2.6216 0.0999 0.0098 1.1541 0.0097 12.7400

0.15 3.9563 0.1000 0.0099 66.8010 0.0097 48.8030

0.30 3.7915 0.0353 0.0100 49.5000 0.0097 52.7700

0.40 3.8678 0.0696 0.0100 73.2770 0.0097 58.1370

0.50 3.8172 0.04304 0.0099 47.4710 0.0097 51.9410

0.60 3.8620 0.0666 0.0099 72.8030 0.0097 57.7570

0.70 3.4726 0.0272 0.0006 3.5125 0.0042 173.9300

0.80 3.7527 0.0291 0.0076 12.7400 0.0094 123.7300

0.90 4.0085 0.02918 0.0070 8.6985 0.0100 37.9880

1.00 4.1717 0.0357 0.0100 11.9480 0.0075 79.9610

6.4 Data-Driven PHM Battery SOC Estimation

This section summarizes the data-driven approach to estimate the battery SOC

using the methodology proposed in Chapter 4.

The same number of measured variables are present at different datasets representing

the different drive cycles, which are HPPC, Cycle 1, Cycle 2, Cycle 3, Cycle 4,

US06, HWFTa, HWFTb, UDDS, LA92 and Neural Network (NN).

For each of these datasets, the process described below has been used.

6.4.1 Noise Handling

Initially, a selected number of spans is chosen to enrich the original dataset with

values of both EWMA and EWMS. An automated approach to selecte feasible

values for the span s is investigated in [128], which is a purely data-driven method to
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Figure 6.2: HPPC with and without Battery Parameters Optimization

establish the system dynamics. Herein we look at results in Table 6.1 to determine

feasible span values, since they are available from the battery ECM parameters

optimization.

We then, as in [128], explore only four possible values for the span in EWMA and

EWMS calculation simultaneously in order to limit memory demand.

Ranging from a very short dynamics response to a longer time span, considering the

battery ECM full charge or discharge (equivalent to a value approximately between
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5τ ’s to 6τ ’s), the resulting selected span values as s = {10, 50, 100, 1000}.
Applying these 4 span values for the existing dataset, made originally by 8 variables,

it comes a synthetic dataset of 72 variables, considering both EWMA and EWMS.

6.4.2 Features Selection Outcome

Therefore, 72 variables including the original features and their measurements of

EWMA and EWMS for the 4 selected spans are subjected to a tree SHAP algorithm

as in [128] to identify which of these features’ contributions are relevant. It was

then noticed that out of total available features, only 10 (ten) had a clear average

impact on the model output magnitude.

Fig. 6.3 shows an uniform distribution of absolute attributions across the time spans,

and the most impactful features are consistently among the time, capacity and

energy quantities, variables naturally needed for the SOC estimation. Nevertheless,

the features attribution process was performed individually for each of the available

drive cycle within this experiment. The SHAP graphic shown in Fig. 6.3 represents

the UDDS drive cycle.
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Figure 6.3: UDDS Optimal Input Attribution of the Most Impactful Features
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It has also been noticed that consistently the EWMS quantities do not appear

amongst the most impactful features for any drive cycles, therefore the EWMS

quantities were no further considered for the battery SOC estimation.

6.4.3 The PHM Method for SOC

The same Bidi-LSTM model as presented in Chapter 4 and implemented in Chapter 5,

Table 5.7 was used herein to model the data-driven PHM of the different battery’s

drive cycles.

6.4.4 Battery SOC Estimation

Out of the nine drive cycles tests dataset used during the data-driven PHM compari-

son with the state-of-the-art Kalman filters, the “HWFTa” (Highway Fuel Economy

Test Cycle) and the “Cycle 3” datasets have their results presented graphically.

Two additional drive cycles, the “LA92” and the “US06” have their plots presented

in Appendix B.

For each of the tested drive cycles, the main collected input time series data are

the current drawn from the battery and the voltage measured across its terminals.

The battery model considers the parameters optimization as shown in Table 6.1.

In the figures presented below and in Appendix B, the following structure is followed:

• The first graphic depicts the current drawn from the battery at every instant.

The x-axis is shown in seconds (s), the current is given in Ampères (A).

• The second plot shows the input terminal voltage (Vt), as the actual measure-

ment, compared with the second-order ECM voltage derived from the battery

model. The x-axis is shown in seconds (s), and the y-axis shows the voltage

in Volts (V)

• The third figure shows the SOC derived and computed according to Sec-

tion 6.2.2: the device calculated Coulomb-counting value, the model-based

Kalman Filters (EKF and UKF) and finally the proposed data-driven PHM

SOC values. The SOC is an adimensional variable.
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The results for the battery SOC estimation using the optimised parameters are

depicted in Fig. 6.4 and Fig. 6.5.
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Figure 6.4: HWFTa Drive Cycle Estimation

It is seen that the battery ECM voltage is not able to perfectly match the real

voltage values. Some reasons are related to the limitation of the optimization

process to find suitable R′s and C ′s to better represent the battery cell nonlinearity

and its intrinsic behaviour. Besides other aspects such as the battery’s temperature

and ageing effects are difficult to model.

The graphical result for the SOC shows an overall good accuracy for all model with
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Figure 6.5: Cycle 3 Drive Cycle Estimation

regards to the Coulomb counting method, which shows low data variance for each

model.

The only noticeable characteristic across the results is the overshoot seen at the

SOC estimation with UKF. This behaviour during a transient period is previously

reported, in case of innacurate initial SOC [127], [197].

The SOC estimation error for these two cases, HWFTa and Cycle 3, are presented

in Table 6.2. The results show the maximum absolute error and the mean absolute
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error (MAE) for each of the three estimators, PHM, UKF and EKF. The remaining

drive cycles were also included in Table 6.2. The model significance and the full

results are discussed in Section 6.4.5.

Table 6.2: SOC Estimation Error Comparison

Drive

Cycles
Method

SOC Max

Absolute Error

SOC Mean

Absolute Error

UDDS

EKF 7.62% 0.81%

UKF 8.28% 1.24%

PHM 2.38% 0.08%

HWFTa

EKF 10.10% 0.66%

UKF 13.14% 1.90%

PHM 7.66% 0.40%

HWFTb

EKF 2.31% 0.59%

UKF 13.12% 2.15%

PHM 6.85% 0.69%

LA92

EKF 5.10% 0.64%

UKF 1.80% 1.56%

PHM 1.82% 1.04%

US06

EKF 7.55% 0.42%

UKF 18.35% 1.84%

PHM 6.60% 0.38%

Neural

Network

EKF 5.28% 0.48%

UKF 11.73% 1.28%

PHM 2.44% 0.84%

Cycle 1

EKF 13.04% 0.81%

UKF 10.97% 1.42%

PHM 2.83% 0.42%

Cycle 2

EKF 10.23% 1.02%

UKF 9.02% 1.29%

PHM 6.14% 0.53%

Cycle 3

EKF 11.26% 1.58%

UKF 10.22% 1.36%

PHM 2.66% 0.47%

Cycle 4

EKF 7.55% 0.81%

UKF 19.43% 1.76%

PHM 3.13% 1.20%
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The full comparison amongst the two model-based and the data-driven models is

consolidated in Table 6.3 for the ten different drive cycles.

Table 6.3: Drive Cycles Estimation Comparison

Drive

Cycles
Method

Correlation

(corr)

Variance

(var)
Bias R2 MSE

UDDS

EKF 0.9984 2.2e−4 8.6e−3 0.9967 3.0e−4

UKF 0.9996 4.7e−5 3.3e−3 0.9991 5.6e−5

PHM 0.9999 3.1e−5 8.1e−4 0.9999 3.2e−5

HWFTa

EKF 0.9997 5.7e−5 6.5e−3 0.9994 1.0e−4

UKF 0.9997 4.2e−5 3.6e−3 0.9995 4.9e−5

PHM 0.9998 3.2e−5 9.2e−4 0.9996 3.3e−5

HWFTb

EKF 0.9996 1.9e−3 7.6e−3 0.9992 1.9e−3

UKF 0.9994 4.6e−5 6.4e−3 0.9989 7.5e−5

PHM 0.9997 3.4e−5 6.9e−3 0.9994 8.2e−5

LA92

EKF 0.9994 6.3e−5 7.4e−3 0.9989 1.2e−4

UKF 0.9995 5.6e−5 3.7e−3 0.9991 6.6e−5

PHM 0.9999 2.4e−5 1.0e−3 0.9998 1.3e−4

US06

EKF 0.9998 1.4e−5 4.2e−3 0.9996 3.2e−5

UKF 0.9999 5.8e−6 3.3e−3 0.9998 1.4e−5

PHM 0.9999 6.9e−6 3.8e−3 0.9998 2.1e−5

Neural

Network

EKF 0.9972 2.9e−5 6.1e−3 0.9944 6.6e−5

UKF 0.9997 3.0e−5 3.9e−3 0.9994 4.3e−5

PHM 0.9997 1.6e−5 1.1e−3 0.9994 5.6e−5

Cycle 1

EKF 0.9995 4.4e−5 8.1e−3 0.9990 1.1e−4

UKF 0.9997 3.2e−5 3.9e−3 0.9994 4.3e−5

PHM 0.9999 1.4e−5 5.7e−3 0.9998 2.0e−5

Cycle 2

EKF 0.9986 2.4e−4 1.0e−2 0.9972 3.4e−4

UKF 0.9997 2.8e−5 3.8e−3 0.9994 3.9e−5

PHM 0.9999 1.5e−5 4.9e−3 0.9998 1.7e−5

Cycle 3

EKF 0.9974 2.6e−4 1.6e−2 0.9948 5.1e−4

UKF 0.9996 3.6e−5 3.9e−3 0.9992 4.8e−5

PHM 0.9998 1.4e−5 4.7e−3 0.9996 3.6e−5

Cycle 4

EKF 0.9989 2.2e−4 8.1e−3 0.9979 2.9e−4

UKF 0.9993 9.2e−5 6.2e−3 0.9986 1.2e−4

PHM 0.9999 7.4e−5 1.2e−3 0.9998 2.2e−4
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The criteria to assess the different methods across the drive cycles included the

analysis of the correlation (corr), variance (var), the average bias, R-square (R2) as

in (4.8) and the MSE as in (5.2). As stated in the previous chapter, the lower the

MSE, var and bias and the higher the R2 the better the model fits the data.

The model significance and the full results are discussed in Section 6.4.5.

In general, the data-driven PHM method outperforms the Kalman filters by having

a higher correlation with the real values, and by displaying a higher R2 (near the

unit value) and lower MSE across the different datasets.

6.4.5 Model-Based and Data-Driven Results Analysis

The results in Table 6.2 show the state-of-charge maximum absolute error (SOC

MaxAE) and the SOC mean absolute error (SOC MAE) for each of the three

estimators, EKF, UKF and PHM.

PHM results outperform the ones reported in the literature [101], [184], [197] with

mean absolute errors (MAE) below 2% for all methods. The data-driven PHM

reached 0.40% and 0.47% for the two reported drive cycles, HWFTa and Cycle 3,

with the best MAE across all other methods.

The remaining drive cycles were also included in Table 6.2. Once more, the MAE

for all cycles were kept below 2% outperforming the state-of-the-art found in the

literature. It can also be deducted from the results that even the maximum absolute

error (MaxAE) was lower than the ones computed for the EKF and UKF.

The full comparison amongst the two model-based and the data-driven models is

consolidated in Table 6.3 for the ten different drive cycles.

The criteria to assess the different methods across the drive cycles included the

analysis of the correlation (corr), variance (var), the average bias, R-square (R2) as

in (4.8) and the MSE as in (5.2).

In general, the data-driven PHM method outperforms the Kalman filters by having

a higher correlation with the real values, and by displaying a higher R2 (near the

unit value) and lower MSE across the different datasets.

As in the previous experiment, Table 6.3 presents the quantitative evaluation of

the prediction performance for the proposed model for each dataset, using five

indicators, along with the test results in Table 6.2. The metrics include the MSE,
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correlation, variance, bias of the estimator, and R2 (R-squared). The objective was

to minimize the variance of the regression model. A lower MSE, variance, and

bias, along with a higher R2 and correlation indicate a better fit of the model to

the data.

The results from Table 6.3, when analyzed alongside Table 6.2, highlight the relative

significance of each model.

For the HWFTa, for instance, depicted in Fig. 6.4, PHM algorithm stands superior

results in all criteria: higher correlation and R2 and lower MSE, variance and bias

when compared with EKF and UKF in Table 6.3. This behaviour is reflected in

Table 6.2, where the SOC max absolute error (MaxAE), which represents how well

the model will fit across the spread of data and the SOC mean absolute error (MAE),

which represents the average deviation of the model to the data, are also lower for

the PHM compared to EKF and UKF. It is also worth noting that second best

model is UKF and third EKF. This is an expected behaviour since UKF propagates

the state variables through a nonlinear transformation, while EKF uses a first order

Taylor-series expansion linearisation to propagate the state variables. Since the

battery modelling is highly nonlinear, UKF provides a better state representation

for the system.

This thesis compares the state-of-the-art SOC estimators based on Kalman filter

variants, EKF and UKF, to the proposed data-driven PHM methodology. The

latter outperforms the former ones consistently across ten different tested datasets,

which reproduced different deployment scenarios and load conditions.

The proposed approach contributes with a solid framework to handle noisy mea-

surements which are common to real-time systems limited to measurement devices

capabilities. By enriching the original dataset with their weighted moving averages

selected across different time spans, it was shown the SOC estimator can attain

better results and eliminate inherent noise interferences.

Another important aspect of the framework is to look carefully at the relevant

features in the model during the tuning phase and propose, by using additive

features contributions techniques, those which are meaningful for the process. That

has the benefit to reduce the computational cost of the system and to provide

an insight of the system behaviour by displaying the explanatory variables more

effective for the system under analysis.

The results in this thesis propose the use of an adapted bidirectional LSTM as
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the most effective recursive neural network for this application, which agrees

with [22], [123], [124], [125] and [177].

For the SOC estimation error comparison, both absolute and relative, the PHM

framework surpasses the ones reported in the literature [101], [184], [197] with mean

absolute errors (MAE) below 2% for all methods. The data-driven PHM reported

maximum MAE of 1.20% and stood an average MAE of 0.60% across the different

drive cycles.

It is seen in Table 6.3 that the proposed data-driven PHM framework outperforms

the state-of-art methods using Kalman filters for the tested datasets, by having a

higher correlation with the real values, and by displaying a higher R2 (near the

unit value) and lower MSE. For very stringent load profiles, as in the US06 and the

Neural Network drive cycles, the UKF matches the PHM performance, but does

not outperforms it.
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6.5 Battery SOC Multi-Step Ahead Estimation

Herein, the Neural Networks (NN) drive cycle dataset at 25 °C provided in [190] is

used to estimate multi-steps ahead of the SOC of the proposed methods.

The Coulomb-counting (CC) keeps tracking the Ampère-hour (Ah) and determines

therefore the battery remaining capacity.

The Coulomb-counting a time consuming process and requires a high storage

capacity. It is an error prone process, since if the initial value of Ampère-hour is

given wrong, then all estimation tends to be incorrect. Hence, frequent calibration

are often needed to prevent accumulated errors in charge integration [198].

In this section, correspondingly to the MSA forecast performed in the previous

chapter, Section 5.2, the baseline for the SOC MSA forecasting, T the Coulomb-

counting (6.2), is compared with three data-driven proposed methods:

• A statistical-based algorithm composed of a combination of ARIMA and

polynomial regression, as explained below in subsection 6.5.1.

• A multi-step ahead Stacked-LSTM method as elucidated in Section 5.2 and

[124]; and

• A multi-step ahead Bidi-LSTM, as equally described in Section 5.2 and [124].

6.5.1 ARIMA and Polynomial Regression

Based on the direct relationship between the battery instant capacity and its SOC,

we propose utilising ARIMA to forecast different horizons H for the capacity, given

in Ah.

Then the obtained horizon is combined with recent measurements to form the data

for an estimator of a regression function that computes the SOC based on the

forecasted capacity Ah.

The regression function has the form of (6.8) and it is obtained using the curve

fitting tool from Simulink R2023b [199].

ŷ(k) = β0x(k) + β1 + ε(k) (6.8)
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Where ε is a random error component. Additionally, β0 and β1 are coefficients that

best fit the correlation SOC x Ah.

6.5.2 Forecast Evaluation

In the previous chapter, for the assessment of the ECU MSA forecast, the use of

scaled errors metrics was proposed, to cope with the non-uniformity in the available

dataset.

In this chapter though, for the evaluation of batteries SOC MSA forecast, we

propose the use of both scale-dependent and percentage-based metrics, provided

the uniformity of data and its dependency on the scale.

Four metrics are selected, which are the mean absolute error (MAE), the mean

squared error (MSE) and its squared-root (RMSE), and the mean absolute percent-

age error (MAPE). The equations are as follows:

For datasets depending on the scale of their data, absolute and squared errors are

used and known as scale-dependent measures. An option is using percentage-based

measures to become more scale-independent. The use of scaled-independent data

metrics is proposed in [89].

MAE =
1

n

n∑
k=1

|ek| (6.9)

where n is the number of data points, yk are the observed (or true) values and ŷk

the predicted ones. The scale-dependent error ek is defined as:

ek = yk − ŷk (6.10)

The MSE and RMSE are:

MSE =
1

n

n∑
k=1

e2
k (6.11)

RMSE =
√
MSE (6.12)
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Finally, the MAPE definition is given below:

MAPE =
1

n

n∑
k=1

(
|ek|
|yk|

) (6.13)

6.5.3 Battery SOC MSA Results and Analysis

This section summarizes the main results obtained in the evaluation and comparison

of the different proposed methods. Initially the CC SOC is obtained directly from

the application of (6.2) to the available dataset, and the data-driven methods are

obtained according to the previous sections.

The prediction results are related to one single run of the battery data when the

SOC was slightly above 90%. The selected dataset was the ”Neural Network”. For

comparison, the different horizons were tested within H = {10, 20, 30} timesteps

ahead for the three different methods.

The results can be seen in Fig. 6.6. It is noticeable that both ARIMA and Bidi-

LSTM have good fitting to the expected values. The stacked-LSTM, despite fitting

within the close range of the expected values does not perform as the other methods

when the time horizon increases. Overall, in the figure, it is seen that the ARIMA

outperforms the other methods.

The quantitative analysis, using the metrics detailed in Section 6.5.2 are found in

Table 6.4. All indicators show that statistical method ARIMA outperforms the

machine learning ones, however the Bidi-LSTM has consistently better results than

the stacked-LSTM. As the forecast window increases, the Bidi-LSTM falls under

the same index scales of the ARIMA.

Despite of the best results and fitting to the proposed dataset, the statistical-

based algorithm, a combination of ARIMA with polynomial regression, is based

on the BMS Coulomb-counting, which as stated before, is more computationally

intensive and requires frequent calibration to prevent accumulated errors in charge

integration [198].
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Figure 6.6: SOC Forecast for Different Horizons

Therefore, as presented in this thesis, the use of a bidirectional LSTM stands as an

effective data-driven option for this application, which agrees with [124], [22], [123],

[125] and [177].

Besides, the Bidi-LSTM requires to be trained only once and provides a MIMO

response at each time sequence with excellent fitting to the dataset.
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Table 6.4: SOC Forecast Estimation Comparison

Horizon Method MAE MSE RMSE MAPE

10

ARIMA 1.27e−4 3.61e−8 1.90e−4 1.39e−4

Bidi-LSTM 1.16e−3 1.76e−6 1.33e−3 1.27e−3

Stacked-LSTM 1.94e−3 3.89e−6 1.97e−3 2.12e−4

20

ARIMA 6.62e−4 5.03e−7 7.10e−4 7.25e−4

Bidi-LSTM 3.10e−3 1.15e−5 3.39e−3 3.41e−3

Stacked-LSTM 5.76e−3 3.38e−5 5.81e−3 6.31e−3

30

ARIMA 1.17e−3 1.61e−6 1.27e−3 1.29e−3

Bidi-LSTM 4.18e−3 2.14e−5 4.63e−3 4.61e−3

Stacked-LSTM 6.77e−3 4.75e−5 6.89e−3 7.41e−3

6.5.4 Real-time Inference

The two machine-learning based methods, MSA Stacked-LSTM and Bidi-LSTM,

were implemented in two hardware platforms, as described in Sections 4.3 and

5.2.5. The results for selected datasets, Neural Network and HWFTa for both MSA

stacked-LSTM and Bidi-LSTM are shown in Fig. 6.7.
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Figure 6.7: Execution times for the selected Methods.
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It can be depicted by the chart that the MSA implementation using the method

Bidi-LSTM is faster in all tested platforms and datasets than the Stacked-LSTM.

The fastest real-time execution of the Bidi method takes around 1.3 s to run on

U96 and 2.2 s on RP4.
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6.6 Chapter Summary

This chapter validated the proposition in Chapter 4 and extended the results in

Chapter 5. By using real battery datasets, it was possible to implement the whole

PHM framework and verify the battery data-driven state-of-charge (SOC) determi-

nation, under different load conditions. Ten different datasets were implemented

and tested according the novel method proposed in Chapter 4 and their results

compared to the state-of-the-art Kalman Filters as proposed in Chapter 3. The

results shown in Table 6.2 and Table 6.3 show that the proposed data-driven PHM

methodology consistently outperforms the model-based Kalman filters implemented

to determine the battery SOC.

The results obtained throughout the comparison of the proposed PHM framework

with the two model-based methods were very encouraging. The data-driven PHM

SOC method outperforms the state-of-the-art found in the literature for the mean

absolute error (MAE) for all drive cycles tested. The PHM obtained results were

kept near to the 1% threshold, which is considerably under the 2% found in the

literature [101], [184], [197]. It was also shown that the results for the maximum

absolute error (MaxAE) were lower than the ones computed for the EKF and UKF.

The PHM method implemented in this chapter uses the entire data pipeline proposed,

including noise reduction, feature selection, hyperparameters optimisation and cross-

validation. It also applies the same specialized bidirectional long short-term memory

(LSTM) algorithm from the previous chapters, which is promising for generalisation

purposes. These results address [RQ1] and [RQ3], for implementation, reliability

and generalisation of the proposed data-driven PHM framework.

For the multi-step ahead forecasting, an evaluation was performed, comparing one

statistical-based algorithm, a combination of ARIMA with polynomial regression,

with two data-driven machine-learning PHM methodologies for the determination of

the multi-step ahead forecast of a battery SOC. The proposed statistical {ARIMA}-
{polynomial regressor} presents the best fit the proposed horizons, however it is

based on the BMS Coulomb-counting, which as stated before, is more computa-

tionally intensive and requires frequent calibration to prevent accumulated errors

in charge integration [198]. Therefore, as presented in this paper, the use of a

bidirectional LSTM stands as an effective data-driven option for the SOC MSA,
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since it relies only on the explanatory variables, requires to be trained only once

and provides a MIMO response at each time sequence with excellent fitting to the

dataset. Finally, real-time requirements were also evaluated by executing the MSA

methods above on the same platforms as mentioned in Chapter 5, with acceptable

results for all methods.
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Chapter 7

Discussions and Conclusions

7.1 Generalisation Feasibility

Modelling a process involves developing a mathematical model that accurately

represents its dynamic input-output behavior. This is typically achieved by using

input-output measurements and incorporating prior knowledge of the process [12].

The modelling process, when using state-space representation for instance, can be

complex and challenging due to several factors, such as model complexity, order

selection, parameter identification, nonlinear responses, time variability, and more.

Since most real-world systems are nonlinear, certain assumptions must be made

during modelling, such as linearisation or neglecting high-order derivatives for the

EKF, as depicted in subsection 3.2.1. Consequently, the modeled system may not

perfectly replicate the real system’s behavior, as illustrated by the voltage plots

using the ECM in Fig. 6.4 and Fig. 6.5.

Data-driven modelling for control and identification, also known as input-output

models, offers an alternative to the often cumbersome model-based approach.

Data-driven methods, sometimes referred to as black box approaches, do not require

explicit system models or intrinsic knowledge. Instead, they model the relationships

between parameters directly and can handle complex, nonlinear systems. These

methods are particularly effective in capturing the interactions between subsystems

and the influence of exogenous parameters on system outcomes.
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Furthermore, data-driven approaches are capable of modelling degradation char-

acteristics using historical sensor data, enabling fault and failure prediction with

minimal modelling. The correlations and causal relationships within the collected

data can be uncovered, providing valuable insights for corrective and predictive

maintenance.

However, data-driven approaches also have certain limitations. Some of these

include:

• Data-driven methods rely heavily on the availability of training data. These

approaches depend on historical system data (e.g., training datasets) to

identify correlations, establish patterns, and analyze trends that can lead to

failure predictions [13].

• A recursive neural network requires a laborious and computational intensive

training process, with large amount of data required from the system-of-

interest.

• The trained model is typically tailored to a specific system. Therefore, if the

system dynamics, internal states, or input-output data profiles change, the

model will likely need to be retrained to adapt to the new conditions [108].

One of the objectives of this thesis was to propose, implement, and evaluate the

potential for generalizing a data-driven PHM methodology for mixed-criticality

embedded systems.

Two different experiments were setup to investigate the architecture proposed in

Chapter 4, where the three main stages were applied: offline processing, real-time

inference and multi-step ahead forecasting.

There were differences between the two experiments, which provided valuable insights

for assessing the generalisation of the approach. In the first experiment, the ECU

dataset could be treated as either a regression or a classification problem. Continuous

data readings from sensors and actuators determine the system’s operational state.

In this thesis, the problem was approached using a regression machine learning

technique.

In both experiments, special attention was given to offline processing, which followed

a similar approach for identifying useful features. This involved the SHAP feature

attribution process, which was then used to generate a model with optimised

hyperparameters. The resulting model is deployed for online condition monitoring

and can also be used for MSA forecasting.
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The key difference between the two experiments in the offline processing stage

was related to noise reduction in the battery datasets, which were affected by the

inherent noise in the data acquisition process. The noise reduction technique was

not used for the ECU dataset since good results were obtained with the raw values

from the control system. Therefore, the offline processing stage, as described in

Fig. 4.1 can be applied for supervised machine learning tasks for continuous datasets’

regression without major changes.

For online inference, the deployment of the model is straightforward, with no need

for additional data preparation such as pre-padding or post-padding, as the model

has been trained with the relevant explanatory variables. The only potential adjust-

ment during real-time processing is the inclusion of the EWMA features, if noise

reduction is required before making predictions.

For multi-step ahead forecasting, a hybrid data-driven approach is proposed, com-

bining statistical method, an Autoregressive Integrated Moving Average (ARIMA)

model for forecasting explanatory features within a defined horizon and the spe-

cialized bidirectional LSTM (Bidi-LSTM) for accurately predicting the system’s

outcome.

The entire methodology, as described in Chapter 4, and particularly the dataflow

diagram shown in Fig. 4.1, was implemented in the two experiments. These

experiments involved different applications and datasets, with minimal modifications

between them. This demonstrates the potential of using the proposed framework

for a wide range of applications, as long as time-series data is available to compute

and generate a system-level health indicator.

177



7.2 Conclusions

7.2 Conclusions

The use of data-driven approaches for the PHM of embedded systems shows

significant potential, as evidenced by both the literature review and the experiments

conducted in this thesis.

Revisiting the research questions that motivated this study, several key observations

can be made:

[RQ1]: Can data-driven machine learning algorithms, particularly those based

on recurrent neural networks, be effectively utilised and trusted for the PHM of

electronic systems to predict catastrophic failures?

This thesis proposed a system-level PHM, as defined in Table 2.2, to address an

entire modular electronic system or product. Two experiments were carried out on

two different systems: an electronic control unit (ECU) and a battery set, including

a Battery Management System (BMS). Both experiments consist of two or more

subsystems that collectively support the operation of the entire system.

The proposed system-level PHM consists of an adapted long short-term memory

(LSTM) recurrent neural network (RNN) designed to identify trends, patterns,

and relationships in long time-series data. The implementation is a multivariate

bidirectional adapted LSTM, which can learn in both forward and reverse direc-

tions, offering higher accuracy than traditional LSTMs. It serves a dual purpose in

real-time: system inference and system forecasting.

In Experiment #1, an overall accuracy of over 99.98% was achieved for the selected

models in classifying the system’s operational state. The model’s precision score,

including resets, reached 99.75% with only four inaccurate predictions. This demon-

strates that the proposed data-driven PHM framework can effectively predict the

operational state of the considered ECU. For multi-step ahead forecasting, used

as an advisory window, an accuracy of over 79% was achieved for a 30-minute

future window, providing system operators with sufficient time to act and prevent

catastrophic failure.

In Experiment #2, a comprehensive comparison was made between two model-based

methods — the Extended Kalman Filter and the Unscented Kalman Filter — and

the proposed data-driven PHM approach to determine battery systems’ state of

charge (SOC). Both the model-based and data-driven methods yielded satisfactory

results with the novel PHM frameword outperforming both EKF and UKF.
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The PHM method achieved a mean absolute error within the 1% threshold, which

is significantly lower than the 2% error found in the literature [101], [184], [197].

Similarly, a multi-step ahead forecasting evaluation was conducted to forecast the

battery’s SOC. For a forecast horizon of up to 30-timesteps, the bidirectional LSTM

model proved to be an effective data-driven approach for SOC multi-step ahead

forecasting. It relies solely on explanatory variables, requires training only once,

and delivers a multi-input, multi-output (MIMO) response at each timestep with

excellent fit to the dataset.

Regarding [RQ1], the highly positive results obtained in Experiments #1 and

#2 corroborate that data-driven machine learning algorithms, particularly those

utilizing specialized RNNs, can outperform state-of-the-art model-based algorithms.

This finding highlights the capability of such architectures to accurately predict

system behavior and play a crucial role in preventing catastrophic failures.

[RQ2]: Are the results obtained from data-driven machine learning algorithms

sufficiently explainable to be trusted and understood, particularly for reliability

assessments and root cause analysis?

This thesis made use of SHAP (SHapley Additive exPlanation) for feature selection,

which in its turn supported the explainability of the used machine learning data-

driven models, known as explainable AI (xAI) techniques. By applying additive

feature attribution methods, as discussed in Chapter 4, Section 4.2.2, it was possible

to establish a preliminary cause-and-effect relationship between the independent

variables and the expected outcome.

In Experiment #1, a fully automated tree SHAP algorithm was used to reduce a

dataset containing 47 features (independent variables) to 13 relevant ones. The

algorithm identified features with a clear, average impact on the model’s output

magnitude. Redundant features, or those with little or no impact on the desired

outcome, were excluded from the final model.

In this experiment, the electronic control unit (ECU) began exhibiting multiple

faults, causing intermittent resets. Therefore, narrowing down the number of

relevant features helped establishing a more precise cause-and-effect relationship

between the system variables and the observed faults, aiding in the root-cause

analysis.

In Experiment #2, due to the uncertainty in the raw values measurements, the noise

handling technique proposed in Section 4.2.1 was used, enriching the entire dataset
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to a total 72 features, considering the four different time spans proposed. The

resulting dataset was then subjected to a tree SHAP algorithm with a significant

reduction to ten (10) relevant features for the determination of the battery SOC for

a particular data cycle.

The very positive results for the SOC estimation using the proposed strategy in

Chapter 6 support the combination of noise handling and additive feature attribution

methods as an effective approach for determining causality.

Regarding [RQ2], positive results were achieved in Experiments #1 and #2,

demonstrating the ability to identify causality between inputs and outputs and

helping to narrow down potential root causes for faults and failures. However,

additional work is needed to formally integrate the proposed technique with suitable

root-cause analysis (RCA) methods and to verify the results. This represents a

promising avenue for future research in the field of explainable AI (xAI).

[RQ3]: What are the most suitable machine learning techniques for the Prognostics

and Health Management (PHM) of real-time embedded systems.

As presented in Chapter 4, the multivariate bidirectional LSTM (Bidi-LSTM) is the

chosen architecture in this thesis for the PHM of real-time embedded systems. As

mentioned earlier, LSTM networks are highly effective when dealing with sequential

data. The model replaces the traditional perceptron neuron with a memory block,

allowing it to learn from long time-series data with time lags of over 1,000 discrete

timesteps.

Several architectures were implemented and tested in Experiment #1 for real-

time condition monitoring, according to Table 5.4: decision tree (DT), support

vector regression (SVR), logistic regression (LR), long short-term memory (LSTM),

artificial neural network (ANN), and two stacked ensemble models. Stack-1 uses a

decision tree regressor as a base model and a linear regressor as a meta-model (or

final estimator). Stack-2 uses two regressors as base models, decision tree regressor

with support vector regressor, and a linear regressor stacked as a final estimator.

Additionally, several variations of LSTM were implemented for multi-step ahead

estimation: Stacked-LSTM, GRU (Gated Recurrent Unit), CNN-LSTM, and Bidi-

LSTM.

Each of these models had their hyperparameters optimised for the available dataset

to establish a common baseline, and their performance was compared, with the
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prominence of LSTM models. Furthermore, the Bidi-LSTM demonstrated the best

results for multi-step ahead estimation. A multivariate bidirectional LSTM was

then proposed due to its ability to learn in both forward and reverse directions,

offering higher accuracy than the traditional LSTM. By using a bidirectional RNN

like LSTM, the model can process input in both the forward (past) and reverse

(future) directions.

In Experiment #2, the same Bidi-LSTM model presented in Chapter 4 and im-

plemented in Chapter 5, Table 5.7, was used to model the data-driven PHM of

different battery drive cycles. As mentioned above, the results were outstanding,

outperforming model-based monitoring systems and achieving the best statistical

results, even surpassing values reported in the state-of-the-art literature.

Therefore, for [RQ3], for time-series data with long sequential dependencies, where

past events are as important as more recent ones in predicting patterns, spotting

trends, and identifying unexpected events, the multivariate bidirectional LSTM

network was chosen as the preferred model for the experiments conducted.

Ultimately, as proposed in [4] and [124], the solutions presented here were imple-

mented on two embedded system hardware platforms to verify their compliance

with realtime constraints and resource consumption.

Both Experiments #1 and #2 were conducted on real hardware platforms to evalu-

ate their real-time performance. The implementations on the Raspberry Pi 4 (RP4)

and Ultra96-V2 (U96) platforms, both utilizing their respective ARM processors,

demonstrated the feasibility of the proposed frameworks for real-time inference

and forecasting applications. These platforms serve as standard testbeds, as ARM

processors are the most widely used architecture for embedded systems due to their

low power consumption, high performance, and cost-effectiveness.

In Experiment #1, the novel algorithm proposed in Section 5.2.6 was implemented

on both the RP4 and U96 platforms for real-time multi-step forecasting of the

embedded system’s operational state. As shown in Fig. 5.10, four out of the five

highest-ranked methods fall within the system’s polling rate, with two of them

achieving a refresh rate of one (1) second. This demonstrates the feasibility of

implementing the algorithm on real-time embedded systems, particularly those for

edge applications with limited hardware resources.

In Experiment #2, similarly, for the battery SOC multi-step ahead estimation, the

fastest real-time method execution takes approximately 1.3 seconds on the U96 and
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2.2 seconds on the RP4, as shown in Fig. 6.7.

Therefore, the implementation on the selected platforms demonstrated the real-time

performance of the proposed framework. Systems with varying time constraints

must choose their hardware accordingly to ensure that the execution time meets

the system’s requirements. Additionally, other platforms, such as CPUs, GPUs,

and FPGAs, could be tested for further evaluation.

Finally, the novel data-driven PHM methodology introduced in Chapter 4 is designed

for generalisation, and the experiments conducted in this thesis exhibit its potential

for a wide range of applications. As long as time-series data is available, the

methodology can be used to compute and generate real-time system health or

condition monitoring indicators, provide a multi-step ahead advisory window,

support root-cause analysis, and be executed on resource-constrained edge devices.
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7.3 Major Findings

A summary of the major findings in this research is presented below:

• The highly favorable results from Experiments #1 and #2 confirm that data-

driven machine learning algorithms, especially those leveraging specialized

RNNs, can outperform state-of-the-art model-based approaches. This under-

scores the ability of these architectures to precisely predict system behavior

and contribute significantly to preventing catastrophic failures, thereby vali-

dating research question [RQ1].

• Feature selection, supported by additive feature attribution methods, particu-

larly SHAP (SHapley Additive exPlanations) in this thesis, yelded positive

results in Experiments #1 and #2, effectively identifying causality between

inputs and outputs and aiding in pinpointing potential root causes of faults

and failures. Although further research is needed, the presented results rep-

resent a promising direction for future studies in the field of explainable AI

(xAI), validating [RQ2],

• Bidirectional long short-term memory (Bidi-LSTM) architecture demonstrated

exceptional performance in handling complex nonlinear relationships in time-

series data with long sequential dependencies, where past events are as im-

portant as more recent ones in predicting patterns, identifying trends, and

detecting anomalies. A multivariate bidirectional LSTM network was selected

as the preferred model for the experiments conducted in this thesis, proving

effective for both real-time inference and multi-step-ahead forecasting. Thus,

the findings provide a positive answer to research question [RQ3].

• The proposed Prognostics and Health Management (PHM) framework demon-

strated its effectiveness across different systems, including the electronic

control unit in Chapter 5 and the battery pack in Chapter 6. The results

confirm the framework’s ability to generalize, showcasing its applicability to

various embedded systems with minimal adjustments and successful deploy-

ment in real hardware environments.
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• This thesis proposes a novel hybrid approach for multi-step-ahead forecast-

ing in embedded systems, combining the reliability of the Autoregressive

Integrated Moving Average (ARIMA) model for forecasting explanatory fea-

tures within a defined horizon with the precision of the bidirectional LSTM

(Bidi-LSTM) for predicting the system’s operational state. The results from

Experiments #1 and #2 confirm that this approach can effectively provide

an advisory window for these complex systems.

• This thesis also introduces a novel approach for noise reduction in real-time

embedded systems. By incorporating the exponentially weighted moving aver-

age (EWMA) and exponentially weighted moving standard deviation (EWMS)

in real-time for the relevant features identified during the feature selection

process, consistent results were achieved in Experiment #2 (Chapter 6). This

method effectively reduces noise while preserving the original data structure,

ensuring that no essential features are removed from the dataset.

• Despite its higher computational complexity compared to other tested algo-

rithms, the long short-term memory (LSTM) architecture delivered consistent

results in both reset classification and battery state-of-charge (SOC) estima-

tion. Implementations on the Raspberry Pi 4 (RP4) and Ultra96-V2 (U96)

platforms confirmed the feasibility of the proposed framework for real-time

inference and forecasting applications.
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7.4 Directions for Future Research

Several research directions can be derived from the work presented in this thesis.

The following future areas of research are recommended:

Root-cause analysis using Explainable AI (xAI): formally integrating machine

learning techniques with appropriate root-cause analysis (RCA) methods to identify

causality and determine the root causes of problems. In this thesis, SHapley Additive

exPlanation was used as an additive feature attribution method to identify potential

root causes of faults and failures. However, other xAI methods and variants are

available such as DeepLIFT and Layer-Wise Relevance Propagation, as discussed

in [146], were not explored here but offer promising alternatives. These can be

combined with formal RCA methods like Pareto charts, Failure Mode and Effects

Analysis (FMEA), and Fault Tree Analysis for further investigation.

Safety-Critical Machine Learning Enabled Systems: the methodology pro-

posed in this thesis demonstrated very high accuracy in determining fault conditions

and outperformed state-of-the-art model-based methods. However, safety-critical

systems require a conservative approach, along with extensive verification and vali-

dation (V&V) procedures. As stated in Section 2.2, embedded systems, an example

of dependable systems, must comply with attributes of availability, reliability, main-

tainability, integrity and safety. Assurance approaches for safety-critical systems will

include testing, formal verification methods, runtime verification, explainability, and

others. Therefore, developing methods that address the challenges of safety-critical

machine learning-enabled systems represents a promising avenue for future research.

Full Prognostics and Health Management AI-Enabled Systems: As dis-

cussed in Chapter 2, PHM not only monitors the current condition of a system but

also predicts future damage progression and estimates the Remaining Useful Life

(RUL). This thesis focused on condition monitoring, fault detection, performance

degradation, and trend tracking, but did not address RUL determination. Future

work can expand the system design to fully integrate PHM capabilities, including

RUL estimation for embedded systems. RUL determination may require additional

data, such as run-to-failure sensor data, and different models that combine paramet-

ric and non-parametric approaches, including survival models (lifetime), degenerate

models (threshold), and/or similarity models (run-to-failure).
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Appendix A

ECU PHM

Supplementary Data

The complete ECU features profile, including all 47 features, for experiment #1 in

Chapter 5 is presented in Table A.1 below.

Feature Mean std min 25% 50% 75% max

Feature 1 30.4 10.14 0 24.27 24.3 40.51 41.8

Feature 2 10.54 6.59 0 5.06 5.06 17.76 17.79

Feature 3 308.95 15.08 0 308 308 312 312

Feature 4 306.7 14.09 0 304 308 308 312

Feature 5 70.9 69.91 0 0 140 140 280

Feature 6 70.61 69.67 0 0 120 140 260

Feature 7 306.34 15.28 0 304 304 312 316

Feature 8 306.55 5.01 0 304 304 312 312

Feature 9 141.13 31.71 0 140 140 160 280

Feature 10 141.23 31.62 0 140 140 160 280

Feature 11 0 0 0 0 0 0 0

Feature 12 4.30e6 0.86e6 0 4.47e6 4.47e6 4.47e6 4.47e6
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Feature Mean std min 25% 50% 75% max

Feature 13 3417.8 686.1 0 3555 3556 3556 3556

Feature 14 0 0 0 0 0 0 0

Feature 15 0 0 0 0 0 0 0

Feature 16 0 0 0 0 0 0 0

Feature 17 0 0 0 0 0 0 0

Feature 18 21.88 6.47 0 18 18 32 32

Feature 19 18.31 8.32 -1.2 10.73 21.43 25.73 35.28

Feature 20 18.27 6.58 10 10 20 25 28

Feature 21 16.51 3.2 13.99 14 18 18 36

Feature 22 17.55 7.08 10 10 20 24 32

Feature 23 17.55 7.14 10 10 20 24 32

Feature 24 38.43 17.78 -1.2 22.53 44.28 55.7 63.9

Feature 25 51.6 22.58 7 28 59 71 83

Feature 26 37.58 16.66 5 20 43 55 59

Feature 27 53.02 23.48 7.05 28.2 60.63 77.55 84.6

Feature 28 9 0 9 9 9 9 9

Feature 29 0 0 0 0 0 0 0

Feature 30 17.57 4.54 0 14 18 18 26

Feature 31 17.89 3.79 1.99 14 18 22 32

Feature 32 25.4 4.23 14 26 26 30 30

Feature 33 26.14 4.52 9.99 24 26 30 44

Feature 34 23.13 4.61 0 22 24 28 38

Feature 35 35.79 11.37 9.99 32 32 50 50

Feature 36 22.7 8.67 1.99 14 22 28 54

Feature 37 22.12 7.94 3.99 12 24 28 42

Feature 38 39.05 19.16 -41.68 30.98 49.53 52.4 54.01

Feature 39 36.89 17.67 -31.32 26.24 46.62 48.27 53.9

Feature 40 54.06 11.68 0 56.45 57.75 57.85 161.99

Feature 41 54.09 11.69 0 56.76 57.72 57.82 211.86
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Feature Mean std min 25% 50% 75% max

Feature 42 53.85 11.71 0 56.6 57.4 57.66 300.84

Feature 43 3.54 6.68 -41.68 -3.01 6.65 10.47 12.4

Feature 44 7.47 2.08 -31.32 7.13 8.01 8.53 9.79

Feature 45 27.97 6.75 0 30 30 32 32

Feature 46 13.16 1.34 6 12 14 14 32

Feature 47 13.92 4.22 1.99 10 16 16 32

Operating Mode 4.56 1.29 0 5 5 5 5

Table A.1: ECU Dataset Profile

The 17 features selected during the feature attribution process, have their density distri-

bution shown in Fig. A.1.

Table A.2 and Fig. A.2 represent the implementation proposed in subsection 4.4.2 and

tested in the two experiments performed.

Table A.2: Multivariate Bidirectional LSTM Model Implementation

Layer Layer Type Output Shape # Parameters

# 1 Bidirectional LSTM (batch size, 30, 128) 41,984

# 2 Bidirectional LSTM (batch size, 30, 128) 98,816

# 3 LSTM (batch size, 64) 49,408

# 4 Dropout (batch size, 64) 0

# 5 Dense (batch size, 1) 65

The additional parameters for this implementation are according to the Table 5.7.
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Figure A.1: Electronic Control Unit Features Distribution
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Appendix B

Battery SOC

Supplementary Data

The battery features distribution for the Neural Network (NN) dataset at 25 °C is shown

in Fig. B.1. The complete battery features profile for this dataset is then presented in

Table B.1.
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Figure B.1: Battery Features Distribution
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The results for the battery SOC estimation for the drive cycles “LA92” and “US06” using

the optimised parameters are presented in Fig. B.2 and Fig. B.3.
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Figure B.2: LA92 Drive Cycle Estimation
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The SOC estimation error for these two drive cycles, “LA92” and “US06”, are presented

in Table 6.2, and the full comparison amongst the two model-based and the data-driven

models is consolidated in Table 6.3.
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