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We study the length of monochromatic arithmetic progressions in the Thue–Morse word 
and in a class of generalised Thue–Morse words. In particular, we give exact values 
or upper bounds for the lengths of monochromatic arithmetic progressions of given 
fixed differences inside these words. Some arguments for these are inspired by van der 
Waerden’s proof for the existence of arbitrary long monochromatic arithmetic progressions 
in any finite colouring of the (positive) integers. We also establish upper bounds for the 
length of monochromatic arithmetic progressions of certain differences in any fixed point 
of a primitive binary bijective substitution.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We study the Thue–Morse word, also known as the Prouhet–Thue–Morse word. We refer the reader to [3,5], which is, 
respectively contains, an extensive survey of its properties. There are many alternative ways to define this word, one being 
through the sum of digits in the binary expansion of the integers indexing the word. More precisely, for each non-negative 
integer n, we determine the nth term of the Thue–Morse word by summing all the digits in the binary expansion of n and 
taking this sum modulo 2. The first few terms are given below:

01101001100101101001 · · · .

In this paper, we are interested in monochromatic arithmetic progressions that we can find in the Thue–Morse word, 
as well as in other generalized Thue–Morse words. Let us first make the notion of monochromatic arithmetic progression 
precise. For any positive integer c, a c-colouring of a set S of integers is a map from S to a set of c distinct colours, and for 
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any positive integers d and L, an arithmetic progression of difference d and length L is a sequence n, n + d, n + 2d, . . . , n +
(L − 1)d of integers. Then, a monochromatic arithmetic progression is an arithmetic progression all of whose elements have 
been assigned the same colour.

Our results draw inspiration from one of the best-known Ramsey-type theorems, namely, van der Waerden’s theorem. 
In his seminal paper [36], van der Waerden showed that, in any colouring of the integers, the lengths of monochromatic 
arithmetic progressions of any difference cannot be bounded by a constant. More precisely,

Theorem 1 (van der Waerden [36]). Let L and c be positive integers. There exists a positive integer N such that any c-colouring of the 
segment {0, 1, . . . , N − 1} contains a monochromatic arithmetic progression of length L.

It follows from van der Waerden’s theorem that, given an infinite sequence v over a finite alphabet, v contains 
monochromatic arithmetic progressions of every positive integer length L. It is then natural to ask what happens if the 
difference d of the arithmetic progressions is fixed: do there exist arbitrarily long monochromatic arithmetic progressions 
of difference d in v? and do there exist infinite ones? The subtle difference between these two questions can be easily 
illustrated by the following examples. The binary sequence v = 010110010011000100011000 · · · contains arbitrarily long finite 
monochromatic arithmetic progressions but does not contain infinite ones. The Champernowne word, obtained by con-
catenating the decimal representation of the positive integers, would be another example. The non-existence of infinite 
monochromatic arithmetic progressions within infinite words has been addressed in [25,37].

It is known that for some infinite words there are no arbitrarily long finite monochromatic arithmetic progressions if 
we fix the difference. Morgenbesser et al. [27] showed this in the case of the Thue–Morse sequence, and Parshina [31,33]
studied the largest monochromatic arithmetic progressions of a fixed difference that it contains.

The problem of what types of finite words can occur as arithmetic progressions within substitution (and other) se-
quences has been considered in several contexts. In particular, the notion of arithmetic complexity, which generalises the 
subword complexity, has been studied in [6,12,17,18]. Another interesting result [7] states that any binary word appears as 
an arithmetic progression within the Thue–Morse word, and other related questions on Thue–Morse type systems concern 
Gowers uniformity norms [23] or prefix palindromic lengths [19].

This paper is organised as follows. In Section 2, we give background material on symbolic substitutions and symbolic 
dynamical systems. In Section 3, we prove the non-existence of arbitrarily long monochromatic arithmetic progressions 
in a family of infinite words (Proposition 8) a member of which is the Thue–Morse word, thus generalizing the result 
in [27]. We continue in Section 4 by setting out our main technique. This allows us, in Theorem 15, to consider arithmetic 
progressions in the Thue–Morse word and re-establish a result of Parshina [31] in a different way. In Theorem 21, we extend 
this for other differences. In Section 5, we consider other binary words with a similar substitution structure [9,10,22,26]. In 
Theorems 32 and 33, we apply our techniques to generalise some of our previous results, and we state Conjecture 35 for 
certain progression differences. We give illustrative plots at the end of sections 4 and 5. In Section 6, we establish upper 
bounds for the length of monochromatic arithmetic progressions of certain differences in any fixed point of a primitive 
binary bijective substitution (Propositions 39 and 40). We conclude in Section 7, with some open questions and proposed 
directions for further research.

2. Preliminaries

We use standard texts [11,24] for the theory of combinatorics on words and substitutions. We use N to denote the set 
of non-negative integers and N+ for the set of positive integers. In general, an alphabet is a non-empty finite subset A of 
R, and its elements are called letters. Throughout this paper, we will work with the binary alphabet A = {0, 1}.

Letters can be concatenated into words; we denote by A+ the set of non-empty finite words over an alphabet A, by 
AN the set of (right-) infinite words over A, and by AZ the set of bi-infinite words over A. For a finite word w =
w0 w1 . . . wn−1 ∈ A+ , we denote its length by |w| = n. For any finite or infinite word w , we denote by wi its letter at 
position i < |w|, and by w[i, j) its subword (factor) wi wi+1 . . . w j−1 of length j − i, for 0 � i < j � |w|, with analogous 
definitions for bi-infinite words. In the following sections, we will use the terms ‘word’ and ‘sequence’ interchangeably 
when the context is clear.

A substitution is a map φ : A → A+; this can be extended to a map on A+, AN , AZ via concatenation. We say a 
substitution has constant length if |φ(a)| = |φ(b)| for all a, b ∈ A. To avoid degeneracy, we consider primitive substitutions, 
in other words ones where there exists a power n such that for any a, b ∈ A we have that a occurs in φn(b). If for a letter 
a ∈ A we have that φ(a) begins with a, we have that the primitive substitution has a fixed right-infinite point. Given a 
substitution φ, we may define its language as the set Lφ := {w ∈ A+ : ∃n ∈ N s.t. w is a subword of φn(a)}. It can be seen 
that the language of a primitive substitution is independent of choice of letter a. We call the words in Lφ legal or φ-legal.

The Thue–Morse substitution is defined on the binary alphabet A = {0, 1} as φ(0) = 01, φ(1) = 10. The fixed point of 
this substitution starting with the letter 0 gives rise to the Thue–Morse sequence. We have noted before that this sequence 
can be generated via the sum of digits modulo 2. More generally, we have that a binary bijective constant-length substitution 
can be represented via the sum of digits modulo 2 in base k, where k is the length of the substitution [4]. There are 
several natural ways to generalise the Thue–Morse sequence. One approach, taken by Parshina in [31], is to consider the 
so-called cyclic substitution on n letters. For an alphabet A = {0, . . . , n −1}, we define the cyclic Thue–Morse substitution as 
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φ(0) = 01 · · · (n − 1), φ(1) = 12 · · · 0, . . . , φ(n − 1) = (n − 1)01 . . . (n − 2). Another natural way to generalise the Thue–Morse 
sequence is by considering other binary sequences with a similar substitution structure [9,10,22,26]. It is this class that is 
studied further in Section 5.

In the following section it will be useful to consider the dynamical system associated with a substitution. To do this, 
we consider the discrete topology on the alphabet A, which naturally induces the product topology on A+ , AN , and AZ . 
The latter are compact by Tychonoff’s theorem. We equip AN (respectively AZ) with the (left) shift operator T , which 
gives these sets the structure of dynamical systems. A substitution gives rise to a natural dynamical system via the shift-
orbit closure of its fixed points. More precisely, given a fixed point w of a primitive substitution φ, we define the set 
Xφ := {T n(w) : n ∈N} ⊂ AN , which is also known as the hull or the subshift generated by φ. The choice of fixed point is 
irrelevant if the substitution is primitive. By a simple compactness argument, the subshift of a substitution is precisely the 
set of elements of AN (resp AZ) that have only φ-legal factors.

3. Pure point spectrum and infinite monochromatic arithmetic progressions

If v is a fixed point of a primitive constant-length substitution, the existence of arbitrarily long monochromatic arithmetic 
progressions is related to the spectral theory of the corresponding dynamical system. Note that we can alternatively consider 
a bi-infinite sequence w ∈ AZ that is a repetitive fixed point of the same substitution and ask whether for every m ∈ N+ , 
there exists n ∈ Z such that wn = wn+id , for 0 � i � m − 1. This problem on bi-infinite sequences w is equivalent to the 
original problem on v , since both define the same language and hence the same shift space.

We recall the fact that for a constant-length substitution, its dynamical system (with Z shift-action) has pure point 
(discrete) spectrum if and only if the corresponding tiling dynamical system (with R translation-action) has pure point 
spectrum. Using this fact and [29, Theorem 5.1], we have the following.

Theorem 2. Let w be a bi-infinite fixed point of a primitive, constant-length substitution �. Then w contains infinite monochromatic 
arithmetic progressions if and only if � has pure point dynamical spectrum. �

While having pure point spectrum is a measure-theoretic property, for primitive constant-length substitutions this is 
reduced to an algorithmic check by the seminal result by Dekking [14]. Before we proceed, we will need some definitions. 
Throughout, we assume � to be a primitive constant-length substitution of length L over a finite alphabet of r letters, and 
v to be a one-sided fixed point of �.

Definition 3. The height h(�) of � is given by

h(�) = max {n � 1 | gcd(n, L) = 1, n divides gcd {a | v0 = va}} .

Remark 4. The height satisfies 1 � h(�) � r. There is an algorithm to compute h(�) for a given substitution �; see [14].

Definition 5. Let j ∈ {0, . . . , L − 1}. The column � j at position j is the map � j : A →A defined via � j(a) := �(a) j for a ∈A. 
A column � j is called a coincidence if � j sends all letters to a single image, i.e., for all a ∈ A, � j(a) = b for some fixed b ∈A.

Theorem 6 ([14, Theorem 7]). Let � be a primitive constant-length substitution of height 1. Then � has pure point spectrum if and 
only if it has a coincidence. �

It was also shown in [14] that for every substitution �, there exists a substitution �′ with h(�′) = 1 (called the pure 
base of �) such that � has pure point spectrum if and only if �′ has pure point spectrum. The pure base �′ can be directly 
derived from �. In particular, if h(�) = 1 then it is its own pure base.

Example 7. Let A = {0,1} and consider the period doubling substitution

�pd : 0 �→ 01
1 �→ 00.

One can easily verify that this has height one and since it has a coincidence column at the zeroth position, it has pure point 
spectrum by Theorem 6. In fact, the result in Theorem 2 is even more explicit because the fixed point v of �pd is a Toeplitz 
sequence, i.e., for every n ∈N , there exists pn ∈N such that vn = vn+pnm for all m ∈N; see [18,21]. In other words, every 
letter vn is part of an infinite monochromatic arithmetic progression.

We now have the following result on arbitrarily long monochromatic progressions; compare [29, Lem. 2.5].

Proposition 8. Let � be a primitive constant-length substitution whose pure base does not have a coincidence. Then any of its fixed 
points does not admit arbitrarily long monochromatic arithmetic progressions of any difference d.
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Proof. The proof of this proposition uses the compactness of the corresponding subshift X� generated by the substitution 
�. It follows from this that every sequence {xn}n�0 with xn ∈ X� admits a converging subsequence.

Now pick a substitution which is primitive and whose pure base does not have a coincidence. It follows from Dekking’s 
result that it must have mixed spectrum and hence by Theorem 2 it cannot have infinite monochromatic progressions.

We then assume that some fixed point v of � admits arbitrarily long monochromatic progressions of some difference 
d. Then, we can find positions i j for all j ∈ N such that vi j is the first letter of a finite arithmetic progression of a fixed 
colour, difference d and length L j , satisfying Lk > L j for k > j, meaning that the lengths of the progressions are increasing.

Now let T be the left shift map defined pointwise via (T v)i = vi+1. The sequence 
{

T i j v
}

j�0 of shifted words admits a 

convergent subsequence and any limit word u = lim jk→∞ T i jk v must contain an infinite monochromatic arithmetic progres-
sion of difference d starting with its first letter. This contradicts Theorem 2 and completes the proof. �

We then recover the following well-known fact regarding the Thue–Morse sequence; see [27], which is based on [20]. 
Note that the Thue–Morse substitution is its own pure base and it does not have a coincidence.

Fact 9. The Thue–Morse word does not contain arbitrarily long monochromatic arithmetic progressions of any fixed difference d. �
Remark 10. Note that Proposition 8 allows one to do the same analysis on larger classes of automatic sequences not covered 
by [27], e.g., those which are codings of fixed points of constant-length substitutions which are a priori known to have mixed 
spectrum. This is addressed in an ongoing work [2].

For the rest of the paper, we will be dealing with infinite words generated by substitutions which satisfy the conditions 
of Proposition 8. For these objects we introduce the following well-defined notion, which we adapt from [31,32].

Definition 11. Let v be a fixed point of a substitution over an alphabet satisfying the conditions of Proposition 8. For a 
positive integer d, we denote by Av(d) the maximum length of a monochromatic arithmetic progression of difference d
within the word v .

When it is clear from context, we drop the v in Av(d) and just refer to it as A(d).

4. Monochromatic arithmetic progressions in the Thue–Morse word

We consider the Thue–Morse word v ∈ {0, 1}N arising from the substitution

θ : 0 �→ 01
1 �→ 10,

(1)

as the fixed point v = limn→∞ θn(0). Note that this substitution is bijective and symmetric under the ‘bar’ operation that 
exchanges the two letters (so a = 1 − a for a ∈ {0, 1}, referred to as a ‘bar-swap symmetry’ in [8]), which also implies that 
v = limn→∞ θn(1) is another fixed point word. The word v = v0 v1 v2 . . . satisfies

v2i = vi and v2i+1 = vi ,

for all i ∈ N . The letter vi is thus 0 if the binary expansion of i contains an even number of 1 s, and 1 otherwise. Also, v
is overlap-free, which means that, for any finite, non-empty word w , v does not contain w w w0 as a subword, where w0
denotes the first letter of w . Note also that θn(a) is reflection-symmetric if n is even, and antisymmetric (meaning that the 
reflected word is the image under the bar operation) if n is odd.

For n ∈N , we have the well-known recursions

θn+1(a) = θn(a) θn(a) = θn(a) θn(a), (2)

as can easily be shown by induction. This implies the following property.

Lemma 12. For all m > n ∈N+ and a ∈ {0, 1}, the word θm(a) consists of a sequence of the two subwords w = θn(a) and w = θn(a), 
arranged according to the sequence that corresponds to θm−n(b) with the letters b and b replaced by the words w and w.

Proof. Let w = θn(a) and w = θn(a). Then, θ(w) = w w by the recursion (2), which is the same form as the Thue–Morse 
substitution, now on the alphabet {w, w}. Hence θm(a) = θm−n(θn(a)) = θm−n(w) is the sequence θm−n(b) with b, b re-
placed by w, w . �

Since θ(v) = v , we know that A(2nd) = A(d) for any n ∈ N . In particular, since v is overlap-free, this implies A(2n) =
A(1) = 2 for all n ∈N . The following results show that A(d) = 2 holds only for differences d that are powers of 2.
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Lemma 13. Let d > 1 be an odd integer. Then A(d) � 3.

Proof. Assume first that the binary expansion of d contains an even number of 1 s. Since multiplication by 2 conserves the 
number of 1 s, we have v0 = vd = v2d = 0 and so A(d) � 3.

Now consider the case that the binary expansion of d contains an odd number of 1 s, and hence at least 3. Write 
d = 2m + 2n +k, with m > n and k < 2n , so k again contains an odd number of 1 s in its binary expansion. Let i = 2m+1 + 2n , 
with vi = 0. Then i + d = 2m+1 + 2m + 2n+1 + k. If m > n + 1, the number of 1 s in the binary expansion of i + d is even. If 
m = n +1, then i +d = 2n+3 +k and so, the number of 1 s in its binary expansion is even too. Hence, vi+d = 0. Furthermore, 
i + 2d = 2m+2 + 2n+1 + 2n + 2k. If 2k < 2n , the number of 1 s in the binary expansion of i + 2d is even. If 2n � 2k < 2n+1, 
we write 2k = 2n + t , where the number of 1 s in the binary expansion of t is even, and so, i + 2d = 2m+2 + 2n+2 + t and 
its binary expansion has an even number of 1 s. Therefore, vi+2d = 0 and A(d) � 3. �
Corollary 14. A(d) = 2 if, and only if, d = 2n for some n ∈N .

Proof. Since A(2nd) = A(d) for all n ∈N and A(d) � 3 for all odd d > 1 by Lemma 13, A(d) = 2 implies that d contains no 
odd prime factors. �

Parshina proved the following result [31], as well as a generalisation to similar sequences in larger alphabets [32,33]. Her 
proofs for the Thue–Morse case [31] are based on a detailed analysis of binary arithmetic.

Theorem 15 ([31]). For all n ∈N+ , we have that

max
d<2n

A(d) = A(2n − 1) =
{

2n + 4, if 2|n,

2n, otherwise.

We will give exact expressions of A(d) for certain values of d, in this section for the Thue–Morse sequence, and in 
Section 5 also for generalised Thue–Morse sequences, which are different generalisations from those considered in [31–33]. 
In particular, all our sequences are on a two-letter alphabet. Our results include a simple proof of the value of A(2n − 1)

stated in Theorem 15, but also identify a second series of long monochromatic arithmetic progressions in the Thue–Morse 
word, which becomes the ‘longest’ in some cases, provided one considers the maximum over a different range for d.

Our proofs will follow van der Waerden’s argument. For this, let us define the following block substitution.

Definition 16. Let � be the block substitution on the alphabet {0, 1} defined by

� : 0 �−→ 0 1
1 0,

1 �−→ 1 0
0 1.

Iterating � on a single letter produces square blocks of size 2n×2n , for instance

0 �−→ 0 1

1 0
�−→

0 1 1 0

0 1 1 0

1 0 0 1

1 0 0 1 �−→

0 1 1 0 1 0 0 1

0 1 1 0 1 0 0 1

0 1 1 0 1 0 0 1

0 1 1 0 1 0 0 1

1 0 0 1 0 1 1 0

1 0 0 1 0 1 1 0

1 0 0 1 0 1 1 0

1 0 0 1 0 1 1 0

�−→ . . . ,

where we used black (for 0) and white (for 1) squares to emphasise the block structure. Note that the blocks along both 
diagonals are always of the same colour.

Lemma 17. For a ∈ {0, 1} and n ∈N+ , the block �n(a), read row-wise from top to bottom, is the word θ2n(a) with θ the Thue–Morse 
substitution of Equation (1).

Proof. This follows by induction from noticing that

� : 0 �→ θ(0)
θ(1),

1 �−→ θ(1)
θ(0),
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so that, read row-wise from the top, the image of a under � is θ(a)θ(a) = θ2(a). �
The images of letters under �n have the following properties.

Lemma 18. For a ∈ {0, 1} and n ∈ N+ , the blocks �n(a) consists of only two types of row and column words, and are symmetric 
under reflection in either diagonals. All entries on the main diagonal are a, while entries of the other diagonal are a for even n and a
otherwise.

Proof. As shown in Lemma 17, �n(a) when read row-wise from the top is the word θ2n(a) = θn(θn(a)). By Lemma 12, this 
consists of 2n words from {θn(0), θn(1)}. So each row is one of these two words.

The symmetry in the diagonals follows from the symmetry of the block substitution �, which also implies that all 
columns are either θn(0) or θn(1).

It is obvious from the inflation rule that the elements of �n(a) on the main diagonal are always a. On the other diagonal, 
note that �(a) has a while �2(a) has a, which implies the claim. �
Lemma 19. For all n ∈N+ , we have that A(2n±1) � 2n. For even n, we further have A(2n−1) � 2n + 2.

Proof. Consider the block �n(a), which, when read row-wise from the top, is the word θ2n(a). As shown in Lemma 17, all 
elements on the main diagonal are a, so we find that A(2n+1) � 2n . Similarly, the elements on the other diagonal are either 
all a or a, so we also have A(2n−1) � 2n . For even n, both diagonals have a entries, and so the first and last letter of θ2n(a)

are also part of the arithmetic progression of difference 2n−1, which implies the claim. �
Before we establish the values for A(2n±1), we prove a useful result, which exploits the recognisability of the substitu-

tion; see [11] and references therein for general background.

Lemma 20. For n > 1 and a ∈ {0, 1}, the word w = θn(a) occurs in the Thue–Morse word either as the level-n superword itself, or in 
the centre of two level-n superwords θn(a) θn(a). Furthermore, if w is followed by the letter a, or if w is preceded by the letter a (for n
odd) or a (for n even), it is the level-n superword.

Proof. Clearly w can occur as the level-n superword. The second possibility arises from

θn(aa) = θn(a) θn(a)

= θn−1(aa) θn−1(aa)

= θn−1(a) θn−1(a) θn−1(a)θn−1(a)

= θn−1(a) w θn−1(a).

To show that these are the only two possibilities, we use that

θn(a) = θn−2(aaaa) = θn−2(a) θn−2(a) θn−2(a) θn−2(a),

which holds for all n > 1. By recognisability, the two adjacent level-(n−2) superwords θn−2(a) cannot belong to the same 
level-(n − 1) superword, so we know that θn(a) has to consist of two level-(n−1) superwords, which only leaves the two 
possibilities, since all level-(n−1) boundaries are determined.

If w = θn−1(a) θn−1(a) is followed by a letter a, the next level-(n−1) superword is determined to be θn−1(a), and 
the level-n superword boundary has to fall between w and the subsequent letter a, which shows that w is the level-n
superword. The same happens when w is preceded by the final letter of the superword θn−1(a), which is a for odd n and 
a for even n. �
Theorem 21. For all n > 1, we have that A(2n+1) = 2n + 2.

Proof. We first show that there exist monochromatic arithmetic progressions of length 2n +2. From the proof of Lemma 19, 
we already have a monochromatic arithmetic progression of length 2n in the word w = θ2n(a), with the first and final letter 
being part of the progression.

Now consider how many letters can be added at either end of the progression of length 2n in the superword 
w = θ2n(a). From Lemma 20, we know that the word w = θ2n−1(a) θ2n−1(a) and that these are the actual level-(2n−1)

superwords. There are four possibilities how this superword can be bordered by level-(2n−1) superwords: we can have 
θ2n−1(b) w θ2n−1(c) with b, c ∈ {a, a}.

Since d = 2n + 1, no element of the progression is in the level-n superwords adjacent at either end. Since all superwords 
start or end with a level-2 superword bbbb, the next two members on either side would have to be the first and the second 
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letter of the same superword θn(b), which however are different letters (where we use that n > 1). This shows that the 
progression can at most be extended by one in either direction. Since all combinations of superwords on either side can 
appear, there are instances where the progression can be extended by exactly one step in both directions, showing that 
A(2n+1) ≥ 2n + 2.

It remains to be shown that this is the maximum length of a progression. Assume that we have a progression of length 
L > 2n . The elements in this progression hit each position in the superwords of level-n at least once. Now, once we hit 
the first position of such a superword, the following members of the progression determine the sequence of level-n super-
words uniquely, which is the same sequence as that of the superword w . If there are at least 2n terms in the progression 
following this position, they determine the level-(2n−1) superword by the second part of Lemma 20, and hence we are 
back considering the word w from above. If there are fewer terms left, we can use the previous member of the progression 
which hits in the last position of a level-n superword, and determine the sequence of level-n superwords preceding it in 
the progression. Again, this determines the level-(2n−1) superword by the second part of Lemma 20, and we are back in 
the case considered above, showing that L ≤ 2n + 2. �

Similarly, as mentioned above, we can rederive the value of A(2n−1) stated in Theorem 15.

Proposition 22. For all n ∈N , n > 1, we have that

A(2n−1) =
{

2n + 4, if 2|n,

2n, otherwise.

Proof. From Lemma 19, we already know that A(2n−1) � 2n for n odd and A(2n−1) � 2n + 2 for n even.
Let us first consider the case that n is odd. Since the superwords θn(a) are antisymmetric under reflection, their first 

and last letters differ. This means that once our progression hits the first letter of a superword, it stops. Since addition by 
2n − 1 means that the elements in the progression cycle through all positions in the superword, we obtain the upper limit 
A(2n−1) � 2n , implying that A(2n−1) = 2n .

Now consider the case of n even. Here, the superwords are symmetric under reflection, so we can have two elements of 
the progression within one superword. Assume that this occurs for a superword θn(a) which has first and last letter a. If the 
progression continued to the left and to the right, the neighbouring superwords are determined by having the letter a at the 
next two positions, which force both of them to be a, and by symmetry this applies to either side of the superword, hence 
we obtain θn(a)θn(a)θn(a)θn(a)θn(a). Clearly, the word aaaaa does not belong to the Thue–Morse language. This means 
that once the progression hits the first and last letter, it can only be extended by at most one either way, so we obtain 
A(2n−1) � 2n + 4. That this bound is attained can be seen by looking at θ2n(a), which by Lemma 19 contains a progression 
of length 2n + 2 starting at ending with a superword θn(a) that contain two elements of the progression. The superwords 
either side of θ2n(a) can be both θ2n(a), since aaa is in the Thue–Morse language. Hence the progression can be continued 
by one additional step to either direction, and the bound is attained. �

The following two lemmas prove that there are no longer monochromatic arithmetic progressions for differences up to 
powers of 2.

Lemma 23. Let n ∈N+ and 0 < k < 2n−1 be both odd, and consider d = 2n − k. Then A(d) � 2n.

Proof. Assume that there exists a monochromatic arithmetic progression of difference d of length L > 2n . Since d is odd 
and hence coprime with 2n , looking at elements of the progression within superwords of length 2n will meet every position 
in a superword, including the position m = (k − 1)/2. However, the superwords of length 2n for n odd are antisymmetric 
under reflection, so

θn(a)m = θn(a)2n−1−m,

which shows that not both m and 2n − 1 − m = m + d can be in the arithmetic progression, in contradiction to our assump-
tion. This means that the progression cannot be longer than the number of rest classes modulo 2n , which establishes the 
claim. �
Lemma 24. Let n > 1 and let 2 < k < 2n−1 be odd, and consider d = 2n − k. Then A(d) � 2n.

Proof. Assume there exists a monochromatic arithmetic progression of difference d of length L > 2n . Since d is odd and 
hence coprime with 2n , looking at elements of the progression within superwords of length 2n will meet every position in a 
superword. There are precisely k instances where two elements of the progression appear within the same the superwords 
of length 2n , and hence the corresponding letters within the superwords have to agree. Since θn(a) = θn(a), both superwords 
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Fig. 1. A(d) for d = 1,2, . . . ,1100 in the Thue–Morse word.

have to agree on all these positions. As a consequence, for a ∈ {0, 1} and the superword θn(a), the word consisting of its 
first k letters

w := θn(a)[0,k)

also has to appear at the end of the superword, so w = θn(a)[2n−k,2n) . Since k � 3 and θn(a) starts with aaa, the word w
always contains a repeated letter and hence the level-1 superwords of length 2 are uniquely determined. This results in a 
contradiction because the length of w is odd, and the superword θn(a) thus cannot end in w , since the level-1 superword 
boundaries do not match. Hence A(d) � 2n . �

Note that, in contrast to Lemma 23, the result of Lemma 24 does not extend to the case k = 1, since in this case there 
is only one instance of a word containing two elements of the arithmetic progression, and for even n the superwords θn(a)

start and end on a, so this can (and does) appear in a long monochromatic arithmetic progression.
By linear repetitivity of the Thue–Morse word v (see [13,15,16]), we know that A(d) can be experimentally computed 

using a sufficiently long prefix of v . An algorithm can be defined to choose the length of this prefix in a finite number 
of steps. For a rigorous exposition the reader is referred to [1]. The data we have obtained following this idea confirms 
our results, including Theorems 15 and 21, and is presented in Fig. 1, which exhibits A(d) for d = 1, 2, . . . , 1100. A more 
comprehensive list of values of A(d) can be found in [30].

The histogram in Fig. 2 counts, for each value y of A(d), the number of d’s that satisfy A(d) = y. We observe that short 
monochromatic arithmetic progressions are more frequent than long ones. If the range of differences d was larger, the peak 
of the histogram would be taller but roughly situated in the same place due to linear repetitivity of the Thue–Morse word. 
It seems that A(d) never takes certain values and we conjecture that 3 is the smallest one among them.
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Fig. 2. Histogram corresponding to the values of Fig. 1

5. Generalised Thue–Morse words

Consider the generalised Thue–Morse substitution rules θp,q for p, q ∈N+ defined by [9]

θp,q : 0 �→ 0p1q

1 �→ 1p0q ,
(3)

where the original Thue–Morse substitution corresponds to p = q = 1. These binary bijective substitutions share many 
properties with the Thue–Morse substitution. In particular, we still have the ‘bar-swap’ symmetry θn(a) = θn(a). This implies 
that, once again, superwords are uniquely determined as soon as you know a single of its letters. Note that, however, the 
symmetry of superwords is only preserved when p = q, with superwords for even n being symmetric while those for odd n
being antisymmetric under reflection. The other main change is that, rather than working modulo 2, we now have to work 
modulo Q := p + q. Also, it is clear from the substitution rule (3) that the language of θp,q is (Q +1)-powerfree (in fact, 
(Q + ε)-powerfree for any ε > 0), generalising the cube-freeness (overlap-freeness) of the Thue–Morse case.

We note that Parshina also considered generalised Thue–Morse words [32], but in her work the generalisation is to larger 
alphabets. Here, we consider a generalisation of the Thue–Morse sequence along the lines of [9,10,22], restricting ourselves 
to the binary case.

Since the rule θ2
p,p is symmetric under reflection, the corresponding language is reflection symmetric too. However, if 

p �= q, reflection swaps the languages defined by θp,q and θq,p . As we shall now show, each of these languages itself is not 
reflection symmetric.

Lemma 25. For p �= q, the languages Lp,q and Lq,p defined by the substitutions θp,q and θq,p , respectively, are different, so Lp,q �=
Lq,p . In particular, for a ∈ {0, 1}, the words a ap aq+1 belong to Lp,q but not to Lq,p .

Proof. It is easy to verify that aaa ∈Lp,q for any p, q ∈N+ . Now,

θp,q(aaa) = ap aq ap aq ap aq = ap aq ap ap+q aq,

so a ap aq+1 ∈Lp,q for all p �= q. By reflection, a ap aq+1 /∈Lq,p is equivalent to aq+1 ap a /∈Lp,q , which we are going to show 
now.

Noting that p �= q and that Lp,q can only contain strings of the type aama for m ∈ {p, q, p+q}, it follows by recognisability 
that apa in aq+1apa has to be the start of the level-1 superword θp,q(a). However, it then has to be preceded by the level-1
superword that ends in a, which is again θp,q(a) = apaq . This is clearly impossible, establishing the claim. �
Remark 26. Similarly, considering the word aaa ∈Lp,q , with

θp,q(aaa) = ap aq ap aq ap aq = ap ap+q aq ap aq,

we can show that ap+1 aq a ∈Lp,q , but is not a word in Lq,p for p �= q.

Since all substitutions are binary bijective, it follows from [9] that they are not pure point diffractive, which implies 
that they do not have pure point dynamical spectrum either. Hence, by Proposition 8, they cannot contain infinitely long 
monochromatic arithmetic progressions for any finite difference d. This means that we can again define the maximum 
length of a monochromatic arithmetic progression.
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Definition 27. For a positive integer d, let Ap,q(d) denote the maximum length of a monochromatic arithmetic progression 
of difference d within the generalised Thue–Morse word, fixed point of the substitution of Equation (3).

As a direct consequence of the substitution structure and recognisability, we know that A p,q(Q nd) = Ap,q(d) holds for 
all n ∈ N . In particular, this implies that Ap,q(Q n) = Ap,q(1) = Q . We can again find long monochromatic arithmetic pro-
gressions by considering a block substitution.

Definition 28. Let �p,q be the block substitution on the alphabet {0, 1} defined by

�p,q : 0 �−→

0p1q

0p1q

...

0p1q

⎫⎪⎪⎬
⎪⎪⎭ p

1p0q

1p0q

...

1p0q

⎫⎪⎪⎬
⎪⎪⎭q

, 1 �−→

1p0q

1p0q

...

1p0q

⎫⎪⎪⎬
⎪⎪⎭ p

0p1q

0p1q

...

0p1q

⎫⎪⎪⎬
⎪⎪⎭q

.

The block substitution �p,q maps a single letter a to a Q × Q block of letters, which, when read line by line, coincides 
with the word θ2

p,q(a). To illustrate the properties of �p,q , let us consider a couple of examples.

Example 29. We first consider and example where p = q, namely �2,2. The first two substitution steps of the letter 0 are 
as follows,

0 �−→ 0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0
�−→

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

,

which is a similar structure as for the original Thue–Morse case. In particular, all squares along the diagonals are of the 
same colour.

The situation is different for p �= q. Here, we consider the block substitution �2,1 as an example, which acts on a letter 
0 as
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0 �−→ 0 0 1

0 0 1

1 1 0

�−→

0 0 1 0 0 1 1 1 0

0 0 1 0 0 1 1 1 0

0 0 1 0 0 1 1 1 0

0 0 1 0 0 1 1 1 0

0 0 1 0 0 1 1 1 0

1 1 0 1 1 0 0 0 1

1 1 0 1 1 0 0 0 1

1 1 0 1 1 0 0 0 1

1 1 0 1 1 0 0 0 1

�−→ · · · .

Note that, while we retain the same letter along the main diagonal, this is no longer the case along the diagonal from the 
lower left to the top right. Considering the second inflation step shown above, it appears that there is a long monochromatic 
progression of difference 32 −1 = 8, starting from the central black square on the top row and moving down diagonally, and 
then continuing on from the final black square on the middle row. Indeed, we find that for d = 8 the longest monochromatic 
arithmetic progression has length 12; however, this pattern does not persist for further inflation steps.

As for the Thue–Morse case, the image of a letter a has all entries a along the main diagonal of this block. However, 
as illustrated in Example 29, in general this is no longer the case for the other diagonal, except for the case that p = q, in 
which case the entries of this diagonal are all a. This means that we obtain the existence of long monochromatic arithmetic 
progressions, as in the Thue–Morse case, for d = Q n + 1 for all values of p and q, while long monochromatic arithmetic 
progressions for d = Q n − 1 may only exist if p = q.

Noting that Lemma 17 and Lemma 18 generalise in a straightforward manner, we obtain the following existence result 
for long monochromatic arithmetic progressions in generalised Thue–Morse words, generalising the result of Lemma 19.

Lemma 30. For all n, p, q ∈N+ , Q = p + q, we have that Ap,q(Q n+1) � Q n and Ap,p(Q n−1) � Q n. If n is even, we further have 
that Ap,p(Q n−1) � Q n + 2.

Proof. This follows by the same line of argument as for the Thue–Morse case in the proof of Lemma 19. �
The following results implicitly use the fact that, as in the Thue–Morse case, a level-n superword of θp,q within any word 

in Lp,q only occurs in certain ways. We obtain the following generalisation of Lemma 20.

Lemma 31. The word w = θn
p,q(a) with a ∈ {0, 1} and n > 1 occurs inside sufficiently long words in Lp,q either as the level-n super-

word itself, or, in the case when p = q, in the centre of two level-n superwords θn
p,p(a)θn

p,p(a). In the latter case p = q, if w is followed 
by the letter a or preceded by the letter a (for n odd) or a (for n even), it is the level-n superword.

Proof. The proof is a straightforward generalisation from that of Lemma 20. The only difference is that, for p �= q, the word 
w can only occur as the level-n superword, because the level-(n − 1) superwords are determined and with p �= q they can 
only be combined to the level-n superword in one way. �
Theorem 32. For all n, p, q ∈N+ , Q = p + q, n > 1, we have that

Ap,q(Q n+1) =

⎧⎪⎨
⎪⎩

Q n + Q − 2, if p > 1 and q > 1,

Q n + Q − 1, if q > p = 1 or p > q = 1,

Q n + Q , if p = q = 1.

Proof. From the proof of Lemma 30, we have an arithmetic progression of length Q n of the letter a in the word

w = θ2n
p,q(a) = (

θn
p,q(a)

)p(
θn

p,q(a)
)q

. . .
(
θn

p,q(a)
)p(

θn
p,q(a)

)q
,

with the first and final letter being part of the progression (as before, because we are looking at an even number of sub-
stitutions, the word w starts and ends with the same letter). Note that, since the elements in the progression of difference 
Q n + 1 visit successive positions in superwords θn

p,q(a) in order, we know that, irrespective of where we start, once we 
hit the first letter of a superword θn

p,q(a) (which has to happen for any progression of length Q n) the progression follows 
this same sequence, and the same backwards from when we hit the final position in a level-n superword. Using the same 
argument as in the proof of Theorem 21, we conclude that any progression of length L > Q n has to include this superword.
75



I. Aedo, U. Grimm, Y. Nagai et al. Theoretical Computer Science 934 (2022) 65–80
Now consider how many letters can be added at either end of the progression of length Q n in the superword w . For 
Q > 2, all four possibilities for this superword being bordered by level-n superwords u = θn

p,q(a) or u = θn
p,q(a) can occur, 

so we need to consider w followed or preceded by either u or u.
If w is followed by u, it is followed by up and we can extend the arithmetic progression by exactly p − 1 to the right. If 

it is followed by u, we cannot extend at all unless p = 1. For p = 1, we can extend by exactly one step.
If w is preceded by u (for n odd) or u (for n even), we cannot extend at all unless q = 1, in which case we can extend 

by precisely one step. If it is preceded by u (for n odd) or u (for n even), we can extend by exactly q − 1 steps to the left.
Choosing the combination with the longest available progression yields the result. �
Note that for p = q = 1 we recover the result of Theorem 21.

Theorem 33. For all n, p ∈N+ , Q = 2p, n > 1, we have that

Ap,p(Q n−1) =

⎧⎪⎨
⎪⎩

Q n, if n is odd,

Q n + Q , if n is even and p > 1,

Q n + Q + 2, if n is even and p = 1.

Proof. From Lemma 30, we already know that long monochromatic arithmetic progressions for d = Q n − 1 exist, with 
Ap,p(d) � Q n , within the superword

w = θ2n
p,p(a) = (

θn
p,p(a)

)p(
θn

p,p(a)
)p

. . .
(
θn

p,p(a)
)p(

θn
p,p(a)

)p
.

Accordingly, such a long progression visits every position in level-n superwords.
For odd values of n, the superwords θn

p,p(b) start with b and end on b, so it is not possible to have the first and last 
letter in the same monochromatic arithmetic progression. This implies that A p,p(d) � Q n , and hence Ap,p(d) = Q n in this 
case.

For even values of n, all superwords θn
p,p(b) start and end in the same letter, and hence we have A p,p(d) � Q n + 2 as 

shown in Lemma 30, with the first and last letter in the superword w belonging to the arithmetic progression. What is 
left to consider is how far this can be extended on either side. The word w can be preceded and succeeded by level-n
superwords u = θn

p,p(a) or u = θn
p,p(a), where for p = 1 one has to ensure cube-freeness.

If w is succeeded by u and hence by up , it can be extended by exactly p − 1 steps. If it is succeeded by u, no extension 
is possible, unless p = 1 in which case you can extend by exactly one step. Due to symmetry of all these words for even n, 
the same argument applies at the other end, which completes the proof. �
Proposition 34. For all n, p, q ∈N+ , with n > 2, p �= q and Q = p + q, we have that Ap,q(Q n−1) � Q n.

Proof. Assume to the contrary that a long monochromatic arithmetic progression of difference Q n − 1 and length L > Q n

exists. Then this progression contains a level-n superword w = θn
p,q(a) with two instances of this progression, implying that 

the first and last letter of w agree. If n is odd, this is not possible, since w starts with a and ends on a.
If n > 2 is even, w starts and ends with

θ2(a) = θ(a)pθ(a)q = (apaq)p(apaq)q.

Since by bijectivity a single letter determines the superwords, we can read off the sequence of words to the left and to the 
right of the word w with two instances of the progression, provided the progression extends.

Consider first the case p > 1. Assume that the progression continues to the right of w . As we are considering the 
difference d = Q n − 1, we are effectively reading the word w “backwards” to determine the sequence of superwords that is 
required. As mentioned above, w ends on θ2(a) which (since p > 1) contains the word a ap ap+q . According to Lemma 25, 
this word does not occur in Lp,q , since we are considering the case that p �= q. This implies that the sequence of superwords 
required to continue the progression for Q 2 steps to the right contains a subsequence that corresponds to the images of a 
word under θp,q that is not in the language Lp,q , which is a contradiction. This means that the progression cannot continue 
to the right for more than (q + 1)Q steps at most.

An analogous argument holds if you assume that the progression extends to the left, showing that it can at most continue 
for p Q steps to the left. So the total length of the progression is at most Q 2 + Q < Q n − 1 for n > 2.

If p = 1 and hence q > 1, we can use the same arguments as above, based on the word ap+1 aq a from Remark 26, which 
occurs within θ2

p,q(a) in this case. �
So we have established the existence of long monochromatic arithmetic progressions for all generalised Thue–Morse 

sequences for differences d = Q n + 1, as well as for differences d = Q n − 1 in the case that p = q. The obvious conjecture 
is that these are again the longest monochromatic arithmetic progressions that you can find, up to the given difference, in 
these systems, which we state as a conjecture.
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Conjecture 35. For all n, p, q ∈N+ , Q = p + q, n > 2, we have that

max
d�Q n+1

Ap,q(d) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ap,q(Q n−1) = Q n + Q + 2, if p = q = 1 and n even,

Ap,q(Q n−1) = Q n + Q , if p = q > 1 and n even,

Ap,q(Q n+1) = Q n + Q , if p = q = 1 and n odd,

Ap,q(Q n+1) = Q n + Q − 1, if q > p = 1 or p > q = 1,

Ap,q(Q n+1) = Q n + Q − 2, if p,q > 1, and p �= q or n odd.

To establish this conjecture, we would need to generalise the results of Lemmas 23 and 24. This is not straightforward, 
though, because we now have to consider differences d = Q n − k where we may have that k is a non-trivial divisor of Q , 
in which case the argument that in a long arithmetic progression all rest classes modulo Q n appear is no longer applicable.

The following lemma details the relations within superwords arising from an assumed existence of long monochromatic 
arithmetic progressions.

Lemma 36. Consider the language of the generalised Thue–Morse substitution θp,q with p + q = Q . For n ∈ N , n > 1, and 1 < k <
Q n−1 , set s = gcd(k, Q ) and assume that s �= Q . If there exists a long monochromatic arithmetic progression of difference d = Q n −k
and length L > Q n/s, the level-n superwords w = θn

p,q(a) have to satisfy wr+�s = wr+�s+d for some 0 � r < s and for all 0 � � < k/s.

Proof. We have gcd(d, Q ) = gcd(k, Q ) = s and r ≡ d mod Q , so any such arithmetic progression of length L visits all posi-
tions {

r′ | 0 � r′ < Q n, r ≡ r′ mod Q n} = {
r + �s | 0 � � < Q n

s

}
in a superword w = θn

p,q(a) for some letter a ∈ {0, 1} and for some 0 � r < s. Whenever there are two instances within a 
superword, the corresponding letters have to agree for either superword, since θn

p,q(a) = θn
p,q(a). The condition for having 

two instances within a superword is r′ + d < Q n , which means r′ < k. With r′ = r + �s, this results in � < (k − r)/s, and 
since r < s this is equivalent to � < k/s, establishing the claim. �
Proposition 37. Consider the language of the generalised Thue–Morse substitution θp,q for Q = p + q prime. Then, for n ∈N , n > 1, 
and Q < k < Q n−1 , any monochromatic arithmetic progression of difference d = Q n − k has length L � Q n.

Proof. Since Q is prime, we have that gcd(k, Q ) = 1. From Lemma 36 we know that, if there exists a monochromatic 
arithmetic progression of length L > Q n , the superwords w = θn

p,q(a) have to satisfy w[0,k) = w[Q n−k,Q n) . If k > Q , this 
produces a contradiction, since the final Q letters of w[0,k) cannot be a valid level-1 superword, but w has to end on a 
level-1 superword. �

Note that this lemma does not cover the differences d = Q n − k where 1 < k < Q , which we would need to establish 
the conjecture for prime values of Q (except for Q = 2 which brings us back to the Thue–Morse case). A partial result for 
min(p, q) = 1 is next, establishing Conjecture 35 for this class.

Proposition 38. Consider the language of the generalised Thue–Morse substitution θp,q for min(p, q) = 1 and Q = p +q prime. Then, 
for n ∈N+ and any 1 < k < Q n−1 , any monochromatic arithmetic progression of difference d = Q n − k has length L � Q n.

Proof. From Proposition 37, we know that the claim holds from k > Q .
If p = 1, the level-1 superwords are of the form aaq with a ∈ {0, 1}. This means that, for 1 < k < Q , the superwords 

w = θn
1,q(a) start with w[0,k) = aak−1. Since 1 � k − 1 < q, this string of letters cannot occur at the end of the superword w .

Similarly, if q = 1, the superwords w = θn
p,1(a) start with w[0,k) = ak . Since k > q = 1, this string of letters cannot occur 

at the end of the superword w . �
We finish this section with plots of Ap,q(d). To depict the difference between the p = q case and the p �= q case, we 

present Figs. 3 and 4, the former for p = q = 2 and the latter for p = 3 and q = 1, so Q = 4 in both cases. The experimental 
data agree with our results, including Theorems 32 and 33, and also give credibility to Conjecture 35.

In Fig. 3, the equality of p and q preserves the symmetry of superwords of the Thue–Morse substitution and conse-
quently, it is qualitatively similar to Fig. 1. In particular, we observe the large monochromatic arithmetic progressions at 
differences d = Q n ± 1 = 4n ± 1. It is interesting to note that there is another series of large peaks around differences d of 
the form 2n for odd n, similarly to Fig. 1 for the Thue–Morse case; however, the largest values are not at d = 2n ± 1, but at 
d = 2n − 2. On the other hand, when p �= q, the output differs qualitatively from the Thue–Morse case, as it can be seen in 
Fig. 4.
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Fig. 3. A2,2(d) for d = 1,2, . . . ,1100.

Fig. 4. A3,1(d) for d = 1,2, . . . ,1100.

6. Some upper bounds for A(d) for primitive binary bijective substitutions

In this section, we state a partial result for general primitive bijective (and hence constant-length) substitutions over a 
binary alphabet A, which include those treated in Section 5.

For a finite or infinite word v = (vi), a finite word w = w0 w1 · · · wn and a natural number k, we say that a pattern 
P(w, k) is legal in v if there is an s such that

vs = w0, vs+k = w1, vs+2k = w2, . . . , vs+nk = wn.

Namely, P(w, k) is an arithmetic subword (not necessarily monochromatic) in v of difference k and length n + 1. A 
monochromatic progression corresponds to the case when w = 0n+1 or 1n+1. Note that, if we say a P(w, k) is legal in 
v = (vi), we assume that s, s +k, . . . , s +nk are in the range of the subscripts i for v . In this section, we let � be a primitive 
binary bijective substitution rule of length Q on an alphabet A = {0, 1} and v = (vn)n∈N be a fixed point of �.

Proposition 39. Let w = w0 w1 · · · wn be a finite word on A and k, d, m be positive integers. Assume that

1. Q and d are coprime,
2. P(w, k) is not legal in v, and
3. P(w, d) is legal in �m(0).

Then P(0n′
, d′) is not legal in v, where n′ = Q m + n and d′ = Q mk + d. In other words, there are no monochromatic arithmetic 

progressions of difference d′ and length n′ .

Proof. Assume that P(0n′
, d′) is legal in v . Then there is a t ∈N such that

vsd′+t = 0,
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for each s = 0, 1, . . .n′ − 1.
By assumption 3 in the statement, there is an l0 ∈N such that the ( jd + l0)th letter in �m(0) is w j for any j = 0, 1, . . . , n. 

Note that this implies that we have 0 � jd + l0 � Q m − 1 for each j = 0, 1, . . . , n.
Since Q and d are coprime (assumption 1 in the statement), there is an s ∈ {0, 1, . . . Q m − 1} such that l0 ≡ t + sd′ mod 

Q m , and so there is an i ∈N such that l0 + i Q m = t + sd′ . For each j = 0, 1, . . . , n, we have that

t + (s + j)d′ = (i + kj)Q m + jd + l0.

Since 0 � jd + l0 � Q m − 1, vt+(s+ j)d′ is the ( jd + l0)th letter in a superword, which is denoted by �m(a j).
If w j = 0, then the ( jd + l0)th letter in �m(0) is 0 and so the ( jd + l0)th letters in �m(0) and �m(a j) coincide. This means 

that a j = 0.
If w j = 1, then the ( jd + l0)th letter in �m(0) is 1 and so the ( jd + l0)th letters in �m(0) and �m(a j) differ. This means 

that a j = 1.
In any cases, w j = a j and we have that

vi+kj = w j

for each j = 0, 1, . . . , n, and P(w, k) appears in v . However, this contradicts assumption 2 in the statement. �
In the next proposition, we use the notation w̃ for the palindromic inverse wn wn−1 · · · w1 of a finite word w =

w0 w1 · · · wn .

Proposition 40. Let w = w0 w1 · · · wn be a finite word on A and k, d, m be positive integers. Assume that

1. Q and d are coprime,
2. P(w, k) is not legal in v, and
3. P(w̃, d) is legal in �m(0).

Then P(0n′
, d′) is not legal in v, where n′ = Q m + n and d′ = Q mk − d. In other words, there are no monochromatic arithmetic 

progressions of difference d′ and length n′ . �
We omit the proof, which is a modification of the proof of Proposition 39. This could be done by replacing jd + l0 with 

(n − j)d + l0 in the second paragraph and l0 with l0 + nd in the subsequent paragraphs.

Example 41. Let � be such that

� : 0 �→ 0101
1 �→ 1010.

Set w = 101. Then for each m = 1, 2, . . ., w appears in �m(0) and so P(w, 1) is legal in �m(0). On the other hand, P(w, 2)

is not legal in the fixed point v . Therefore, by Propositions 39 and 40 with Q = 4, d = 1 and k = 2, the monochromatic 
arithmetic progressions of difference d′ = 2Q m ± 1 and length n′ = Q m + 2 are not legal in v .

7. Conclusions and outlook

We investigated the occurrence of long monochromatic arithmetic progressions in the Thue–Morse word and a class of 
generalised Thue–Morse words. Clearly, the existence of these long progressions of difference d and length L ≈ d was linked 
to the structure of the underlying substitution, corresponding to a diagonal in the induced block substitution carrying the 
same letter. If we change the order of letters in the substitution while retaining bijectivity, this property will be lost and, 
in general, such long progressions should not be expected to exist. We currently do not have any stronger bounds on the 
progressions for these cases, but it is likely that infinite series of progressions where the length L grows linearly with the 
difference d may not exist in this case. It would be interesting to quantify the behaviour for such systems. In this vein, we 
recall Conjecture 35 about the maximal values of monochromatic arithmetic progressions in generalised binary Thue–Morse 
words.

The behaviour of the maximum length of monochromatic arithmetic progressions is rather volatile, as can be seen from 
the plots for A(d) in this paper. It is not even known whether A(d) can take all values; we believe not, and pose the 
following:

Conjecture 42. There is no difference d0 for which the maximum length of a monochromatic arithmetic progression A(d0) is 3 in the 
Thue-Morse sequence.
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A complete justification of the theory behind our computations can be found in [1].
Other potential generalisations include the investigation of other substitution sequences, either with more letters (see 

[32] for results on a different class of generalised Thue–Morse sequences) or for non-bijective substitutions, or quantitative 
versions of normality results [7,28,34,35].
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